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ON SOME NEW FAMILIES OF k-MERSENNE AND

GENERALIZED k-GAUSSIAN MERSENNE NUMBERS AND

THEIR POLYNOMIALS

MUNESH KUMARI, JAGMOHAN TANTI, AND KALIKA PRASAD

Abstract. In this paper, we define the generalized k-Mersenne num-
bers, give a formula for generalized Mersenne polynomials and study
their properties. Moreover, we define Gaussian Mersenne numbers and
obtain some identities such as a Binet type formula, Cassini type iden-
tity, D’Ocagne type identity, and generating functions. The generalized
Gaussian Mersenne numbers are described and their relation with the
classical Mersenne numbers are explained. We also introduce a general-
ization of Gaussian Mersenne polynomials and establish some properties
of these polynomials.

1. Introduction

Mersenne sequence {Mn}n≥0 [3] is given by the recurrence relation,

(1.1) Mn+2 = 3Mn+1 − 2Mn, n ≥ 0, with M0 = 0, M1 = 1,

and the terms of this sequence are known as Mersenne numbers.
The characteristic equation corresponding to the above recurrence rela-

tion is

(1.2) λ2 − 3λ+ 2 = 0.

The Binet type formula for the Mersenne numbers is given by

(1.3) Mn = λn
1 − λn

2 ,

where λ1 = 2 and λ2 = 1 are the roots of the characteristic eqn. (1.2).
Recall that, in number theory Mersenne numbers {Mn} are sequences

of integers of the form 2n − 1 for non-negative integer n, which can also
be obtained from the Binet type formula. In this paper, we study and
generalize one of the recursive sequences of integers and we give the corre-
sponding polynomials, some well-known identities for this type of sequence.
Some well-known recursive sequences are Fibonacci, Lucas, Horadam, Pell,
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Perrin, Fibonacci-Lucas, Jacobsthal, etc. that are studied over the years
and still are a great area of interest for generalization and their applica-
tions in other disciplines like cryptography, coding theory, matrix theory,
etc. Horadam [7, 8] introduced the concept of Gaussian Fibonacci numbers
and complex Fibonacci numbers. Further, Jordan [9] considered Gaussian
Fibonacci and Lucas numbers and extended classical relations. Moreover,
studies on the different Gaussian sequences like Gaussian Fibonacci, Gauss-
ian Lucas, Gaussian Pell, Gaussian Pell-Lucas, and their polynomials can
be found in the papers [10, 2, 6, 15]. Also, some work in the direction of
generalization of the recursive sequences like Lucas, Pell, Horadam, etc. has
been done in [11, 12, 16]. Prasad et. al. [13] discussed the generalization
of higher-order Fibonacci sequences and showed their application in cryp-
tography as a key matrix. Constructions of identities related to Mersenne
numbers and generalized Mersenne numbers and study of their properties
have been studied in papers [1, 3, 5, 4, 14] using generating functions and
matrix methods.

Theorem 1.1 (Cassini Type Identity [14]). For n ≥ 1,

(1.4) M2
n −Mn+1Mn−1 = 2n−1.

Theorem 1.2 (Generating function [5]). Generating function for Mersenne
numbers Mn is given by,

(1.5) M(x) =
∞∑
i=0

Mix
i =

x

(1− 3x+ 2x2)
.

This paper is organized as follows. In Section 2, we define generalized
k-Mersenne numbers and their polynomials and establish relations between
classical Mersenne numbers and generalized k-Mersenne numbers. In Section
3, we introduce Gaussian Mersenne numbers and obtain some identities
such as a Binet type Formula, Cassini type identity, D’Ocagne type identity
and generating functions related to these numbers. At last, we define k-
generalized Gaussian Mersenne numbers and discussed their properties, and
obtain some identities involving Mersenne numbers.

2. Main Work

2.1. Generalized k-Mersenne numbers.

Definition 2.1. Let k ∈ N, n ∈ N∪ {0} and let s, r ∈ N∪ {0} be the unique
natural numbers such that such that n = sk+ r, where 0 ≤ r < k. Then the

generalized k-Mersenne numbers M
(k)
n are defined as

(2.1) M (k)
n = (λs

1 − λs
2)

k−r(λs+1
1 − λs+1

2 )r, n = sk + r

where λ1 and λ2 are the roots of equation (1.2).
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From eqn. (1.3) and Definition 2.1, the generalized k-Mersenne numbers
and Mersenne numbers are related as

(2.2) M (k)
n = Mk−r

s M r
s+1, n = sk + r.

If k = 1 then r = 0 and hence n = s. So, from eqn. (2.2) we haveM
(1)
n = Mn.

From the above derivations, we have noted the following identities showing
relations between generalized k-Mersenne numbers and Mersenne numbers
for k = 2, 3.

M
(2)
2s = M2

s .

M
(2)
2s+1 = MsMs+1.

M
(2)
2s+1 = 3M

(2)
2s − 2M

(2)
2s−1.

M
(3)
3s = M3

s .

M
(3)
3s+1 = M2

sMs+1.

M
(3)
3s+1 = 3M

(3)
3s − 2M

(3)
3s−1.

M
(3)
3s+2 = MsM

2
s+1.

Some generalized k-Mersenne numbers M
(k)
n are shown in the following

table.

M
(k)
n k = 1 k = 2 k = 3 k = 4 k = 5

M
(k)
0 0 0 0 0 0

M
(k)
1 1 0 0 0 0

M
(k)
2 3 1 0 0 0

M
(k)
3 7 3 1 0 0

M
(k)
4 15 9 3 1 0

M
(k)
5 31 21 9 3 1

Table 1. List of some generalized k-Mersenne numbers (M
(k)
n ).

Proposition 2.2. Let k, s ∈ N then M
(k)
sk = Mk

s .

Proof. For n = sk, r = 0, so from eqn. (2.2) we have

M
(k)
sk = Mk−0

s M0
s+1 = Mk

s .

□

Theorem 2.3. For n, s ∈ N, M (s)
sn+1 = 3M

(s)
sn − 2M

(s)
sn−1.
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Proof. From eqn. (1.1) and eqn. (2.2), we have

3M (s)
sn − 2M

(s)
sn−1 = 3M s

n − 2Mn−1M
s−1
n

= M s−1
n (3Mn − 2Mn−1)

= M s−1
n Mn+1

= M
(s)
sn+1.

□

Theorem 2.4. For k, s ∈ N we have, Mk
s+1 −Mk

s = M
(k)
sk+k −M

(k)
sk .

Proof. From eqn. (2.2), we have

M
(k)
sk+k −M

(k)
sk = [Mk−k

s Mk
s+1]− [Mk−0

s M0
s+1]

= Mk
s+1 −Mk

s .

□

Theorem 2.5. For n,m ≥ 0 such that n+m > 1,

M
(2)
2(n+m−1) −Mn+mMn+m−2 = 2n+m−2.

Proof. By eqn. (1.4) and Proposition 2.2, we get

M
(2)
2(n+m−1) −Mn+mMn+m−2 = M2

(n+m−1) −Mn+mMn+m−2 = 2n+m−2.

□

Theorem 2.6. Let n, k ≥ 2 then Cassini type identity for M
(k)
n is,

M
(k)
nk+aM

(k)
nk+a−2 − (M

(k)
nk+a−1)

2 =

{
−2n−1M2k−2

n , a = 1

0, a ̸= 1.

Proof. If a ̸= 1, then from eqn. (2.2)

M
(k)
nk+aM

(k)
nk+a−2 − (M

(k)
nk+a−1)

2

=(Mk−a
n Ma

n+1)(M
k−a+2
n Ma−2

n+1)− (Mk−a+1
n Ma−1

n+1)
2

=M2k−2a+2
n [M2a−2

n+1 − (Mn+1)
2a−2].

=0,

and if a = 1,

M
(k)
nk+1M

(k)
nk−1 − (M

(k)
nk )

2 = (Mk−1
n Mn+1)(Mn−1M

k−1
n )− (Mk

n)
2

= M2k−2
n [Mn+1Mn−1 −M2

n]

= −2n−1M2k−2
n . (using eqn. (1.4))

□
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2.2. Mersenne Polynomials and Generalized k-Mersenne polyno-
mials.

Definition 2.7. The Mersenne Polynomials {Mn(x)} are defined by the
recurrence relation,

Mn+2(x) = 3xMn+1(x)− 2Mn(x) n ≥ 0,(2.3)

with M0(x) = 0, M1(x) = 1.

The characteristic equation corresponding to the recurrence relation (2.3)
is

(2.4) λ2 − 3xλ+ 2 = 0.

Theorem 2.8. For n ∈ N, we can write the Binet type formula for the
Mersenne polynomials as

(2.5) Mn(x) =
λn
1 (x)− λn

2 (x)

λ1(x)− λ2(x)
,

where λ1(x) =
3x+

√
9x2 − 8

2
and λ2(x) =

3x−
√
9x2 − 8

2
are the roots of

the characteristic equation (2.4).

Proof. By the theory of difference equations, the nth term of Mersenne poly-
nomials can be written as,

(2.6) Mn(x) = aλn
1 (x) + bλn

2 (x).

From eqn. (2.3) we have, M0(x) = a+ b and M1(x) = aλ1(x) + bλ2(x).

On solving M0(x) and M1(x) we get,

a =
1

λ1(x)− λ2(x)
and b =

−1

λ1(x)− λ2(x)
.

Now, using these values of a and b in eqn. (2.6), we get

Mn(x) =
λn
1 (x)− λn

2 (x)

λ1(x)− λ2(x)
.

□

Theorem 2.9. For n ≥ 1,

(2.7) M2
n(x)−Mn+1(x)Mn−1(x) = 2n−1.

Proof. We proceed by using mathematical induction on n.
For n = 1,

M2
1 (x)−M2(x)M0(x) = 1− 0(3x) = 20.

Thus the result is true for n = 1.
Assume that result is true for n = k, i.e.

(2.8) M2
k (x)−Mk+1(x)Mk−1(x) = 2k−1.
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Now for n = k + 1, using eqn. (2.3) and eqn. (2.8), we have

M2
k+1(x)−Mk+2(x)Mk(x)

=M2
k (x)−

[
(3Mk+1(x)− 2Mk(x))

(
1

3
Mk+1(x) +

2

3
Mk−1(x)

)]
=− 2Mk+1(x)Mk−1(x) +

2

3
Mk+1(x)Mk(x) +

4

3
Mk−1(x)Mk(x)

=2M2
k (x) + (2)2k−1 − 2

3
Mk+1(x)Mk(x) +

4

3
Mk−1(x)Mk(x)

=2k.

□

Definition 2.10 (Generalized k-Mersenne polynomials {M (k)
n (x)}). Let k ∈

N, n ∈ N∪{0} and let s, r ∈ N∪{0} be the unique natural numbers such that
n = sk + r, and 0 ≤ r < k. Then the generalized k-Mersenne polynomials

M
(k)
n (x) are defined by

(2.9) M (k)
n (x) =

(
λs
1(x)− λs

2(x)

λ1(x)− λ2(x)

)k−r (λs+1
1 (x)− λs+1

2 (x)

λ1(x)− λ2(x)

)r

,

where λ1(x) and λ2(x) are the roots of the characteristic equation (2.4).

From eqn. (2.5) and Definition 2.10, we have the relation between gener-
alized k-Mersenne polynomials and Mersenne polynomials as

(2.10) M (k)
n (x) = Mk−r

s (x)M r
s+1(x), n = sk + r.

If k = 1 then r = 0 and n = s. From eqn. (2.10), we have M
(1)
n (x) = Mn(x).

Some values of generalized k-Mersenne polynomials M
(k)
n (x) are shown in

following table.

M
(k)
n (x) k = 1 k = 2 k = 3 k = 4 k = 5

M
(k)
0 (x) 0 0 0 0 0

M
(k)
1 (x) 1 0 0 0 0

M
(k)
2 (x) 3x 1 0 0 0

M
(k)
3 (x) 9x2 − 2 3x 1 0 0

M
(k)
4 (x) 27x3 − 12x 9x2 3x 1 0

M
(k)
5 (x) 81x4 − 54x2 + 4 27x3 − 6x 9x2 3x 1

Table 2. Some generalized k-Mersenne polynomials M
(k)
n (x).
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From Table 2 and eqn. (2.10), we have the following relations between the
generalized k-Mersenne polynomials and Mersenne polynomials for k = 2, 3,

M
(2)
2s (x) = M2

s (x).

M
(2)
2s+1(x) = Ms(x)Ms+1(x).

M
(2)
2s+1(x) = 3M

(2)
2s (x)− 2M

(2)
2s−1(x).

M
(3)
3s (x) = M3

s (x).

M
(3)
3s+1(x) = M2

s (x)Ms+1(x).

M
(3)
3s+1(x) = 3M

(3)
3s (x)− 2M

(3)
3s−1(x).

M
(3)
3s+2(x) = Ms(x)M

2
s+1(x).

Proposition 2.11. For k, s ∈ N, we have M
(k)
ks (x) = Mk

s (x).

Proof. The proof is similar to Proposition 2.2. □

Theorem 2.12. For n, s ∈ N, we have

M
(s)
sn+1(x) = 3xM (s)

sn (x)− 2M
(s)
sn−1(x).

Proof. From eqn. (2.10) and eqn. (2.3), we have

3xM (s)
sn (x)− 2M

(s)
sn−1(x) = 3xM s

n(x)− 2Mn−1(x)M
s−1
n (x)

= M s−1
n (x)(3xMn(x)− 2Mn−1(x))

= M s−1
n (x)Mn+1(x)

= M
(s)
sn+1(x).

□

Theorem 2.13. For k, s ∈ N we have,

Mk
s+1(x)−Mk

s (x) = M
(k)
sk+k(x)−M

(k)
sk (x).

Proof. From eqn. (2.10), we have

M
(k)
sk+k(x)−M

(k)
sk (x) = [Mk−k

s (x)Mk
s+1(x)]− [Mk−0

s (x)M0
s+1(x)]

= Mk
s+1(x)−Mk

s (x).

□

Theorem 2.14. Let n, k ≥ 2, we can write the Cassini type identity for

M
(k)
n (x) as

M
(k)
nk+a(x)M

(k)
nk+a−2(x)− (M

(k)
nk+a−1)

2(x) =

{
−2n−1M2k−2

n (x), a = 1

0, a ̸= 1.
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Proof. Let a ̸= 1, so from eqn. (2.2) we have

M
(k)
nk+a(x)M

(k)
nk+a−2(x)−

(
M

(k)
nk+a−1(x)

)2

=
(
Mk−a

n (x)Ma
n+1(x)

)(
Mk−a+2

n (x)Ma−2
n+1(x)

)
−
(
Mk−a+1

n (x)Ma−1
n+1(x)

)2

=M2k−2a+2
n (x)

[
M2a−2

n+1 (x)−M2a−2
n+1 (x)

]
=0

and if a = 1,

M
(k)
nk+1(x)M

(k)
nk−1(x)− (M

(k)
nk )

2(x)

=
(
Mk−1

n (x)Mn+1(x)
)(

Mn−1M
k−1
n (x)

)
−M2k

n (x)

=M2k−2
n (x)

[
Mn+1(x)Mn−1(x)−M2

n(x)
]

=− 2n−1M2k−2
n (x). (using Theorem 2.9)

□

3. Generalized Gaussian Mersenne numbers and their
polynomials

3.1. Gaussian Mersenne Numbers.

Definition 3.1. The Gaussian Mersenne sequence {GMk}k≥0 is defined by
the recurrence relation,

GMk+2 = 3GMk+1 − 2GMk, k ≥ 0(3.1)

with GM0 = −i/2, GM1 = 1.

The first few Gaussian Mersenne numbers are−i/2, 1, 3+i, 7+3i, 15+7i, ...
The relation between Gaussian Mersenne numbers and classical Mersenne
numbers is

GMk+2 = Mk+2 + iMk+1,

where GMk is the kth-Gaussian Mersenne number.

Theorem 3.2. For n ∈ N, the Binet type formula for the Gaussian
Mersenne numbers is

(3.2) GMn = (λn
1 − λn

2 ) + i(λn−1
1 − λn−1

2 ),

where λ1 and λ2 are the roots of the characteristic equation (1.2).

Proof. The nth term of Gaussian Mersenne numbers for the difference equa-
tion (3.1) is,

(3.3) GMn = aλn
1 + bλn

2 .

To eliminate constants a and b, we use initial conditions given in eqn. (3.1).
Since we have GM0 = a+ b and GM1 = aλ1 + bλ2, we find a = 1+ i/2 and
b = −1− i.
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From eqn. (3.3) we get

GMn = (λn
1 − λn

2 ) + i(λn−1
1 − λn−1

2 ).

Furthermore, by using values of λ1 and λ2 in eqn. (3.2), we get another form
of the Binet type formula which is

(3.4) GMn = (2n − 1) + i(2n−1 − 1).

□

Theorem 3.3 (Catalan Type Identity). For n,m ≥ 1, we have

GMn+mGMn−m −GM2
n =

[
(2n − 2n+m−1) + (2n−m−1 − 2n−m)

]
(3.5)

+ i3(2n − 2n+m−1 − 2n−m−1).

Proof. Using the Binet type formula(3.4), we have

GMn+mGMn−m −GM2
n

=
[
(2n+m − 1) + i(2n+m−1 − 1)

] [
(2n−m − 1) + i(2n−m−1 − 1)

]
−
[
(2n − 1) + i(2n−1 − 1)

]2
=
[
(2n − 2n+m−1) + (2n−m−1 − 2n−m)

]
+ i3(2n − 2n+m−1 − 2n−m−1).

□

Note: If m = 1 in the Catalan type identity (3.5), we get the Cassini type
identity for the Gaussian Mersenne numbers and hence the following result.

Theorem 3.4 (Cassini Type Identity). For n ≥ 1,

(3.6) GMn+1GMn−1 −GM2
n = (2n−2 − 2n−1)− i3(2n−2).

Theorem 3.5 (D’Ocagne Type Identity). For n,m ≥ 1,

(3.7) GMm+1GMn −GMmGMn+1 = (2n−1 − 2m−1) + i3(2n−1 − 2m−1).

Proof. From eqn. (3.4), we have

GMm+1GMn −GMmGMn+1

=
[
(2m+1 − 1) + i(2m − 1)(2n − 1) + i(2n−1 − 1)

]
−
[
(2m − 1) + i(2m−1 − 1)(2n+1 − 1) + i(2n − 1)

]
=(2n−1 − 2m−1) + i3(2n−1 − 2m−1).

□

Theorem 3.6. The generating function for the Gaussian Mersenne numbers
is

GM(z) =

z + i

(
3

2
z − 1

2

)
(1− 3z + 2z2)

.
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Proof. The Generating function for the sequence {GMn}n∈N is given by

GM(z) =

∞∑
j=0

GMjz
j .

i.e.
GM(z) = GM0 +GM1z

1 +GM2z
2 + · · ·+GMnz

n + · · ·
Now,

GM(z)− 3zGM(z) + 2z2GM(z) = GM0 + z(GM1 − 3GM0)(3.8)

Using the initial values of (3.1) in eqn. (3.8), we have

GM(z) =

z + i

(
3

2
z − 1

2

)
(1− 3z + 2z2)

.

□

3.2. Generalized k-Gaussian Mersenne numbers.

Definition 3.7. Let k ∈ N, n ∈ N∪{0} and s, r ∈ N∪{0} the unique natural
numbers such that n = sk + r, and 0 ≤ r < k. The generalized k-Gaussian

Mersenne numbers {GM
(k)
n } are defined by

(3.9)

GM (k)
n =

(
λs
1 − λs

2 + i(λs−1
1 − λs−1

2 )
)k−r (

λs+1
1 − λs+1

2 + i(λs
1 − λs

2)
)r

,

where n = sk+ r, and λ1 and λ2 are the roots of the characteristic equation
(1.2).

The relation between generalized k-Gaussian Mersenne numbers and
Gaussian Mersenne numbers are (See the eqn. (3.2) and Definition 3.7)

(3.10) GM (k)
n = GMk−r

s GM r
s+1, n = sk + r.

If k = 1 then r = 0 and thus m = n. From eqn. (3.10) we have GM
(1)
n =

GMn. In particular for k = 2, 3, generalized k-Gaussian Mersenne and
Gaussian Mersenne numbers are related as follows,

GM
(2)
2s = GM2

s .

GM
(2)
2s+1 = GMsGMs+1.

GM
(2)
2s+1 = 3GM

(2)
2s − 2GM

(2)
2s−1.

GM
(3)
3s = GM3

s .

GM
(3)
3s+1 = GM2

sGMs+1.

GM
(3)
3s+1 = 3GM

(3)
3s − 2GM

(3)
3s−1.

GM
(3)
3s+2 = GMsGM2

s+1.
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Some generalized k-Gaussian Mersenne numbers are listed in the following
table.

GM
(k)
n k = 1 k = 2 k = 3 k = 4 k = 5

GM
(k)
0 −i/2 −1/4 i/8 1/16 −i/32

GM
(k)
1 1 −i/2 −1/4 i/8 1/16

GM
(k)
2 3 + i 1 −i/2 −1/4 i/8

GM
(k)
3 7 + 3i 3 + i 1 −i/2 −i/4

GM
(k)
4 15 + 7i 8 + 6i 3 + i 1 −i/2

GM
(k)
5 31 + 15i 18 + 16i 8 + 6i 3 + i 1

Table 3. List of some generalized k-Gaussian Mersenne

numbers GM
(k)
n .

Proposition 3.8. Let k, s ∈ N, then we have GM
(k)
sk = GMk

s .

Theorem 3.9. For n, s ∈ N, we have GM
(s)
sn+1 = 3GM

(s)
sn − 2GM

(s)
sn−1.

Proof. From eqn. (3.10), we get

3GM (s)
sn − 2GM

(s)
sn−1 = 3GM s

n − 2GMn−1GM s−1
n

= GM s−1
n GMn+1

= GM
(s)
sn+1.

□

Theorem 3.10. For k, s ∈ N, we have GMk
s+1−GMk

s = GM
(k)
sk+k−GM

(k)
sk .

Proof. From eqn. (3.10), we obtain

GM
(k)
sk+k −GM

(k)
sk = [GMk−k

s GMk
s+1]− [GMk−0

s GM0
s+1]

= GMk
s+1 −GMk

s .

□

Theorem 3.11. Let n,m ≥ 0 such that n+m > 1, then we have

GM
(2)
2(n+m−1) −GMn+mGMn+m−2 = (2n+m−1 − 2n+m−2) + i3(2n+m−2).

Proof. By eqn. (3.6) and Proposition 3.8, we get

GM
(2)
2(n+m−1) −GMn+mGMn+m−2 = GM2

(n+m−1) −GMn+mMn+m−2

= (2n+m−1 − 2n+m−2) + i3(2n+m−2).

□
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Theorem 3.12. Let n, k ≥ 2, then the Cassini type identity for GM
(k)
n is,

(GM
(k)
nk+a−1)

2 −GM
(k)
nk+aGM

(k)
nk+a−2

=

{
GM2k−2

n

[
(2n−1 − 2n−2) + i3(2n−2)

]
, a = 1

0, a ̸= 1.

Proof. If a = 1, then by eqn. (3.10)

GM
(k)
nk+1GM

(k)
nk−1 − (GM

(k)
nk )

2(3.11)

=(GMk−1
n GMn+1)(GMn−1GMk−1

n )− (GMk
n)

2

=GM2k−2
n [GMn+1GMn−1 −GM2

n]

=GM2k−2
n

[
(2n−1 − 2n−2) + i3(2n−2)

]
(using eqn. (3.6))

and if a ̸= 1, then by eqn. (3.10)

GM
(k)
nk+aGM

(k)
nk+a−2 − (GM

(k)
nk+a−1)

2

=(GMk−a
n GMa

n+1)(GMk−a+2
n GMa−2

n+1)− (GMk−a+1
n GMa−1

n+1)
2

=GM2k−2a+2
n [GM2a−2

n+1 −GM2a−2
n+1 ]

=0.

□

3.3. Gaussian Mersenne Polynomials.

Definition 3.13. The Gaussian Mersenne polynomials {GMk(x)} are de-
fined by the recurrence relation,

GMk+2(x) = 3xGMk+1(x)− 2GMk(x), k ≥ 0(3.12)

with GM0 = −i/2, GM1 = 1.

The first few Gaussian Mersenne polynomials are −i/2, 1, 9x2 − 2 +
i3x, 27x3 − 12x + i(9x2 − 2). The Gaussian Mersenne polynomials and
Mersenne polynomials are related as

GMk+2 = Mk+2(x) + iMk+1(x),

where Mk(x) is the kth-Mersenne polynomial.

Theorem 3.14. For every n ∈ N, the Binet type formula for the Gaussian
Mersenne polynomials is

(3.13) GMn(x) =

(
λn
1 (x)− λn

2 (x)

λ1(x)− λ2(x)

)
+ i

(
λn−1
1 (x)− λn−1

2 (x)

λ1(x)− λ2(x)

)
,

where λ1(x) and λ2(x) are the roots of the characteristic equation. (2.4).

Proof. The general term of the Gaussian Mersenne polynomials can be ob-
tained by,

(3.14) GMn(x) = aλn
1 (x) + bλn

2 (x).
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Using initial conditions given in eqn. (3.12), we eliminate constants a and b.
Since we have GM0 = a+b and GM1 = aλ1(x)+bλ2(x), we find a = 1+ i/2
and b = −1− i. Thus, from eqn. (3.14), we have

GMn(x) =

(
λn
1 (x)− λn

2 (x)

λ1(x)− λ2(x)

)
+ i

(
λn−1
1 (x)− λn−1

2 (x)

λ1(x)− λ2(x)

)
.

□

Theorem 3.15 (Cassini Type Identity). For n ≥ 1, we have

(3.15) GMn+1(x)GMn−1(x)−GM2
n(x) = (2n−2 − 2n−1)− i3x(2n−2).

Proof. We prove it using mathematical induction on n. For n = 1,

GM2(x)GM0(x)−GM2
1 (x) = (3x+ i)(−i/2)− 1 = (2−1 − 1)− i3x(2−1).

So, the statement is true for n = 1.
Assume that result is true for n = k, i.e.

(3.16) GMk+1(x)GMk−1(x)−GM2
k (x) = (2k−2 − 2k−1)− i3x(2k−2).

Now, for n = k + 1, using eqn. (3.12) and eqn. (3.16), we have

GMk+2(x)GMk(x)−GM2
k+1(x)

=

[
(3xGMk+1(x)− 2GMk(x))

(
1

3x
GMk+1(x) +

2

3x
GMk−1(x)

)]
−GM2

k+1(x) (using eqn. (3.12))

=2GMk+1(x)GMk−1(x)−
2

3x
GMk+1(x)GMk(x)−

4

3x
GMk(x)GMk−1(x)

=2GM2
k (x) + 2(2k−2 − 2k−1)− i3x(2k−2)− 2

3x
GMk+1(x)GMk(x)

+
4

3x
GMk−1(x)GMk(x)

=(2k−1 − 2k)− i3x(2k−1).

□

3.4. Generalized k-Gaussian Mersenne polynomials.

Definition 3.16. Let k ∈ N, n ∈ N ∪ {0} and s, r ∈ N ∪ {0} be the unique
natural numbers such that n = sk + r, 0 ≤ r < k. The generalized k-

Gaussian Mersenne polynomials {GM
(k)
n (x)} are defined by

GM (k)
n (x) =

(
(λs

1(x)− λs
2(x)) + i(λs−1

1 (x)− λs−1
2 (x))

λ1(x)− λ2(x)

)k−r

·
(
(λs+1

1 (x)− λs+1
2 (x)) + i(λs

1(x)− λs
2(x))

λ1(x)− λ2(x)

)r

,

where λ1(x) and λ2(x) are the roots of the characteristic equation (2.4).
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The relation between the generalized k-Gaussian Mersenne polynomials
and Gaussian Mersenne polynomials is

(3.17) GM (k)
n (x) = GMk−r

s (x)GM r
s+1(x), n = sk + r.

If k = 1 then r = 0 and hence m = n. So, from eqn. (3.17) we have

GM
(1)
n (x) = GMn(x). The following relations between the generalized k-

Gaussian Mersenne polynomials and the Gaussian Mersenne polynomials
hold for k = 2, 3.

GM
(2)
2s (x) = GM2

s (x).

GM
(2)
2s+1(x) = GMs(x)GMs+1(x).

GM
(2)
2s+1(x) = 3xGM

(2)
2s (x)− 2GM

(2)
2s−1(x).

GM
(3)
3s (x) = GM3

s (x).

GM
(3)
3s+1(x) = GM2

s (x)GMs+1(x).

GM
(3)
3s+1(x) = 3xGM

(3)
3s (x)− 2GM

(3)
3s−1(x).

GM
(3)
3s+2(x) = GMs(x)GM2

s+1(x).

The following table shows the list of some generalized k-Gaussian
Mersenne polynomials,

GM
(k)
n (x) k = 1 k = 2 k = 3 k = 4 k = 5

GM
(k)
0 (x) −i/2 −1/4 i/8 1/16 −i/32

GM
(k)
1 (x) 1 −i/2 −1/4 i/8 1/16

GM
(k)
2 (x) 3x+ i 1 −i/2 −1/4 i/8

GM
(k)
3 (x) 9x2 − 2 + i3x, 3x+ i 1 −i/2 −i/4

GM
(k)
4 (x) 27x3 − 12x (9x2 − 1) + i6x 3x+ i 1 −i/2

+i(9x2 − 2)
GMk

5 (x) (81x4 − 54x2 + 4) (27x3 − 3x2 − 6x) (9x2 − 1) + i6x 3x+ i 1
+i(27x3 − 12x) +i(18x2 − 2)

Table 4. List of some generalized k-Gaussian Mersenne

polynomials GM
(k)
n (x).

Proposition 3.17. Let k, s ∈ N, then we have GM
(k)
ks (x) = GMk

s (x).

Theorem 3.18. For n, s ∈ N, we have

GM
(s)
sn+1(x) = 3xGM (s)

sn (x)− 2GM
(s)
sn−1(x).

Proof. From eqn. (3.17),

3xGM (s)
sn (x)− 2GM

(s)
sn−1(x) = 3xGM s

n(x)− 2GMn−1(x)GM s−1
n (x)

= GM s−1
n (x)GMn+1(x)

= GM
(s)
sn+1(x).
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□

Theorem 3.19. For k, s ∈ N, we have GMk
s+1(x)−GMk

s (x) = GM
(k)
sk+k(x)−

GM
(k)
sk (x).

Proof. From eqn. (3.17), we obtain

GM
(k)
sk+k(x)−GM

(k)
sk (x) = [GMk−k

s (x)GMk
s+1(x)]− [GMk−0

s (x)GM0
s+1(x)]

= GMk
s+1(x)−GMk

s (x).

□

Theorem 3.20. Let n,m ≥ 0 such that n+m > 1, then we have

GM
(2)
2(n+m−1)(x)−GMn+m(x)GMn+m−2(x)

=(2n+m−1 − 2n+m−2) + ix3(2n+m−2)

Proof. By eqn. (3.15) and Proposition 3.17, we get

GM
(2)
2(n+m−1)(x)−GMn+m(x)GMn+m−2(x)

=GM2
(n+m−1)(x)−GMn+m(x)GMn+m−2(x)

=(2n+m−1 − 2n+m−2) + i3x(2n+m−2).

□

Theorem 3.21. Let n, k ≥ 2, then we can write the Cassini identity for

GM
(k)
n (x) as,

(GM
(k)
nk+a−1)

2(x)−GM
(k)
nk+a(x)GM

(k)
nk+a−2(x)

=

{
GM2k−2

n (x)
[
(2n−1 − 2n−2) + i3x(2n−2)

]
, a = 1

0, a ̸= 1.

Proof. Let a = 1, then using eqn. (3.17) we have,

GM
(k)
nk+1(x)GM

(k)
nk−1(x)− (GM

(k)
nk )

2(x)(3.18)

=
(
GMk−1

n (x)GMn+1(x)
)(

GMn−1(x)GMk−1
n (x)

)
−
(
GMk

n(x)
)2

=GM2k−2
n (x)[GMn+1(x)GMn−1(x)−GM2

n(x)]

=GM2k−2
n (x)(2n−1 − 2n−2) + i3x(2n−2). (using eqn. 3.15)



GENERALIZED k-MERSENNE AND k-GAUSSIAN MERSENNE NUMBERS 259

and if a ̸= 1, then by eqn. (3.17),

GM
(k)
nk+a(x)GM

(k)
nk+a−2(x)− (GM

(k)
nk+a−1)

2(x)

=
(
GMk−a

n (x)GMa
n+1(x)

)(
GMk−a+2

n (x)GMa−2
n+1(x)

)
−
(
GMk−a+1

n (x)GMa−1
n+1(x)

)2

=GM2k−2a+2
n (x)[GM2a−2

n+1 (x)−GM2a−2
n+1 (x)]

=0.

□
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