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LATTICE PATHS IN CORRIDORS AND CYCLIC

CORRIDORS

RIGOBERTO FLÓREZ, JAVIER F. GONZÁLEZ, MATEO MATIJASEVICK,

CRISTHIAN J. PARDO, JOSÉ L. RAMÍREZ, LINA M. SIMBAQUEBA,
AND FABIO A. VELANDIA

Abstract. In this paper we use discrete Fourier transform and gener-
ating functions to count families of paths of a given length in a corridor.
For example, we count Motzkin paths, colored Motzkin paths, Dyck
paths, and Schröder paths.

1. Introduction and Notation

A corridor is a lattice that is within a strip bounded by the lines x =
0, y = a, and y = b, where a < b are integers. In this paper we explore
the behaviour of lattice paths within a corridor. For example, the corridor
depicted in Figure 1 is formed by all integers points bounded by the lines
x = 0, y = 1 and y = 4. Note that the figure also depicts a Motzkin path
within the corridor. We say that the corridor is cyclic if the points that are
on y = a are also on y = b. Intuitively, the cyclic corridor can be thought
as a circular cylinder.

A Motzkin path of length n is a lattice path in the first quadrant of the
xy-plane from the point (0, 0) to (n, 0) using up-steps U = (1, 1), horizontal
steps H = (1, 0), and down-steps D = (1,−1). The Motzkin paths of length
n are enumerated by the Motzkin numbers

mn =

⌊n/2⌋∑
k=0

(
n

2k

)
ck,

where

cn =
1

n+ 1

(
2n

n

)
are the well-known Catalan numbers. A colored (a, b, c)-Motzkin path is a
Motzkin path such that the up-steps, horizontal steps and down-steps are
labeled or colored by a colors, b colors, and c colors, respectively (cf. [9]).
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The weight of a colored (a, b, c)-Motzkin path is the product of colors (or
weights) assigned to each step of the path (cf. [8]).

A colored corridor (a, b, c)-Motzkin path —corridor Motzkin path,
for simplicity— of length n, is a colored (a, b, c)-Motzkin path within the
corridor [0, n] × [1, h], from the initial point (0, ℓ) to the point (n, k). Let
Mh

n(ℓ, k) denote the set of all corridor Motzkin paths of length n from (0, ℓ)
to the point (n, k) and let Mh(ℓ, k) = ∪n≥0Mh

n(ℓ, k). Let mh
n(ℓ, k) denote

the sum of the weights of all corridor Motzkin paths in Mh
n(ℓ, k). For exam-

ple, Figure 1 shows a corridor Motzkin path in M4
10(2, 3) of weight a

4b3c3.

1

2

3

4

c

c c

a

a

a a

b b

b

Figure 1. Corridor Motzkin path in M4
10(2, 3) of weight a

4b3c3.

The corridor Motzkin paths have been studied extensively for the case
a = c = 1 and b = 0. In this case, the paths are called Dyck path in strips,
see for example [1, 2, 3, 4, 5, 6].

In this paper we use the Fourier method, introduced by Ault and Kicey
[1, 2] and generating functions [7], to study lattice paths in strips. For
example, we use a system of generating functions in two variables to count
the total number Motzkin paths of length n that are within a corridor.
We also use the discrete Fourier transform to count the number of Schröder
paths that are within a corridor. In the end of the paper we give an approach
to the paths in cyclic corridors using elementary number theory.

2. Colored Motzkin Path in Corridors

In this section we count the total number of corridor Motzkin paths of
length n that are in a corridor. That is, we count all Motzkin paths, fully
contained in a given corridor, starting at (0, ℓ) and ending at (n, k), where
1 ≤ ℓ, k ≤ h. To do this counting we solve a system of equations formed by
generating functions. In the end of the section we give a connection between
this counting and graph theory.

The length of a corridor Motzkin path P is denoted by |P | and the number

of horizontal steps of P is denoted by ρ(P ). We use A
(ℓ,k)
h (x, y) to denote
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the bivariate generating function defined by

A
(ℓ,k)
h (x, y) :=

∑
P∈Mh(ℓ,k)

x|P |yρ(P ).

Notice that the coefficient [xnys]A
(ℓ,k)
h (x, y) is the sum of the weights of all

corridor Motzkin paths in Mh
n(ℓ, k) with exactly s horizontal steps.

We use Th(a, b, c) to denote the following tridiagonal matrix of size h×h.

(2.1)



1− bxy −cx
−ax 1− bxy −cx

. . .
. . .

. . .
−ax 1− bxy −cx

−ax 1− bxy


h×h

.

Moreover, we denote by eh(i) the column vector of size h×1 with a 1 in the
i-th position and 0’s everywhere.

Theorem 2.1. Let 1 ≤ ℓ, k ≤ h. Then

A
(ℓ,k)
h (x, y) = eh(k)

T · Th(a, b, c)
−1 · eh(ℓ).

Proof. Let P be a path in Mh(ℓ, k), with h ≥ 3. For this proof there are
four cases to consider (see Figure 2).

(1) ℓ > k = 1. Here we have that P is non-empty and that the y-
coordinate of the last point of P is 1. Consequently, the last step of P
can be horizontal or a down-step. Therefore, we have the functional
equation

A
(ℓ,1)
h (x, y) = bxyA

(ℓ,1)
h (x, y) + cxA

(ℓ,2)
h (x, y)

(2) 2 ≤ k ≤ h− 1 and k ̸= ℓ. This implies that P is non-empty and the
last step of P can be an up-step, a horizontal or a down-step. So,
we have the functional equation

A
(ℓ,k)
h (x, y) = axA

(ℓ,k−1)
h + bxyA

(ℓ,k)
h (x, y) + cxA

(ℓ,k+1)
h (x, y).

(3) 2 ≤ k ≤ h − 1 and k = ℓ. In this case, the y-coordinate of the first
point and the last point are the same. Note that in this case the
path P can be empty. Hence, we have the functional equation

A
(ℓ,ℓ)
h (x, y) = 1 + axA

(ℓ,ℓ−1)
h (x, y) + bxyA

(ℓ,ℓ)
h (x, y) + cxA

(ℓ,ℓ+1)
h (x, y).

(4) 1 < k = h. Similarly to the first case, we obtain the functional
equation

A
(ℓ,h)
h (x, y) = axA

(ℓ,h−1)
h (x, y) + bxyA

(ℓ,h)
h (x, y).
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Figure 2. Decomposition of a corridor Motzkin path.

Combining the four functional equations above, we obtain the system of

equations Th(a, b, c) × Ah,ℓ = eh(ℓ), where Ah,ℓ := [A
(ℓ,k)
h (x, y)]h×1. Let Ah

denote the matrix, whose (i, j)-th entry is given by the generating function

A
(i,j)
h (x, y), for each 1 ≤ i, j ≤ h. It is easy to see that Th(a, b, c)Ah = Ih,

where Ih is the identity matrix of size h× h. Consequently, the generating

function A
(ℓ,k)
h (x, y) is given by A

(ℓ,k)
h (x, y) = eh(k)

T ·Th(a, b, c)
−1 ·eh(ℓ). □

For example, with h = 4, ℓ = 3, and k = 2, we have

A
(3,2)
4 (x, y) = e4(2)

T · T4(a, b, c)
−1 · e4(3)

=
[
0 1 0 0

] 
1− bxy −cx 0 0
−ax 1− bxy −cx 0
0 −ax 1− bxy −cx
0 0 −ax 1− bxy


−1 

0
0
1
0

 .

This is equal to

cx− 2bcx2y + b2cx3y2

1− 3acx2 + a2c2x4 − 4bxy + 6abcx3y + 6b2x2y2 − 3ab2cx4y2 − 4b3x3y3 + b4x4y4
,

In particular, if we take the colors (a, b, c) = (3, 1, 1), we have the generating
function

A
(3,2)
4 (x, y)

=
x− 2x2y + x3y2

1− 9x2 + 9x4 − 4xy + 18x3y + 6x2y2 − 9x4y2 − 4x3y3 + x4y4

=x+ 2yx2 + (9 + 3y2)x3 + (36y + 4y3)x4 + · · · .
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Figure 3 shows the colored corridor (3, 1, 1)-Motzkin paths in M4
3(3, 2) cor-

responding to the bold coefficient in the above series.
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Figure 3. The corridor Motzkin paths in M4
3(3, 2) with the

colors (a, b, c) = (3, 1, 1).

We now illustrate the symmetries satisfied by the previous families of
colored corridor Motzkin paths:

• Symmetry. Consider the case a = c, i.e., corridor paths where the
same number of color choices is available for up-steps and down-
steps. Hence, the tridiagonal matrix Th(a, b, a) is symmetric, as is

its inverse matrix. We conclude that A
(ℓ,k)
h (x, y) = A

(k,ℓ)
h (x, y), as the

components of such matrix are the generating functions associated
to these path families. From this relation follows that the coefficients

of A
(ℓ,k)
h (x, 1) and A

(k,ℓ)
h (x, 1) coincide when a = c. We deduce that

mh
n(ℓ, k) = mh

n(k, ℓ), which is also readily seen by reversing the paths’
direction as shown in Figure 4 (left).

• Central symmetry. Let a = c. By reflecting any path across the
line y = h−1

2 as shown in Figure 4 (right), we have mh
n(ℓ, k) =

mh
n(1 + h− ℓ, 1 + h− k).

y = k

y = l

y = 1

y = h

y = k

y = l

y = 1

y = h

y = 1 + h− l

y = 1 + h− k

Figure 4. Directional and central symmetries of corridor
Motzkin paths.
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2.1. Relationship with a graph walk. Let Lh(a, b, c) denote the graph

with vertices {1, . . . , h}, where h1
w−−→ h2 is a directed edge of Lh(a, b, c) of

weight w = a if h2 = h1 + 1, of weight w = c if h2 = h1 − 1, and weight
w = b if h1 = h2. Figure 5 shows L4(a, b, c).

1 2 3 4

b b b b

a

c

a a

c c

Figure 5. Graph L4(a, b, c).

Let P ∈ Mh
n(ℓ, k), we define a weighted directed-walk (from the point

of view of graph theory), using Lh(a, b, c). The vertices of the weighted
directed-walk are the y-coordinates of the ending points of the steps of P .

So, y1
w−−→ y2 is a directed edge if and only if y1 and y2 are y-coordinates

of an initial point (from left to right) and the ending point of a step S in
P , where w is the weight of S. For example, we see that the directed-walk
associated to the path in Figure 1 is given by

2
c−−→ 1

b−−→ 1
b−−→ 1

a−−→ 2
b−−→ 2

a−−→ 3
a−−→ 4

c−−→ 3
a−−→ 4

c−−→ 3.

We observe that the number of colored corridor (a, b, c)-Motzkin paths
of length n is equivalent to the sum of the weights of all paths on the line
graph Lh(a, b, c).

3. Enumeration of Corridor Motzkin Paths via Fourier
Methods

In this section we turn to the enumeration of corridor Motzkin paths via
the discrete Fourier transform, a method discussed in [1]. We give a theorem
that evaluates mh

n(ℓ, k) for any k ∈ {1, . . . , h}.
The following definitions and notation can be found in [1]. However, here

we write it again to make the section self-contained. Let (u(x))x∈Z be an
N -periodic sequence of complex numbers. The discrete Fourier transform
(DFT) of u, denoted by F [u], is an N -periodic sequence of complex numbers
(U(ω))ω∈Z given by

F [u](ω) = U(ω) =

N−1∑
x=0

u(x)e−
2πi
N

xω.

In the same manner, the inverse discrete Fourier transform of a sequence
(U(ω))ω∈Z is defined by

F−1[U ](x) = u(x) =
1

N

N−1∑
ω=0

U(ω)e
2πi
N

ωx.
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It is well-known that F is a linear operator on the space of periodic
sequences, whose inverse is F−1. Thus, F [u] is a periodic sequence and for
any integer k this holds

F [u(x− k)](ω) =
N−1∑
x=0

u(x− k)e−
2πixω

N

=

−k+N−1∑
x=−k

u(x)e−
2πi(x+k)ω

N

= e−
2kπiω

N

−k+N−1∑
x=−k

u(x)e−
2πixω

N

= e−
2kπiω

N F [u](ω).

In order to apply Fourier methods as in [1], a symmetry on the colors vector
v is required. The condition a = c allows us to obtain a recursive function
Vn(x) called state with initial value V0(x) and for n ≥ 1

Vn(x) = aVn−1(x− 1) + bVn−1(x) + aVn−1(x+ 1).

Theorem 3.1. Let n, k, and h be positive integers, with 1 ≤ k ≤ h. Let us
define

g(ω) := 2a cos
(πω

d

)
+ b,

where d = h+1. Then the number of corridor Motzkin paths ending at (n, k)
is given by

mh
n(ℓ, k) =

1

d

2d−1∑
ω=0

[g(ω)]n sin
(πωk

d

)
sin
(πωℓ

d

)
.

Proof. Let Vn(x) be the state function of the h-corridor, i.e., Vn(x) is the
number of corridor Motzkin paths of length n whose height (y-coordinate of
their final point) is x. As in the previous remark, the following recurrence
relation holds for x ∈ N0.

Vn(x) = aVn−1(x− 1) + bVn−1(x) + aVn−1(x+ 1).

When a path is reflected towards y = 0 the roles of U and D are swapped in
the recurrence relation. Since the number of available colors for both U and
D is a, the number of paths is preserved by this reflection, and therefore,
the recurrence remains valid for x < 0.

Now, the initial state function satisfies

V0(x) := δ(x) =

{
1, if x = 0;

0, if x ̸= 0;

from which the state functions Vn(x) can be obtained recursively. Notice
that Vn(x) is a 2d-periodic complex sequence, whose Fourier transform can
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be obtained in this manner

F [Vn+1(x)](ω) =aF [Vn(x− 1)](ω) + bF [Vn(x)](ω) + aF [Vn(x+ 1)](ω)

=(ae
−πiω

d + b+ ae
πiω
d )F [Vn(x)](ω)

=
(
2a cos (

πω

d
) + b

)
F [Vn(x)](ω)

=g(ω)F [Vn(x)](ω),

where g(ω) = 2a cos (πωd ) + b.
The computations rely on Euler’s formula, as well as the well-known prop-

erty

F [Vn(x− k)](ω) = e
−2kπiω

2d F [Vn(x)](ω).

Furthermore, as specified in [1], the Fourier transform of the admissible
delta function is F [V0(x)](ω) = −2i sin πωℓ

d . It follows that F [Vn(x)](ω) =

[g(ω)]n
(
−2i sin πωℓ

d

)
. So, we can recover Vn(x) via the Fourier inversion

transform. Thus,

Vn(x) = F−1[F [Vn(x)](ω)](x)

= F−1

[
[g(ω)]n

(
−2i sin

πωℓ

d

)]
(x)

=
1

2d

2d−1∑
ω=0

[g(ω)]n
(
−2i sin

πωℓ

d

)
e

πiωx
d .

The real part of each summand is [g(ω)]n sin
(
πωx
d

)
sin
(
πωℓ
d

)
, thus the num-

ber of paths, i.e., the real part of this sum, corresponds to

mh
n(ℓ, x) =

1

d

2d−1∑
ω=0

[g(ω)]n sin
(πωx

d

)
sin

(
πωℓ

d

)
.

In particular, if we let x = k for any k ∈ {1, . . . , h}, the result follows. □

The previous theorem provides an explicit formula for the number of
corridor Motzkin paths. For example, let h = 4, (a, b, c) = (2, 3, 2), and
ℓ = 2, and applying the previous theorem we obtain the values in Table
1. In Figure 6, are all different paths counted by M4

3(2, 3), with colors
(a, b, c) = (2, 3, 2). Thus, since a = c = 2, there are eight paths with steps
UUD starting at (0, 2) and ending at (3, 3). Similarly we see that the total
number of paths are 8, 18, 8, 18, 18, and 8, respectively. Thus, the total
number of colored corridor (2,3,2)-Motzkin paths ending at (3, 2) is 78.

4. Schröder Corridor Paths

In this section we introduce the Schröder corridor path. The arguments
used here are similar to the previous sections. A Schröder path of length
n is a lattice path in the first quadrant of the xy-plane from (0, 0) to the
point (n, 0) using up-steps U = (1, 1), horizontal steps H2 = (2, 0), and
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n 0 1 2 3 4 5 6 7 8

k = 4 0 0 4 36 264 1800 11852 76524 488208
k = 3 0 2 12 78 504 3226 20484 129318 813168
k = 2 1 3 17 99 593 3603 22081 136083 841825
k = 1 0 2 12 70 408 2410 14436 87470 534576

Table 1. Values of M4
n(2, k) for 1 ≤ k ≤ 4, and n = 0, 1, . . . , 8.
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Figure 6. Different paths counted by M4
3(2, 3), with colors

(a, b, c) = (2, 3, 2).

down-steps D = (1,−1). The Schröder paths of length n are enumerated by
the sequence A006318 (see [10]).

Given a positive integer h, a corridor Schröder path of length n is a
Schröder path within the corridor [0, n]× [1, h], from the initial point (0, ℓ)
to the ending point (n, k), such that 1 ≤ ℓ, k ≤ h. We use Sh

n(ℓ, k) to denote
the set of all corridor Schröder paths of length n from the point (0, ℓ) to the
point (n, k), and we let Sh(ℓ, k) = ∪n≥0Sh

n(ℓ, k) and let shn(ℓ, k) to be the
total number of all corridor Schröder paths in Sh

n(ℓ, k).
We apply the discrete Fourier transform to give a trigonometric expres-

sion. For simplicity, we use sn(x) to denote the number of Schröder paths
within the corridor [0, n] × [1, h], starting at the point (0, ℓ) and ending at
the point (n, x). Notice that

sn(x) = sn−1(x− 1) + sn−2(x) + sn−1(x+ 1).
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Thus, letting Sn = F [sn] and θ = πω
d , we have the relation

Sn(ω) = e−iθSn−1(ω) + Sn−2(ω) + eiθSn−1(ω)

= 2 cos(θ)Sn−1(ω) + Sn−2(ω),

where d = h+1. In order to apply Fourier methods to this family of paths,
we need to solve the previous recurrence relation and construct admissible
versions s0, s1 of the initial state functions. Since

α1(ω) = cos θ +
√
1 + cos2 θ and α2(ω) = cos θ −

√
1 + cos2 θ

are the (real) roots of the characteristic polynomial p(t) = t2 − 2(cos θ)t− 1
of Sn(ω), we have Sn(ω) = K1α

n
1 (ω) +K2α

n
2 (ω), for some real numbers K1

and K2 (to be found using the given initial values).
The initial admissible states s0(x) and s1(x) can be constructed as:

s0(x) =

{
1, if x = ℓ;

0, otherwise;
s1(x) =

{
1, if x = ℓ± 1;

0, otherwise.

That is, s0(x) = δℓ(x) and s1(x) = δℓ−1(x) + δℓ+1(x), where δj(k) = 1
if k = j and 0 otherwise. Let ∆m := δm(x) − δ−m(x) (in [1] it is the
admissible extension of the delta function). So, we can take s0(x) = ∆ℓ(x)
and s1(x) = ∆ℓ−1(x) + ∆ℓ+1(x) as the admissible extensions of s0 and s1
(odd and 2d−periodic). Therefore,

S0(ω) = F [∆ℓ(x)](ω) = −2i sin(ℓθ), and

S1(ω) = F [∆ℓ−1(x) + ∆ℓ+1(x)](ω) = −2i [sin([ℓ− 1]θ) + sin([ℓ+ 1]θ)] ,

where S1(ω) can be further simplified as

S1(ω) = −2i[sin(ℓθ − θ) + sin(ℓθ + θ)]

= −2i[2 sin(lθ) cos(θ)]

= −4i sin(lθ) cos(θ).

By the previous reasoning, the values of K1 and K2 are given by the solution
of this system of equations{

K1 +K2 = S0(ω)

K1α1 +K2α2 = S1(ω).

Hence, we obtain that K1 = −C1(ω)i and K2 = C2(ω)i, where

C1(ω) =
α1(ω) sin(ℓθ)√

1 + cos2 θ
, C2(ω) =

α2(ω) sin(ℓθ)√
1 + cos2 θ

,

are real functions of ω. For simplicity, we use C1 := C1(ω) and C2 := C2(ω).
Now we deduce a formula for sn(x) via the Fourier inversion transform

sn(x) = F−1[K1α
n
1 +K2α

n
2 ]

= F−1[K1α
n
1 ] + F−1[K2α

n
2 ]

= −iF−1[C1α
n
1 ] + iF−1[C2α

n
2 ].
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Since C1α
n
1 and C2α

n
2 are purely real numbers, we have

ℜ(−iF−1[C1α
n
1 ]) = ℜ

(
(−i)

1

2d

2d−1∑
w=0

C1α
n
1e

iθx

)
=

1

2d

2d−1∑
w=0

C1α
n
1 sin (θx) .

Similarly,

ℜ(iF−1[C2α
n
2 ]) = − 1

2d

2d−1∑
w=0

C2α
n
2 sin (θx) ,

where ℜ(c) denotes the real part of the complex number c. We conclude
that for d = h+ 1, that

sn(x) =
1

2d

2d−1∑
w=0

C1α
n
1 sin (θx)−

1

2d

2d−1∑
w=0

C2α
n
2 sin (θx)

=
1

2d

2d−1∑
w=0

(C1α
n
1 − C2α

n
2 ) sin (θx)

=
1

2d

2d−1∑
w=0

sin(ℓθ) sin(θx)√
1 + cos2 θ

[αn+1
1 − αn+1

2 ].

Therefore, sn(x) is given by

1

2d

2d−1∑
w=0

sin(ℓθ) sin(θx)√
1 + cos2 θ

[(cos θ +
√
1 + cos2 θ)n+1 − (cos θ −

√
1 + cos2 θ)n+1].

For example, using the above formula for h = 4, ℓ = 2, x = 3 = k, we
obtain that the first few values of the sequence s4n(2, 3) are (the nonzero
terms of this sequence are in A289803)

0, 1, 0, 5, 0, 23, 0, 103, 0, 456, 0, 2009, 0, 8833, 0, 38803, . . . .

Figure 7 shows all the corridor Schröder paths corresponding to 23 in the
above sequence.

We have obtained a formula for sn(x) in terms of trigonometric functions.
However, for more general path families, this method is more complicated.
For example, if the horizontal step increases in length, more work is required
to solve the Fourier transform recurrence (the characteristic polynomial is
of degree greater than 2) and applying inversion, the explicit sum turns out
to be cumbersome.

5. Dyck Paths in Cyclic Corridors

In this section we discuss Dyck paths within a corridor with cyclic proper-
ties. That is, informally, we think that the points are in a lattice embedded
in a circular cylinder where we identify y = 1 and y = h as the same line.
In Figure 8, we can see that the points in line y = 1 and the points in line
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Figure 7. The corridor Schröder paths in S4
5 (2, 3).

y = 5 are the same points. So, to avoid any ambiguity we only mark points
in one of the two lines.

We would like to mention that the Section 2.6 in [1] is dedicated to cyclic
corridors as well.

Let us now consider the problem of enumerating Dyck paths in a cyclic
corridor. An h-cyclic corridor Dyck path is a Dyck path with step coordi-
nates in {(a, b) : a ∈ N0 and b ∈ {1, 2, . . . , h}}. Let (1, y1, y2, . . . , yn) be the
y-coordinates of an h-cyclic corridor Dyck path of length n, the j-th step is
said to be a teleport if one of the following conditions hold:

• j = 1 and y1 = h− 1,
• if 1 < j < n and (yj−1, yj , yj+1) = (h − 1, h, 1) or (yj−1, yj , yj+1) =
(2, 1, h− 1).

We say that the points (0, 1) and (j, yj) are teleport in the first and sec-
ond cases, respectively. For example, Figure 8, shows a 5-cyclic corridor
Dyck path of length 14. In this case, the path has four teleport steps
(0, 1), (4, 5), (11, 5), and (13, 1) (identified in red). Note that (6, 1) is not
a teleport point.

Let t
(h)
n,m be the number of h-cyclic corridor Dyck paths of length n with

exactly m teleport steps, from the initial point (0, 1). Let t
(h)
n,m be the auxil-

iary sequence that counts the number of h-cyclic corridor Dyck paths with
initial step U (or equivalently, non-empty paths without an initial teleport
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Figure 8. A 5-cyclic corridor Dyck path of length 14.

step). Notice that t
(h)
0,0 = 1 and t

(h)
0,0 = 0. Figure 9, shows all 4-cyclic corridor

Dyck path of length eight with exactly four teleport steps. That is, t
(4)
8,4 = 5.
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Figure 9. Lattice paths enumerated by t
(4)
8,4 = 5.

We now give some lemmas that we need for the main theorem of this
section. Let us first introduce some definitions. Let C(h) be the set of h-
cyclic corridor Dyck paths starting at the point (0, 1), and let C(h)

be the

family of non-empty paths in C(h) with initial step U . Now define four
related m generating functions. For a given path P in C(h), we use |P | and
Tel(P ) to denote the length and number of teleport steps of P .

T (h)
m (x) :=

∑
n≥0

t(h)n,mxn, T
(h)
m (x) :=

∑
n≥0

t
(h)
n,mxn,

T (h)(x, y) :=
∑

P∈C(h)

x|P |yTel(P ) =
∑

n,m≥0

t(h)n,mxnym, and

T
(h)

(x, y) :=
∑

P∈C(h)

x|P |yTel(P ) =
∑

n,m≥0

t
(h)
n,mxnym.

Let v
(h)
n (k) be the number of h-corridor Dyck paths starting at (0, 1) and

ending at (n, k). That is, v
(h)
n (k) = mh

n(1, k) with a = 1 = c and b = 0, and



LATTICE PATHS IN CORRIDORS AND CYCLIC CORRIDORS 49

c
(h)
n =

∑h
k=1 v

(h)
n (k). For the following lemma we consider the generating

functions

Y (h)(x) :=
∑
n≥0

(v(h)n (1) + v(h)n (h))xn and G(h)(x) =
∑
n≥0

c(h)n xn.

Lemma 5.1. If h ≥ 4, then the generating functions Y (h)(x) and G(h)(x)
are given by these matrix equations

Y (h)(x) =
[
1 0 · · · 0 1

]
h
Th(1, 0, 1)

−1eh(1),

G(h)(x) =
[
1 1 · · · 1 1

]
h
Th(1, 0, 1)

−1eh(1),

where Th(1, 0, 1) is as defined in (2.1).

Proof. Let B
(h)
k (x) be the generating function associated with the h-corridor

Dyck paths with ending point (n, k). That is,

B
(h)
k (x) =

∑
n≥0

v(h)n (k)xn.

For any 1 < k < h, a path enumerated by B
(h)
k (x) comes from either a path

ending at (n, k − 1) or a path ending at (n, k + 1). Hence,

B
(h)
k (x) = xB

(h)
k−1(x) + xB

(h)
k+1(x).

A path enumerated by B
(h)
1 (x) is either the empty path or comes from a

path enumerated by B
(h)
2 (x). Analogously, the paths enumerated by B

(h)
h (x)

always come from a path enumerated by B
(h)
h−1(x).

Therefore, we obtain the system of h linear equations:

B
(h)
1 (x) = xB

(h)
2 (x) + 1,

B
(h)
2 (x) = xB

(h)
1 (x) + xB

(h)
3 (x),

...

B
(h)
h−1(x) = xB

(h)
h−2(x) + xB

(h)
h (x),

B
(h)
h (x) = xB

(h)
h−1(x).

This system can be represented in matrix form as:
1 −x

−x
. . .

. . .
. . .

. . . −x
−x 1


h×h


B

(h)
1 (x)

B
(h)
2 (x)
...

B
(h)
h (x)


h

=


1
0
...
0

 .

Since Y (h)(x) = B
(h)
1 (x)+B

(h)
h (x) and G(h)(x) = B

(h)
1 (x)+ · · ·+B

(h)
n (x),

we obtain the desired result. □
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Theorem 5.2. The bivariate generating functions T (h)(x, y) and T
(h)

(x, y)
are given by

T
(h)

(x, y) =
G(h)(x)− 1

1− (Y (h)(x)− 1)y
and T (h)(x, y) = 1 + (1 + y)T

(h)
(x, y).

Proof. Let P be a non-empty h-cyclic corridor Dyck path with exactly
m teleport steps, whose first step is U . This path can be decomposed
as P1P2 · · ·Pm, where Pm is an h-cyclic corridor Dyck path and Pi, with
1 ≤ i ≤ m− 1, is a non-empty h-cyclic corridor Dyck path without teleport
steps with ending point on either lines y = 1 or y = h. See Figure 10 for a
graphic representation.

(0,0)

1

h

(0, n)

Figure 10. Decomposition of an h-cyclic corridor path with
m teleport points.

From this decomposition we obtain the functional equation

T
(h)
m (x) = (Y (h)(x)− 1)m(G(h)(x)− 1).

Therefore,

T
(h)

(x, y) =
∑
m≥0

T
(h)
m (x)ym

=
∑
m≥0

(Y (h)(x)− 1)m(G(h)(x)− 1)ym

=
G(h)(x)− 1

1− (Y (h)(x)− 1)y
.

Let P be an h-cyclic corridor Dyck path with exactly m teleport steps. If

the first step of P is U , then these kind of paths are counted by T
(h)

(x, y).
If the first step is U , then (0, 1) is a teleport step, counted by y. These paths

are enumerated by yT
(h)

(x, y). Therefore, we have the functional equation

T (h)(x, y) = 1 + T
(h)

(x, y) + yT
(h)

(x, y).

□
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From the above theorem we can obtain the generating functions:

T (2)(x, y) =
1

1− x− xy
,

T (3)(x, y) =
1 + x+ xy

1− 2x2 − 2x2y
,

T (4)(x, y) =
1 + xy

1− x− x2 − x2y
,

T (5)(x, y) =
1 + x− x2 + xy + x2y

1− 3x2 − x2y
,

T (6)(x, y) =
1− x2 + xy

1− x− 2x2 + x3 − x2y + x3y
.

5.1. Connection with the Fibonacci numbers. The goal of this section
is to analyze the case h = 4. This case has a special connection with the
Fibonacci numbers Fn. Let

F (x) :=
∑
n≥0

Fnx
n =

x

(1− x− x2)

be the generating function of the Fibonacci sequence. Remember that

v
(4)
n (k) counts the number of 4-corridor Dyck paths starting at (0, 1) and
ending at (n, k), and

c(4)n =

4∑
k=1

v(4)n (k).

In [1] it is proved that c
(4)
n = Fn+1, and therefore, G(4)(x) = 1/(1− x− x2).

Proposition 5.3. If n ≥ 0, then v
(4)
n (1) + v

(4)
n (4) = Fn−1. Moreover, the

generating function of this sequence is given by

Y (4)(x) :=
∑
n≥0

(v(4)n (1) + v(4)n (4))xn = 1 + xF (x) =
1− x

1− x− x2
.

Proof. These equations hold when n ≥ 1

v(4)n (1) = v
(4)
n−1(2); v(4)n (2) = v

(4)
n−1(1) + v

(4)
n−1(3);

v(4)n (3) = v
(4)
n−1(4) + v

(4)
n−1(2); v(4)n (4) = v

(4)
n−1(3).

Therefore,

v(4)n (2) + v(4)n (3) =

4∑
ℓ=1

vn−1(ℓ) = c
(4)
n−1 = Fn.

Hence, v
(4)
n (1)+v

(4)
n (4) = c

(4)
n − (v

(4)
n (2)+v

(4)
n (3)) = Fn+1−Fn = Fn−1. The

path of length n = 0 is the empty path. □



52 LATTICE PATHS IN CORRIDORS AND CYCLIC CORRIDORS

From Theorem 5.2 we obtain

T (4)(x, y) =1 + (1 + y)

(
G(4)(x)− 1

1− (Y (4)(x)− 1)y

)

=
1 + xy

1− x− x2 − xy

=1 + x(y + 1) + x2(2y + 2) + x3
(
y2 + 4y + 3

)
+ x4

(
3y2 + 8y + 5

)
+ x5

(
y3 + 8y2 + 15y + 8

)
+ x6

(
4y3 + 19y2 + 28y + 13

)
+ x7

(
y4 + 13y3 + 42y2 + 51y + 21

)
+ x8

(
5y4 + 36y3 + 89y2 + 92y + 34

)
+ · · · .

Notice that Figure 9 shows the 4-cyclic corridor Dyck paths of length
8 with exactly 4 teleport steps corresponding to the bold coefficient in the

above series. That is, t
(4)
8,4 = 5. The array [t

(4)
n,k]n,k≥0 corresponds to the array

A119473. This array has a different combinatorial interpretation. The first
few rows are

[t
(4)
n,k]n,k≥0 =



1 0 0 0 0 0 . . .
1 1 0 0 0 0
2 2 0 0 0 0
3 4 1 0 0 0
5 8 3 0 0 0
8 15 8 1 0 0
13 28 19 4 0 0
21 51 42 13 1 0
34 92 89 36 5 0
55 164 182 91 19 1 . . .
...

...


It is clear that t

(4)
n,0 = Fn+1 (n ≥ 0). Moreover, the second column of the

above array is given by t
(4)
n,1 = ((n + 4)Fn + 2nFn−1)/5. Indeed, expanding

the generating function T (4)(x, y) we obtain

T (4)(x, y) =
1

1− x− x2
+

x− x3

(1− x− x2)2
y +

x3(1− x2)

(1− x− x2)3
y2 + · · · .

From the generating function of the Fibonacci sequence we obtain the ex-

pression for t
(4)
n,1.

6. An Approach with Elementary Number Theory

For simplicity, throughout this section we will work on the corridor [0, n]×
[0, h]. First, we observe that a teleport point with x-coordinate m (0 ≤ m ≤
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n), can be interpreted as an identification by an equivalence relation between
the points (m, 0) and (m,h).

Following this idea, the lattice corridor [0, n]× [0, h] is naturally identified
with the group Z × Zh, where Zh is the set of integers modulo h. In order
to go from the point (0, 0) to (n, k) we need n total steps. Thus, if we use
i up-steps and j down-steps, we have i(1, 1) + j(1,−1) = (n, k). That is,
i+ j = n and i− j ≡ k mod h. Therefore, we have the congruence

2j ≡ n− k mod h,(6.1)

where 0 ≤ j ≤ n. To give an explicit formula for our counting problem we
analyze the congruence (6.1) depending on the behavior of h. That is, we
have two distinguishable cases.

• h is an odd integer. In this case, gcd(2, h) = 1. Therefore, the
congruence (6.1) has a unique solution j∗ mod h (0 ≤ j∗ < h). Since
0 ≤ j ≤ n, the other equivalent solutions are of the form j = j∗+ht,
with

0 ≤ t ≤
⌊n− j∗

h

⌋
.

This includes all corridor paths from (0, 0) to (n, k). Observe that j∗

depends on n and k. Moreover, for each j of this form, there are
(
n
j

)
ways of ordering j down-steps in an array of n steps. Therefore, the
number of h-cyclic corridor Dyck paths starting at (0, 0) and ending
at (n, k) is given by

(6.2) p(h)n (k) =

⌊
n−j∗

h

⌋∑
t=0

(
n

j∗ + ht

)
.

Moreover, we have

g(h)n :=

h∑
k=0

p(h)n (k) =

h∑
k=0

⌊
n−j∗

h

⌋∑
t=0

(
n

j∗ + ht

)
=

⌊
n−j∗

h

⌋∑
t=0

h∑
k=0

(
n

j∗ + ht

)
.

Notice that for each fixed integer t, the solution j∗ runs through every
residue modulo h exactly once as k varies from 0 and h. Hence, this
last sum can be rewritten as:

g(h)n =

⌊
n−k
h

⌋∑
t=0

h−1∑
k=0

(
n

k + ht

)
=

n∑
s=0

(
n

s

)
= 2n.

• h is even integer. If n−k is odd, then the congruence (6.1) does not
have a solution. Therefore, there are no paths from (0, 0) to (n, k).
So, we only consider the case when n − k is an even integer. The
congruence (6.1) can be rewritten as:

j ≡ n− k

2
mod

h

2
.
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Then the congruence (6.1) has two distinct solutions j1 and j2, with
0 ≤ j1 < j2 < h. Moreover, the other equivalent solutions are of
the form j = j1 + ht1 with 0 ≤ t1 ≤

⌊n−j1
h

⌋
, and j = j2 + ht2 with

0 ≤ t2 ≤
⌊n−j2

h

⌋
. Note that j2 = j1 + h/2. Therefore,

p(h)n (k) =

⌊
n−j1

h

⌋∑
t1=0

(
n

j1 + ht1

)
+

⌊
n−j2

h

⌋∑
t2=0

(
n

j2 + ht2

)
=

2
⌊

n−j1
h

⌋∑
t=0

(
n

j1 + th/2

)
,

and

g(h)n =

h∑
k=0

p(h)n (k) =

⌊
n−j1

h

⌋∑
t1=0

h∑
k=0

(
n

j1 + ht1

)
+

⌊
n−j2

h

⌋∑
t2=0

h∑
k=0

(
n

j2 + ht2

)
.

Notice that for t = t1 = t2 fixed, j1 and j2 pass through every
residue modulo h exactly once as k varies from 0 to h, thus this
expression can be rewritten as:⌊

n−k
h

⌋∑
t=0

h−1∑
k=0

(
n

k + ht

)
=

n∑
s=0

(
n

s

)
= 2n.

As an example, we analyze (6.1) when h = 3 with n = 4. Clearly, (6.1)
becomes j ≡ 2 + k mod 3. So, if k = 0, we have that j∗ = 2. This and

(6.2) give p
(3)
4 (0) = 6. Similarly, if k = 1 we have that j∗ = 0 and that

p
(3)
4 (1) =

(
4
0

)
+
(
4
3

)
= 5. By symmetry, we have that p

(3)
4 (2) = p

(3)
4 (1) = 5.

Figure 11 depicts all paths counted by p
(3)
4 (1) = 5.
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Figure 11. Lattice path enumerate by p
(3)
4 (1) = 5.
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