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A LINEAR TIME APPROACH

TO THREE-DIMENSIONAL RECONSTRUCTION

BY DISCRETE TOMOGRAPHY

MATTHEW CEKO, SILVIA M.C. PAGANI, AND ROB TIJDEMAN

Abstract. The goal of discrete tomography is to reconstruct an un-
known function f via a given set of line sums. In addition to requiring
accurate reconstructions, it is favourable to be able to perform the task
in a timely manner. This is complicated by the presence of ghosts, which
allow many solutions to exist in general. In this paper we consider the
case of a function f : A → R where A is a finite grid in Z3. Previous
work has shown that in the two-dimensional case it is possible to de-
termine all solutions in parameterized form in linear time (with respect
to the number of directions and the grid size) regardless of whether the
solution is unique. In this work, we show that a similar linear method
exists in three dimensions under the condition of nonproportionality.
We show that the condition of nonproportionality is fulfilled in the case
of three-dimensional boundary ghosts.

‘‘

1. Introduction

Tomography is the process of reconstructing an object from a set of its
projected views. The usual continuous tomography requires many projec-
tions for accurate solutions. Imaging sensitive objects such as fine nanos-
tructures or biological matter often limit the number of projections that
can be taken, as to not perturb or destroy the object. This is the case as
well for objects that change quickly in time. The methods of discrete to-
mography permit useful reconstructions or approximations to be obtained
with relatively little projection information. Discrete tomography considers

Received by the editors December 1, 2021, and in revised form October 31, 2022.
1991 Mathematics Subject Classification. 52C07; 52C05; 11H06; 68U10.
Key words and phrases. discrete tomography; ghost; lattice direction; linear time algo-

rithm; three-dimensional reconstruction.
The first author’s research has been supported by the Monash University Postgraduate

Publications Award. The second author’s research has been supported by D1 Research
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a function f , representing the object, defined on a finite grid A of Z2. In-
stead of continuous integral projections, discrete line sums are used. These
sum the f -values at grid points along lines in a small number of directions.
In this work, we assume that these line sums are free of noise and errors.
Algorithms based on this condition have found use in image processing and
data security, cf. [4, 11, 16, 18].

Discrete tomography began from analysing the problem of recovering bi-
nary matrices from their row and column sums. In 1957, Ryser gave a
necessary and sufficient condition, and an algorithm for reconstruction of
this problem, [17]. In 1978, Katz showed that reconstruction is possible
for any number of directions in the absence of a nontrivial function with
vanishing line sums over the set of directions, known as a ghost (or switch-
ing function), [14]. Hajdu and Tijdeman offered an algebraic interpretation
of discrete tomography in 2001, which viewed ghosts as polynomials, [12].
Ghosts of minimal size are termed minimal ghosts. In [12] it was shown that
every ghost is a linear combination of minimal ghosts. Hence, points of the
grid A have uniquely determinable f -values if they are not in the union of
all the ghost domains. Furthermore, assigning arbitrary function values to
a suitable subset of the ghost domain induces unique function values for all
other points. This fact was exploited by Dulio and Pagani in [8], wherein a
rounding theorem was proven which allowed exact and unique binary tomo-
graphic reconstructions from the minimum Euclidean norm solution. It also
motivated the construction of boundary ghosts by Ceko, Petersen, Svalbe
and Tijdeman, [2]. Boundary ghosts are ghosts with a thin annulus as
domain, having a large interior of points where the f -values are uniquely
determined. Ceko and Tijdeman [3] showed that a straightforward general-
ization to three dimensions does not exist, but that a similar structure exists
by combining three recursions. In this paper we introduce a reconstruction
method for such three-dimensional boundary ghosts.

An important aspect of discrete tomography is the time in which re-
constructions can be obtained. It was shown by Gardner, Gritzmann and
Prangenberg in 1999 that a function f : A → N can be reconstructed in
linear time for two directions, but that the problem is NP-complete for
s ≥ 3 directions, [9]. They also showed that the problem is NP-complete for
s ≥ 2 when the f attains six or more different values, [10]. The situation is
completely different if the co-domain is an integral domain. In 2015 Dulio,
Frosini and Pagani proved that the function values in the corners of A can
be uniquely determined in linear time for s = 2 in [5], and gave conditional
results for s = 3 in [6, 7]. This result was generalised by Pagani and Ti-
jdeman for all s in [15]. They showed that the function values at A outside
of the convex hull of the union of all the ghost domains can be computed
in linear time. If there is no ghost, all function values may be obtained in
linear time.

The coalescence of these results shows that an algorithm can be composed,
which allows for reconstruction of all solutions from the line sums in linear
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time in terms of the product of the number of directions and the size of the
grid. Such an algorithm was provided in [1]. In the present work, we extend
the algorithm to three dimensions under the condition of nonproportionality.
This is achieved through repeated applications of the aforementioned 2D
algorithm along coordinate planes in 3D. We show that three-dimensional
boundary ghosts have a nonproportional set of primitive directions so that
a 3D discrete reconstruction can be computed in linear time with respect
to the product of the grid size and number of directions. We illustrate this
with an example of 11 directions.

In the next section we introduce notation and the main result. The rel-
evant results of the two-dimensional case are given in Section 3. Here we
prove that in the algorithm of [1] primitivity may be replaced by nonpropor-
tionality. In Section 4 we show that the three-dimensional boundary ghosts
satisfy the nonproportionality property. We treat the three-dimensional case
in Section 5 in four steps where we illustrate each step by the example of the
boundary ghost. Section 6 offers an analysis of the computational complex-
ity of the algorithm. Finally we state some conclusions in the last section.

2. Notation and main result

Throughout the paper we consider an X by Y by Z grid of points

A = {(x, y, z) ∈ Z3 : 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}.
Definition 2.1. A triple (a, b, c) ∈ Z3 with (a, b, c) ̸= (0, 0, 0) is called a
direction, where we identify (a, b, c) and (−a,−b,−c). It is called primitive
if gcd(a, b, c) = 1.

Let D be a set of directions dh = (ah, bh, ch) for h = 1, 2, . . . , s.

Definition 2.2. The set D is called nonproportional if, for h = 1, . . . s,

1) the ratios ah : ch with ahch ̸= 0 are distinct,
2) the ratios bh : ch with ch ̸= 0 are distinct,
3) the ratios ah : bh with ch = 0 are distinct.

Definition 2.3. A lattice line L is a set of points L = L(a, b, c, x0, y0, z0) =
{(x0, y0, z0) + t(a, b, c) : t ∈ Z} where (x0, y0, z0) ∈ A and (a, b, c) is a
direction.

For a function f : A → R, the line sum of f along L is defined as

ℓ(a, b, c, x0, y0, z0, f) =
∑

(x,y,z)∈L∩A

f(x, y, z).

If gcd(a, b, c) > 1, the lattice line does not contain all integer points on
the line {(x0, y0, z0) + t(a, b, c) : t ∈ R}.
Definition 2.4. A nontrivial function g : A → R is called a ghost of (A,D)
if all the line sums of g in all the directions of D are 0. The support of a
ghost is called its ghost domain. A ghost of minimal size is called a minimal
ghost.
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Definition 2.5. We call (A,D) valid if
∑s

h=1 |ah| < X,
∑s

h=1 |bh| < Y and∑s
h=1 |ch| < Z, and nonvalid otherwise.

Definition 2.6. An elementary operation is an addition, subtraction, mul-
tiplication, division, a determination of the largest of two given quantities,
or an assignment. We call an algorithm linear if the number of required
elementary operations is O(sXY Z), where s,X, Y, Z are defined as above.

Let the set D consist of primitive directions. The function f : A → R is
uniquely determined by its line sums in the directions of D if and only if
(A,D) is nonvalid, [13, 14]. If (A,D) is valid, then there is a minimal ghost
g(0,0,0) : A(0,0,0) → R with

A(0,0,0) ⊆
[
0,
∑
h

|ah|
]
×
[
0,
∑
h

|bh|
]
×
[
0,
∑
h

|ch|
]
∩ Z3.

This minimal ghost is unique apart from a multiplicative factor. In fact,

(2.1) A(0,0,0) =

∑
ah<0

|ah|,
∑
bh<0

|bh|,
∑
ch<0

|ch|

+ ε1d1 + ε2d2 + · · ·+ εsds

with ε1, ε2, . . . , εs ∈ {0, 1}. Let g(x,y,z) be the corresponding minimal ghost
with shifted domain A(0,0,0) + (x, y, z). Then every ghost is of the form∑

(x,y,z)∈U c(x,y,z)g(x,y,z) with c(x,y,z) ∈ R and U the subset of (x, y, z) ∈ A

for which the domain of g(x,y,z) fits into A, [13]. It follows that if (A,D) is
valid, there are

(2.2)

(
X −

s∑
h=1

|ah|
)

×
(
Y −

s∑
h=1

|bh|
)

×
(
Z −

s∑
h=1

|ch|
)

linearly independent functions f∗ : A → R with the same line sums as f
has. In so many points of A the value of f∗ can be chosen in R. A function
f is uniquely determined by its line sums in the directions of D outside the
union T of its ghost domains. It follows from (2.1) and the definition of U
that

(2.3) T =

X−1−
∑

h |ah|⋃
i=0

Y−1−
∑

h |bh|⋃
j=0

Z−1−
∑

h |ch|⋃
k=0

A(i,j,k).

The aim of the present paper is to prove that the following algorithm can
be composed with O(sXY Z) elementary operations.
Algorithm A.

Input: A set A = {(x, y, z) ∈ Z3 : 0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z},
a nonproportional set of directions D and all the line sums in the
directions of D of a function f : A → R.

Output: A function f∗ : A → R which satisfies the line sums of f .
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As shown in [13] this implies a parametric characterisation of all the
functions of which the line sums in the directions of D agree with those of
f . As an application we show that the three-dimensional boundary ghosts
described in [3] satisfy the conditions of the algorithm and show how the
algorithm works for such functions.

3. The two-dimensional case

Let A be an X by Y grid of points

A = {(x, y) ∈ Z2 : 0 ≤ x < X, 0 ≤ y < Y }.
We use the notation of Section 2, but since the third component of the
points is 0, we omit it throughout the present section. For two dimensions
nonproportional means that condition 3) of Definition 2.2 is satisfied, that
is, ab′ ̸= a′b for any two directions (a, b) and (a′, b′). Thus, in the two-
dimensional case, primitive implies nonproportional.

Let D be a set of primitive directions. The function f : A → R is uniquely
determined by its line sums in the directions of D if and only if (A,D) is
nonvalid, [14]. If (A,D) is valid, then there are

(3.1)

(
X −

s∑
h=1

|ah|
)(

Y −
s∑

h=1

|bh|
)

linearly independent functions f∗ : A → R with the same line sums as f
has, that is, at so many points of A the value of f∗ can be chosen in R. A
function f is uniquely determined by its line sums in the directions of D
outside the union T of its ghost domains and not elsewhere (cf. [13]). We
denote the convex hull of T by C. In [1] the following algorithm is presented.
Algorithm B (Algorithm of [1], Section 6.)

Input: A set A = {(x, y) ∈ Z2 : 0 ≤ x < X, 0 ≤ y < Y }, a finite set of
primitive directions D and all the line sums in the directions of D
of a function f : A → R.

Output: A function f∗ : A → R which satisfies the line sums.

Algorithm B computes the f -values of the integer points outside T . It uses
O(sXY ) elementary operations to compute f∗. The f∗-values themselves
are calculated by subtractions only.

In the proof that Algorithm A can be made, Algorithm B is applied to
the projection of C along the x-axis, the y-axis and the z-axis. The notion
‘nonproportional’ is introduced to guarantee that in all three applications
we have nonproportional directions. As an example, the primitive direction
(5,−5, 4) yields, when projected along the z-axis, the nonprimitive direc-
tion (5,−5). Since we do not want to exclude directions like (5,−5, 4) in
Algorithm A, we prove that the condition ‘primitive’ in Algorithm B can be
relaxed to ‘nonproportional’.

Theorem 3.1. In Algorithm B ‘primitive’ can be replaced by ‘nonpropor-
tional’.
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In order to show why this extension of Algorithm B is possible we restrict
our attention to one corner of A. The same argument may be adapted to
the other corners. Let D be a set of distinct directions (a1, b1), . . . , (ak, bk)
with k ≥ 2, where a1, . . . , ak are positive integers and b1, . . . , bk negative
integers ordered such that

(3.2)
|b1|
a1

<
|b2|
a2

< · · · < |bk|
ak

,

where 1/0 is considered as ∞.

Definition 3.2. We call the vertices of C(
k∑

h=1

ah, 0

)
,

(
k∑

h=2

ah, |b1|
)
, . . . ,

(
0,

k∑
h=1

|bh|
)

the border points (P0, Q0), (P1, Q1) . . . , (Pk, Qk), respectively.

Definition 3.3. For a point (x, y) ∈ A we define its weight w(x, y) by

w(x, y) =
aHy + |bH |x

aH(
∑H

h=1 |bh|) + |bH |(∑k
h=H+1 ah)

,

where H is determined by∑H−1
h=1 |bh|∑k
h=H ah

≤ y

x
≤

∑H
h=1 |bh|∑k

h=H+1 ah
.

Obviously w(x, y) = 1 if (x, y) is one of the border points. Observe that
the function w is linear on VH and that the lines with equation

y
k∑

h=H+1

ah = x
H∑

h=1

|bh| for H = 0, 1, . . . , k

connect the origin with the border points. The lines generate k full triangles
V1, V2, . . . , Vk with as vertices of VH the origin and two consecutive border
points (PH−1, QH−1) and (PH , QH) for H = 1, 2, . . . , k (see Figure 1). For
a point (x, y) ∈ V1 ∪ . . .∪Vk the index H appearing in Definition 3.3 is that
of triangle VH containing (x, y).

Denote by δ((x, y), (x′, y′)) the distance between the points (x, y) and
(x′, y′). The weight has the following property.

Lemma 3.4. For H = 1, 2, . . . , s and (x, y) ∈ VH denote the intersection
of the line through the origin and (x, y) and the line through (PH−1, QH−1)

and (PH , QH) by (x, y). Then

w(x, y) =
δ((0, 0), (x, y))

δ((0, 0), (x, y))
.

Proof. We have w(PH−1, QH−1) = w(PH , QH) = 1. The weight function
is linear on VH , hence equal to 1 on the segment connecting (PH−1, QH−1)
and (PH , QH). If (x, y) is on the line through (0, 0) and (PH , QH), then
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(0, 10)

(3, 4)

(5, 2)

(8, 0)

Figure 1. The triangles V1, V2, V3 for the set D =
{(3,−2), (2,−2), (3,−6)}. The border points are (P0, Q0) = (8, 0),
(P1, Q1) = (5, 2), (P2, Q2) = (3, 4), (P3, Q3) = (0, 10). They are
the vertices of the convex hull C of T (elements of T are coloured
in the figure). For every H the line through (PH−1, QH−1) and
(PH , QH) is an edge of triangle VH , and intersects each other tri-
angle Vh, since C is convex.

(x, y) = (PH , QH) and the statement follows from the linearity of the weight
function. Since on VH the weight function w(x, y) is constant on lines parallel
to the line connecting (PH−1, QH−1) and (PH , QH), the statement holds for
all points in VH . □

The reconstruction method orders the integer points of A outside C ac-
cording to increasing weight, see Figure 2. We shall show that if such a point
(x, y) is in VH , then it is the point with highest weight among the points
on the lattice line through (x, y) in direction (aH , bH). Since the f -values of
all other points on this lattice line are already known, the f -value of (x, y)
can be computed by subtracting all the known f -values of other points on
that lattice line from the corresponding line sum. This is expressed in the
following result.

Lemma 3.5. Let A be the X × Y grid of points A = {(x, y) ∈ Z2 : 0 ≤ x <
X, 0 ≤ y < Y }. Let D be a set of nonproportional directions

{(a1, b1), . . . , (ak, bk)}
where a1, . . . , ak are positive integers and b1, . . . bk negative integers ordered
as in (3.2). Then (x, y) ∈ VH , not a border point, has a larger weight than
all the points (x, y) + t(aH , bH) ∈ A with t ∈ Z, t ̸= 0.
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Figure 2. The weights (upper numbers inside each pixel) and
order numbers (lower numbers) for directions as in Figure 1. The
(black) border points are in T and have weight 1. The dark points
belong to T as well. The points to the left of the line segments con-
necting consecutive border points have weights less than 1, those
to the right have weights greater than 1. Since D has nonprimitive
directions, there are points between two consecutive border points
with weight 1. Light coloured points belong to C, but not to T .

This lemma for primitive directions is in [15]. We give a simpler proof for
Lemma 3.5 based on Lemma 3.4.

Proof. Consider a point (x, y) ∈ VH and a point (x′, y′) = (x, y)+t(aH , bH) ∈
A with t ∈ Z, t ̸= 0. The triangle VH has an edge with vertices (PH−1, QH−1)
and (PH , QH). Since (PH−1, QH−1) − (PH , QH) = (aH , bH), the shift of
(x, y) by a nonzero multiple of (aH , bH) cannot be in VH . This implies that
(x′, y′) ∈ Vh for some h ̸= H. By the convexity of C we have

w(x′, y′) =
δ((0, 0), (x′, y′))

δ((0, 0), (x′, y′))
<

δ((0, 0), (x, y))

δ((0, 0), (x, y))
= w(x, y).

□

Proof of Theorem 3.1. Replace Lemma 3 in the proof of Theorem 7 of [15]
by Lemma 3.5 of the present paper (cf. Figure 3). □
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Figure 3. The triangles V1, V2, V3 for the set D as in Figures
1 and 2. The translates V2 ± (2,−2) have only border points in
common with V2. The points (4, 2)+(2,−2), (4, 2)−(2,−2), (4, 2)−
2(2,−2) have lower weights (.750, .800, .600, respectively) than
(4, 2) has (.857). Note that some lattice points on the line x+y = 6
are not included in Lemma 3.5. For example, point (3, 3) has also
weight .857.

4. An infinite set of nonproportional directions

We show that the directions of the boundary ghosts from [3] are nonpro-
portional. In the next section we use such a ghost to illustrate the method.

Define a sequence of directions by v0 = (0, 1, 0), v1 = (1, 0, 0), v2 =
(1, 1, 0), v3 = (1, 0, 1) and further, for n = 1, 2, . . . ,

v3n+1 = v3n−1 − 2v3n−2,

v3n+2 = v3n+1 − 2v3n−1,

v3n+3 = v3n+1 − 2v3n.

A ghost generated by (vn)
N
n=0 for some N is called a boundary ghost. The

theory in this paper holds for any subset of (vn)
∞
n=0.
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Let vn = (an, bn, cn) for n = 1, 2, . . .. By induction it follows that an and
bn are odd for n > 3 and cn = 0 if n ̸≡ 0 mod 3.

Lemma 4.1. The directions (vn)
∞
n=0 are nonproportional.

Proof. We distinguish between n ≡ 0 (mod 3) and n ̸≡ 0 (mod 3).
If n = 3m, then a3m and b3m are odd for all m > 1 and |c3m| = 2m−1

for m ≥ 1. It follows that all ratios a3m : c3m and all ratios b3m : c3m are
distinct, so conditions 1) and 2) of Definition 2.2 are satisfied (in this case
condition 3) does not occur).

Let n ̸≡ 0 (mod 3). Then cn = 0. Suppose ah1 : bh1 = ah2 : bh2 for some
h1 > h2 with h1, h2 ̸≡ 0 (mod 3). Define (wn)

∞
n=1, with wn = (a′n, b

′
n, 0), in

the following way:

w2m+1 = v3m+1, w2m+2 = v3m+2 for m = 0, 1, . . . .

Then wn+1 = wn − 2wn−1 for n ≥ 2 and the recursion of [2] can be applied.
Formulas (5)-(6) of [2] state that

a′n−1 = b′n =
1√
−7

(αn − αn), with α =
1

2
+

1

2

√
−7

for all n > 0. Thus ah1 : bh1 = ah2 : bh2 implies a′kb
′
ℓ = a′ℓb

′
k for some k > ℓ,

which in turn gives

(αk+1 − αk+1)(αℓ − αℓ) = (αℓ+1 − αℓ+1)(αk − αk).

It follows that
αkαℓ(α− α) = αℓαk(α− α)

and therefore (α/α)k−ℓ = 1, but α/α is not a root of unity. □

5. The three-dimensional case

In this section we treat the method underlying Algorithm A. Below we
prove the following result.

Theorem 5.1. Let A = {(x, y, z) ∈ Z3 : 0 ≤ x < X, 0 ≤ y < Y, 0 ≤
z < Z}. Let D be a finite set of nonproportional directions (ah, bh, ch) for
h = 1, 2, . . . , s. Suppose the line sums of a function f : A → R are given.
Then a function f∗ : A → R can be constructed with the same line sums as
f has.

By the theory in [13] this means that all such functions can be stated in
parameterized form. In the next section we prove thatO(sXY Z) elementary
operations suffice to construct f∗.

Recall that f is uniquely determined by its line sums in the directions
of D outside the union T of its ghost domains. Furthermore, if (A,D) is
valid, Equation (2.2) provides the number of linearly independent functions
f∗ : A → R with the same line sums as f has and consequently such a
number of function values of f∗ can be chosen. In the sequel the convex hull
C of T plays an important role. Denote by T ∗ the intersection of T and the
plane z = Z − 1, and by C∗ the convex hull of T ∗ in this plane.



232 MATTHEW CEKO, SILVIA M.C. PAGANI, AND ROB TIJDEMAN

Lemma 5.2. Suppose (A,D) is valid. Then T ∗ is a two-dimensional ghost
domain obtained as a translation of the minimal ghost domain generated by
the directions of the form (ah, bh, 0) in D. The translation is given by the
vector

∑
ch ̸=0 (|ah| , |bh| , |ch|).

Proof. By definition, T ∗ consists of elements of T with maximal z-value. In
view of (2.1) and (2.3) these elements satisfy εh = 0 if ch < 0, and εh = 1 if
ch > 0. If ch = 0 both εh = 0 and εh = 1 are possible, so that the boundary
of C∗ contains line segments in the corresponding directions. □

Corollary 5.3. If (A,D) is valid, then the minimal rectangular grid con-
taining C∗ has size X −∑ch ̸=0 |ah| by Y −∑ch ̸=0 |bh|. The number of
points where the f∗-value can be freely chosen in the plane of C∗ equals
(X −∑h |ah|) (Y −∑h |bh|).
Proof. For the first statement we recall that the directions (a, b, c) with c ̸= 0
do not contribute to T ∗. The second statement follows from (3.1). It agrees
with (2.2) where the z-value has been fixed. □

Example 5.4. Consider the boundary ghost G10 generated by the directions
D = {(0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (−1, 1, 0), (−3,−1, 0), (−3, 1,−2),
(−1,−3, 0), (5,−1, 0), (5,−5, 4), (7, 5, 0)}. For A we choose the grid A :=
([0, 29)× [0, 20)× [0, 9)) ∩ Z3. Since∑

h |ah| = 28 = X − 1,∑
h |bh| = 19 = Y − 1,∑
h |ch| = 7 = Z − 2,

we have a valid case. The number of free choices of f∗-values is 2 by (2.2).
Suppose we know all line sums of a function f : A → R in the directions
of D. Figure 4(a) shows C (dark grey) and the boundary of C∗ (black).
Figure 4(b) indicates their projections along the z-axis. The projection of
C is the blue curve and its interior, the projection of C∗ is the red curve
and its interior. In accordance with Corollary 5.3 the size of the minimal
grid containing C∗ is X −∑ch ̸=0 |ah| = 20 by Y −∑ch ̸=0 |bh| = 14 and at

just (29− 28)(20− 19) = 1 point of A ∩ {z = Z − 1} the value of f∗ can be
freely chosen.

Proof of Theorem 5.1. The method uses Algorithm B several times and
consists of four steps. If (A,D) is nonvalid, then one can immediately pro-
ceed to Step 4. Steps 1-3 are used to reduce A until the reduced A is
nonvalid for D. Of course, only f∗-values need to be computed which are
not yet known. In the following steps, when projecting the convex hull C
of T onto a coordinate plane, we omit writing the corresponding component
in the projected direction.

Step 1. Computation of f -values on lines with constant x, z. Suppose
(A,D) is valid. According to Corollary 5.3, C∗ is in a rectangular grid of
size X −∑ch ̸=0 |ah| by Y −∑ch ̸=0 |bh|. In Step 1 we compute the f -values
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Figure 4. (Cf. Example 5.4.) (a) The convex hull C
(shaded) of G10, the boundary of its projection on the x-
y-plane along the z-axis (blue), the boundary of the convex
hull C∗ (black) and its projection along the z-axis on the x-
y-plane (red). (b) The boundary of the projection of C along
the z-axis (blue) and the boundary of the projection of C∗

along the z-axis (red).

on the
∑

ch ̸=0 |ah| lattice lines in {z = Z − 1} parallel to the y-axis which
do not intersect C∗.

Consider the projection Cy of C along the y-axis onto the x-z-plane. We
apply Algorithm B to the directions Dy obtained from D by omitting the
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Figure 5. Projection of the convex hull C onto the x-
z-plane in the y-direction near the corner (x, z) = (0, 8).
Weights are given for points outside the projection of C.

second coordinates of the directions. The two-dimensional nonproportion-
ality of Dy follows from requirement 1) of Definition 2.2. By Theorem 3.1
we may apply Algorithm B with ‘primitive’ replaced by ‘nonproportional’.

As in Section 3 weights can be given to the points {(x, z) ∈ Z2 : 0 ≤ x <
X, 0 ≤ z < Z} outside Cy. These weights are such that, if in increasing
ordering it is the turn of point P0 = (x0, z0) located in the triangle along
the side of the convex hull in the direction (ah, ch) with ahch ̸= 0, then
P0 is the only point with unknown f -value on the lattice line through it in
the direction (ah, ch) (cf. Figure 5). Therefore the lattice lines (x0, y, z0) +
t(ah, bh, ch) (y ∈ Z, t ∈ R) have no point in common with C. It follows
that for every y ∈ Z the point (x0, y, z0) is the only point on the lattice line
(x0, y, z0) + t(ah, bh, ch), t ∈ Z with unknown f -value. By the convexity of
C and Lemma 3.4 the f -values of all the points (x0, y, z0) with 0 ≤ y < Y
can be computed by subtracting from the line sum the f -values of all the
other points contributing to the line sum. Thus the f -values of all the points
(x, y, z) ∈ A for which (x, z) is outside Cy can be computed. They cover the∑

ch ̸=0 |ah| lattice lines in {z = Z − 1} parallel to the y-axis which do not
intersect C∗.

Example continued, Step 1. As can be seen in Figure 4(b) the inner curve
delimits C∗, which is contained in the rectangular grid 9 ≤ x < 29, 0 ≤
y < 14. In Step 1 we compute the f -values of the points (x, y, 8) with
0 ≤ x < 9, 0 ≤ y < 20. To do so, we consider the projection Cy of C
in the y-direction. See Figure 5. The boundary of the projection of C is
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Figure 6. Convex hull in the y-z-plane, with weights.

indicated by the light coloured broken line from (0, 1) to (9, 8) consisting
of segments in the direction (1,1), (5,4) and (3,2). (These come from the
directions (1, 0, 1), (5,−5, 4), (3,−1, 2), i.e., the directions in D with ac ̸= 0.)
The triangles and weights are as explained in Section 3. The weights of (x, z)
are given to all points (x, y, z) with 0 ≤ y < 20. Since the lines through
these points in the directions (1, 0, 1), (5,−5, 4), (3,−1, 2) do not intersect
C, Algorithm B can be applied where, if it is the turn of point (x0, z0), the
f -values of all points (x0, y, z0) with 0 ≤ y < 20 are computed. All these
points are the only points on the corresponding lattice line with unknown
f -value. Therefore this value can be found by subtraction. In this way we
compute the f -values of the points (x, y, 8) with 0 ≤ x < 9, 0 ≤ y < 20.

Step 2. Computation of f -values on lines with constant y, z. We follow
the same procedure as in Step 1 for the projection Cx of C in the x-direction.
As a result, we retrieve all the f -values of the points (x, y, z) ∈ A for which
(y, z) is outside Cx (cf. Figure 6). In particular we compute the f -values of
all the points on the

∑
ch ̸=0 |bh| lattice lines in {z = Z − 1} parallel to the

x-axis which do not intersect C∗.
Example continued, Step 2. In Step 2 we compute the f -values of the

points (x, y, 8) with 9 ≤ x < 29, 14 ≤ y < 20. To do so we consider
the projection Cx of C in the y-direction. See Figure 6. The boundary
of the projection of C is indicated by the light coloured broken line from
(y, z) = (13, 8) to (19, 2) consisting of segments in the directions (5,−4)
and (1,−2). (These come from the directions (5,−5, 4), (3,−1, 2), i.e., the
directions in D with bc ̸= 0.) Again the extended Algorithm B can be
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Figure 7. Intersection of the convex hull with the plane
z = 8. The isolated thick points have known f -values. In
these points the f∗-value becomes the f -value.

applied where, if it is the turn of point (y0, z0), the f -values of all points
(x, y0, z0) with 9 ≤ x < 29 are computed.

Step 3. In this step we compute the f∗-values of the remaining points
of the form (x0, y0, Z − 1). By Steps 1 and 2 for such a point there exist
x, y such that both (x0, y, Z − 1) and (x, y0, Z − 1) belong to T . Since the
directions (ah, bh, ch) ∈ D with ch = 0 are nonproportional, we can apply
the extended Algorithm B to compute the (remaining) f∗-values of all the
points of the form (x, y, Z− 1) ∈ A. In this process the number of f∗-values
which can be freely chosen is given by Equation (3.1) (cf. Figure 7). The
choice of such values has to be performed first. Thereafter the remaining
f∗-values can be computed. (Of course, every already found f -value is the
f∗-value.)

We now remove the slice A∩{z = Z−1} from A and consider the remain-
ing part of A. The weights need not be recalculated. If the new situation
is valid, it follows from (2.1) and (2.3) that the weights for z = Z − 2 are
as they were for z = Z − 1. Again the number of f∗-values to be chosen
is provided by Equation (3.1). After that, all remaining f∗-values of points
with z = Z − 2 can be calculated. This process is repeated for z = Z − 3,
z = Z − 4, . . . , z =

∑
h |ch|. Equation (3.1) gives each time the number

of f∗-values which can be freely chosen. After completing this induction,
f∗-values have been chosen in a number of points as Equation (2.2) specifies.
Different choices generate different solutions and the ultimately found solu-
tion depends only on these choices. What remains is a nonvalid rectangular
grid [0, X)× [0, Y )× [0,

∑
h |ch|).

Example continued, Step 3. For the third step, see Figure 7. The isolated
thick points are points with already known f -values. What is left is the
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rectangle {(x, y, 8) : 9 ≤ x < 29, 0 ≤ y < 14}. We apply Algorithm B to
the set of directions from D with z-value 0, i.e., (a, b) = (0, 1), (1, 0), (1, 1),
(−1, 1) (−3,−1), (−1,−3), (5,−1), (7, 5). Since D is nonproportional, this
set is two-dimensional nonproportional. The sum of the |a| values is 19, the
sum of the |b| values is 13, so that, by (3.1), there is (20− 19)(14− 13) = 1
choice for a f∗-value. We give the point (9, 2, 8) an arbitrary f∗-value.
Depending on this choice the f∗-values of the points {(x, y, 8) : 9 ≤ x <
29, 0 ≤ y < 14} can be computed using the extended Algorithm B.

Hereafter the same procedure is applied for the plane z = 7. The changes
are marginal: the scale for z runs from 0 to 7 in place of from 0 to 8. This
time the f∗-value of the point (9, 2, 7) may be chosen in R.

Step 4. We consider the remaining set A′ of points (x, y, z) with 0 ≤
x < X, 0 ≤ y < Y, 0 ≤ z <

∑d
h=1 |ch|. Then, (A′, D) is nonvalid. Since the

directions (ah, bh, ch) ∈ D are nonproportional, the directions (bh, ch) with
(ah, bh, ch) ∈ D for some ah and ch ̸= 0 are two-dimensional nonproportional.
We apply the extended Algorithm B to this set of directions. It provides
an ordering of the points (y, z) for which (x, y, z) ∈ A′ and for every such
point a direction (bh, ch) with (ah, bh, ch) ∈ D such that if it is the turn of
(y0, z0), then this point has higher weight than all other points on the lattice
line (y0, z0)+ t(bh, ch)t∈Z (cf. the proof of Theorem 3.5 and Figure 8). Thus
we can compute the f∗-values of all the points (x, y0, z0) with 0 ≤ x < X
by considering the lattice line through (x, y0, z0) in the direction (ah, bh, ch).
After this step we know f∗.

Example continued, Step 4. The fourth and last step is to deal with the
f∗-values in the remaining block [0, 29) × [0, 20) × [0, 7). Since

∑
n |cn| =

7, we are now in the nonvalid case. We consider the projection of C
along the x-axis (see Figure 8). We apply Algorithm B to the directions
(0, 1), (−5, 4), (1,−2). The upper numbers in Figure 8 show the ordering
of the points (y, z). After order number 20 there is periodicity modulo 7.
Following the points (y, z) in increasing order, if it is the turn of (y0, z0), the
f∗-values can be computed for all points (x, y0, z0) with 0 ≤ x < 29, since
(x, y0, z0) is the only point without known f∗-value on the line in direction
(5,−5, 4) if 0 ≤ z0 < 4, direction (−3, 1,−2) if z0 = 4 or 5 and direction
(1, 0, 1) if z0 = 6. After this step we have found a function f∗ of which all
the line sums in the directions of D agree with those of D.

6. Complexity

Algorithm A deals with an X × Y × Z grid and s directions. As shown
in [1], Algorithm B involves O(sXY ) elementary operations. Step 1 of the
previous section requires O(sXZ) elementary operations to compute the
weights and O(XY Z) operations to compute the f∗-values. Similarly, Step
2 requires O(sY Z +XY Z) elementary operations and the first part of Step
3 O(sXY +XY Z) elementary operations. Steps 1, 2 and 3 have to be re-
peated Z −∑h |ch| times. No new computation of the weights is required
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Figure 8. Order (upper) and corresponding directions
(lower) for the remaining [0, 29) × [0, 20) × [0, 7) block, pro-
jected along the x-axis. If it is the turn of a point (y0, z0),
then for all x the points (x, y0, z0) have a higher order num-
ber than all other points on the lattice line in the indicated
direction. Thus the f∗-values in all points of A′ can be com-
puted.

for Steps 1 and 2. No more than XY Z f∗-values have to be calculated by a
subtraction and an adjustment of the remaining line sum. Thus the reduc-
tion to a nonvalid situation takes in total O(sXY Z) elementary operations.
Step 4 requires O(sY Z) elementary operations to compute the weights and
O(XY Z) elementary operations to compute the f∗-values. All the needed
operations are of order at most O(sXY Z). We conclude that Algorithm A
requires O(sXY Z) elementary operations.

7. Conclusion

In this work we have presented a linear time approach for the reconstruc-
tion of a three-dimensional function f : A → R from its line sums in a
nonproportional set D of directions. Here R may be replaced by any field or
unique factorization domain. Such an approach was achieved through the
extension to nonproportional directions of the two-dimensional algorithm
presented in previous work and multiple applications of this extended algo-
rithm. The definition of nonproportional is not symmetric in the coordinate
directions. Of course, it is possible to interchange them to satisfy the defi-
nition.

It is desirable to have an algorithm like Algorithm A where the only
restriction on the directions (a, b, c) in D is that they generate distinct one-
dimensional vector spaces. One may define the three-dimensional weight of
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a point analogous to Lemma 3.4. In practice this is complicated, since it is
awkward to characterize the convex hull C in a useful way. Moreover, the
line from the corner through the point need not intersect C. So new ideas
are required.
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