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SAVED BY THE ROOK: A CASE OF MATCHINGS AND

HAMILTONIAN CYCLES

MARIÉN ABREU, JOHN BAPTIST GAUCI, AND JEAN PAUL ZERAFA

Abstract. The rook graph is a graph whose edges represent all the
possible legal moves of the rook chess piece on a chessboard. The prob-
lem we consider is the following. Given any set M containing pairs of
cells such that each cell of the m1×m2 chessboard is in exactly one pair,
we determine the values of the positive integers m1 and m2 for which
it is possible to construct a closed tour of all the cells of the chessboard
which uses all the pairs of cells in M and some edges of the rook graph.
This is an alternative formulation of a graph-theoretical problem pre-
sented in [1] involving the Cartesian product G of two complete graphs
Km1 and Km2 , which is, in fact, isomorphic to the m1×m2 rook graph.
The problem revolves around determining the values of the parameters
m1 and m2 that would allow any perfect matching of the complete graph
on the same vertex set of G to be extended to a Hamiltonian cycle by
using only edges in G.

1. Introduction

The rook chess piece is allowed to move in a horizontal and vertical manner
only—no diagonal moves are permissible. The rook graph represents all
the possible moves of a rook on a chessboard, with its vertices and edges
corresponding to the cells of the chessboard, and the legal moves of the rook
from one cell to the other, respectively. All the legal moves of a rook on a
m1 ×m2 chessboard give rise to the m1 ×m2 rook graph. In what follows
we consider the following problem.

Problem 1.1. Let G be a m1×m2 chessboard and let M be a set containing
pairs of distinct cells of G such that each cell of G belongs to exactly one
pair in M . Determine the values of m1 and m2 for which it is possible to
construct a closed tour H visiting all the cells of the chessboard G exactly
once, such that:
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Figure 1. The 4× 4 rook graph isomorphic to K4□K4

(i) consecutive cells in H are either a pair of cells in M , or two cells in
G which can be joined by a legal rook move; and

(ii) H contains all pairs of cells in M .

In other words, given any possible choice of a set M as defined above, is a
rook good enough to let one visit, exactly once, all the cells on a chessboard
and finish at the starting cell, in such a way that each pair of cells in M is
allowed to and must be used once? We remark that M can contain pairs of
cells which are not joined by a legal rook move.

As many other mathematical chess problems, the above problem can be
restated in graph theoretical terms. For a detailed exposition, we suggest
the reader to [6]. We first give some definitions, and for definitions and
notation not explicitly stated here, we refer the reader to [3]. All graphs
considered in the sequel will be simple, that is, loops and multiple edges are
not allowed. For any graph G with vertex set V (G) and edge set E(G), we
let KG denote the complete graph on the same vertex set V (G) of G. Let G
be of even order, that is, having an even number of vertices. A Hamiltonian
cycle of a graph G is a cycle of G which visits every vertex of G. A perfect
matching N of a graph G is a set of edges of G such that every vertex of
G belongs to exactly one edge in N . This means that no two edges in N
have a common vertex and that N is a set of independent edges covering
V (G). A Hamiltonian cycle of G can be considered as the disjoint union
of two perfect matchings of G. A perfect matching of KG is said to be
a pairing of G. In what follows we shall consider Hamiltonian cycles of
KG composed of a pairing of G and a perfect matching of G. In order to
distinguish between pairings of G, which may possibly contain edges not in
G, and perfect matchings of G, we shall depict pairing edges as green, bold
and dashed, and edges of a perfect matching of G as black and bold. To
emphasise that pairings can contain edges in G, we shall depict such edges
with a black thin line underneath the green, bold and dashed edge described
above. This can be clearly seen in Figure 2.

Following [2], we say that a graph G has the Pairing-Hamiltonian property
(the PH-property for short) if every pairing M of G can be extended to a
Hamiltonian cycle H of KG in which E(H) − M ⊆ E(G). If a graph has
the PH-property, then for simplicity we shall sometimes say that the graph
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Figure 2. A pairingM in the cubeQ3 which is not a perfect
matching of Q3 and a Hamiltonian cycle of KQ3 containing
M

is PH. In order to provide the reader with some examples of graphs having
the PH-property, we remark that the authors in [2], amongst other results,
gave a complete characterisation of the cubic graphs, that is, graphs with all
vertices having degree 3, having the PH-property. There are only three: the
complete graphK4, the complete bipartite graphK3,3 and the 3-dimensional
cube Q3 depicted in Figure 3. We note that in the first diagram of Figure 2,
one of the green, bold and dashed edges is not an edge of Q3, and thus the
diagram illustrates a possible pairing of Q3 which is not a perfect matching
of Q3. As shown in Figure 2, this pairing can be extended to a Hamiltonian
cycle of KQ3 by using edges of Q3. The same argument can be repeated
for all pairings of the three graphs shown in Figure 3; hence the reason why
they have the PH-property. A similar property to the PH-property is the
PMH-property, short for the Perfect-Matching-Hamiltonian property. See [1]
for a more detailed introduction. A graph is said to have the PMH-property,
if every perfect matching M of G can be extended to a Hamiltonian cycle
H of KG in which E(H)−M ⊆ E(G). We note that in this case, H would
also be a Hamiltonian cycle of G itself. In other words, the PMH-property
is equivalent to the PH-property restricted to pairings of G which are also
perfect matchings of G. Thus, the PMH-property is a somewhat weaker
property than the PH-property.
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Figure 3. The only cubic graphs having the PH-property

The Cartesian product G□G′ of two graphs G and G′ is a graph whose
vertex set is the Cartesian product V (G)× V (G′) of V (G) and V (G′). Two
vertices (x, x′) and (y, y′) are adjacent precisely if x = y and x′y′ ∈ E(G′),
or xy ∈ E(G) and x′ = y′. Thus,

V (G□G′) = {(x, x′) : x ∈ V (G) and x′ ∈ V (G′)},
and

E(G□G′) = {(x, x′)(y, y′) : x = y, x′y′ ∈ E(G′), or xy ∈ E(G), x′ = y′}.
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The m1 ×m2 rook graph is in fact isomorphic to the Cartesian product of
the complete graphs Km1 and Km2 , denoted by Km1□Km2 .

Another result in [2] which we shall also be using later on is the following.

Theorem 1.2 ([2]). The Cartesian product of a complete graph Km (m
even and m ≥ 6) and a path Pq (q ≥ 1) has the PH-property.

However, this was not the first time that pairings extending to Hamilton-
ian cycles were studied. In 2007, Fink [4] proved what we believe is one of the
most significant results in this area so far: for every n ≥ 2, the n-dimensional
hypercube is PH, thus answering a conjecture made by Kreweras [5]. The
proof of the result, although technical, is very short and elegant.

With these notions in place, we can restate Problem 1.1 as follows.

Problem 1.3. Let G be the m1×m2 rook graph, or equivalently Km1□Km2.
Determine for which values of m1 and m2 does G have the PH-property.

Clearly, in order for Km1□Km2 to admit a pairing, at least one of m1

and m2 must be even, and without loss of generality, in the sequel we shall
tacitly assume that m1 is even.

We recall that the line graph L(G) of a graph G is the graph whose
vertices correspond to the edges of G, and two vertices of L(G) are adjacent
if the corresponding edges in G are incident to a common vertex. The
m1 × m2 rook graph, or equivalently Km1□Km2 , can also be seen as the
line graph of the complete bipartite graph Km1,m2 . The authors in [1] give
some sufficient conditions for a graph G in order to guarantee that its line
graph L(G) has the PMH-property. Amongst other results, they show that
the line graph of complete graphs Kn, for n ≡ 0, 1 (mod 4), has the PMH-
property, and that, by a similar reasoning, L(Km,m) has the PMH-property
for every even m ≥ 50. In Section 2, we determine for which values m1 and
m2 does L(Km1,m2) admit the PH-property. This gives a complete solution
to Problem 1.3.

2. Main result

In this section we give a complete solution to Problem 1.3, summarised
in the following theorem.

Theorem 2.1. Let m1 be an even integer and let m2 ≥ 1. The m1 × m2

rook graph does not have the PH-property if and only if m1 = 2 and m2 is
odd.

Proof. When m2 = 1, Km1□K1 is Km1 and the result clearly follows. Con-
sequently, we shall assume that m2 > 1. By Theorem 1.2, Km1□Km2 is
PH when m1 ≥ 6, since Km1□Km2 contains Km1□Pm2 , and, in general, if a
graph contains a spanning subgraph which is PH, then the initial graph is
itself PH.

So consider the cases when m1 = 2 or 4. For m1 = 2, Km1□Km2 is PH if
and only if m2 ≡ 0 (mod 2). In fact, if m2 is odd, then the pairing consisting
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of the m2-edge-cut between the two copies of Km2 cannot be extended to a
Hamiltonian cycle, as can be seen in Figure 4. If m2 is even, then the result
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Figure 4. A pairing in K2□K3 which cannot be extended
to a Hamiltonian cycle

follows once again by Theorem 1.2 when m2 ≥ 6. If m2 = 2, then the result
easily follows, and when m2 = 4, K2□K4 is PH because the 3-dimensional
cube Q3 is a spanning subgraph of K2□K4 and has the PH-property by
Fink’s result in [4] (also referred to previously).

What remains to be considered is the case when m1 = 4 and m2 ≥ 3.
The graph K4□K4 contains C4□C4, the 4-dimensional hypercube Q4, which
is PH ([4]), and for m2 ≥ 6 and m2 even, the result follows once again by
Theorem 1.2. Therefore, what remains to be shown is the case when m2 ≥ 3
and m2 is odd, which is settled in the following technical lemma. □

Lemma 2.2. For every odd m ≥ 3, the 4 × m rook graph has the PH-
property.

Proof. Let the 4 × m rook graph K4□Km be denoted by G. We let the
vertex set of G be {ai, bi, ci, di : i ∈ [m]}, such that for each i, the vertices
ai, bi, ci, di induce a complete graph on four vertices, denoted by Ki

4, and the
vertices represented by the same letter induce a Km. Let M be a pairing of
G. We consider two cases:

Case 1. M does not induce a perfect matching in each Ki
4; and

Case 2. M induces a perfect matching in each Ki
4.

We start by considering Case 1, and without loss of generality assume
that |M ∩ E(K1

4 )| < 2. If we delete all the edges having exactly one end-
vertex in K1

4 from G, then we obtain two components G1 and G2 isomorphic
to K1

4 and K4□Km−1, respectively. Since G1 is of even order and M∩E(G1)
is not a perfect matching of this graph, G1 has an even number (two or four)
of vertices which are unmatched by M ∩ E(G1).

We pair these unmatched vertices such that M ∩E(G1) is extended to a
perfect matching M1 of G1. By a similar reasoning, M ∩ E(G2) does not
induce a pairing of G2 and the number of vertices in G2 which are unmatched
by M ∩E(G2) is again two or four. Without loss of generality, let a1, b1 be
two vertices in G1 unmatched by M ∩ E(G1) such that a1b1 ∈ M1, and let
x, y be the two vertices in G2 such that a1x and b1y are both edges in the
pairing M of G. We extend M ∩ E(G2) to a pairing M2 of G2 by adding
the edge xy to M ∩ E(G2), and we repeat this procedure until all vertices
in G2 are matched. Since m − 1 is even, G2 has the PH-property and so
M2 can be extended to a Hamiltonian cycle H2 of KG2 . We extend H2 to
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a Hamiltonian cycle of G containing M as follows. If c1d1 ∈ M ∩ E(G1),
then we replace the edge xy in H2 by the edges xa1, a1d1, d1c1, c1b1, b1y, as
in Figure 5. Otherwise, c1d1 ∈ M1 − (M ∩ E(G1)), and so there exist two
vertices u, v in G2 such that c1u and d1v belong to the initial pairing M ,
and uv belongs to M2. In this case, we replace the edges xy and uv in H2

by the edges xa1, a1b1, b1y, and uc1, c1d1, d1v, respectively. In either case,
H2 is extended to a Hamiltonian cycle of G containing the pairing M , as
required.
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Figure 5. An illustration of the inductive step in Case 1
when m2 = 3

Next, we move on to Case 2, that is, when M induces a perfect matching
in each Ki

4. This case is true by Proposition 1 in [2], however, here we
adopt a constructive and more detailed approach highlighting the very useful
technique used in [4]. There are three different ways how M can intersect
the edges of Ki

4, namely M ∩ E(Ki
4) can either be equal to {aibi, cidi},

{aici, bidi}, or {aidi, bici}. The number of 4-cliques intersected by M in
{aibi, cidi} is denoted by νabcd, and we define νacbd and νadbc in a similar way.

Without loss of generality, we shall assume that νabcd ≥ νacbd ≥ νadbc . We

shall also assume that the first νabcd 4-cliques in {Ki
4 : i ∈ [m]} are the ones

intersected by M in {aibi, cidi}, and, if νadbc ̸= 0, then the last νadbc 4-cliques
are the ones intersected by M in {aidi, bici}. This can be seen in Figure 6,
in which “unnecessary” curved edges of G are not drawn so as to render the
figure more clear.
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Figure 6. G when νabcd = 2, νacbd = 2 and νadbc = 1

When νabcd = 1, we have that νacbd = νadbc = 1, and in this case it is easy
to see that M can be extended to a Hamiltonian cycle of KG, for example
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(a1, b1, c1, d1, d3, a3, c3, b3, b2, d2, c2, a2). We remark that this is the only time
when all the 4-cliques are intersected differently by M . Therefore, assume
νabcd ≥ 2. First, let νabcd = 2. If νadbc = 0, then νacbd = 1 and it is easy to
see that M can be extended to a Hamiltonian cycle of KG, for example
(a1, b1, b2, a2, a3, c3, b3, d3, d2, c2, c1, d1). The only other possibility is to have
νacbd = 2 and νadbc = 1, and once again M can be extended to a Hamiltonian
cycle of KG, as Figure 6 shows.

Thus, we can assume that νabcd ≥ 3. Let r = νabcd + νacbd and let r′ be the
largest even integer less than or equal to r. Moreover, let G1 be the subgraph
of G induced by the vertices {bi, ci : i ∈ [m]} that is isomorphic to K2□Km

and let M1 = {b1b2, . . . , br′−1br′ , c1c2, . . . , cr′−1cr′ , br′+1cr′+1, . . . , bmcm}.
Clearly, M1 is a pairing of G1 which contains M ∩ E(G1), and can be ex-
tended to a Hamiltonian cycle H1 of KG1 as follows: (b1, b2, . . . , br′ , br′+1,
cr′+1, cr′+2, br′+2, . . . , bmcm, cr′ , cr′−1, . . . , c1). This is depicted in Figure 7.
We note that if r′ = m−1, then we do not consider the index r′+2 in the last
sequence of vertices forming H1. Deleting the edges belonging to M1 −M
from H1 gives a collection of r disjoint paths P = {P i : i ∈ [r]}. We note
that the union of all the end-vertices of the paths in P give {bi, ci : i ∈ [r]}.
If we look at the example given in Figure 7, then the only path in P on
more than two vertices is the path b8b9c9c10b10b11c11c8.
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Figure 7. G1 and G2 when νabcd = 4, r = r′ = 8, and m = 11
in Case 2

Next, letG2 be the subgraph ofG induced by the vertices {ai, di : i ∈ [m]},
which is isomorphic to K2□Km as G1. For every i ∈ [r], we let ui and vi be
the two end-vertices of the path P i, and we let xi and yi be the two vertices
in G2 such that uixi and viyi both belong to M . We remark that {ai, di : i ∈
[r]} = {xi, yi : i ∈ [r]}. Let M2 = {x1y1, . . . , xryr}∪ (M ∩E(G2)). If r = m,
then M ∩E(G2) is empty, otherwise it consists of {ar+1dr+1, . . . , amdm}. If
νabcd is even as in Figure 7, then M2 contains:

{a1d1, a2a3, . . . , aνabcd−2aνabcd−1, aνabcd
dνabcd+1, d2d3, . . . , dνabcd−2dνabcd−1, dνabcd

aνabcd+1}.

Otherwise, M2 contains {a1d1, a2a3, . . . , aνabcd−1aνabcd
, d2d3, . . . , dνabcd−1dνabcd

}.
Moreover, if r is even, then ardr ∈ M2. In either case, M2 can be extended
to a Hamiltonian cycle H2 of KG2 , as can be seen in Figure 7, which shows
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the case when νabcd and r are both even. We remark that the green, bold and
dashed edges in the figure are the ones in M1 and M2. If for each i ∈ [r],
then we replace the edges xiyi in H2 by xiui, the path P i, and viyi as in
Figure 8, a Hamiltonian cycle of KG containing M is obtained, proving our
theorem. □
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Figure 8. Extending H1 and H2 from Figure 7 to a Hamil-
tonian cycle of KG containing M

3. Vertical and diagonal moves only—no horizontal moves
permissible

In the next theorem we present a rather simple proof to show that the
complete bipartite graph having equal part sizes is PH. Note that, if m ̸= n,
then Km,n has no perfect matchings.

Theorem 3.1. For every n ≥ 2, the complete bipartite graph Kn,n has the
PH-property.

Proof. Let {u1, . . . , un} and {w1, . . . , wn} be the partite sets of Kn,n. We
proceed by induction on n. When n = 2, result holds since K2,2 ≃ K2□K2.
So assume n > 2 and let M be a pairing of Kn,n. If M = {uiwi : i ∈ [n]},
then M easily extends to a Hamiltonian cycle of the underlying complete
graph on 2n vertices. Thus, assume there exists j ∈ [n] such that ujwj ̸∈ M .
Without loss of generality, let j be equal to n. Then, M contains the edges
xun and ywn, for some x and y belonging to the set Z = {ui, wi : i ∈
[n − 1]}. We note that Z induces the complete bipartite graph Kn−1,n−1

with partite sets {u1, . . . , un−1} and {w1, . . . , wn−1}, which we denote by
G′. The set of edges M ′ = M ∪ xy − xun − ywn is a pairing of G′, and so,
by induction on n, M ′ can be extended to a Hamiltonian cycle H ′ of KG′ .
This Hamiltonian cycle can be extended to a Hamiltonian cycle H of the
underlying complete graph of Kn,n by replacing the edge xy in H ′, by the
edges xun, unwn, wny. The resulting Hamiltonian cycle H clearly contains
M , proving our theorem. □

Although the statement and proof of Theorem 3.1 are quite easy, they
may lead to another intriguing problem. From Theorem 2.1 we know that
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the rook is not good enough to solve our problem on a 2 ×m2 chessboard
when m2 is odd. However, the above result shows that if the rook was
somehow allowed to do only vertical and diagonal moves instead of vertical
and horizontal moves only, then it would always be possible to perform a
closed tour on a 2×m2 chessboard in such a way that each pair of cells in M
is allowed to and must be used once, no matter the choice of M . In general,
we denote the graph arising from all the possible vertical and diagonal moves
on a m1×m2 chessboard as Vm1Dm2 , with m1 corresponding to the vertical
axis of the chessboard. We recall that no horizontal moves are permissible,
and in this sense, Vm1Dm2 can be seen as the graph complement of the
disjoint union of m1 paths each on m2 vertices (see for example Figure 9).

b
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⊕⊗

⊗

⊗ bc

bc

bc

bc⊗⊕

Figure 9. V4D4 is the graph complement of the above
graph. In particular, each set of four vertices with the same
vertex shape induces a 4-clique in V4D4.

As before, for Vm1Dm2 to be PH, at least one of m1 or m2 must be even.
Moreover, we remark that when m2 ≤ m1, the graph Vm1Dm2 contains
Km1□Km2 as a spanning subgraph. This can be seen in Figure 9, where each
set of four vertices having the same vertex shape induces a 4-clique in V4D4,
which together with all the vertical edges of V4D4 give K4□K4. Finally, we
also observe that Vm1Dm2 is isomorphic to the co-normal product of Km1

andKm2 , where the latter is the empty graph onm2 vertices. Recall that the
co-normal product G∗G′ of two graphs G and G′ is a graph whose vertex set
is the Cartesian product V (G)×V (G′) of V (G) and V (G′), and two vertices
(x, x′) and (y, y′) are adjacent precisely if xy ∈ E(G) or x′y′ ∈ E(G′). Thus,

V (G ∗G′) = {(x, x′) : x ∈ V (G) and x′ ∈ V (G′)},
and

E(G ∗G′) = {(x, x′)(y, y′) : xy ∈ E(G) or x′y′ ∈ E(G′)}.

We wonder for which values of m1 and m2 the graph Vm1Dm2 is PH.
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