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(G, s)-TRANSITIVE GRAPHS OF VALENCY 15

FATEME ABEDI AND M. REZA SALARIAN

Abstract. Let X be a finite simple undirected graph and G ≤ Aut(X).
If G is transitive on the set of s-arcs but not on the set of (s + 1)-arcs
of X, then X is called (G, s)-transitive. In this paper, we determine
the structure of the vertex-stabilizer Gv when X is a connected (G, s)-
transitive graph of valency 15. We also give some examples to show that
each type of Gv with s ≥ 2, can be realized.

1. Introduction

In this paper, all graphs are finite, undirected, and simple, i.e. without
loops or multiple edges. For a graph X, we use V (X), E(X), and Aut(X)
to denote its vertex set, edge set, and full automorphism group, respectively.
For u, v ∈ V (X), {u, v} is the edge incident to u and v in X. The set of all
vertices adjacent to v is denoted by X1(v). Let G ≤ Aut(X). We denote the

vertex stabilizer of v ∈ V (X) in G by Gv. Denote by G
X1(v)
v the constituent

of Gv acting on X1(v) and by G∗
v the kernel of Gv acting on X1(v). Then,

G
X1(v)
v

∼= Gv/G
∗
v. For an edge {u, v} ∈ E(X), we write Guv = Gu ∩Gv and

G∗
uv = G∗

u ∩G∗
v.

For each integer s ≥ 0, an s-arc of X is a sequence (v0, v1, . . . , vs−1, vs)
of vertices such that vi−1 is adjacent to vi and vi−1 ̸= vi+1 for all admissible
i. For a subgroup G ≤ Aut(X), X is said to be (G, s)-arc-transitive if G is
transitive on the set of s-arcs inX. A (G, s)-arc-transitive graph which is not
(G, s+1)-arc-transitive is called (G, s)-transitive. A graph X is called s-arc-
transitive or s-transitive if it is (Aut(X), s)-arc-transitive or (Aut(X), s)-
transitive, respectively. In particular, X is said to be vertex-transitive or
symmetric if it is (Aut(X), 0)-arc-transitive or (Aut(X), 1)-arc-transitive,
respectively.

As we all know, a graph X is G-arc-transitive if and only if G is transitive
on V (X) and Gv is transitive on X1(v). So the structure of Gv plays an
important role in the study of such graphs. A G-arc-transitive graph X
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is called G-locally-primitive if Gv acts on X1(v) primitively, that is, the

induced permutation group G
X1(v)
v is primitive of degree |X1(v)|.

Interest in s-transitive graphs stems from a beautiful result of Tutte [20]
in 1947 who proved that for any s-transitive cubic graph, s ≤ 5. Tutte’s
Theorem was generalized in 1981 by Weiss [22] who proved that there exists
no finite s-transitive graph for s = 6 and s ≥ 8. This is a very deep result,
the proof of which depends on the classification of the finite simple groups.
Note that the only connected graphs of valency two are cycles which are
s-arc-transitive for any positive integer s. So the valency of a s-transitive
graph is greater than 2. Let X be a connected (G, s)-transitive graph for
some s ≥ 1. Up to now, we know the structure of Gv when X has prime or
twice a prime valency [5, 24, 17, 9, 11, 12, 10, 13, 16]. Note that in general,
the order of Gv may be unbounded for some valencies. For instance, there
are infinite families of connected 1-arc-transitive graphs of valency 4 with
arbitrary large vertex-stabilizers [2, 18]. Although, when the valency of X
is prime or s ≥ 2, it is well-known that |Gv| is bounded above.

Let p be a prime and n a positive integer. The symmetric and alternating
group on n letters are denoted by Sn and An, respectively. We use both n
and Zn to denote the cyclic group of order n. The expression [n] denotes an
unspecified group of order n while pn denotes an elementary abelian group
of order pn. In particular, for q = pf , some times we also let qm be pfm

with m ≥ 1. For two groups M and N , we denote by N.M an extension
of N by M , and N : M stands for a semidirect product of N by M . We
use Op(M) to denote the largest normal p-subgroup of M . The remaining
notation is standard and hopefully self-explanatory. For group and graph
theoretic concepts not defined here, we refer the reader to [4, 8]. Our main
result is as follows.

Theorem 1.1. Let X be a finite connected (G, s)-transitive graph of valency
15 for some G ≤ Aut(X) and s ≥ 1. Let v ∈ V (X). Then s ≤ 3 and one of
the following holds.

(i) s = 1, Gv is a {2, 3, 5}-group. In particular, if X is a G-locally-
primitive graph, then Gv

∼= A6, S6, O2(Gv).N.A6 or O2(Gv).N.S6

where N ⊴ S3.
(ii) s = 2, Gv

∼= A7, PSL4(2), A15, S15, 2
r : SL4(2) where r ∈ {4, 5, 6},

[211] : SL4(2) or [214] : SL4(2).
(iii) s = 3, Gv

∼= A7 × PSL2(7), PSL4(2) × (23 : PSL3(2)), A15 × A14,
S15 × S14, (A15 × A14) : 2 with A15 : 2 = S15 and A14 : 2 = S14 or
212 : (SL4(2)× SL3(2)).

The paper is organized as follows. In section 2, we collect some back-
ground results which are required in the paper. The proof of Theorem 1.1
is sketched in section 3 and completed in section 4. Finally, in section 5 we
give some examples to show that each type of Gv with s ≥ 2 in Theorem
1.1 can be realized.
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Several facts motivate us to characterize the structure of vertex stabiliz-
ers of symmetric graphs of special valency. When dealing with symmetric
graphs, the goal is to gain as much information as possible about the struc-
tural properties of their vertex-stabilizers. The results of this paper would
be useful to classify the symmetric graphs of valency 15 and study other
graph properties of symmetric graphs.

2. Preliminaries

In this section, we collect some preliminary results which will be needed
throughout the paper. Let H be a transitive permutation group on a set
Ω and let α ∈ Ω. If the stablizer Hα is transitive on Ω\ {α} then H is
called 2-transitive on Ω. The following proposition is about sufficient and
necessary conditions for symmetric graphs. Its proof is straightforward and
left to the reader.

Proposition 2.1. Let X be a graph and G ≤ Aut(X). Then we have;

(i) X is G-arc-transitive if and only if X is G-vertex-transitive and Gv

is transitive on X1(v) for each v ∈ V (X).
(ii) X is (G, 2)-arc-transitive if and only if X is G-vertex-transitive and

Gv is 2-transitive on X1(v) for each v ∈ V (X).

The next proposition is from [25], Lemma 2.7.

Proposition 2.2. Let X be a connected symmetric graph. Let {u, v} ∈
E(X) and A = Aut(X). Assume that H ≤ Au is transitive on X1(u) and
K ≤ Av is transitive on X1(v). Then ⟨H,K⟩ ≤ A is transitive on E(X).

In view of [7], Lemma 2.1, we have the following lemma.

Lemma 2.3. Let X be a connected G-vertex-transitive graph for some G ≤
Aut(X). If a prime p divides |Gv| for some v ∈ V (X), then p divides

|GX1(v)
v |.

The proof of the next lemma is straightforward and left to the reader.

Lemma 2.4. Let X be a (G, s)-arc-transitive graph for some G ≤ Aut(X)
and s ≥ 1. Let {u, v} ∈ E(X). Then we have;

(i) Gv
∼= G∗

v.G
X1(v)
v

∼= (G∗
uv.(G

∗
v)

X1(u)).G
X1(v)
v .

(ii) G∗
v
X1(u) ⊴ G

X1(u)
uv

∼= G
X1(v)
uv .

Combining a result from [6], Corollary 2.3 and [16], Theorem 4.3, we have
the following lemma.

Lemma 2.5. Let X be a connected graph, {u, v} ∈ E(X) and G ≤ Aut(X).
Suppose that X is a G-locally-primitive arc-transitive graph. Then G∗

uv is a

p-group for some prime p. Moreover, either G∗
uv = 1 or Op((G

∗
v)

X1(u)) ̸= 1

and Op((Gv
X1(v))u) ̸= 1.

The next theorem is formulated from [21, 22, 23].
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Theorem 2.6. Let X be a connected (G, s)-transitive graph with s ≥ 2 and
let {u, v} ∈ E(X). Then one of the following holds.

(i) s ≤ 3, G∗
uv = 1 and G∗

v
∼= G∗

v
X1(u) ⊴ G

X1(u)
uv

∼= G
X1(v)
uv .

(ii) G∗
uv is a nontrivial p-group, PSLd(q) ⊴ G

X1(v)
v , q = pf , |X1(v)| =

qd−1
q−1 ,and either d ≥ 3 and s ∈ {2, 3}, or d = 2, s ≥ 4 and one of

the following holds.
(a) s = 4 and Gv

∼= q2 : 1
(3,q−1)GL2(q).[e] with e|(3, q − 1)f .

(b) s = 5, p = 2, and Gv
∼= q3 : GL2(q).Zb with b|f .

(c) s = 7, p = 3 and Gv
∼= (q2 × q1+2) : GL2(q).Zb with b|f .

We finish this section with the following lemma which will be used re-
peatedly in section 3.

Lemma 2.7. Let X be a (G, 2)-arc-transitive graph and let {u, v} ∈ E(X).
Set C = CGv(G

∗
v). Let G∗

uv = 1 and G∗
v ̸= 1. Then the following statements

hold.

(i) G∗
u ≤ C and C ≰ G∗

v.

(ii) CX1(v) ⊴ G
X1(v)
v .

(iii) If Z(G∗
v) = 1, then G

X1(v)
v has a normal subgroup isomorphic to C

and C ×G∗
v ⊴ Gv.

(iv) If G
X1(v)
v is a nonabelian simple group and Z(G∗

v) = 1, then C ∼=
G

X1(v)
v and Gv

∼= C ×G∗
v.

Proof. (i) Let x, u ∈ X1(v), α ∈ G∗
v and β ∈ G∗

u. Then xα
−1β−1αβ =

xβ
−1αβ = (xβ

−1
)αβ = (xβ

−1
)β = x. Thus [G∗

u, G
∗
v] ≤ G∗

v. By the same
argument we conclude that [G∗

u, G
∗
v] ≤ G∗

u. Thus [G
∗
u, G

∗
v] ≤ G∗

uv = 1, which
implies that G∗

u ≤ C.
Suppose that C ≤ G∗

v. Since G
∗
u ≤ C and G∗

u
∼= G∗

v, we get that G
∗
u = G∗

v,
a contradiction. Thus C ≰ G∗

v and (i) is proved.

(ii) Since C ⊴ Gv, we have CX1(v) ∼= C/C ∩ G∗
v
∼= CG∗

v/G
∗
v ⊴ Gv/G

∗
v
∼=

G
X1(v)
v which proves (ii).
(iii) Since Z(G∗

v) = C ∩G∗
v = 1, by (ii) we can easily conclude (iii).

(iv) As G
X1(v)
v is a simple group, by (iii) C = 1 or C ∼= G

X1(v)
v . But

according to (i), the former can not be occurred. Therefore C ∼= G
X1(v)
v .

Now by (ii), Gv
∼= C ×G∗

v which completes the proof of (iv). □

3. Main results

In this section, we give the main results of this paper. In fact, we inves-
tigate the truth of Theorem 1.1 by a sequence of lemmas and theorems.

Let X be a connected (G, s)-transitive graph of valency 15 for some G ≤
Aut(X) and s ≥ 1. Since X has valency 15, G

X1(v)
v

∼= Gv/G
∗
v ≤ S15 is a

transitive permutation group of degree 15. We first prove a reduced form of
Theorem 1.1 in the case that s = 1.
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Theorem 3.1. Let X be a finite connected (G, 1)-transitive graph of valency
15 for some G ≤ Aut(X). Then Gv is a {2, 3, 5}-group. In particular,
if X is a G-locally-primitive graph, then Gv

∼= A6, S6, O2(Gv).N.A6 or
O2(Gv).N.S6 where N ⊴ S3.

Proof. By Proposition 2.1, G
X1(v)
v is a transitive but not a 2-transitive per-

mutation group of degree 15. Thus 15||GX1(v)
v |. Let p be a prime factor of

|Gv|. By Lemma 2.3, p||GX1(v)
v |. Thus p ≤ 13. Since by [14], we know the

order of all transitive permutation groups of degree 15, it is easy to check
that Gv is a {2, 3, 5}-group.

Now assume that G
X1(v)
v is a primitive permutation group of degree 15

and let {u, v} ∈ E(X). By [15], G
X1(v)
v

∼= A6 or S6. Let G
X1(v)
v

∼= A6.

Then G
X1(v)\{u}
uv

∼= S4. By Lemma 2.4(ii), (G∗
v)

X1(u) ∼= 1, 22, A4 or S4. If

(G∗
v)

X1(u) = 1, then G∗
uv = G∗

v. Thus G
∗
v ≤ G∗

u and hence G∗
v = G∗

u because
the transitivity of G on V (X) implies |G∗

v| = |G∗
u|. Since G∗

v ⊴ Gv and
G∗

u ⊴ Gu, we have G
∗
v ⊴ ⟨Gu, Gv⟩. By Proposition 2.2, ⟨Gu, Gv⟩ is transitive

on E(X). Now since G∗
v fixes the edge {u, v}, we may deduce that G∗

v fixes

each edge in X and so G∗
v = 1. Therefore Gv

∼= A6. If (G
∗
v)

X1(u) ∼= 22, A4 or
S4, then by Lemma 2.5 G∗

uv is a 2-group. Note that Gv/G
∗
v
∼= A6. It follows

that O2(Gv) = O2(G
∗
v)

∼= G∗
uv.O2((G

∗
v)

X1(u)) ∼= G∗
uv.2

2. By Lemma 2.4(i),
we conclude that Gv

∼= O2(Gv).N.A6 where N ⊴ S3.

Finally, let G
X1(v)
v

∼= S6. Then G
X1(v)\{u}
uv

∼= S4 × 2 and (G∗
v)

X1(u) ∼= 1,

2, 22, 23, A4, S4, A4 × 2 or S4 × 2. If (G∗
v)

X1(u) ∼= 1, then G∗
v = 1 and so

Gv
∼= S6. Now assume that (G∗

v)
X1(u) ̸= 1. It follows that (G∗

v)
X1(u) ∼= 2,

22, 23, A4, S4, A4 × 2, or S4 × 2. By Lemma 2.4, G∗
uv is a 2-group. Note

that Gv/G
∗
v
∼= S6. It follows that O2(Gv) = O2(G

∗
v)

∼= G∗
uv.O2((G

∗
v)

X1(u)).

Recall that by Lemma 2.5(i), Gv
∼= (G∗

uv.(G
∗
v)

X1(u)).S6. Now we consider

each possibilities cases of (G∗
v)

X1(u) and determine the structure of Gv. If

(G∗
v)

X1(u) ∼= 2 then O2(G
∗
v)

∼= G∗
uv.2 and Gv

∼= O2(Gv).S6. If (G∗
v)

X1(u) ∼=
22 then O2(G

∗
v)

∼= G∗
uv.2

2 and Gv
∼= O2(Gv).S6. If (G∗

v)
X1(u) ∼= 23 then

O2(G
∗
v)

∼= G∗
uv.2

3 and Gv
∼= O2(Gv).S6. If (G∗

v)
X1(u) ∼= A4 then O2(G

∗
v)

∼=
G∗

uv.2
2 and Gv

∼= O2(Gv).Z3.S6. If (G∗
v)

X1(u) ∼= S4 then O2(G
∗
v)

∼= G∗
uv.2

2

and Gv
∼= O2(Gv).S3.S6. If (G∗

v)
X1(u) ∼= A4 × 2 then O2(G

∗
v)

∼= G∗
uv.2

3

and Gv
∼= O2(Gv).Z3.S6. If (G∗

v)
X1(u) ∼= S4 × 2 then O2(G

∗
v)

∼= G∗
uv.2

3 and
Gv

∼= O2(Gv).S3.S6. So we can summarize that Gv
∼= O2(Gv).N.S6 where

N ⊴ S3. This completes the proof. □

Remark: By [3], Proposition 4.1, we know that the order of O2(Gv) is
bounded above.

In the remainder of this section, we assume that X is a (G, s)-transitive

graph for some s ≥ 2. Thus by Proposition 2.1(ii), G
X1(v)
v is a 2-transitive

permutation group of degree 15. In view of [15] and [4], Appendix B, we
have the following observation.
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Proposition 3.3. Let X be a (G, 2)-arc-transitive graph of valency 15 and
let {u, v} ∈ E(X). Then we have;

(i) G
X1(v)
v

∼= A7, PSL4(2), A15 or S15.

(ii) G
X1(v)\{u}
uv

∼= PSL2(7), 2
3 : PSL3(2), A14 or S14.

By Theorem 2.5, G∗
uv is a p-group. Thus according to Theorem 2.6, we

may split the proof into three cases: G∗
v = 1, G∗

uv = 1 ̸= G∗
v and G∗

uv ̸= 1.

Theorem 3.4. Let X be a (G, s)-transitive graph of valency 15 with s ≥ 2
and G ≤ Aut(X). Suppose that G∗

v = 1. Then s = 2 and Gv
∼= A7, PSL4(2),

A15 or S15.

Proof. Since G∗
v = 1, we have G

X1(v)
v

∼= Gv/G
∗
v
∼= Gv. By Proposition 3.3,

Gv
∼= A7,PSL4(2), A15 or S15. Now let u and w be two distinct vertices in

X1(v). Then we have, Guv
∼= PSL2(7), 2

3 : PSL3(2), A14 or S14 and Guvw
∼=

A4, 2
3 : A4, A13 or S13. So Guvw cannot act transitively on X1(u)\ {v}

because |X1(u)\ {v}| = 14. It follows that X is not a (G, 3)-arc transitive
graph. Therefore s = 2 which completes the proof. □

In the next two lemmas, suppose that G∗
uv = 1 ̸= G∗

v. By Proposition 3.3

and Theorem 2.6(i), if G
X1(v)
v

∼= A7 or A15, then G∗
v
∼= PSL2(7) or A14. Thus

in what follows, we determine G∗
v for the cases G

X1(v)
v

∼= PSL4(2) or S15.
Recall that according to Lemma 2.7, for simplicity of notation, we write C
instead of CGv(G

∗
v).

Lemma 3.5. Let G
X1(v)
v

∼= PSL4(2). Then G∗
v
∼= 23 : PSL3(2).

Proof. Since G
X1(v)\{u}
uv

∼= 23 : PSL3(2), we have by Lemma 2.7(i), G∗
v
∼= 23

or 23 : PSL3(2). We claim that G∗
v
∼= 23 : PSL3(2). If not, then G∗

v acts on

X1(u)\ {v} as 23. It means that G∗
v
∼= G∗

u
∼= G∗

u/G
∗
uv

∼= G∗
u
X1(v)\{u} ∼= 23.

As PSL4(2) is a nonabelian simple group, by Lemma 2.7(ii), we deduce that

CX1(v) ∼= G
X1(v)
v . Thus C

X1(v)\{u}
u

∼= G
X1(v)\{u}
uv

∼= 23 : PSL3(2). Since
G∗

u < Cu, we may take an element h ∈ Cu\G∗
u such that h fixes u with a

3-cycle on X1(v)\ {u}. Since h commutes with every element in G∗
v, we have

[G∗
v, ⟨h⟩] = [G∗

vG
∗
u/G

∗
u, ⟨h⟩G∗

u/G
∗
u] = 1. It means that ⟨h⟩G∗

u/G
∗
u centralizes

G∗
vG

∗
u/G

∗
u in Gu/G

∗
u. But 23 is an abelian group which implies that 23 is

self-centralizing in PSL4(2). Therefore ⟨h⟩G∗
u/G

∗
u ≤ G∗

vG
∗
u/G

∗
u
∼= G∗

v
∼= 23.

It follows that h = hvhu with hv ∈ G∗
v and hu ∈ G∗

u. Since h induces a 3-
cycle on X1(v)\ {u} and hv fixes each vertex in X1(v), therefore hu induces a

3-cycle on X1(v)\{u}. It follows that G∗
u
X1(v)\{u} has an element of order 3,

which is impossible because G∗
u
X1(v)\{u} ∼= 23. Therefore G∗

v
∼= 23 : PSL3(2)

and lemma is proved. □

Lemma 3.6. Let G
X1(v)
v

∼= S15. Then the following statements hold.

(i) If G∗
v
∼= S14, then C ∼= S15.

(ii) If G∗
v
∼= A14, then C ∼= A15.
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Proof. Let G
X1(v)
v

∼= S15. Then G
X1(v)\{u}
uv

∼= S14. By Theorem 2.6(i),
G∗

v
∼= S14 or A14 and by Lemma 2.7(ii), C ∼= S15 or A15. Suppose that

G∗
v
∼= S14. Since S14

∼= G∗
v
∼= G∗

u ≤ C, we get that C ∼= S15 and (i) is
proved.

Suppose that G∗
v
∼= A14. If C ∼= S15, that is, C ∼= G

X1(v)
v , then Cu

∼=
G

X1(v)\{u}
uv

∼= S14. Now A14
∼= G∗

u ≤ C ∼= S15 and S14
∼= Cu ≤ C ∼= S15,

which implies that there exist an element h ∈ Cu\G∗
u. Since h ∈ Cu, thus

uh = u and h commutes with every element of G∗
v, that is [G∗

v, ⟨h⟩] =
1. Now by isomorphism we have [G∗

vG
∗
u/G

∗
u, ⟨h⟩G∗

u/G
∗
u] = 1. It means

that ⟨h⟩G∗
u/G

∗
u centralizes G∗

vG
∗
u/G

∗
u in Gu/G

∗
u which is impossible because

G∗
vG

∗
u/G

∗
u

∼= G∗
v
∼= A14 and Gu/G

∗
u

∼= S15. Thus C ∼= A15 and (ii) is
proved. □

Now we are ready to determine the structure of Gv when G∗
uv = 1 ̸= G∗

v.

Recall that s ≥ 2 and G
X1(v)
v

∼= A7, PSL4(2), A15 or S14.

Theorem 3.7. Let X be a (G, s)-transitive graph of valency 15 where G ≤
Aut(X) and s ≥ 2. Let {u, v} ∈ E(X) and G∗

uv = 1 ̸= G∗
v. Then s = 3

and Gv
∼= A7 ×PSL2(7), PSL4(2)× (23 : PSL3(2)), A15 ×A14, S15 × S14 or

(A15 ×A14) : 2 with A15 : 2 = S15 and A14 : 2 = S14.

Proof. Suppose that G
X1(v)
v

∼= A7. Then G
X1(v)\{u}
uv

∼= PSL2(7). By Lemma
2.6(i), G∗

v
∼= PSL2(7). By Lemma 2.7(iv), we have C ∼= A7 and Gv

∼=
A7 × PSL2(7).

Suppose that G
X1(v)
v

∼= PSL4(2). Then G
X1(v)\{u}
uv

∼= 23 : PSL3(2). By
Lemma 3.5, G∗

v
∼= 23 : PSL3(2). By Lemma 2.7(iv), C ∼= PSL4(2) and

Gv
∼= PSL4(2)× (23 : PSL3(2)).

Suppose that G
X1(v)
v

∼= A15. Then G
X1(v)\{u}
uv

∼= A14 and G∗
v
∼= A14.

Therefore C ∼= A15 and Gv
∼= A15 ×A14.

Finally, suppose that G
X1(v)
v

∼= S15. Then G
X1(v)\{u}
uv

∼= S14 and G∗
v
∼= A14

or S14. If G∗
v
∼= S14, then by Lemma 3.6(i), C ∼= G

X1(v)
v

∼= S15. Now
according to Lemma 2.7(ii), Gv

∼= S15 × S14. If G∗
v
∼= A14, then by Lemma

3.6(ii), C ∼= A15. By Lemma 2.7(iii), CG∗
v
∼= C × G∗

v
∼= A15 × A14 ⊴ Gv.

Note that A15
∼= CG∗

v/G
∗
v ⊴ Gv/G

∗
v
∼= S15. Therefore |Gv : C ×G∗

v| = 2 and
Gv

∼= (A15×A14).2. Now we find an involution g ∈ Gv such that C ⟨g⟩ = S15

and G∗
v ⟨g⟩ = S14. Since G

X1(v)
v

∼= S15, there exists an element g1 ∈ Guv

such that g1 induces a transposition on X1(v). Recall that G∗
v
∼= A14 and

G∗
v acts faithfully on X1(u) because G∗

uv = 1. So there exists an element
g2 ∈ G∗

v such that g1g2 induces the identity or a transposition onX1(u)\ {v}.
For the former, g1g2 ∈ G∗

u and g1g2 induces the same transposition as g1
on X1(v), contrary to the fact that G∗

u
∼= A14 acting faithfully on X1(v).

Set g = g1g2. Thus, g ∈ Guv induces a transposition on both X1(u) and
X1(v). Furthermore, g2 ∈ G∗

uv = 1 and hence g is an involution. It follows
that C ⟨g⟩ = S15 and G∗

v ⟨g⟩ = S14 because G∗
v ⊴ Gv and C ⊴ Gv. Thus

Gv
∼= (A15 ×A14) : 2 with A14 : 2 = S14 and A15 : 2 = S15.
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Now we determine the transitivity of Gv. Note that in all of the cases G∗
v

acts transitively onX1(u)\ {v}. Recall thatG∗
v ̸= 1 andG∗

uv = 1. So we have
G∗

u ̸= G∗
v. This implies that (X1(u)\ {v})∩ (X1(v)\ {u}) = ∅, that is, X has

no 3-cycles. Let (v0, v1, v2, v3) and (u0, u1, u2, u3) be two 3-arcs in X. Since
s ≥ 2, there exists an element g ∈ G such that (v0, v1, v2)

g = (u0, u1, u2).
Clearly (v0, v1, v2, v3)

g = (u0, u1, u2, v
g
3) is a 3-arc. Note that G

∗
u1

fixes u0, u1
and u2 and acts on X1(u2)\ {u1} transitively. Thus, there exists an element

h ∈ G∗
u1

such that vgh3 = u3, that is, (v0, v1, v2, v3)
gh = (u0, u1, u2, u3). It

follows that X is (G, 3)-arc-transitive. Since by Theorem 2.6(i), s ≤ 3, we
get that s = 3 which completes the proof. □

Finally, in the last theorem, we deal with the case G∗
uv ̸= 1.

Theorem 3.8. Let X be a (G, s)-transitive graph of valency 15 where G ≤
Aut(X) and s ≥ 2. Let {u, v} ∈ E(X) and G∗

uv ̸= 1. Then one of the
following holds.

(i) s = 2, Gv
∼= 2r : SL4(2) where r ∈ {4, 5, 6}, [211] : SL4(2) or

[214] : SL4(2).
(ii) s = 3, Gv

∼= 212 : (SL4(2)× SL3(2)).

Proof. By Theorem 2.6(ii) and Proposition 3.3, we have G
X1(v)
v

∼= Gv/G
∗
v
∼=

PSL4(2) ∼= SL4(2) and G∗
uv is a 2-group. Let G

[2]
v be the pointwise stabilizer

in G of the set of vertices of X which are at a distance at most 2 from v.
By ([19], p.314, lines 24-25), O2(Gv)/G

[2]
v is elementary abelian and s = 2

or 3. Thus for the case G
[2]
v = 1, we get that O2(Gv) is elementary abelian.

Suppose that s = 2. If G
[2]
v = 1, then by [19], p.315, lines 13-16, we have

G∗
v = O2(Gv) and Gv/O2(Gv) is isomorphic to a quotient group of SL4(2).

By [19], p.316, lines 28-32, O2(Gv) ∼= 24 or 26. Since Gv/G
∗
v
∼= SL4(2) acts

naturally on X1(v) inducing the projective special linear group, we get that

Gv
∼= 24 : SL4(2) or Gv

∼= 26 : SL4(2). If G
[2]
v ̸= 1, then by [19], p.319-321,

(d), (e), (f), we get that Gv
∼= 25 : SL4(2), [2

11] : SL4(2) or [214] : SL4(2)
and (i) is proved.

Suppose that s = 3. By [19], p.318, line 24, G
[2]
v = 1. By [19], p.316,

lines 17-19, O2(Gv) ∼= 212, H1
∼= SL4(2), H2

∼= SL3(2) and H = O2(Gv) :

(H1 × H2) ⊴ Gv. It follows that HX1(v) ∼= H/H ∩ G∗
v
∼= HG∗

v/G
∗
v ⊴

Gv/G
∗
v
∼= Gv

X1(v) ∼= PSL4(2). Since PSL4(2) is a simple group, HX1(v) = 1

or HX1(v) = Gv
X1(v). But clearly the former can not be occurred, thus

HX1(v) = Gv
X1(v) ∼= SL4(2). Now to prove Gv = H, it is sufficient to show

that H∗
v = H ∩ G∗

v = G∗
v. Recall that G∗

uv ≤ O2(Gv) ≤ H which implies
G∗

uv = H∗
uv. Note that H∗

v
∼= 212 : SL3(2). Thus SL3(2) ∼= N ≤ H∗

v/H
∗
uv =

H∗
v/G

∗
uv ⊴ G∗

v/G
∗
uv

∼= G∗
vG

∗
u/G

∗
u ⊴ Guv/G

∗
u
∼= G

X1(v)\{u}
uv

∼= 23 : PSL3(2). It
forces H∗

v/H
∗
uv = H∗

v/G
∗
uv = G∗

v/G
∗
uv

∼= 23 : PSL3(2). Therefore H∗
v = G∗

v

as required and Gv
∼= 212 : (SL4(2)× SL3(2)). □
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4. Proof of Theorem 1.1

We now draw all our strings together and prove Theorem 1.1.
Proof of Theorem 1.1. Let X be a connected (G, s)-transitive graph
of valency 15 for some G ≤ Aut(X) and s ≥ 1. Since X has valency 15,

G
X1(v)
v

∼= Gv/G
∗
v ≤ S15 is a transitive permutation group of degree 15. By

Theorem 3.1, part (i) holds. Thus in what follows, we may assume that

s ≥ 2. By Proposition 3.3, G
X1(v)
v

∼= A7,PSL4(2), A15 or S15. Clearly, By
Theorem 2.6 we get that s = 2 or 3. Now combining Theorems 3.4, 3.7
and 3.8, it is easily seen that parts (ii) and (iii) hold. This completes the
proof. □

5. Realization

Let X be a connected (G, s)-transitive graph of valency 15 and let v ∈
V (X). In this section, we show that each type of Gv with s ≥ 2 in Theorem
1.1 can be realized. Let n be a positive integer. The first example is a
connected (G, 2)-transitive graph of valency 15 with Gv

∼= A15 or S15.

Example 5.1. Let X = K16 be the complete graph of order 16. Then,
A = Aut(X) = S16. Clearly, A has an arc-transitive subgroup B isomorphic
to A16. Thus the vertex stabilizers Av and Bv are isomorphic to S15 and
A15, respectively.

The following example is a connected (G, 2)-arc-transitive graph with
Gv

∼= PSL4(2) × (23 : PSL3(2)), S15 × S14, A15 × A14 or (A15 × A14) : 2
with A14 : 2 = S14 and A15 : 2 = S15.

Example 5.2. Let X = K15,15 be the complete bipartite graph of order 30
with bipartite sets {1, 3, . . . , 29} and {2, 4, . . . , 30}. Then A = Aut(x) ∼=
S15wrS2. Clearly, A has a 3-transitive subgroup B ∼= A15wrS2. Thus, A1

∼=
S15 × S14 and B1 = A15 × A14. Now let D = ⟨B, a⟩ with a = (1, 3)(2, 30).
Then D is 3-transitive and D1

∼= (A15 × A14) : 2 with A15 : 2 = S15 and
A14 : 2 = S14. Since PSL4(2) is a transitive subgroup of S15, we have
M = PSL4(2)wrS2 is an arc-transitive subgroup of A. Therefore it is easy
to see that M1

∼= PSL4(2)× (23 : PSL3(2)).

The next coset graph is extracted from [19], Example 3.3, which Gv is
isomorphic to 212 : (SL4(2)× SL3(2)).

Example 5.3. Let G = Aut(PSL7(2)) ∼= PSL7(2) : 2 and T = Soc(G) ∼=
PSL7(2). Then by [1], T has maximal subgroup H ∼= 212 : (SL4(2)× SL3(2))
and we have that H has a subgroup K ∼= 212 : ((23 : PSL3(2))×SL3(2)), such
that L = NG(K) ∼= 212 : ((23 : PSL3(2))× SL3(2)) : 2. Thus there exists an
element g ∈ L\K of order 2 such that K = H ∩Hg, HgH = Hg−1H and
|H : H ∩Hg| = 15. Since H is maximal in T and g /∈ T , we get ⟨H, g⟩ = G.
Thus, Cos(G,H,HgH) is a connected (G, 3)-transitive graph of valency 15
with H ∼= 212 : (SL4(2)× SL3(2)) as a vertex stabilizer.
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The following example gives a (G, 2)-transitive graph with a vertex sta-
bilizer Gv isomorphic to 24 : SL4(2) ([19], Example 3.4).

Example 5.4. Let G = Aut(PSL5(2)) ∼= PSL5(2) : 2 and T = Soc(G) ∼=
PSL5(2). Then by [1], T has maximal subgroup H ∼= 24 : SL4(2) and we have
that H has a subgroup K ∼= 24 : (23 : PSL3(2)), such that L = NG(K) ∼=
24 : (23 : PSL3(2)) : 2. Thus there exists an element g ∈ L\K of order 2
such that K = H ∩Hg, HgH = Hg−1H and |H : H ∩Hg| = 15. Since H
is maximal in T and g /∈ T , we get ⟨H, g⟩ = G. Thus, Cos(G,H,HgH) is
a connected (G, 2)-transitive graph of valency 15 with H ∼= 24 : SL4(2) as a
vertex stabilizer.

By a similar argument we can see other examples in [19], examples 3.5,
6.1, 7.1, and 7.2.
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