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ON EMULATIONAL EQUIVALENCE OF IMPARTIAL
GAMES AND THE GAME HACKENFORB

BOJAN BASIC, NIKOLA MILOSAVLJEVIC, AND DANIJELA POPOVIC

ABSTRACT. We introduce a variant of the game Hackenbush, called
Hackenforb. 1t is a class of games, each of which is determined by two
parameters: a given graph, and a given set of connected graphs (called
forbidden graphs). The significance of this game within the realm of im-
partial combinatorial games is reflected in the fact that, as we show in
this article, various known combinatorial games, such as Nim, Subtrac-
tion game, Notakto, Treblecross, Chomp, are emulationally equivalent
to an instance of Hackenforb (an emulational equivalence of two games
is a concept stronger than Grundy-equivalence, but weaker than the
isomorphism between games’ structures; our belief is that this version
of equivalence is what really captures the core of the intuitive percep-
tion of what it means for two games to be “basically the same game”).
At the end of our article, we show that Hackenforb is, unfortunately,
not “almighty,” that is, we describe a game that is not emulationally
equivalent to an instance of Hackenforb.

1. INTRODUCTION

Impartial games on graphs where players choose vertices and/or edges to
be thence removed are a popular research topic; see [12, 9, 6, 3, 1], as well
as [7, 8]. In particular, in the last two cited articles, in each move a player is
entitled to choose one edge, which is then removed (possibly together with
some more edges/vertices, as specified by the rules of a particular game).
Arguably the most well-known game that fits this description is the so-
called Hackenbush (the impartial form of it), invented in the early 1970s by
Conway [5, 4]. In this game, a graph is given whose one or more vertices
are denoted as “the ground” (usually represented as a horizontal line) and
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every vertex is connected to the ground (not necessarily directly). Players
alternately remove one edge at a time, and if after removing an edge a
connected component appears that is disconnected from the ground, that
whole component consequently gets removed in the same move. The game
ends when there are no more possible moves.

In the present article, we introduce a variant of this game, called Hack-
enforb. The game is played on a graph given in advance, and the rules
are similar, with the only difference that there is no notion of “ground” in
Hackenforb, but instead, if after a move a connected component appears
that belongs to the set of forbidden connected components also given in
advance, then that component gets removed in the same move (or any such
component, if there are more than one of them). Coincidentally, the game
Disconnect-it from the already mentioned article [7] is a very special case of
Hackenforb (when the initial graph is K, and the set of forbidden connected
components is the set of all connected subgraphs of K, of order less than

Let us explain the significance of the game Hackenforb within the realm
of impartial combinatorial games. For that, we first need to introduce the
concept of emulational equivalence between two games. To say as a kind
of “advertisement,” our aim is to define this notion in such a way that two
games are emulationally equivalent if they are basically the same game (but
possibly expressed in different languages). Recall that, in combinatorial
game theory, when the normal play is concerned (the player who is unable
to move loses the game), two games are considered equivalent if their corre-
sponding (so-called) nimbers (or nim-values, Grundy values) are the same.
The very rich theory based on this notion is an irreplaceable tool when ques-
tions of the winner and the optimal strategy are concerned. However, this
theory does not really tell much about the structural (dis)similarity between
two games. On the other hand, we could say that two games are “the same”
if their structures (the set of all possible positions and all possible moves
between them) are isomorphic. However, this is too restrictive, and happens
very rarely. We believe that what really captures the core of the intuitive
perception of what it means for two games to be “basically the same game”
is the notion of emulational equivalence. It bears a resemblance to the iso-
morphism between games’ structures, but it is slackened by the fact that
positions that are “essentially the same” are not treated as distinct. What
do we mean by “essentially the same”? For example, if two positions have
exactly the same sets of possible moves, they can be perceived as essentially
the same (in particular, all the ending positions are essentially the same).
As another example, positions that are mapped to each other under some
kind of symmetry can be perceived as essentially the same. But this is still
not all; some less obvious examples will be presented later. In general, we
say that some positions are “essentially the same” if their sets of possible
moves are “essentially the same” (this is, of course, a very loose description;
here we are aiming only for a rough sketch to help the reader’s intuition,
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while a rigorous definition will be given in Subsection 2.1, and, of course,
will not be of a circular nature).

As we shall see in Section 3, many impartial games can be expressed as
(that is: are emulationally equivalent to) an instance of Hackenforb (recall
that an instance of Hackenforb is determined by a given graph that rep-
resents the initial position, as well as a given set of forbidden connected
components). Let us summarize the content of that section.

e In Subsection 3.1 we show that each instance of the game Nim is
emulationally equivalent to an instance of Hackenforb. Given the
major role the game Nim has within combinatorial game theory,
this is a natural first step in studying the “emulation potential” of
the game Hackenforb.

e In Subsection 3.2 we consider a variant of Nim sometimes called the
Subtraction game: a heap of n coins is given, and in each move a
player takes a positive number of coins not greater than a bound k&
given before the start of the game. We show that this game (for any
n and k) is emulationally equivalent to an instance of Hackenforb.

e In Subsection 3.3 we consider a not-so-well-known game called No-
takto (see, e.g., [11]), which can be simply described as an impartial
version of tic-tac-toe. The main contribution of Subsection 3.3 is
maybe not the result itself, but the fact that our approach works
(with minimal modifications) for more-or-less any game where play-
ers are entitled to claim a field of a playing board, striving to achieve
or avoid a particular pattern. To mention just one more example,
Notakto’s one-dimensional (and probably better-known) cousin Tre-
blecross [2, p. 94] [10, p. 281] is also emulationally equivalent to an
instance of Hackenforb, which can be proved by a straightforward
adaptation of our proof of Theorem 3.12.

e Subsection 3.4 is the most technical part of the article. Therein, we
prove that the well-known game Chomp (first introduced by Schuh
in [13]) is emulationally equivalent to an instance of Hackenforb. In
order to prove this, we introduce an auxiliary game called Auxie,
and then show that Chomp is emulationally equivalent to Auxie,
as well as that Auxie is emulationally equivalent to an instance of
Hackenforb. There is even a (maybe slim) chance that our game
Auxie might turn out to be of independent interest in the future,
since, given many still open questions on Chomp (see, e.g., [14]),
we could at least hope that a game that is “basically the same” as
Chomp but whose positions capture some additional peculiarities (in
comparison to positions of Chomp) might provide some new insights
on those hard problems.

Finally, in Section 4 we show that Hackenforb is not almighty, that is, we
describe a game that is not emulationally equivalent to an instance of Hack-
enforb. We admit that, for a brief period of time, we were even hoping that
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it could be the case that all impartial games are emulationally equivalent
to an instance of Hackenforb. The result of this section shatters that hope,
but we still have no doubts that Hackenforb is a unifying tool capable of
more than enough to vindicate its existence.

2. PRELIMINARIES

We first need to formally state what we mean by a game for the purpose
of this article.

Definition 2.1. A game is a triple (P, f,po), where P is any finite set, f
a function f : P — P(P), and py an element from P. In this notation, P
represents the set of all possible game positions, pg is the starting position,
and f maps a position p to all the positions that can be reached from p in
one move. We additionally require that there do not exist p1,pa2,...,pr € P

such that p2 € f(p1),ps € f(p2),-. ..ok € f(Pk—1),p1 € f(pk), and that py is
the unique element from P with the property that it does not belong to any

f(p) forpe P.

The game ends (naturally) when there are no more possible moves, but
one could object that the definition does not state who wins the game. Since
it is only the game structure that interests us, this was intentionally left out
from the definition.

We now proceed to define the concept of emulational equivalence between
games, and show some basic assertions about it.

2.1. Emulational equivalence.

Definition 2.2. For a game G = (P, f,po) and a partition M of P we say
that M is a congruential partition of G iff

(2.1)

(VA,Be M)((Fa€ A)(Fbe B)(be f(a)) = (Vr € A)(Jy € B)(y € f(x))).

For such sets A, B € M we shall write B € f(A).

In other words: if there exists a move from somewhere in A to anywhere
in B, then, wherever we find ourselves in the class A, it must be possible
to move to somewhere in the class B. On an intuitive level, each class in
a congruential partition gathers together positions that can be treated as
“essentially the same.”

Note that each game has at least one congruential partition: namely,
M = {{p} : p € P}. This partition will be called trivial partition.

As usual, if M is a partition of a set P, and p is the induced equivalence
relation, then for a € P we write

lal, =[alm ={x € P:x pa}.

Definition 2.3. We say that games G1 = (P1, f1,a1) and Go = (Pa, fa, a2)
are emulationally equivalent if there exist congruential partitions My and
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Mo of Gi and Go, respectively, and a bijection F : My — My such that
F([a1]pm,) = laz]m, and

(2.2) (VA, B € M1)(B € fi(A) & F(B) € fo(F(A))).

We shall now give one basic example of a congruential partition and an
emulational equivalence. We assume the reader is familiar with the game of
Nim and its rules (if not, see Subsection 3.1).

Example. We consider the game of Nim with two heaps of 3 and 2 coins,
respectively. Formally, each position can be considered either as an ordered
pair or as a two-element multiset. Figure 1 left shows the game graph in
the first case, while Figure 1 right shows the game graph in the second case.
Although these two game graphs are different, we are clearly speaking about
essentially the same game.

(3,2) {3,2}

{0,0}

FiGURE 1. Game graphs of two possibilities of a formal def-
inition of Nim.

Figure 1 left also shows one nontrivial congruential partition: the posi-
tions (m,n) and (n,m) for myn € {0,1,2}, m # n, are in the same class
(such classes are marked by the red bozes), while all the other positions are
alone in their classes. The bijection of this partition of the game on the left
and the trivial partition of the game on the right is now obvious, and it is
easy to check that this bijection satisfies (2.2).

The previous example could leave an incorrect impression that emula-
tional equivalence always originates from some kind of symmetry. Here is a
different example.

Example. In Grundy’s game [2, p. 96], a move consists of dividing a heap
of coins into two non-equal heaps. In Figure 2 we show the game graph of the
game played on a heap of size 7. Grouped together by red boxes are positions
that are in the same class in one congruential partition of this game (without
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any visible underlying symmetry; although it is not hard to see that positions
that differ only in heaps of sizes 1 or 2 are essentially the same, this is still
not enough to explain the third row from the bottom).

{7}
/

{6,1}

({5,1,1} {5,2} {4,3}

({4,1,1,1} {4,2,1} {3,3,1})

N

({3,1,1,1,1} {3,2,1,1} {3,2,2})

({2,1,1,1,1,1}  {2,2,1,1,1}  {2,2,2,1})

FIGURE 2. Game graph of Grundy’s game played on a heap
of size 7.

We shall now briefly recall some basic notions on equivalence relations.
If p1 and ps are two equivalence relations on P and p; C ps, then we shall
write M; < My for their corresponding quotient sets (partitions of P). (For
each a, a € P, we then have [a]r; C [a]m,, and moreover, each class in
My is a union of some classes from Mj.) Also, for A € M1, we shall write
[A]pm, to denote [a]ag, where a € A (note that, because of M; < Mo, the
choice of a does not matter). Finally, if p is a relation on P (not necessarily
an equivalence relation), then tr(p) will denote the transitive closure of p
(defined as the smallest relation on P that contains p and is transitive).

Our first aim is to prove that the emulational equivalence is an equivalence
relation on the class of all games. For that, we shall need two preparatory
lemmas.

Lemma 2.4. Given a game G = (P, f,po), let My and My be two con-
gruential partitions of it. If p1 and ps are the corresponding equivalence
relations on P, and p = tr(p; U pa), then the quotient set M of p is also a
congruential partition of the game G.

Proof. First note that, since p; and ps are reflexive and symmetric, then p
is also; therefore, p is indeed an equivalence relation and M is well-defined.
Let us now prove (2.1).
Let A,B € M,let a € A= lajp, b € B = [bjm, and let b € f(a). Let
x € [a]pm. We need to prove that there is y, y € [b]a, such that y € f(x).
Since p = tr(p; U p2), it follows that there exist aq,...,a, € P such that

a (p1Up2) a1 (prUp2) az...an (p1Up2) .
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Since a (p1 Up2) a1, we have a p; a1 or a py aj. Assume first a p;
aj. Then a1 € [ajp,. Since b € f(a), by (2.1) (recalling that M; is
a congruential partition) there exists by € P such that b; € [bJrq, and
b1 € f(a1). Since p; C p1 Ups C p, we have M < M and by € [b|p. In a
similar way, if a p2 a;, we can find by € [bjap, C [b]m and by € f(aq).

Analogously, there exist bo,...,b, € P such that b; € f(a;) and b; €
[bi—1]m = [blm, for i € {2,...,n}. At last, an, (p1 Up2) z and b, € f(an)
imply that there exists y € [by]a = [b]pm such that y € f(x), which was to
be proved. ([l

Lemma 2.5. Let Gy = (P1, f1,a1) and Go = (P, fa,a2) be two emulationally
equivalent games, with congruential partitions M1 and Mas, respectively,
and let F' be a bijection F : My — My that satisfies (2.2) and F(Ja1)m,) =
[a2]pm, . Let M be a congruential partition of Gi such that My < M, and
let us define a relation p' on Py by:

(2.3) (Va,y € Po)(x o'y & [F~H ([elm)lm = [F 7 ([ylmta) m)-

Then p' is an equivalence relation, and its quotient set M’ is a congruential
partition of Go. Moreover, we have My < M’, and there is a bijection
F': M — M’ that satisfies the condition (2.2) and F'([a1]m) = [az] s

Proof. Since F' : M; — Ms is a bijection, we have F~!([z]r,) € M.
Since M7 < M, we have that [F~([x]a,)]m is well-defined for all x € P,.
Therefore, p’ is an equivalence relation since the equality is an equivalence
relation. Also, if [z]am, = [YJm,, from (2.3) follows z p' y, that is, [z]py =
[y|me. Therefore, Mo < M.

F1GURE 3. An illustration for the proof of Lemma 2.5.
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Let us now prove that M’ is a congruential partition, that is, that it
satisfies the condition (2.1). Let 77,U" € M’ and z,t € T", y € U’ such
that y € fa(z). We want to prove that there exists u € U’ such that
u € fo(t). Let As = [z]rmy, Be = [Ylmys C2 = [t]am,, and let Aj = F~1(Ay),
By = F7Y(By), C; = F~(C3). (See Figure 3. Note that this figure also
contains some unnecessities, which is because the same figure will again be
used in the later part of the proof. We believe, though, that this will not
cause any confusion to the reader.) Since By € fa(A2), by (2.2) we conclude
B € fi(A1), which further implies

(2.4) [Bilm € fi([A1]lm)

(because M is a congruentlal partition and M1 M). Since z p' t (by the
choice of z,t), we get [F~([x]pmy)]m = [F 7 ([tm,)lm (by (2.3)), and thus

Together with (2.4), this implies that for any ¢ € C; there exists d € [B1]m
such that d € fi(c). Choose any such ¢, and let Dy = [d]aq,; we then have
Dy C [Di]pm = [Bi]m- Let F(Dy1) = Dy € May. Note that d € fi(c) implies
Dy € f1(C7) (since My is a congruential partition) and then Dy € f5(Co)
(the condition (2.2) for F'). Since t € Cb, there exists u € Dy such that
u € fa(t). Now from

[F~H (] ma)lm = [FH(D2)]m
= [D1]m
= [Bi]m
= [F~!(B2)lm
= [F [yl ;) 1

and (2.3) follows u p’ y, that is, u € U’, which concludes the proof that M’
is a congruential partition of the game Gs.

We are left to find a bijection F' : M — M’ that satisfies (2.2) and
F'(la1)m) = [a2]ar. Let Ay be an arbitrary class from My (that is, A; is
not the specific class from the previous paragraph anymore, and we use the
same letter because that way Figure 3 will be of use to follow this part of
the proof, too, as we have already mentioned). We define F’ by

F'([A]m) = [F(A1)] -
Note that for each class T € M there exists a class A; € My such that

T = [A1]m (because of My < M), while the right-hand side makes sense
because of F(A;) € My and My < M’. Also, F is well-defined, that
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is: whenever [A1]p = [Cijm (for A1, C1 € M), then also [F(A1)|m =
[F(C1)] amr, which follows by the definition of M’. The function F”’ is injective
since, if [F(A1)]mr = [F(C1)|mr for some Ay, Cy € My, then (2.3) implies
[Ailm = [FHE(AD)m = [FTHF(C1))m = [Cilm. Now we want to
prove that F” is surjective. For any class 7' € M’, there exists Ay € My
such that T = [A2]M/. Let A = F_l(AQ); then F,([Al]M) = [F(Al)]/\/l/ =
[Ag)ppy =T, and F' is indeed surjective.
Altogether, we have that F’ is a bijection. Also,

F'(laa]m) = F'([[a1]aa Jm) = [F([aa] )l = [laz]mol e = laz]ae

In order to finish the proof, we have to show that F” satisfies the condition
(2.2).

(=): Suppose that for some classes T, U € M we have U € f1(T). We
want to prove F'(U) € fo(F'(T)). Let a € T and A; = [a]aq,; note that
[Ailm = T. From U € fi(T) follows that there exists b € U such that
b € fi(a). Let By = [bJa,; note that [Bi|ap = U. Since By € fi(A1), the
condition (2.2) for F gives F(B;) € fa(F(A1)). Since M’ is a congruential
partition, we conclude

F/
F

FI(U) [Bi]m)
By)|mr
([F(A1)]ar)
(F'([A1]m))
(F/(T)),

(
(

—

hm
o

which was to be proved.

(<): Suppose that for some classes T/, U’ € M’ we have U’ € fo(T").
Let U = (F))"Y(U’") and T = (F')"Y(T"). We want to prove U € fi(T).
Let x € T' and As = [z]am,; note that [Agjyy = T'. The assumption
U' € fo(T') means that there exists y € U’ such that y € fo(z). Let
By = [y my; note that [Bojay = U'. Let Ay = F~Y(Ag) and By = F~(By).
Since Bs € f2(A2), the condition (2.2) for F' gives

(25) B, = F_l(BQ) S fl(F_l(AQ)) = fl(Al)
By the definition of F’, we have:

T = (F)"T") = (F) " ([Aals) = (F") "N ([F(AD)]me) = [Ad] s

U= (F)"'(U") = (F) " ([Balp) = (F))"H([F(B1)lae) = [Bal e
Together with (2.5), this gives U € f1(T"), which completes the proof. O

Theorem 2.6. Emulational equivalence is a reflexive, symmetric and tran-
sitive relation.

Proof. We first prove that it is reflexive. Let G; = (P, f1,a1). Let M
be the trivial partition of G;. If F' is the identity function on M, then
F({a1}) = {a1} and (2.2) is clearly fulfilled.
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If Gy = (P1, f1,a1) and Ga = (P, f2,a2) are two emulationally equivalent
games, My and My the corresponding congruential partitions and F' the
bijection between partitions satisfying (2.2) and F([a1]ar,) = [a2]m,, then
the function F~1 witnesses that Go and G, are emulationally equivalent
games.

We are left to prove the transitivity. Let Gy = (P, f1,a1), Go = (P, f2, a2)
and G3 = (Ps, f3,a3) be three games where G; and Gy are emulationally
equivalent, and G and Gs are also emulationally equivalent. Let Mj and
My be congruential partitions of G; and Gs, respectively, with a bijection
F1 @ My — My that satisfies the condition (2.2) and Fi([a1]m,) = [a2]m,-
In a similar way, let M}, and M3 be congruential partitions of Go and Gs,
respectively, with a bijection F : M, — M3 that satisfies the condition
(2.2) and F([az]my,) = las|ats- Let po and pfy be the equivalence relations
on P, whose quotient sets are My and M, respectively. Let p = tr(paUp)),
and let M be the quotient set of p. By Lemma 2.4, M is also a congruential
partition of the game G and My, M)y < M.

Since the function Fl_1 : My — M is a bijection that satisfies the
condition (2.2), Fy *([ag)a,) = [a1]my, and My < M, we can apply Lemma
2.5. There exists a congruential partition M) of G; and a bijection Fy :
M — M/ that satisfies (2.2) and Fj([ag]m) = [a1]aq;- Then its inverse
function (F{)~!: M} — M also witnesses emulational equivalence of the
games G and Go. Similarly, since Fy : M) — M3 is a bijection that satisfies
(2.2), Fx([a2]rgy) = [as]my and My < M, by Lemma 2.5 there exists a
congruential partition M4 of G3 and a bijection Fj : M — My that satisfies
(2.2) and F3([az]m) = [as]my-

Now it is easy to see that the composition Fj o (F})~! is a bijection
from M/ to MY that satisfies (2.2) and (F o (Fl’)*l)([al]/wl) = [as]my,
which means that the games Gy and G5 are emulationally equivalent. This
completes the proof. O

Note: When considered with normal play (as opposed to miseére play), the
emulational equivalence is a strictly stronger notion than the usual Grundy-
equivalence. It is an easy exercise to show that any two games that are
emulationally equivalent are also Grundy-equivalent. The converse is not
true, as can be seen by the following example. We consider two instances of
Nim: first, played on one heap of size 0 (the trivial game, with one position
and no moves), and second, played on two heaps, both of size 1. These
two games are Grundy-equivalent (their nimbers are 0), but they are not
emulationally equivalent.

2.2. Hackenforb. We shall now describe a class of games, where each game
in the class is determined by a given graph G and a set F of forbidden
connected graphs. For the games from that class we shall use the name
Hackenforb. The rules are as follows. Players take turns removing an edge of
G} if, during this process, a connected component appears that is isomorphic
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to a graph from F, then that component is erased. The game ends when
a player is unable to make a move (that is, there are no more edges left).
(Under “normal play condition,” the player unable to move loses, while
under “misere play condition,” that player wins. However, for the purpose
of our analysis, the question of the winner is irrelevant.) The Hackenforb
game determined by parameters G and F will be denoted by I'(G, F).

Let us now give a formal definition of Hackenforb.

Definition 2.7. Given a graph G and a set of connected graphs F, a game
of Hackenforb determined by G and F, denoted by I'(G,F), is the triple
(P, f,G), where:

o P is the set of all subgraphs of G that can be obtained by successively
removing an edge of G and all the connected components from F
that appear in the remaining graph;

e for G1,Go € P, we have that Gy € f(G1) iff G2 can be obtained by
removing an edge from G1, and additionally removing all the con-
nected components that belong to F.

Note that we can also assume, without loss of generality, that isolated
vertices are deleted as soon as they appear. This convention will be assumed
in the rest of the paper. In that case, the game ends when the empty graph
is reached (that is, the graph with no vertices); we shall denote it by Kj.

Example. Let G and F = {G1,G2,G3,G4} be as in Figure 4. Then, in
I'(G,F) we have P = {G,G5,G¢, Ko} (where Gs and Gg are also shown
in Figure 4). The function f is given by f(G) = {Ko, G5,Gs}, f(G5) =
f(Ge) = {Ko} and f(Ko) = 0.

3. EMULATIONAL EQUIVALENCE OF HACKENFORB AND VARIOUS GAMES

In this part we shall show that some well known games are emulationally
equivalent to an instance of Hackenforb.

3.1. Nim. The first game we consider is Nim. There are n heaps of coins.
Players alternately choose a heap and remove any positive number of coins
from that heap. The game ends when there are no coins left.

Let us first represent Nim in the sense of Definition 2.1.

Definition 3.1. If positive integers ki, ko, ..., k, are given, then the game
Nim is described by the triple (P, f,{k1,...,kn}), where:

o {ki,...,ky} is a multiset (its elements can be repeated);

o P is the set of all multisets {s1,...,sn} of nonnegative integers for
which there exists a permutation o of the set {1,...,n} such that
So(i) < ki for alli;

o {ri,....,mn} € fi({s1,...,sn}) iff there exists a permutation 6 of
the set {1,...,n} such that, for some j, ro(;) < s; and ro;) = s;
whenever i # j.
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FIGURE 4. An example of Hackenforb.

To emulate Nim played on heaps of sizes k1, ko, ..., k,, we shall use the
instance of Hackenforb I'(G, F) defined as follows. The graph G consists of
n connected components, where the ™" component is a path of length k;
with two pendant edges attached to one end. The set F consists of all paths
of length less than or equal to max{ky,...,k,} + 1.

Example. For Nim with two heaps of size 3 and 5 the corresponding graph
will be G from Figure 5, and forbidden graphs will be all paths of length less
than or equal to 6.

F1GURE 5. The emulating graph for Nim with heaps of size
3 and 5.

The idea of the emulation is the following one. Each connected component
of G represents one heap. Removing any edge from any component will
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leave either a path (which is forbidden and thus the whole component will
be erased), or again a path with two pendant edges attached to one end
(plus eventually another path that will be erased); in the latter case, the
number of edges in the remaining graph, reduced by 2 (that is, not counting
the two attached edges), will stand for the remaining number of coins on
the corresponding heap.

Example. If there are two heaps of size 3 and 5, and a player takes 2
coins from the heap of size 5, in the corresponding Hackenforb game this
is represented by a move shown in Figure 6 left; namely, the red edge is
the edge that is being removed, and after that the green part will be erased
because it is forbidden.

Figure 6 right shows a move in the Hackenforb game that represents taking
the whole heap of size 3 in Nim.

4 N A

\ Jk/ >/

FI1GURE 6. Two moves in Hackenforb that emulate removing
2 coins from the heap of size 5 (left) and removing a whole
heap of size 3 (right).

We now give a formal proof of the emulational equivalence. Let I'(G, F) =
(P*, f*,G). To any graph a from P*, we assign the multiset {a1,aq,...,a,}
that represents the number of edges in each connected component of a de-
creased by 2 (if there are less than n connected components, then we include
a number of zeros in the multiset, such that the total number of elements is
n); note that all the connected components of a have at least three edges,
and thus all the elements from the multiset are nonnegative integers.

Theorem 3.2. The game Nim is emulationally equivalent to the described
instance of Hackenforb.

Proof. Let P and P* be the trivial partitions of the games Nim and I'(G, F),
respectively. Let F': P — P* be defined by:

F({s1,...,8n}) = {a},
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where a is the graph from P* whose corresponding multiset is {s1,..., S}
The defined function is clearly a bijection. The corresponding multiset for
G is {k1,...,kn}, so F({k1,...,kn}) = {G}. Let us prove that it satisfies
the condition (2.2).

(=): Let {s1,...,sn},{r1,...,rp} € Pand {r1,....m} € f({s1,...,sn}).
We prove that b € f*(a), where F({s1,...,sp}) = {a} and F({r1,...,m}) =
{b}. Without loss of generality, we can assume that r; < s; and r; = s;
whenever 2 < 7 < n. Then, considering the connected component of a that
has s; + 2 edges, by one move we can remove s; — r; edges from it and thus
get the position b.

(«<): Suppose now that for two graphs a,b € P* we have b € f*(a).
Let F({s1,...,sn}) = {a} and F({ry,...,m,}) = {b}. We need to prove
{ri,...,rn} € f({s1,...,5n}). By one move in Hackenforb, we decrease the
number of edges in one component or delete the whole component. That
means that the observed multisets differ in one element; without loss of
generality, let that be the first one, in particular, r; < s;. Now in the game
Nim we can remove s; — r; coins (possibly the whole heap) from the heap
of size s1 and thus get a position {r1,...,r,}. O

3.2. Subtraction game. The next game we shall deal with is a game sim-
ilar to Nim, usually called the Subtraction game. The Subtraction game is
defined by two positive integers n and k, where k < n. The game is played
between two players and a heap of n coins. Two players alternate taking
any number from 1 to k coins from the heap. The game ends when there
are no coins left. (Note: this is the most basic version of the subtraction
game. Some generalized versions also exist in the literature, but we do not
consider them here.)

Now we want to express the Subtraction game in the sense of Definition
2.1.

Definition 3.3. The Subtraction game with parameters n,k € N, k < n, is
the triple (P, f,n), where P ={0,1,...,n} and f : P — P(P) is defined by

be fla) &1<a—b<k.

Let n and k be given, and let N = n—k+3. Let the graph G be obtained
by taking N paths of length k£ and identifying one end of each of them with a
common vertex (we shall call it the “central vertex”). Let the set F consist
of all paths of length less than k, as well as all the subgraphs of G with less
than or equal to kKN —n edges. We shall prove that the Subtraction game
with parameters n and k is emulationally equivalent to I'(G, F).

Example. For n = 6 and k = 4 the corresponding graph G is given in
Figure 7 and forbidden graphs are all paths of length less than 4 and all
subgraphs of G with no more than 14 edges.

The Subtraction game will be emulated by Hackenforb in the following
way: removing an edge from G after which G remains with s edges less
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F1GURE 7. The emulating graph for Subtraction game with
n==6and k=4.

(the edge that has been removed, plus the edges forming the forbidden part
after that move) represents removal of s coins from the heap in Subtraction
game. Before we prove this formally, we describe a congruential partition of
I'(G, F) that we are going to use.

Proposition 3.4. Let I'(G,F) = (P*, f*,G). Let
P* = {Sype {0.1,....n—1}} U{{Ko}}.

where Sy, is the set of all positions from P* in which the number of edges is
exactly kN — p. Then P* is a congruential partition.

Proof. 1t is clear that P* is a partition of the set P*. Therefore, we need to
prove that the condition (2.1) is true.

Assume first a € Sp, b € S, and b € f*(a), p,r € {0,1,...,n — 1} (that
is, b # Ky in this case). Let ¢ € Sp. We need to prove that f*(c) contains a
member of S,.. There are kN — p edges in a and ¢, and kN — r edges in b.
Note that a move from a to b removes a total of kN —p — (kN —r), that is,
r —p edges (where one of them is the edge that has been erased, and the rest
of them form a forbidden path). It is enough to prove that, in the graph c,
there exists a path of length at least » — p starting from the central vertex;
indeed, in that case, we shall be able to remove a total of r — p edges from
that path, which leads to a position from S,. Since in the initial position
there were N paths starting from the central vertex, each of length k&, and
a total of p edges have been removed, we conclude that there exists a path
of length at least & — ||, which is at least &k — &. If p < N, then there
exists a path of length &, and the conclusion in that case is trivial. Assume
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now p > N. We want to prove k — & > 7 — p. And indeed:

<k—]]\)]>—(r—p):k—r+p(1—;>

1
>k — N|l—-—
k—r+ < N)

=k—-r+N-1
=k—-r+(n—-k+3)-1
=n—r+2
> 0.
Assume now that for some p, p € {0,1,...,n — 1}, and a € S, we have

Ky € f*(a). Then there is an edge in a whose removal results in a path of
length less than k, and a graph with a total of no more than kN — n edges
(both of which are forbidden components). This implies that a has a total
of no more than kN —n + k edges, that is, p > n — k. It is enough to prove
that, for any c € S, there exists a path in c of length at least n — p (which
is no more than k) starting from the central vertex. As in the previous
paragraph, this reduces to k — & > n — p, which we show in an analogous
way. O

Theorem 3.5. The Subtraction game is emulationally equivalent to the
described instance of Hackenforb.

Proof. Let P be the trivial partition of the Subtraction game, and P* the
partition of I'(G, F) from the previous proposition. Define F' : P — P* by
F({a}) = Sh—a
fora e {1,...,n} and F({0}) = {Kop}. The function F' is clearly a bijection
and by its definition we have F({n}) = Sy, while Sy = {G} (note that G

has exactly kN edges). We are left to prove the condition (2.2).

(=): Let {a},{b} € P and b € f(a). We should prove S,,_p € f*(Sn—a)
if b > 0, respectively {Ko} € f*(Sp—q) if b = 0. Since b € f(a), we have
1<a—-0b<k.

First, let b > 0. Let ¢ be an arbitrary graph from S, _,. Then we have to
show that it is possible to remove exactly a — b edges from ¢, which can be
proved in exactly the same manner as in the previous proposition.

If b =0, that is, 0 € f(a), then 1 < a < k, and we can again choose any
graph from S,_, and as in the previous proposition show that we can reach
Ky in one move.

(«<): Let now S,_p € f*(Sp—q) for some a,b € {1,...,n}; in particular,
b # 0. Any graph from S,_, has a total of kN — (n — a) edges, while any
graph from S,,_; has a total of kN — (n—b) edges. By the definition of f*, in
one move we can remove at least one and at most a total of k edges (a chosen
edge, plus the forbidden path). Therefore, 1 < kN —(n—a)—(kN—(n—>b)) <
k, that is, 1 < a — b < k, which gives b € f(a).
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Finally, let {Ko} € f*(Sn—q) for some a, a € {1,...,n}. We shall prove
that any graph ¢ from P* such that Ky € f*(c) has at most kN —n+k edges.
For that, we shall first prove that after any move on ¢, there may appear at
most one forbidden component that is a path of length less than k. Indeed,
since N > 3, one of the remaining components will always have a vertex of
degree greater than 2, with the only exception of the case when there are
only three paths left and we choose to remove one of the edges incident to
the central vertex; however, if in this case c¢ splits into two paths both of
length less than k, that means that ¢ has less than 2k edges, that is, more
than kN — 2k edges have been removed from the beginning of the game, but
since the inequality kN — 2k > n is equivalent to (n — k)(k — 1) > 0, which
is true, we conclude that c is a forbidden graph, which is a contradiction.
This further means that the move that leads from ¢ to Ky leaves a forbidden
path of length less than k, and a forbidden component with no more than
kN —n edges; altogether, ¢ has at most kN —n + k edges. Therefore, a < k,
which implies 0 € f(a). O

3.3. Notakto. In this subsection we shall prove that an impartial variant
of tic-tac-toe called Notakto is emulationally equivalent to an instance of
Hackenforb. Notakto is played on one or more 3 x 3 boards (the same board
as for tic-tac-toe), and on each turn, a player chooses a board (if there are
more than one of them) and puts an X in any empty space on it. When
three X’s in a row appear on the same board, that board cannot be used for
playing anymore. The game ends when there are no more available moves
(and the game is usually played under misére play convention, that is, the
player who made the last move loses the game).

We shall first show that a single-board Notakto is emulationally equivalent
to an instance of Hackenforb, and after that we shall generalize the theorem
for multiple-boards Notakto.

Note that no more than 6 moves can be played on any 3 x 3 board without
ending the game (if 7 X’s are written, there will be three in a row among
them); see Figure 8. We shall enumerate the fields of a 3 x 3 board as in

X | X
X X
X | X

FIGURE 8. A placement of 6 X’s with no three in a row.

Figure 9. For a partially filled board T and n € {1,...,9}, we shall write

1123
415]6
71819

FIGURE 9. Enumeration of the fields on the board.
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T(n) = X iff X is written in the field n.

Definition 3.6. For two 3x3 boards Th and Ts we say that Ty is a subboard
of Ts, denoted by Ty < T, if and only if

(Vn € {1,...,9)(T1(n) = X = Ta(n) = X).

X | X | X X
X | X | X X
X | X | X X
X X X X
X X X X
X X X X

FiGurEeE 10. The set E.

Let E be the set of all the boards from Figure 10. We shall now express
Notakto in the sense of Definition 2.1.

Definition 3.7. The game Notakto (on one board) is described by the triple
(P, f, To), where:

o P is the set of all 3 x 3 boards partially filled by X ’s, which either do
not contain any subboard from E, or an X can be removed in such a
way that the resulting board does not contain any subboard from E;

o f: P — P(P) is defined by
Ty € f(1h) < (VT' € B)~(T' <Th),

and Ty < Ts, and To has one more X than T has;
o Ty is the empty board.

We shall now describe a congruential partition of Notakto that we are
going to use. In short, all the ending positions will be together in one class,
and all the other positions will be alone in their class.

Proposition 3.8. Let
P={{T}:TePANT€E)~(T <
U{{T:TePANET € E)T <

Then P s a congruential partition of Notakto.

)}

T
T)}}.
Proof. P is obviously a partition of P. The condition (2.1) is clearly fulfilled

whenever A is a singleton, and it is trivially true whenever A is the class
consisting of all ending positions. O

Let us now describe the instance of Hackenforb that is emulationally
equivalent to Notakto. Let G be the graph obtained by taking the com-
plete graphs Kg, Ky, ..., K and identifying one vertex of each of them
with a common vertex, called the “central vertex.” Note that, since the
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game lasts at most 7 moves, the graph obtained after each move will al-
ways be connected (with the possible exception of obtaining one isolated
vertex after the last move). Also, it will always be possible to identify the
central vertex (that shall be the vertex of the greatest degree). Finally, for
each edge of any of the graphs obtained during the game, it will always be
possible to tell to which of the originally joined complete graphs it belongs
(indeed, removing the central vertex leaves 9 connected components, which
correspond to the 9 original complete graphs in increasing size; note that
|E(Kit1)| — |E(K;)| = 8 whenever i > 8, and therefore the order remains
invariant during the game). Therefore, for each graph obtained during the
game, we can determine how many edges have been deleted from each of
those complete graphs. That way, if G’ is any graph that is possible to
obtain during the game, we can uniquely assign a nonuple (z1,...,x9) from
{0,...,7}° to G’ such that z; is the number of removed edges from the
subgraph K;,7. For each such nonuple we have Z?:l x; < 7.

Definition 3.9. Let (x1,...,29) € {0,...,7}° with 30 @ < 7. Ifx; > 1
for some i, let k be the smallest positive integer such that x;i; = 0 (where
indices are taken cyclically modulo 9). Consider the transformation that
maps the observed nonuple to (7, ..., xg), where xj = x; — 1, xj , =1, and
ac; = x; otherwise. The nonuple obtained by iterating this transformation
as long as possible (that is, as long as there are elements greater than 1) is
called the standard nonuple for (z1,...,x9), and is denoted by (z9,...,x9).
(Note that we have Z?:l z) = Z?:l x;.)

The following lemma shows that the standard nonuple is well-defined,
that is, that the choices that we make for ¢ in each step do not affect the
final result. This will be proved by giving an equivalent definition of the
standard nonuple that is not choice-dependent.

Lemma 3.10. Let a nonuple (z1,...,x9) € {0,...,7}° with E?zl x; <7 be

given. Then its standard nonuple (29, ...,23) is given by

k
(3.1) ) =1< (3ke{0,1,...,6}) <Z Ti—tp > k)
t=0

forie{l,...,9} (where indices are taken cyclically modulo 9).

Proof. Let (x1,...,29) € {0,...,7}° with Z?:l x; < 7. The proof is easy if
each z; € {0,1} (then z? = x; under both definitions).

Therefore, let z; > 1 for some j, and let  be the smallest positive integer
such that xj;, = 0 (here and onward, we assume that indices are taken
cyclically modulo 9). We note that r < 6, since 2?21 x; < 7. Let a nonuple
(y1,...,Y9) be such that y; = x; — 1, yj4» = 1 and y; = x; otherwise. It is
enough to prove that (y9,...,99) = (29,...,29), where these nonuples are
defined as in (3.1). Fix 4, i € {1,...,9}, and let us show that 2 = y?.
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Assume first 79 = 1. Then there exists k, k¥ € {0,...,6}, such that
Zf:o Zi—¢ > k. The sum Zf:o yi—t¢ can be:

e cqual to Ef:o xi— (if neither y; nor y;4, appear in the sum, or if
both of them appear); in this case we have yzo = a:g =1;

e cqual to Zf:o xi—¢ + 1 (if yj4» appears in the sum and y; does not);
in this case, Ef:o Yyi—t > k+ 1 > k, and therefore y? =1;

e equal to Zf:o xi—¢ — 1 (if y; appears in the sum and y;, does not);
in this case, 7 is an index between j and j+r—1 (in cyclic order), but
then z; > 1 and y; = x; > 1 if i # j (by the choice of r), respectively
y; =x; — 1 > 1if i = j (since x; > 1), which in both cases implies
yg =1

Assume now yY = 1. Let k, k € {0,...,6}, be such that Zf:o Yit >
k. If y; appears among these summands, or y;4, does not appear, then
Zf:o Ti—t = Zf:o yi—t > k, and thus ¥ = 1. Assume that y;i, appears
among the summands and y; does not. This means that the indices j,¢ —
k,j-+r,i are exactly in this cyclic order (and the first two must be different).

By the definitions of j and r, all the numbers y;,y;+1,. .., yi—kr—1 are positive.
Therefore,

i—j k

Zyi—t >i—k—j+zyz’—t > 11— .

t=0 t=0

Since the left-hand side is bounded from above by 7, we conclude i — j < 6.
But then, since

i—j i—j
Zl’i—t = Zyi—t >0 =],
t=0 t=0
we conclude x? = 1, which was to be proved. O
Example. Starting from the nonuple (0,0,3,0,1,0,0,0,2), we have:
(0,0,3,0,1,0,0,0,2) — (0,0,2,1,1,0,0,0,2)
— (0,0,1,1,1,1,0,0,2)
— (1,0,1,1,1,1,0,0,1).
Therefore, (1,0,1,1,1,1,0,0,1) is the standard nonuple for the observed
nonuple.
Now we are ready to define the set of forbidden graphs. Let
E' =1{(1,1,1,0,0,0,0,0,0),(0,0,0,1,1,1,0,0,0), (0,0,0,0,0,0,1,1, 1),
(1,0,0,1,0,0,1,0,0),(0,1,0,0,1,0,0,1,0),(0,0,1,0,0,1,0,0, 1),
(1,0,0,0,1,0,0,0,1),(0,0,1,0,1,0,1,0,0)}.
For two nonuples (z1,...,%9), (y1,...,y9) € {0,1}°, we shall say that the

second one contains the first one if and only if z; < y; for all . Recall
that each subgraph of G with at least |E(G)| — 7 edges has its assigned
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nonuple, and each nonuple has the corresponding standard nonuple. We
define the set of forbidden graphs F to consist of all subgraphs G’ of G such
that |E(G)| — |E(G")] < 7 and the corresponding standard nonuple for G’
contains at least one nonuple from E’.

We have thus defined our instance of Hackenforb.

Proposition 3.11. Let I'(G,F) = (P*, f*,G). Let S be the set of all stan-
dard nonuples from {0,1}° that do not contain any member of E'. Let

P*={Su1,..a0 : (z1,...,29) € S}U{{Ko}},

where Sz, ...zq contains all the positions from P* whose corresponding stan-
dard nonuple is (x1,...,x9). Then P* is a congruential partition.

Proof. Clearly, P* is a partition of P*. Let us show the condition (2.1). Let
a=(x1,...,9) € Sy oandb=(y1,...,y9) € Syo 0, andlet b € f*(a).
Then b differs from a at exactly one coordinate, which is decreased by 1. Let
us show that their corresponding standard nonuples also differ by one at one
coordinate. Since x? = 1 means that there exists k, k € {0,...,6}, such that
Zf:o xi—¢ > k, and the corresponding sum of y;’s is no less, then follows
y? = 1. The claim now follows from Z?:l Y = Z?:l Yi = Z?:l i+ 1=
Z?:l 29 + 1.

Let i be the coordinate for which y? =1 and 2 = 0. The definition of a

standard nonuple gives that, since x? = 0, then each nonuple from Sﬂﬁ?v 0

.
also has 0 at the i'! coordinate. Therefore, for each c, ¢ € 530,29, there
are no edges removed from the block Kr4;. But then, removing an edge
from that block we reach a position whose corresponding standard nonuple
is (49,...,98), as needed.

The same proof holds if b = Ko instead of b € Syo 0 (the only difference
is that the corresponding standard nonuple obtained after the move from a
now contains a nonuple from E’, and the above argument is the same). And
finally, if a« = K, the conclusion is trivial. This completes the proof. ([

The idea of emulation is the following one: removing an edge from K74,
in G emulates putting an X in the field ¢ or, if that field is occupied, in the
first available field after it in the cyclic order.

Theorem 3.12. Notakto is emulationally equivalent to an instance of Hack-
enforb.

Proof. We define a bijection I’ between the congruential partitions P and
P* as follows. If T' € P is such that (VI" € E)~(T" < T), then {T'} € P and
we define

F({T}) = Sz, 20 where z; = 1if T(i) = X
and x; = 0 if T'(7) is empty;
and otherwise

FAT:Te PANET € E)T' <T)}) = {Ko}
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It is easy to see that F'is a bijection between P and P*. By the definition
of F, F{Tv}) = So,...0 = {G}. We are left to prove the condition (2.2).

(=): Let first {T1},{T2} € P and Ty € f(T1). Let F({I1}) = Sa,....z0
and F({T>2}) = Sy,,...ys- We need to prove Sy, . 4o € f*(Sz,,....x0), for which
it is enough to find a € S, ... 4o and b € Sy, . 4, such that b € f*(a). Since
Ty € f(T1), it follows that (x1,...,29) and (y1,...,yq) differ at exactly one
coordinate, say ig, that is, z;, = 0 and y;, = 1. Let a be a subgraph of G
with one removed edge from K7,; whenever x; = 1, and let b a subgraph
of a with one edge further removed from Kr7.;,. Then clearly b € f*(a), as
needed.

We are left to check the case when a position T} is given, {71} € P, such
that there is a move from 77 leading to an ending position. Let 75 be that
ending position, and let it be obtained from 77 by writing an X in the field
io. Let F({T1}) = Sy, 20 (where z;, = 0). We need to prove that there
exists a € Sy, ...z, such that there is a move from a to the empty graph. Let
(y1,...,y9) be the corresponding standard nonuple for T5. Since T5 contains
a subboard from F, the nonuple (yi,...,y9) must contain a nonuple from
E’. Let a be a subgraph of G with one removed edge from K7.; whenever
x; = 1. Note that removing an edge from K7y, in a leads to a graph
whose corresponding standard nonuple is (y1, ..., y9), but since (y1,...,y9)
contains a nonuple from E’, the obtained graph is forbidden; in other words,
Ky € f*(a), which was to be proved.

(«): Let now Sy, . yo € f*(Se1,.29) for some nonuples (z1,...,z9),
(y1,...,99) from S, and let F({T1}) = Sz, a0, F({T2}) = Sy,,...40- We
need to prove {To} € f({11}), that is, T5 € f(71). But it is clear that the
nonuples (z1,...,x9) and (y1,...,y9) differ at precisely one coordinate, and
writing an X in the corresponding field is a move from 77 to T3, which was
to be proved.

We are left to check the case {Ko} € f*(S4,,....z0) for anonuple (z1,. .., z9)
from S. Let F({T1}) = Sa,,....zo- We need to prove that there exists T such
that T, € f(71) and T contains a subboard from E. Note that, because of
{Ko} € f*(Sz,.. 2), there exists a coordinate ig in (x1,...,x9) such that,
by changing x;, from 0 to 1, we reach a nonuple that contains a nonuple from
E’. But then putting an X in the field i is a move that leads from T} to a
position that contains a subboard from FE, which completes the proof. [

Finally, we show that emulational equivalence of multiple-boards Notakto
to an instance of Hackenforb easily follows from the single-board case.

Theorem 3.13. Multiple-boards Notakto is emulationally equivalent to an
instance of Hackenforb.

Proof. Suppose we have n boards. We consider the instance of Hackenforb
I'(G', F), where the graph G’ has n connected components each of which is
isomorphic to G (from the single-board case); and the set of forbidden graphs
is the same F from the single-board case. The emulational equivalence now
follows from the previous theorem. O



80 BOJAN BASIC, NIKOLA MILOSAVLJEVIC, AND DANIJELA POPOVIC

3.4. Chomp. Chomp is a combinatorial game played on a rectangular board
whose upper right field is “poisoned.” On each move, a player chooses a non-
eaten field and eats all the fields that are below and to the left of the chosen
one (including it). The loser is the player who eats the poisoned field. In this
subsection we show that Chomp is emulationally equivalent to an instance
of Hackenforb.

Let us first express Chomp in the sense of Definition 2.1. Assume that
there are n rows and k columns. Any position in the game will be represented
by a k-tuple (ay,...,ax), 0 < a; < n, where a; stands for the number of
eaten fields in the i column (where columns are enumerated by 1,...,k
from left to right). Note that the rules of Chomp imply that the elements
ay,...,ar will always be in nonincreasing order (and vice versa: each k-
tuple (ai,...,ar) whose elements are in nonincreasing order represents a
valid position in the game). In this language, a move in the game consists
of replacing a few consecutive elements in the tuple by a common value,
greater than all of them, with an additional requirement that the obtained
tuple still has to be in nonincreasing order.

Definition 3.14. If positive integers k and n are given, then the game
Chomp is described by the triple (P, f,(0,...,0)), where:

e P is the set of all nonincreasing k-tuples from {0,1,...,n}*;
e for (ai,...,a;),(a3,...,a2) € P, we have
(af,...,a}) € f((a1,. -, ap))

if and only if there exist w € {1,...,k}, v € {0,...,k — 1} and
te{l,...,n} such that

2

(Vi)((i <uVut+v<i=al =a)AN(u<i<u+v=a <al=t)).

Example. In Figure 11 we show some positions in the game Chomp, their
corresponding tuples, and the possible moves between them.

From now on, we assume that positive integers k and n are fixed. In
order to prove that Chomp is emulationally equivalent to an instance of
Hackenforb, we shall first introduce an auxiliary game, called Auzxie, and
then prove that Chomp is emulationally equivalent to Auxie, as well as that
Auxie is emulationally equivalent to an instance of Hackenforb.

3.4.1. Chomp and Auzxie. We here define the game Auxie and show that it is
emulationally equivalent to Chomp. In the definition below we, after defin-
ing what is necessary in a formal manner, explain the same in an informal
manner, which is probably more intuitive to the reader. These explanations
are marked by the symbol “<”. They will be referring to a board with n
rows and k columns, where rows are numbered from 1 to n from bottom to
top, and columns from 1 to k from left to right, and in each field there is
written either 0 or 1.
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(0,0,0,0)

/

(2,2,1,0)

(2,2,2,0)

FIGURE 11. Some positions and moves in Chomp with 4
columns and 3 rows.

Definition 3.15. The game Auzie is represented by the triple (P, f',bo),
where:

e the set P’ consists of k-tuples whose elements are n-tuples of Os and
s (in other words: P' C {{0,1}"}*) such that

(xh,...,2h), ... (2%, ... ak)y e
if and only if
(3.2) VDV (Yh)((J =1 = 33; =0)= (Ym>i)(j >l = 27" =0));

< In other words: if there is a vertical sequence of Os from some
field upwards all the way to the top, then all the fields to the

right of this sequence must also contain 0s.

o for (o, ) (@, al)) () (0, um) €

P’, we have

(W1 ¥n)see s W sum) € F/ (1), (2 2y)
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if and only if there exist w € {1,...,k}, v € {0,...,k — 1}, t €
{1,...,n} such that

(Vi > u)(¥) > )(z = 0)
and

i 1, ifu<i<u+vandj=t;
(3.3) Yy = { xﬁ-, otherwise;
< In other words: making a move consists of choosing a horizon-

tal sequence of 0s such that everything above and to the right
of them are Os, and replacing this sequence of 0s by 1s. (Note:
it is assumed that the position thus obtained must satisfy the
condition from the previous bullet point; otherwise, the consid-
ered mowve is impossible. This assumption is encompassed in the
requirement that the considered tuples belong to P'.)

e by =((0,0,...,0),...,(0,0,...,0)).

The idea of emulation is the following one: the n-tuples represent columns
(from left to right) of the Chomp table. The number 1 in a certain position
means that the corresponding field in Chomp has been removed (in some
stage of the game) either by being directly chosen, or because a field in
the same row and to the right of it has been chosen (therefore, fields that
are removed solely as a consequence of the fact that some field above them
is removed will not be marked by 1). In particular, the move in Auxie
defined by (3.3) corresponds to the move in Chomp in which a field in the
t'™ row and the (u + v)'™ column is chosen. Note that the pattern of Os
and 1s in Auxie can provide some information about the sequence of moves
played in Chomp in order to reach the concerned position, though it does
not necessarily determine that sequence uniquely (that is, it is still possible
that different sequences of moves in Chomp result in the same pattern in
the corresponding game of Auxie).

Example. In Figure 12 we show some possible positions in the game Auzie
and the possible moves between them. The positions are shown in the form
of the boards described above (for example, the position shown bottom-right
corresponds to the tuple ((1,1,0),(0,1,0),(1,1,0),(0,0,0))). Positions en-
circled together are those that belong to the same class in the congruential
partition of Auzie that we are going to use (and that will be introduced in
a moment). All the classes except the one at the bottom are complete as
shown (that is, they do not contain any other positions not shown in the
figure). Note that dashed lines represent moves between positions in Auxie,
while solid lines represent moves between classes. The classes shown here are
precisely those corresponding to the positions in Chomp shown in Figure 11
(with respect to the emulational equivalence that will be defined in Theorem
3.17); in particular, the class denoted by Sq, 49,05, COTTESPONAS to the posi-
tion (a1, az,as,aq) in Chomp (more precisely, to the class {(a1,az,a3,a4)}



EMULATIONAL EQUIVALENCE AND HACKENFORB 83

in the trivial partition of Chomp, since the trivial partition is the one that
we are going to use).

Let us now describe a congruential partition of Auxie that we are going
to use. Let ej, for j € {1,...,n}, denote the n-tuple (0,...,0,1,0,...,0)
where there is 1 at the j* coordinate, and 0 at all the rest. Let eq denote
the n-tuple (0,...,0).

Proposition 3.16. a) Let ji,72,...,Jr be given, 0 < j; < n. Then
(€j1+€jay---»€5.) € P if and only if j1 > jo = -+ = jk.
b) Forn>ji1>jo>-2>jr >0, let Sii jo,njr denote the subset of P
defined by:

((y%v s 7y711)7 LR (y’f7 cee yﬁ)) € Sjl»jZ:-"vjk
if and only if

(Vi) (Yp)(p > ji = ¥, =0) A (i = 0V g, = 1))

o/lojo|o
P ---4olofofo
ojojo|o
0 50,0,0,0
0
1
S11,1.0
52,2.1,0
0 olojo| |o 0l0
1 1 101 0
1 ti1]o| [1|o]1|o]>,
0 olo|o ojofo|
\
1 1/ofo| [1]1 0 \
0 1/1/0] |ofo|1]0 !

52110

sLydy

1|0 1/0(110

S2220

144y

FIGURE 12. Some positions, moves and classes in Auxie with
k=4 and n=3.
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(in other words: for each i, if j; > 0, then the last 1 in (Y, ... 08
is at the position j;, while if j; = 0, then (yi,...,y)) = eo). Let

P ={Sjjosir 0= J1 202> = jr >0}
Then P’ is a congruential partition of Auzie.

Proof. a) Assume (e, €j,,...,¢j,) € P'. Let ej, = (28, ... 28) for 1 <i <
k. We have that, whenever m > j;+1, then z}, = 0; therefore, the condition
(3.2) implies that for each i/, i/ > i, we have 2% = 0 whenever m > j; + 1,
but this gives j;; < j;, which was to be proved. The other direction is similar.

b) Clearly, P’ is a partition of P’ (indeed, each member of P’ belongs to
S jonir Where j; marks the position of the last 1 in the i*! element of the

considered member of P/, and j; = 0 if the i element is (0,...,0)). We are
left to prove the condition (2.1).
Let ((2f,--s20)-- 5 (2f, -, 20)) € F/(((wh, - wy), oy (Wl w]))).
Let
k k
((w%, ey w,ll), ey (wl, ce ,wn)) S SijQ,m,jk,
k k
((z%, - z,ll), cey (27,0, 20) € Sjivjéy---,j;’@'

From (3.3) we see that, for u < i < u + v (where u and v are as chosen

there), we have j; < j/ = t, for i < u we have j; = j/ > t, while for

i > u+v we have j; = jl < t. Let now ((z},...,zL),...,(a%,...,2F)) be

any member of Sj, ;, . ;. Let us choose the same u, v and ¢, and define
(il un)s- -5 (WF, -+, p)) as in (3.3). Then

(s ym)s s (s sum)) € F(((1 s ag), oo (@, 2)
and
((yi e 7y711)7 RER (ylfv S 73/7’?)) € Sji,jé,...,j,'gv

which was to be proved. ([l

We are now ready to prove the following theorem.
Theorem 3.17. Chomp and Auzie are emulationally equivalent.

Proof. Let P be the trivial partition of Chomp, and P’ the partition of Auxie
from the previous proposition. We define the bijection F : P — P’ by

F({(a17 az, . .. 7ak)}) = Sal,ag,...,ak~

Since (a1, as,...,a) is nonincreasing, Proposition 3.16a) gives that F' is
well-defined and that it is surjective, and it is also clear that F' is injective.
We have F({(0,...,0)}) = So,...0, and Proposition 3.16b) gives Sy o =
{bo}. Therefore, we are left to prove the condition (2.2).

(=): Let (al,...,al),(a?,...,a?) € P be such that

(a3,...,a3) € f((af,...,a})).
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Note that, by the definition of f, this means that there exist ¢, u,v, where
te{l,...,n},ue{l,...,k},v€{0,1,...,k — 1}, such that:

alza?, for ¢ < w;

3
(3.4) aj <a? =t, for u <i<u+v;

aj = a?, for i > u +v.

We need to find a member of Sa% ab..al whose image under f’ contains
[l R AR

a member of S 2 .2 2. We claim that (e 1,e,1,...,€,1) is such a member.
17207k 1 2 k

And indeed, if u, v and t are as in (3.4), then the transformation (3.3) (where

it is easily seen that the necessary condition above (3.3) holds) leads to a

member of S 2 2 2, which was to be proved.
a%,a3,...,az,

(<): Now, let
(3.5) Saz,a2,..a2 € f'(Sata,...al)-
We want to prove that
2 2 1 1
(36) (a17"‘7ak:) ef((ah'"?ak))'
Recall that a%, a%, e ,a,lc mark positions of the last 1s in n-tuples that com-
pose any k-tuple from Sa},a%,...,aia and similarly for a?,a3,..., ai. Because

of (3.5), we may choose u and v as in (3.3). The requirement preced-
ing (3.3) gives a},al,,...,a5,, < t, and after applying f’ we conclude
a2 =a = =a’,, =t as well as a] = a? whenever i < u or i > u+wv.

This immediately gives (3.6), which completes the proof. O

3.4.2. Auxie and Hackenforb. We shall now show that Auxie is emulation-
ally equivalent to an instance of Hackenforb. Let us roughly describe the
main idea. The starting position in Hackenforb will be a graph obtained
by taking n paths and identifying one end of each of them with a common
vertex (similar to what is shown in Figure 7). If the paths are of lengths
ai,az,...,a,, we shall denote such graph by %(aq,as,...,ay); by conven-
tion, we shall always assume a1 < as < -+ < ay.

Until the end of this section, we shall assume, for technical reasons, n > 3.
(Note that this does not affect the generality of our result. Indeed, if we show
that Chomp on some initial board is emulationally equivalent to an instance
of Hackenforb, then the same holds for Chomp on any smaller board, since
that smaller board appears as a position in the game played on the larger
board.) The starting position G in our instance of Hackenforb will be the
graph *(by,bo,...,by,), where

k—1
(37) bj =1+ (2j+1 —j— 2) Z 2u(n—1)
u=0
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for j € {1,...,n— 1}, and
(3-8) b, =1+ (2n+1 —n—2) Z gu(n—1) _ 9k(n—1)

(Obviously, b; < bj whenever j < j'.) Let us now describe the other
possible positions in Hackenforb. We first need some preparatory work.
FEach position in Auxie that is not an ending position will correspond to
one position in Hackenforb. Recall that each position in Auxie (a k-tuple
of n-tuples) can be represented as a rectangular board with n rows and k
columns, filled by 0s and 1s. To each field, say (i,7) (which is the field
at the intersection of the i*" column and the j*" row), we shall assign the
value 20-D(=D+7-1 " with the exception of the field (k,n), whose assigned
value will be 0 (instead of 25("=1)). That way, the bottom left field has the
assigned value 1, each field from the second row upwards has double the
value of the field below it, and the bottom field in the next column has the
same value as the top field in the previous column; the only exception to
these rules is the top-right field (see Figure 13). Note that by is the sum of
values in the bottom row increased by 1, by is by increased by the total sum
of values in the bottom 2 rows, b3 is bo increased by the total sum of values
in the bottom 3 rows etc.

23 26 29 212 0

22 25 28 211 214

21 24 27 210 213

1 23 26 29 212

F1GURE 13. Field values with £ = 5 and n = 4.

Let ((x1,...,2L),...,(2},...,2%_,,0)) be a fixed (non-ending) position

r'n

in Auxie. We define:

(39) Cj_z<gzxt zln1+t 1)

=1

for j € {1,...,n}. In other words: for the j*" row, we make note of all the
1s in that row, and for each of them, we sum the values of the field it stands
on, as well as all the fields below it that have 1s on them; ¢; is the sum of
all these values.

Let T = Zk § 24("=1) (which is the sum of all the values in the bottom
row). We have
Gy (2meny

i—1)(n—1) 2t 1) — j 1)T

=1
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for j < n, and
0<en < (20 —1)T — 2601,
Finally, the graph corresponding to the considered position from Auxie shall

be ¥(by —c1,...,b, —cp). We are left to check whether these arguments are
in nondecreasing order. And indeed:

bj—c; =1+ (2 —j 2T — (2 - )T
=14+ -(G-1)-2)T
= j*l
> bj1—c¢j
for all j < n, and
by — =1+ (27T —n —2)T — 2K =D _ (27 — 1) — 2k(n=1)

=1+2"-(n—-1)-2)T

= bn—l

> bp—1 —Cn-1.

Let A be the set of all graphs obtained this way (from all the possible non-
ending positions of Auxie), and let F be the set of all connected components
of all subgraphs of G that are not in A. We have thus defined our instance
of Hackenforb. We write I'(G, F) = (P*, f*,G) (note that P* = AU{Ky}).
For £k = 4 and n = 3, some possible positions in the defined instance of

Hackenforb and moves between them are shown in Figure 14 (these are
precisely the positions corresponding to the Auxie positions from Figure

12).
The idea of emulation is the following one. In a Hackenforb position
*(a1,az,...,a,), the path of length a; corresponds to the 4% row in an

Auxie position. As it will be shown, the length of such a path will encode
one of the possible arrangements of 0s and 1s in the corresponding Auxie
row. A move in Auxie, which replaces a horizontal sequence of Os by 1s,
corresponds to a Hackenforb move that removes a number of edges from
the corresponding path, in such a way that (reasonably) the resulting path
encodes the resulting values in the concerned row after the Auxie move.

We shall now show that the described correspondence between the non-
ending positions of Auxie and our graphs is invertible.

Lemma 3.18. Let ay,as,...,a, be such that ¥(aq,...,a,) € P*. Then
there exists unique ((x1,...,xL),...,(2%,...,2%_1,0)) € P’ whose corre-

sponding graph is ¥(aq,...,a,).

Proof. By our definition of P*, for each graph %(a1,...,a,) from P* there
exists a corresponding non-ending Auxie position. Therefore, we need to
prove only the uniqueness. We shall now present an algorithm that, given
(ai,...,ay), reconstructs all 1:2-, 1 <i<k,1<j<n. (Note that, because
of the assumption n > 3, the values ai,...,a, are indeed known: they are
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o)

FIGURE 14. Some positions and moves in the defined in-
stance of Hackenforb with k =4 and n = 3.

lengths of paths starting from the central vertex, which is the only vertex
of degree more than 2.)

We first reconstruct the sequence (cy, .. ., ¢, ), which is easy: (¢1,...,¢,) =
(b1,...,bn) — (a1,...,a,) (where b;’s are as given in (3.7) and (3.8)). Now,
since

k 1 k
=y <:c’1 Za:;;z(“)("mtl) = (a)22 D00,

i=1 t=1 i=1

and since all the powers of 2 under the sum are different, the binary expan-
sion of ¢; uniquely determines xll for 1 <7 < k. A similar idea works for
any j whenever j < n: indeed, all the values assigned to the fields in the
5 row are powers of 2 whose exponent is congruent to j — 1 modulo n — 1;

therefore, in order to reconstruct l‘;, by (3.9) we see that ZL‘; =1 if and only
if 20-D(=1+i-1 apnears as a summand in the binary expansion of cj.
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Finally, we need to reconstruct the values z%,, 1 <4 < k. Note that each
Auxie position has the property that, if 22 = 1 for some ig, then z¢, = 1
whenever ¢ < ig (which follows from (3.2) for { = n). Therefore, we only need
to prove that there cannot exist two vectors of the form (1,...,1,0,...,0)
(or possibly all 0s) that could stand for (x},..., 2%). Suppose the contrary:
assume that there exist two such vectors, with exactly ig, respectively i( 1s,
0 <ip < iy < n. By the definition of ¢,, we have

10 n—1
Z (Z xiz(ifl)(nfl)thfl + 21’(n1)>

i=1 \t=1
16 n—1

_ Z (Z x§2(i—1)(n—1)+t—1 + 2i(n—l)>
i=1 \t=1

(namely, our assumption is that ¢, equals both these values; also note, we
use the fact that the values 2 for j < n and any ¢ are uniquely determined).
The above equality reduces to

i6 n—1
0= Z (Z xiQ(i_l)("_l)'H_l + 2i(n—l)> ,

i=ip+1 \t=1

which is clearly a contradiction. This completes the proof. U

We now define a congruential partition of Auxie that we shall use. In
short, all the ending positions will be together in one class, and all the other
positions will be alone in their class (recall that a similar partition was used
for Notakto; see Proposition 3.8).

Proposition 3.19. Let
P = {0} s (@)jm)iy € P and ol = 0}
{0« (@) € P and af =1},

Then P" is a congruential partition of Auzie.

Proof. P" is clearly a partition of P'. Let us first show that a position
((333')?:1)f:1 in Auxie is an ending position if and only if ¥ = 1.
Assume first fo = 1. We need to prove that there do not exist u, v

and t from the second point in Definition 3.15. We have already seen
that, for each Auxie position, we have that (z1,22, ..., 2%) is of the form
(1,...,1,0,...,0); therefore, if ¥ = 1, then (z}, 22, ... 2F) = (1,1,...,1),
but then the condition above (3.3) clearly cannot be satisfied for any u, v, t.

Assume now z¥F = 0. Let (zl,22,...,2F) = (1,...,1,0,...,0), where

there are exactly [ 1s (I < k). Then we can take u =1+4+1,v =k—1—1 and

t = n. The position obtained from ((xé)?zl)le for this choice of parameters

(by (3.3), where the necessary condition is clearly fulfilled) is a valid position
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((3.2) is trivially true, since y, = 1 for each i, and thus the left-hand side of
the implication is never true).

This proves our claim. Because of that claim, for the rest of the proof we
may now proceed as in the proof of Proposition 3.8. U

We are now ready for the main theorem in this section.

Theorem 3.20. Auxie is emulationally equivalent to an instance of Hack-
enforb.

Proof. Let P” be the partition of Auxie from the previous proposition, and
P* the trivial partition of Hackenforb. Define F' : P” — P* by

F({((x1,... ), . @b, 2k 00} = (b —c1,. .., by — )},
where b; and ¢; are defined by (3.7), (3.8), (3.9), and
F({((fﬁé)?:ﬁf:l : ((373)?:1)421 € P" and xfz = 1}) = {Ko}-
By the definition of P* and Lemma 3.18, F' is bijective. By definition,
F{((0,...,0),...,(0,...,0))}) = {*(b1,...,bn)} = {G}. We are left to

prove the condition (2.2).
The direction (= ). Let

(s Wn)see s W sum) € F (G, zg), e (2, ap).

Then zF = 0. Let us write

F{((xt,... ,3:,11), el (mlf, . ,:Ufl_l,O))}) ={¥0b1 —c1,...,bp —cn)}.

We shall distinguish the cases yﬁ = 0 and yﬁ = 1. Let first yfl = 0. Let us
write

FWs ) (U Un1,0))}) = {¥(b1 —di, o by — di)
By the definition of f’, there exist u € {1,...,k}, v € {0,...,k — 1} and
t € {1,...,n} such that:

x; = y;-, for j # t;
x;'-:yj-:(),forj>tandi>u;
(3.10) =yl =0, fori>u+uv;
:cf;:(), yf::l,forugiguﬂ—v;
zt = yi, for i < u.
From (3.10), we have:
d; = c; for j #t;

u+v t
dy = Z (Z yé2(i_1)(n_1)+s_1> + ¢

i=u \s=1
Therefore, the only difference between the graphs %(b; — c1,...,b, — ¢p)
and *¥(by — dy,...,b, — d,) is that one path is shorter in the second one
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(by — ¢4 > by — dy), which means that there is a move from the first one to
the second one.

Assume now y¥ = 1. Then, since the obtained position is an ending
position, we need to show that, in this case, Ko € f*(¥(b1—c1,...,bn—cp))-
But this is easy: removing, for example, any edge incident to the central
vertex leads to K, which was to be proved.

The direction («<). Let

(311) *(bl —dy,...,b, — dn) S f*(*(bl —Cly..., by — Cn))

(where both those graphs are in P*; note that the expression above implicitly
assumes that we make a move to a non-ending position, because the case
with K¢ on the left-hand side will be treated at the end), and

F({((m%,,x%),,(xlf,,a:fl))}) ={*¥(b1—c1,...,bn —cn)},
F(Wis o yn)se s (W1 ui))Y) = {#(b1 — da, .. by — di) -

By the definition of F', we have z¥ = y¥ = 0. The aim is to prove
(3.12)

(i, uby, o W) € F(((ah, . xh), o @, 2k)).
From (3.11), it follows that there exists ¢ € {1,...,n} such that

bj—Cj:bj—dj fOI"j?ét;

Nl
(3.13) by — ¢t > by — dj,

which implies ¢; = d; for j # t, and ¢; < d;.
We first treat the case ¢ = m. Since, in this case, ¢; = d; whenever
J < mn, we have 2} = y; for j < m and i arbitrary (as we have seen in the

proof of Lemma 3.18). We have also already seen that both (x},... 2F)
and (y},...,y*) have to be of the form (1,...,1,0,...,0); say with exactly
[, respectively m 1s, where 0 <! < m < k (because of ¢, < d,). Therefore,
in the definition of f’ we can choose t =n, u=1+1, v =m — [ — 1, which
gives (3.12).

Assume now t < n. Recall that, as seen during the proof of Lemma 3.18,
the value ¢; for any fixed j, j < n, is solely enough to uniquely determine all
the values :L'; Therefore, since ¢; = d; whenever j # ¢, we conclude ZL'; = y;
for t # j < n and i arbitrary. Let us also show that 2?, = y! for any i.
Assume that (z),...,z%) contains exactly [ 1s (in the first [ positions), and
(yl, ..., yF) exactly m 1s. If, say, [ = 0, then ¢, = 0, and then d,, = ¢, = 0,
which implies m = 0; therefore, 2%, = i (= 0) for any 4, as claimed. Let now
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I,m > 0. Assume first [ > m. We have:

m n
d, = Z Z yéQ(ifl)(n71)+sfl
i=1 s=1
m n—1
(i—1)(n—1)+s—1 i(n—1)
=22 w2 + Z 2
i=1 s=1
l
Zz2zlnl+sl Z2zn1
i=1 s=1
((-1)(n—1)+n—-2 _
SO VIESS SEl
z=0 i=1
-1 !
< olln=1) Z 9i(n—1) _ Z 2in—1) ¢
i=1 i=
which contradicts d,, = ¢,. In an analogous way, we show that the assump-
tion | < m implies ¢, < d,,. Therefore, the only possibility is | = m, which
gives x;, =y, for any i, as claimed. Let us also show that, for ¢ < [ and
J <n—1, we have zj = y; (actually, only the case j =t is interesting here,
since otherwise we already have that equality). We have:

l

Cn — zl: 27;(1171) — Z nz:l 3322(7;71)(”71)4’571;
i=1

=1 s=1
l I n—1

- Z 2i(n—1) _ Z Z yéQ(i—l)(n—l)—&—s—l;
i=1 i=1 s=1

therefore, since the left-hand sides are equal, the same must be true for the
right-hand sides. But note that the right-hand sides are sums of different
powers of 2, which gives 2 =y Whenever 1 <land j <n—1, as claimed.

To sum up, we know so far that, if x =+ yj, then j =t and ¢ > [. What
is left to prove (in order to show (3. 12)) is that: 1) the values 7 such that
xt # yi are consecutive; 2) for each such i, we have zi = 0 and 3 = 1 (not
vice versa); 3) if u is the minimal such i, then 27" = 0 whenever m > u and
j > t. Let us show these statements.

2), 3): Let u be as described in 3). We have u > [. We show first =}’ = 0
and y;* = 1. Suppose the contrary: zj = 1 and y; = 0. We show
that y7 =0 whenever j > t. Indeed, we already know y* = 0 (since
u > ). Suppose that Y, =1 for some jo, t < jo < m; then also
z% = yj = 1. Recall that, if Y, = 1, then the value dj, is solely
enough to uniquely determine the values yj' for all j < jo (this can
be seen by the same arguments as used in the proof of Lemma 3.18).

Therefore, since ¢j, = dj, and 2} = y5 = 1, it follows that = = y}',
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which is a contradiction. Therefore, yi* = 0 whenever j > ¢. Since

((%)?:1)?:1 € P, (3.2) gives " = 0 whenever m > u and j > t,

and in particular, y;” = 0 whenever m > w; together with z} =1

and yj* = 0, this implies ¢; > d;, contradicting (3.13). Therefore,

zy = 0 and yi' = 1. Now we prove zj" = 0 whenever m > u and
j >t in exactly the same way as we have just seen, which gives 3),
while 2) directly follows from 3).

1): If 2t # yi for all i > u, the claim is true. Assume now that v is a
nonnegative integer such that z% # 3! whenever u < i < u + v, and

ot — Ul Because of the part 3), we conclude y* ™! =
x%‘”“ = 0. Now the same argument as in the previous paragraph
gives yi = x! = 0 whenever i > u + v + 1. Therefore, the values i
such that z¢ # y! are exactly u,u + 1,...,u + v, which was to be
proved.

This concludes the proof that (3.11) implies (3.12). Finally, we need to
take care of the postponed case

Ko € f*(¥(1 —c1,...,bn — cn)),
where

F{((z},...,zh), ... @k, 2f))) = {01 —c1, ..., bn — )}

We need to prove that there is a move from a corresponding Auxie posi-
tion to an ending position. But this is easy: we know that (x),...,z%) =
(1,...,1,0,...,0) (with possibly no 1s), and we can in one move put 1s in all
the positions %, in which there are Os, and thus obtain an ending position.

This completes the proof. [l

4. HACKENFORB IS NOT ALMIGHTY

The game Halving Nim is a variant of Nim defined as follows. In the
beginning, there is a heap of n coins. On each move, if there are ¢ coins
left on the heap, a player can take any number of coins between 1 and [%}
(inclusively). The game ends when there are no coins left.

We shall prove that this game is not emulationally equivalent to an in-
stance of Hackenforb. In particular, we shall show this for the case n = 3
(and thus also for all larger values of n).

Definition 4.1. The considered instance of the Halving Nim is defined as
the triple (P, f,3), where P ={0,1,2,3}, and f : P — P(P) is given by

F0) =0, f(1) =10}, f(2) ={1}, f3) ={1,2}.

All the possible moves in this game are shown in Figure 15.
Let us now prove that the only congruential partition of this game is the
trivial one.
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3

0

F1GURE 15. Possible moves for Halving Nim with 3 coins.

Proposition 4.2. The only congruential partition of the game (P, f,3) is
given by

P = {{0}, {1}, {2}, {3}}.

Proof. Since the position 0 is the only one from which there are no possible
moves, it has to be alone in its class (otherwise (2.1) would not hold). We
now show that no two of the remaining three positions can be in the same
class.

e If the positions 3 and 2 are in the same class, say A, then, since
f(3) 2 2 € A, there must exist a € A such that a € f(2), which
directly implies 1 € A. Now, using f(1) = {0}, the same reasoning
gives 0 € A, which is impossible since 0 is in its own class.

e If the positions 3 and 1 are in the same class, then 0 is also in that
class (for the same reason as above), a contradiction.

e Finally, if 1 and 2 are in the same class, then again 0 is in it, too, a
contradiction.

This completes the proof. [l

We are now ready for the main theorem of this part.

Theorem 4.3. Halving Nim for n = 3 is not emulationally equivalent to
any instance of Hackenforb.

Proof. Suppose the contrary: there exists a graph G and a set F of for-
bidden graphs such that Halving Nim for n = 3 is emulationally equiv-
alent to I'(G,F); let T'(G,F) = (P* f*,G). Let P* be a congruential
partition of I'(G,F) that corresponds to the partition P; we may write
P* = {P§, Py, Ps,P;} with the natural correspondence between P and P*
(in particular, Py = {G} and P§ = {Ko}).

While playing Hackenforb, we shall, for the purpose of this proof, keep
track of the forbidden components that appear during the game; instead of
erasing them, we shall leave them on the “playing board,” but (of course)
they cannot be used in the rest of the game. Edges that are not in forbidden
components will be called allowed.
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Removing any edge of GG results in a position either from P35 or from P;.
Based on that distinction, edges will be called of type 1 or type 2, respec-
tively. Let T1, respectively T, be the set of all edges of type 1, respectively
type 2. The removal of any edge of type 2 leads to a position such that
any further removal of any allowed edge in that position results in a graph
whose all connected components are forbidden. On the other hand, since
each move from a position in P; leads to a position from Py, we conclude
that the removal of any edge of type 1 leads to a position such that any fur-
ther removal of an allowed edge in the remaining position results in a graph
with at least one connected component that is not forbidden. In brief:

e€T) & (Vg e G—e)(g allowed in G—e = (3G' € C(G—e—9)) (G & F));

ec€Ty e (Vge G—e)gallowed in G—e = (VG' € O(G—e—g))(G' € F)).

(Here C(...) denotes the set of all connected components of a given graph.)

In order to reach a contradiction, it will be enough to find two edges
f € 11 and h € T3 such that f is allowed in G — h and h is allowed in
G — f. Indeed, in that case, since h € T5, all the connected components
of (G — h) — f must be forbidden, but since f € T, there must exist a
connected component of (G — f) — h that is not forbidden; however, this is
clearly impossible since (G —h) — f = (G — f) — h.

If G is not connected, we can always take one edge from one connected
component and another edge from another one in such a way that those two
edges are of different types; then each of them will be allowed after removal
of the other one, as needed. Therefore, we can assume that G is connected.
We say that an edge e generates a forbidden component iff G — e has at
least one forbidden component with at least two vertices. If there are edges
f € Th and g € T, none of which generates a forbidden component, then
we again have what was needed. Therefore, from now on we assume that
each edge of type 1 generates a forbidden component or each edge of type 2
generates a forbidden component.

Assume first that each edge of type 2 generates a forbidden component.
Let h € Ty and G—h = CUF, where C and F are two connected components
of G — h and F € F. The component C' must be allowed (since the game
must not be over at this point). We claim that there is an edge f in the
component C' such that C' — f and G — f are both connected, with the
possible exception of an isolated vertex. If C is a tree, then it has at least
two pendant edges, and at least one of them is a pendant edge in G, too;
we can take f to be that edge. If C' is not a tree, then C has a cycle, and
we can take f to be any edge from a cycle. Since G — f is connected, and
we assumed that each edge of type 2 generates a forbidden component, it
follows that f is of type 1. Therefore, f and h are a pair of edges that we
needed.

In the case when each edge of type 1 generates a forbidden component,
the proof is analogous. The theorem is thus proved. O
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5. CONCLUSION AND FURTHER RESEARCH

The purpose of the present work is to introduce the game Hackenforb as a
new common “language” for studying many different combinatorial games.
We hope that it is not too ambitious to believe that, in some future, this
could help in bringing out some new possible directions from which we can
approach various open questions on combinatorial games and shed some
light on them.

The result from Section 4 could seem as a kind of disillusionment after
the earlier sections, but it should not be perceived that way. It is our
belief (judging by the fact that some quite different games shown here are
emulationally equivalent to an instance of Hackenforb) that Hackenforb has
proved itself to be more than versatile enough, and the epiphany learned
in Section 4 (that the world is not perfect) actually provides a motivation
for some further research questions. Namely, in the ideal case, it would
be possible to obtain the complete characterization of games emulationally
equivalent to an instance of Hackenforb. If this turns out to be too much
to hope for, one could try to find a class of games, as general as possible,
all of which are emulationally equivalent to an instance of Hackenforb. Or,
with a similar aim in mind, one could try to isolate the core reason why
Halving Nim is not emulationally equivalent to an instance of Hackenforb
(in terms of some obstacles implied by its structural properties) and thus be
able to better understand the class of games not emulationally equivalent to
an instance of Hackenforb. These and similar questions form the basis for
future work.
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