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METRIC PROPERTIES OF INCOMPARABILITY GRAPHS

WITH AN EMPHASIS ON PATHS

MAURICE POUZET AND IMED ZAGUIA

Abstract. We describe some metric properties of incomparability
graphs. We consider the problem of the existence of infinite paths, either
induced or isometric, in the incomparability graph of a poset. Among
other things, we show that if the incomparability graph of a poset is
connected and has infinite diameter, then it contains an infinite induced
path. Furthermore, if the diameter of the set of vertices of degree at
least 3 is infinite, then the graph contains as an induced subgraph either
a comb or a kite.

1. Introduction and presentation of the results

In this paper, we highlight the special properties of incomparability graphs
by considering the behavior of paths. We consider the problem of the ex-
istence of infinite paths, either induced or isometric, in the incomparability
graph of a poset. We apply one of our results in the theory of hereditary
classes of certain permutation classes that are well quasi-ordered by embed-
dability.

The graphs we consider are undirected, simple and have no loops. That
is, a graph is a pair G ∶= (V,E), where E is a subset of [V ]2, the set of
2-element subsets of V . Elements of V are the vertices of G and elements
of E its edges. Let the graph G be given, we denote by V (G) its vertex set
and by E(G) its edge set. The complement of a graph G = (V,E) is the
graph Gc whose vertex set is V and edge set Ec ∶= [V ]2 ∖E.

Throughout, P ∶= (V,≤) denotes an ordered set (poset), that is a set V
equipped with a binary relation ≤ on V which is reflexive, antisymmetric
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and transitive. We say that two elements x, y ∈ V are comparable if x ≤ y
or y ≤ x, otherwise we say they are incomparable. The comparability graph,
respectively the incomparability graph, of a poset P ∶= (V,≤) is the undirected
graph, denoted by Comp(P ), respectively Inc(P ), with vertex set V and
edges the pairs {u, v} of comparable distinct vertices (that is, either u < v
or v < u) respectively incomparable vertices.

A result of Gallai, 1967 [7], quite famous and nontrivial, characterizes
comparability graphs among graphs in terms of obstructions: a graph G
is the comparability graph of a poset if and only if it does not contain as
an induced subgraph a graph belonging to a minimal list of finite graphs.
Since the complement of a comparability graph is an incomparability graph,
Gallai’s result yields a similar characterization of incomparability graphs.

In this paper, we consider incomparability graphs as metric spaces by
means of the distance of the shortest path. The metric properties of a
graph, notably of an incomparability graph, and metric properties of its
complement seem to be far apart. In general, metric properties of graphs
are based on paths and cycles. It should be noted that incomparability
graphs have no induced cycles of length at least five ([7]; for a short proof
see after Lemma 3.1) while comparability graphs have no induced odd cycles
but can have arbitrarily large induced even cycles.

In the sequel, we will illustrate the specificity of the metric properties of
incomparability graphs by emphasising the properties of paths.

We start with few definitions. Let G ∶= (V,E) be a graph. If A is a subset
of V , the graph G↾A ∶= (A,E∩[A]2) is the graph induced by G on A. A path
is a graph P such that there exists a one-to-one map f from the set V (P)
of its vertices into an interval I of the chain N of nonnegative integers in
such a way that {u, v} belongs to E(P), the set of edges of P, if and only
if ∣f(u) − f(v)∣ = 1 for every u, v ∈ V (P). If I is finite, say I = {1, . . . , n},
then we denote that path by Pn; its length is n − 1 (so, if n = 2, P2 is made
of a single edge, whereas if n = 1, P1 is a single vertex). We denote by P∞
the one way infinite path i.e. I = N. If x, y are two vertices of a graph
G ∶= (V,E), we denote by dG(x, y) the length of a shortest path joining x
and y if any, and dG(x, y) ∶= ∞ otherwise. This defines a distance on V ,
the graphic distance. A graph is connected if any two vertices belong to
some path. The diameter of G, denoted by δG, is the supremum of the set
{dG(x, y) ∶ x, y ∈ V }. If A is a subset of V , the graph G′ induced by G
on A is an isometric subgraph of G if dG′(x, y) = dG(x, y) for all x, y ∈ A.
The supremum of the length of induced finite paths of G, denoted by DG,
is sometimes called the (induced) detour of G [1].

The main results of the paper are presented in the next four subsections.
Section 1.5 is devoted to an application of one of our main results (Theorem
1.4). The remaining sections contain intermediate results and proofs of our
main results.
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1.1. Induced paths of arbitrarily large length in incomparability
graphs and in arbitrary graphs. We now consider the question of the
existence of infinite induced paths in incomparability graphs with an infi-
nite detour. In order to state our main result of this subsection, we need
to introduce the notions of the direct sum and the complete sum of graphs.
Let Gn ∶= (Vn,En) for n ∈ N be a family of graphs having pairwise dis-
joint vertex sets. The direct sum of (Gn)n∈N, denoted ⊕nGn, is the graph
whose vertex set is ⋃n∈N Vn and edge set ⋃n∈NEn. The complete sum of
(Gn)n∈N, denoted ∑nGn, is the graph whose vertex set is ⋃n∈N Vn and edge
set ⋃i≠j{{v, v′} ∶ v ∈ Vi ∧ v′ ∈ Vj} ∪ ⋃n∈NEn.

A necessary condition for the existence of an infinite induced path in a
graph is to have an infinite detour. On the other hand, the graphs consisting
of the direct sum of finite paths of arbitrarily large length and the complete
sum of finite paths of arbitrarily large length are (incomparability) graphs
with an infinite detour and yet do not have an infinite induced path. We
should mention that in the case of incomparability graphs, having an infinite
detour is equivalent to having a direct sum or a complete sum of finite paths
of arbitrarily large length. This is Theorem 2 from [20].

Theorem 1.1 ([20]). Let G be the incomparability graph of a poset. Then
G contains induced paths of arbitrarily large length if and only if G contains

∑n≥1Pn or ⊕n≥1Pn as an induced subgraph.

For general graphs, the statement of Theorem 1.1 is false. Indeed, in [20]
we exhibited uncountably many graphs of cardinality ℵ0, containing finite
induced paths of unbounded length and neither a direct sum nor a complete
sum of finite paths of unbounded length. In particular, these graphs do not
have an infinite induced path.

In the case of incomparability graphs of posets coverable by two chains,
having an infinite detour is equivalent to the existence of an infinite induced
path. Our first result is this.

Theorem 1.2. Let P be a poset coverable by two chains (that is totally
ordered sets). If Inc(P ), the incomparability graph of P , is connected then
the following properties are equivalent:

(i) Inc(P ) contains the direct sum of induced paths of arbitrarily large
length;

(ii) the detour of Inc(P ) is infinite;
(iii) the diameter of Inc(P ) is infinite;
(iv) Inc(P ) contains an infinite induced path.

A proof of Theorem 1.2 will be provided in section 5.
The implication (i) ⇒ (iv) of Theorem 1.2 becomes false if the condition

“coverable by two chains” is dropped (see Figure 1 for an example). Indeed,
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Example 1.3. There exists a poset with no infinite antichain whose in-
comparability graph is connected and embeds the direct sum of finite induced
paths of arbitrarily large length and yet does not have an infinite induced
path (See Figure 1).

Example 1.3 and a proof that it verifies the required properties will be
given in section 6.
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Figure 1. The Hasse diagram of a poset of width three and
its incomparability graph that has a vertex y of infinite in-
duced detour but no infinite induced path.

1.2. Infinite induced paths, combs and kites. We now consider the
question of the existence of infinite induced paths in incomparability graphs
with infinite diameter. In order to state our main result of this subsection,
we need to introduce two types of graphs: comb and kite.

Let us recall that a graph G ∶= (V,E) is a caterpillar if the graph obtained
by removing from V the vertices of degree one is a path (finite or not,
reduced to one vertex or empty). A comb is a caterpillar such that every
vertex is adjacent to at most one vertex of degree one. Incidentally, a path
on three vertices is not a comb. It should be mentioned that caterpillars
are incomparability graphs of interval orders coverable by two chains (see
Lemma 14 of [25]).

We now give the definition of a kite. This is a graph obtained from an
infinite path P∞ ∶= (xi)i∈N by adding a new set of vertices Y (finite or
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infinite). We distinguish three types of kites (see Figure 2) depending on
how the vertices of Y are adjacent to the vertices of P∞.

A kite of type (1): every vertex of Y is adjacent to exactly two vertices of
P∞ and these two vertices are consecutive in P∞. Furthermore, two distinct
vertices of Y share at most one common neighbour in P∞.

A kite of type (2): every vertex of Y is adjacent to exactly three vertices of
P∞ and these three vertices must be consecutive in P∞. Furthermore, for all
x,x′ ∈ Y , if x is adjacent to xi, xi+1, xi+2 and x′ is adjacent to xi′ , xi′+1, xi′+2
then i + 2 ≤ i′ or i′ + 2 ≤ i.

A kite of type (3): every vertex of Y is adjacent to exactly two vertices
of P∞ and these two vertices must be at distance two in P∞. Furthermore,
for all x,x′ ∈X, if x is adjacent to xi and xi+2 and x′ is adjacent to xi′ and
xi′+2 then i + 2 ≤ i′ or i′ + 2 ≤ i.

...(1)

...(2)

...(3)

Figure 2. A comb and the three types of kites.

Theorem 1.4. If G is a connected incomparability graph with infinite di-
ameter. Then

(1) Every vertex of G has an induced path of infinite diameter starting at
it.

(2) If the set of vertices of degree at least 3 in G has infinite diameter,
then G contains an induced comb or an induced kite having an infinite
diameter and infinitely many vertices of degree at least 3.

Theorem 1.4 will be proved in section 9 (an important ingredient of its
proof is Theorem 1.10 below).

1.3. Infinite isometric paths in incomparability graphs. A basic re-
sult about the existence of an infinite isometric path in a graph is König’s
lemma [9]. Recall that a graph is locally finite if every vertex has a finite
degree.

Theorem 1.5 ([9]). Every connected, locally finite, infinite graph contains
an isometric infinite path.
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Moreover,

Theorem 1.6. If a connected graph G has an infinite isometric path, then
every vertex has an isometric path starting at it.

Theorem 1.6 was proved by Watkins in the case of locally finite graphs
(see [23], Lemma 3.2). The general case is contained in Theorem 3.5 and
Lemma 3.7 of [16].

A necessary condition for a graph to have an infinite isometric path is to
have infinite diameter. Note that a graph has an infinite diameter if and
only if it has finite isometric paths of arbitrarily large length. The existence
of such paths does not necessarily imply the existence of an infinite isometric
path even if the graph is connected.
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Figure 3. The Hasse diagram of a poset of width two whose
incomparability graph is connected, has infinite diameter but
no infinite isometric path.

Example 1.7. There exists a poset coverable by two chains whose incompa-
rability graph is connected, having infinite diameter and no isometric infinite
path (see Figure 3).

We provide Example 1.7 and a proof that it verifies the required properties
in section 10.

We obtain a positive result in the case of incomparability graphs of inter-
val orders with no infinite antichains. A poset P is an interval order if P is
isomorphic to a subset J of the set Int(C) of nonempty intervals of a chain
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C, ordered as follows: if I, J ∈ Int(C), then
(1.1) I < J if x < y for every x ∈ I and every y ∈ J.

Interval orders were considered in Fishburn [5, 4] and Wiener [24] in
relation to the theory of measurement.

Theorem 1.8. If P is an interval order with no infinite antichains so that
Inc(P ) is connected and has infinite diameter, then Inc(P ) has an infinite
isometric path.

The proof of Theorem 1.8 will be provided in section 11.
The conclusion of Theorem 1.8 becomes false if the condition “no infinite

antichains” is removed. Indeed,

Example 1.9. There exists an interval order whose incomparability graph
is connected, has an infinite diameter and no infinite isometric path.

Example 1.9 and a proof that it verifies the required properties will be
provided in section 11.

1.4. Convexity and isometry of metric balls in incomparability
graphs. In this subsection, we compare the notions of order convexity and
metric convexity with respect to the distance on the incomparability graph
of a poset. Before stating our result we need a few definitions.

An initial segment of a poset P ∶= (V,≤) is any subset I of V such that
x ∈ V , y ∈ I and x ≤ y imply x ∈ I. If X is a subset of V , the set

↓X ∶= {y ∈ P ∶ y ≤ x for some x ∈X}
is the least initial segment containing X, we say that it is generated by X.
If X is a one element set, say X = {x}, we denote by ↓ x, instead of ↓ X,
this initial segment and say that it is principal. Final segments are defined
similarly.

Let P ∶= (V,≤) be a poset. A subset X of V is order convex or convex
if for all x, y ∈ X, [x, y] ∶= {z ∶ x ≤ z ≤ y} ⊆ X. For instance, initial and
final segments of P are convex. Note that any intersection of convex sets is
also convex. In particular, the intersection of all convex sets containing X,
denoted ConvP (X), is convex. This is the smallest convex set containing
X. Note that

ConvP (X) = {z ∈ P ∶ x ≤ z ≤ y for some x, y ∈X} =↓X∩ ↑X.

Let G ∶= (V,E) be a graph. We equip it with the graphic distance dG.
A ball is any subset BG(x, r) ∶= {y ∈ V ∶ dG(x, y) ≤ r} where x ∈ V, r ∈ N.
A subset of V is convex w.r.t. the distance dG if this is an intersection of
balls. The least convex subset of G containing X is

ConvG(X) ∶= ⋂
X⊆BG(x,r)

BG(x, r).

Let X ⊆ V and r ∈ N. Define

BG(X,r) ∶= {v ∈ V ∶ dG(v, x) ≤ r for some x ∈X}.
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With all needed definitions in hand, we are now ready to state the follow-
ing theorem.

Theorem 1.10. Let P ∶= (V,≤) be a poset, G be its incomparability graph,
X ⊆ V and r ∈ N.
(a) If X is an initial segment, respectively a final segment, respectively an

order convex subset of P then BG(X,r) is an initial segment, respec-
tively a final segment, respectively an order convex subset of P . In
particular, for all x ∈ V and r ∈ N, BG(x, r) is order convex;

(b) If X is order convex then the graph induced by G on BG(X,r) is an
isometric subgraph of G. In particular, if X is included into a connected
component of G then the graph induced by G on BG(X,r) is connected.

It follows from Theorem 1.10 that every ball in an incomparability graph
G of a poset is order convex and that the graph induced on it is an isometric
subgraph of G.

The proof of Theorem 1.10 is provided in section 8.

1.5. An application of Theorem 1.4 in the theory of well quasi or-
der. The purpose of this subsection is to provide an application of Theorem
1.4 in the theory of well quasi order. Let us first recall some notions from
the Theory of Relations [6]. A graph G is embeddable in a graph G′ if G
is isomorphic to an induced subgraph of G′. The embeddability relation is
a quasi order on the class of graphs. A class C of graphs, finite or not, is
hereditary if it contains every graph which embeds in some member of C.
The age of a graph G is the collection of finite graphs, considered up to
isomorphy, that embed in G (or alternatively, that are isomorphic to some
induced subgraph of G). We recall that an age of finite graphs, and more
generally a class of finite graphs, is well quasi ordered (w.q.o. for short) if it
contains no infinite antichain, that is an infinite set of graphs Gn pairwise
incomparable with respect to embeddability. There are several results about
w.q.o. hereditary classes of graphs, for examples see [12, 11], [13] and [15].

We recall that a graph G ∶= (V,E) is a permutation graph if there is a
linear order ≤ on V and a permutation σ of V such that the edges of G are
the pairs {x, y} ∈ [V ]2 which are reversed by σ. The study of permutations
graphs became an important topic due to the Stanley-Wilf Conjecture, for-
mulated independently by Richard P. Stanley and Herbert Wilf in the late
1980s, and solved positively by Marcus and Tardös [14] 2004. It was proved
by Lozin and Mayhill 2011 [13] that a hereditary class of finite bipartite
permutation graphs is w.q.o. by embeddability if and only there is a bound
on the length of the double-ended forks (see Figure 4) it may contain (for an
alternative proof see [19]). In [19], we extend the results of Lozin and May-
hill [13] and present an almost exhaustive list of properties of w.q.o. ages of
bipartite permutation graphs. One of our results is a positive answer, in the
case of an age of bipartite permutation graphs, to a long-standing unsolved
question by the first author, of whether the following equivalence is true
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in general: an age is not w.q.o. if and only if it contains 2ℵ0 subages (see
subsection I-4 Introduction à la comparaison des âges, page 67, [17]). This
result, Theorem 1.11 below, is a consequence of (2) of Theorem 1.4.

Figure 4. Double-ended forks: an antichain of finite graphs
with respect to embeddability.

Theorem 1.11 ([19]). Let C be an age that consists of finite bipartite per-
mutation graphs. Then C is not w.q.o. if and only if it contains the age of
a direct sum ⊕i∈I DFi of double ended forks of arbitrarily large length for
some infinite subset I of N. In particular, if C is not w.q.o., it contains 2ℵ0

subages which are not w.q.o.

A proof is given in [19]. For completeness, we provide the proof here.

Proof. The set of double-ended forks forms an infinite antichain, hence if C
contains the direct sum ⊕i∈I DFi of double-ended forks of arbitrarily large
length for some infinite subset I of N, it is not w.q.o. Conversely, suppose C
is not w.q.o. Then it embeds double-ended forks of unbounded length. This
important result is due Lozin and Mayhill (see Theorem 7 in [13]). Let G
be a graph with Age(G) = C. We consider two cases:
(1) Some connected component of G, say Gi, embeds double forks of un-
bounded length. In this case, the detour of Gi, that is the supremum of the
lengths of induced paths in Gi, is unbounded. Since Gi is the incomparabil-
ity graph of a poset of width at most two, its diameter is unbounded (See
Corollary 4.6). In fact, since the vertices of degree 3 in the forks are end
vertices of induced paths, the diameter of the set of vertices of degree 3 in
Gi is unbounded. Thus from (2) of Theorem 1.4, Gi embeds an induced
caterpillar or an induced kite with infinitely many vertices of degree at least
3. Since G is bipartite, it can only embed a kite of type (3). As it is easy
to see, this caterpillar or that kite embeds a direct sum ⊕i∈I DFi of double-
ended forks of arbitrarily large length, as required.
(2) If the first case does not hold, there are infinitely many connected com-
ponents Gi, each embedding some double-ended fork DFi, and the length of
these double-ended forks is unbounded. This completes the proof of Theo-
rem 1.11. □

The paper is organised as follows. In section 2 we present some prereq-
uisites on graphs and posets. In section 3 we state a fundamental lemma
on paths in incomparability graphs and some consequences. In section 4 we
present few metric properties of posets of width 2. In section 5 we present
the proof of Theorem 1.2. In section 6 we present Example 1.3. In section
7 we present various metric properties of incomparability graphs. In section
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8 we present a proof of Theorem 1.10 and some consequences. In section
9 we give a proof of Theorem 1.4 (an important ingredient of the proof is
Theorem 1.10). In section 10 we present Example 1.7. Finally, a proof of
Theorem 1.8 and Example 1.9 are provided in section 11.

2. Graphs and Posets

2.1. Posets. Throughout, P ∶= (V,≤) denotes an ordered set (poset). The
dual of P denoted P ∗ is the order defined on V as follows: if x, y ∈ V , then
x ≤ y in P ∗ if and only if y ≤ x in P . Let P ∶= (V,≤) be a poset. We recall
that two elements x, y ∈ V are comparable if x ≤ y or y ≤ x, otherwise, we say
they are incomparable, denoted x ∥ y. A set of pairwise comparable elements
is called a chain. On the other hand, a set of pairwise incomparable elements
is called an antichain. The width of a poset is the maximum cardinality of
its antichains (if the maximum does not exist, the width is set to be infinite).
Dilworth’s celebrated theorem on finite posets [2] states that the maximum
cardinality of an antichain in a finite poset equals the minimum number
of chains needed to cover the poset. This result remains true even if the
poset is infinite but has finite width. If the poset P has width 2 and the
incomparability graph of P is connected, the partition of P into two chains is
unique (picking any vertex x, observe that the set of vertices at odd distance
from x and the set of vertices at even distance from x form a partition into
two chains). According to Szpilrajn [21], every order on a set has a linear
extension. Let P ∶= (V,≤) be a poset. A realizer of P is a family L of linear
extensions of the order of P whose intersection is the order of P . Observe
that the set of all linear extensions of P is a realizer of P . The dimension of
P , denoted dim(P ), is the least cardinal d for which there exists a realizer of
cardinality d [3]. It follows from the Compactness Theorem of First Order
Logic that an order is an intersection of at most n linear orders (n ∈ N) if
and only if every finite restriction of the order has this property. Hence the
class of posets with dimension at most n is determined by a set of finite
obstructions, each obstruction is a poset Q of dimension n+ 1 such that the
deletion of any element of Q leaves a poset of dimension n; such a poset is
said critical. For n ≥ 2 there are infinitely many critical posets of dimension
n + 1. For n = 2 they have been described by Kelly [8]; for n ≥ 3, the task is
considered as hopeless.

2.1.1. Comparability and incomparability graphs, permutation graph. A
graph G ∶= (V,E) is a comparability graph if the edge set is the set of com-
parabilities of some order on V . From the Compactness Theorem of First
Order Logic, it follows that a graph is a comparability graph if and only
if every finite induced subgraph is a comparability graph. Hence, the class
of comparability graphs is determined by a set of finite obstructions. The
complete list of minimal obstructions was determined by Gallai [7]. A graph
G ∶= (V,E) is a permutation graph if there is a linear order ≤ on V and a
permutation σ of V such that the edges of G are the pairs {x, y} ∈ [V ]2
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which are reversed by σ. Denoting by ≤σ the set of oriented pairs (x, y)
such that σ(x) ≤ σ(y), the graph is the comparability graph of the poset
whose order is the intersection of ≤ and the opposite of ≤σ. Hence, a per-
mutation graph is the comparability graph of an order intersection of two
linear orders, that is the comparability graph of an order of dimension at
most two [3]. If the graph is finite, the converse holds. Hence, as it is well
known, a finite graph G is a permutation graph if and only if G and Gc are
comparability graphs [3]; in particular, a finite graph is a permutation graph
if and only if its complement is a permutation graph. Via the Compactness
Theorem of First Order Logic, an infinite graph is the comparability graph
of a poset intersection of two linear orders if and only if each finite induced
graph is a permutation graph (sometimes these graphs are called permu-
tation graphs, while there is no possible permutation involved). For more
about permutation graphs, see [10].

2.1.2. Lexicographical sum. Let I be a poset such that ∣I ∣ ≥ 2 and let

{Pi ∶= (Vi,≤i)}i∈I
be a family of pairwise disjoint nonempty posets that are all disjoint from
I. The lexicographical sum ∑i∈I Pi is the poset defined on ⋃i∈I Vi by x ≤ y if
and only if

(a) There exists i ∈ I such that x, y ∈ Vi and x ≤i y in Pi; or
(b) There are distinct elements i, j ∈ I such that i < j in I, x ∈ Vi and y ∈ Vj .

The posets Pi are called the components of the lexicographical sum and
the poset I is the index set. If I is a totally ordered set, then ∑i∈I Pi is called
a linear sum. On the other hand, if I is an antichain, then ∑i∈I Pi is called
a direct sum. Henceforth we will use the symbol ⊕ to indicate a direct sum.

The decomposition of the incomparability graph of a poset into connected
components is expressed in the following lemma which belongs to the folklore
of the theory of ordered sets.

Lemma 2.1. If P ∶= (V,≤) is a poset, the order on P induces a total order on
the set Connect(P ) of connected components of Inc(P ), the incomparability
graph of P , and P is the lexicographical sum of these components indexed
by the chain Connect(P ). In particular, if ⪯ is a total order extending the
order ≤ of P , each connected component A of Inc(P ) is an interval of the
chain (V,⪯).

The next two sections introduce the necessary ingredients to the proof of
Theorem 1.2.

3. A fundamental lemma

We state an improvement of I.2.2 Lemme, p.5 of [18].

Lemma 3.1. Let x, y be two vertices of a poset P with x < y. If x0, . . . , xn
is an induced path in the incomparability graph of P from x to y then xi < xj
for all j − i ≥ 2.
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Proof. Induction on n. If n ≤ 2 the property holds trivially. Suppose n ≥ 3.
Taking out x0, induction applies to x1, . . . , xn. Similarly, taking out xn,
induction applies to x0, . . . , xn−1. Since the path from x0 to xn is induced,
x0 is comparable to every xj with j ≥ 2 and xn is comparable to every xj with
j < n − 1. In particular, since n ≥ 3, x0 is comparable to xn−1. Necessarily,
x0 < xn−1. Otherwise, xn−1 < x0 and then by transitivity xn−1 < xn which is
impossible since {xn−1, xn} is an edge of the incomparability graph. Thus,
we may apply induction to the path from x0, . . . , xn−1 and get x0 < xj for
every j > 2. Similarly, we get x1 < xn and via the induction applied to the
path from x1 to xn, xj < xn for j < n − 1. The stated result follows. □

An immediate corollary is this.

Corollary 3.2. Let P be a poset such that Inc(P ) is connected and let a < b.
If (a, b) is a covering relation in P , then 2 ≤ dInc(P )(a, b) ≤ 3.

Another consequence of Lemma 3.1 is that incomparability graphs have
no induced cycles of length at least five [7]. Indeed, let P be a poset and
let x0, . . . , xl, x0 be an induced cycle of Inc(P ). Suppose for a contradic-
tion that l ≥ 4. We will apply Lemma 3.1 successively to the induced paths
x0, . . . , xl−1 and x1, . . . , xl and will derive a contradiction. We may assume
without loss of generality that x0 < xl−1. It follows from Lemma 3.1 applied
to x = x0 and y = xl−1 that x0 < xl−2 (recall that l ≥ 4) and x1 < xl−1. We
now consider the induced path x1, . . . , xl. Then x1 and xl are comparable.
It follows from x1 < xl−1 and Lemma 3.1 applied to x = x1 and y = xl that
x1 < xl. Hence, xl−2 < xl. By transitivity we get x0 < xl which is impossible.

Here is yet another consequence of Lemma 3.1.

Proposition 3.3. Let P ∶= (V,≤) be a poset. A sequence a0, . . . , an, . . . of
vertices of V forms an induced path in Inc(P ) originating at a0 if and only if
for all i ∈ N, ai, ai+1, ai+2, ai+3 is an induced path of Inc(P ) with extremities
ai, ai+3.

Proof. ⇒ Obvious.
⇐ Suppose that for all i ∈ N, ai, ai+1, ai+2, ai+3 is an induced path with
extremities ai, ai+3. We prove by induction that for all n ∈ N, a0, . . . , an
is an induced path in G. Suppose a0, . . . , an is an induced path in G and
assume without loss of generality that a0 < an. Then ai < an for all i ≤ n− 2
(follows from Lemma 3.1). From an−2, an−1, an, an+1 is an induced path
with extremities an−2, an+1 and an−2 < an we deduce that an−2 < an+1 and
an−1 < an+1. Therefore, ai < an+1 for all i ≤ n−1 proving that a0, . . . , an, an+1
is an induced path in G. □

We should mention that the value of 3 from the previous proposition is
the best possible. Indeed, if P is the direct sum of two copies of the chain of
natural numbers, then Inc(P ) is a complete bipartite graph and every path
on 3 vertices is an induced path. Yet an infinite sequence of vertices that
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alternates between the copies of N does not constitute an infinite induced
path of Inc(P ).

4. Posets of width 2 and their distances

4.1. Posets of width 2 and bipartite permutation graphs. In this
subsection, we recall some properties about posets of width at most 2 and
permutation graphs. We start with a characterization of bipartite permu-
tation graphs, next we give some properties of the graphic distance and the
detour in comparability graphs of posets of width at most 2. We recall
the existence of a universal poset of width at most 2 [18]. We describe the
incomparability graph of a variant of this poset more appropriate for our
purpose.

Figure 5. Critical posets of dimension 3 and height 2.

We note that a poset P of width at most 2 has dimension at most 2,
hence its comparability graph is an incomparability graph. As previously
mentioned, a finite graph G is a comparability and incomparability graph
if and only if it is a permutation graph. Incomparability graphs of finite
posets of width 2 coincide with bipartite permutation graphs. For arbitrary
posets, the characterization is as follows.

Lemma 4.1. Let G be a graph. The following are equivalent.

(i) G is bipartite and is the comparability graph of a poset of dimension
at most two;

(ii) G is bipartite and embeds no even cycles of length at least six and none
of the comparability graphs of the posets depicted in Figure 5.

(iii) G is the incomparability graph of a poset of width at most 2.
(iv) G is a bipartite incomparability graph.

Proof. (i) ⇔ (ii). If G is finite, this is Theorem 1 of [22]. Hence, the equiv-
alence between (i) and (ii) holds for the restrictions of G to every finite
set F of vertices. This gives immediately the implication (i) ⇒ (ii). For
the converse implication, we get that every finite induced subgraph of G is
bipartite and the comparability graph of a poset of dimension at most two.
The Compactness Theorem of First Order Logic implies that these proper-
ties extend to G.
(iii) ⇒ (i). Suppose G is the incomparability graph of a poset of width at
most 2. Then G has no 3-element cycles. Also, G has no induced odd cycles
of length at least five (see [7], section 3.8, Table 5). This shows that G is
bipartite. Since P is coverable by two chains it has order dimension two (the
dimension of a poset is at most its width [2]) and therefore its incompara-
bility graph is also a comparability graph [3]. Thus G is a comparability
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graph of a poset of dimension at most two.
(i) ⇔ (iv) follows from the fact that a graph G is the incomparability graph
of a poset of dimension at most 2 if and only if this is the comparability
graph of a poset of dimension at most 2 [3]. (iii) ⇔ (iv). Implication
(iv) ⇒ (iii) is trivial. For the converse, suppose that G is a bipartite in-
comparability graph of a poset P , apply Dilworth’s theorem [2] or pick any
vertex x, and observe that the set of vertices at odd distance from x and
the set of vertices at even distance from x form a partition of P into two
chains, hence G is bipartite. □

We should mention the following result (this is essentially Lemma 14 from
[25]) which states that a bipartite permutation graph without cycles must
embed a caterpillar. A key observation is that if a vertex has at least three
neighboring vertices in Inc(P ), then at least one has degree one. Otherwise,
Inc(P ) would have a spider (see Figure 5) as an induced subgraph, which is
impossible.

Lemma 4.2. Let P be a poset of coverable by two chains. Then the following
properties are equivalent.

(i) The incomparability graph of P has no cycles of length three or four.
(ii) The incomparability graph of P has no cycle.
(iii) The connected components of the incomparability graph of P are cater-

pillars.

4.2. Detour of bipartite permutation graphs. We are going to evaluate
the detour of connected components of the incomparability graph of a poset
of width at most 2.

Let P ∶= (V,≤) be a poset of width 2. Suppose that Inc(P ) is connected.
In this case, the partition of P into two chains is unique. An alternating se-
quence in P is any finite monotonic sequence (x0, . . . , xi, . . . , xn) of elements
of V (i.e., increasing or decreasing) such that no two consecutive elements
xi and xi+1 belong to the same chain of the partition. The integer n is the
oscillation of the sequence; x and y are its extremities.

We recall that the oscillation of an alternating sequence with extremities
x, y is either 0 or at most dInc(P ) (see I.2.4. Lemme p.6 of [18]). This allows
to us define the following map. Let dP be the map from V × V into N such
that.

(1) dP (x,x) = 0 for every x ∈ V ;
(2) dP (x, y) = 1 if x and y are incomparable;
(3) dP (x, y) = 2 if x and y are comparable and there is no alternating

sequence from x to y;
(4) dP (x, y) = n + 2 if n /= 0 and n is the maximum of the oscillation of

alternating sequences with extremities x and y.

We recall a result of [18] II.2.5 Lemme, p. 6.

Lemma 4.3. The map dP is a distance on any poset P of width 2 such
that the incomparability graph is connected. Moreover, for every x, y ∈ P the
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following inequalities hold:

(4.1) 0 ≤ dInc(P )(x, y) − dP (x, y) ≤ 2⌊dInc(P )(x, y)/3⌋.
We give a slight improvement of [18] I.2.3. Corollaire, p. 5.

Lemma 4.4. Let P be poset of width 2 such that Inc(P ) is connected. Let
n ∈ N, r ∈ {0,1} and x, y ∈ P such that Inc(P ) contains an induced path
of length 3n + r and extremities x and y. If r /= 1 and n ≥ 1 (resp. r = 1
and n ≥ 2) then there is an alternating sequence with extremities x,y and
oscillation n (resp. n − 1).
Proof. Since n ≥ 1, x and y are comparable and we may suppose x < y. Let
x0, . . . , x3n+r be a path with x0 = x, x3n+r = y. According to Lemma 3.1 the
sequence x0, . . . , x3i, . . . , x3n is alternating. If r /= 1, we may replace x3n by
x3n+r in the above sequence and get an alternating sequence with extremities
x,y and oscillation n. If r = 1, we delete x3n and replace x3(n−1) by x3n+r in
the above sequence. We get an alternating sequence of oscillation n− 1. □

From Lemma 4.3, the oscillation between two vertices x and y of P is
bounded above. With this lemma, the length of induced paths between x
and y is bounded too, that is the detour DInc(P )(x, y) is an integer. In fact,
we have:

Proposition 4.5. Let P be poset of width 2 such that Inc(P ) is connected
and let x, y ∈ P . Then:

(1) dInc(P )(x, y) = dP (x, y) = DInc(P )(x, y) if either x = y, in which case
this common value is 0, or x and y are incomparable, in which case this
common value is 1.

(2) dInc(P ) ≥ dP (x, y) ≥ ⌊DInc(P )(x, y)/3⌋ + ϵ where ϵ = 1 if DInc(P )(x, y) ≡ 1
mod 3 and ϵ = 2 otherwise.

Proof. Assertion (1) is obvious. For (2), we may suppose x < y. The first
inequality is embodied in Lemma 4.3. As observed above, DInc(P )(x, y) is
bounded. We may write DInc(P )(x, y) = 3n + r with r be the remainder of
DInc(P )(x, y) mod 3. Let α ∶= ⌊DInc(P )(x, y)/3⌋ + ϵ. We have α = n + 1 if
r = 1 and α = n + 2 otherwise. If n = 0 then since x < y, r /= 1, hence α = 2,
since dP (x, y) = 2, the inequality holds. We may suppose n ≥ 1. If r /= 1 then
α = n+ 2, while by definition of dP and Lemma 4.4, dP (x, y) ≥ n+ 2. Hence,
the second inequality holds. If r = 1 then α = n+1. If n = 1 dP (x, y) ≥ 2 and
the second inequality holds. Suppose n ≥ 2. Then, by definition of dP (x, y)
and by Lemma 4.4, dP (x, y) ≥ n + 1. Thus second inequality holds. □

Corollary 4.6. If a bipartite permutation graph has diameter at most k it
contains no induced path of length 3k.

5. A proof of Theorem 1.2

Proof. The implication (i) ⇒ (ii) is obvious. The implication (ii) ⇒ (iii)
follows from Proposition 4.5 given in Subsection 4.2. The implication (iii) ⇒
(iv) follows from Theorem 1.4. The implication (iv) ⇒ (i) is obvious. □
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6. Example 1.3

Proof. Let X ∶= {y, x0, x1, x2, . . .} and for every integer i ≥ 0 let Zi ∶=
{z0,i, z1,i, . . . , zi+3,i} be disjoint sets. We set V ∶= ⋃i≥0Zi ∪X and P ∶= (V,≤)
where ≤ is the binary relation on V defined as follows: X ∖ {y} is totally
ordered by ≤ and x0 < x1 < x2 < ⋅ ⋅ ⋅ < xi < . . . . For all 0 ≤ i < j, every element
of Zi is below every element of Zj . For all i ≥ 0, y is smaller than all elements
in Zi and is incomparable to xi. For all i ≥ 0, xi is smaller than all element
of Zi ∖ {z0,i} and xi is incomparable to all elements in ⋃j<iZi ∪ {z0,i}. For
all integers i ≥ 0 and for all j ≥ i + 1, xi is smaller than all element in Zj .
Finally, the restriction of Inc(P ) to Zi is the induced path z0,i, z1,i, . . . , zi+3,i
so that z0,i < z2,i < z4,i < . . . and z1,i < z3,i < z5,i < . . . (see Figure 1). It is
not difficult to see that ≤ is an order relation and that the corresponding
poset P can be covered by three chains.
Claim 1: The diameter of Inc(P ) is 3.
Let a, b be two distinct vertices of Inc(P ). If a, b ∈ X, then either a = y or
b = y in which case dInc(P )(a, b) = 1, or y /∈ {a, b} in which case dInc(P )(a, b) =
2 (indeed, say a = xi and b = xj with i < j, then a, z0,i, b is an induced path
in Inc(P )). Suppose now a ∈X and b /∈X, say b ∈ Zi for some i ≥ 0. If a = y,
then dInc(P )(a, b) = 2 (indeed, a, xi+1, b is an induced path in Inc(P )). Else
if a = xj for some j ≥ 0, then dInc(P )(a, b) = 1 if i < j and dInc(P )(a, b) = 3
otherwise (indeed, a, z0,j , xi+1, b is the shortest path joining a to b). Next we
suppose that {a, b} ∩X = ∅. If a, b ∈ Zi for some i ≥ 0, then dInc(P )(a, b) = 2
(indeed, a, xi+1, b is an induced path in Inc(P )). Else if a ∈ Zi and b ∈ Zj

for some i ≠ j, then dInc(P )(a, b) = 2 (indeed, a, xi+j , b is an induced path in
Inc(P )).
Claim 2: An induced infinite path in Inc(P ) contains necessarily finitely
many elements of X.
Suppose an induced infinite path C contains infinitely many vertices from
X. Since Inc(P ) induces an independent set on X ∖{y} and C is connected
we infer that C must meet infinitely many Zi’s. Hence, there exists some
xi ∈ C which has degree at least 3 in C and this is not possible.
Claim 3: Deleting all vertices of X from Inc(P ) leaves a disconnected
graph.
Clearly, for all i ≥ 0, Zi is a connected component of Inc(P ) ∖X.
Now suppose for a contradiction that Inc(P ) embeds an infinite induced
path C. It follows from Claim 2 that we can assume V (C) ∩X = ∅. Hence,
C is an induced infinite path of Inc(P )∖X. We derive a contradiction since
all connected components of Inc(P ) ∖X are finite (indeed, the connected
components of Inc(P ) ∖X are finite paths i.e. the subgraphs of Inc(P ) ∖X
induced on the Zi’s).
Claim 4: The vertex y has an infinite induced detour.
Indeed, Inc(P ) induces a path on {y, xi,}∪Zi of length i+5 for all i ≥ 0. □
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7. Order and metric convexities of incomparability graphs

In this section, we compare the notions of order convexity and metric
convexity with respect to the distance on the incomparability graph of a
poset.

We recall few definitions already provided in the introduction. Let P ∶=
(V,≤) be a poset. We recall ConvP (X) is the smallest convex set containing
X and that

ConvP (X) = {z ∈ P ∶ x ≤ z ≤ y for some x, y ∈X} =↓X∩ ↑X.

Let G ∶= (V,E) be a graph. We equip it with the graphic distance dG. A
ball is any subset BG(x, r) ∶= {y ∈ V ∶ dG(x, y) ≤ r} where x ∈ V, r ∈ N. A
subset of V is convex with respect to the distance dG if this is an intersection
of balls. The least convex subset of G containing X is

ConvG(X) ∶= ⋂
X⊆BG(x,r)

BG(x, r).

Let X ⊆ V and r ∈ N. Define

BG(X,r) ∶= {v ∈ V ∶ dG(v, x) ≤ r for some x ∈X}.

The proof of the following lemma is elementary and is left to the reader.

Lemma 7.1. Let G be a graph, X ⊆ V (G) and r ∈ N. Then

(1) BG(X,r) = BG(BG(X,1), r − 1) = BG(BG(X,r − 1),1) for all r ≥ 1.
(2) BG(X ∪ Y, r) = BG(X,r) ∪BG(X,r).

Lemma 7.2. Let P ∶= (V,≤) be a poset and G be its incomparability graph,
X ⊆ V and r ∈ N. Then

BG(↓X,r) = (↓X) ∪BG(X,r) =↓ BG(X,r),(7.1)

BG(↑X,r) = (↑X) ∪BG(X,r) =↑ BG(X,r),(7.2)

BG(↑X∩ ↓X,r) = BG(↑X,r) ∩BG(↓X,r),(7.3)

BG(ConvP (X), r) = ConvP (X) ∪BG(X,r) = ConvP (BG(X,r)).(7.4)

Proof. We mention at first that all above equalities are clearly true for r = 0.
We claim that it is enough to prove (7.1). Indeed, (7.2) is obtained from
(7.1) applied to P ∗. We now show how to obtain (7.3) using (7.1) and (7.2).
The proof is by induction on r.
Basis step: r = 1.
Clearly,

BG(↑X∩ ↓X,1) ⊆ BG(↑X,1) ∩BG(↓X,1).
Let x ∈ BG(↑ X,1) ∩BG(↓ X,1). There are y1 ∈↓ X and y2 ∈↑ X such that
x is equal to y1 or incomparable to y1 and similarly x is equal to y2 or
incomparable to y2. Since y1 ∈↓ X and y2 ∈↑ X there are x1, x2 ∈ X such
that y1 ≤ x1 and x2 ≤ y2. If x is incomparable or equal to x1 or to x2, then
x ∈ BG(X,1) ⊆ BG(↑ X∩ ↓ X,1) as required. If not, x2 ≤ x ≤ x1 (since x is
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equal to y1 or incomparable to y1 and x is equal to y2 or incomparable to
y2), hence x ∈↓X∩ ↑X ⊆ BG(↓X∩ ↑X,1), as required.

Inductive step: Suppose r > 1. We have

BG(↑X∩ ↓X,r) = BG(BG(↑X∩ ↓X,r − 1),1)
= BG(BG(↑X,r − 1) ∩BG(↓X,r − 1),1)

(by the induction hypothesis)
= BG(↑ BG(X,r − 1)∩ ↓ BG(X,r − 1),1)

(by equations (7.1) and (7.2))
= BG(↑ BG(X,r − 1),1) ∩BG(↓ BG(X,r − 1),1)

(follows from the basis step r = 1)
=↑ BG(BG(X,r − 1),1)∩ ↓ BG(BG(X,r − 1),1)

(follows from (7.1) and (7.2))
=↑ BG(X,r)∩ ↓ (BG(X,r))
= BG(↑X,r) ∩ (↓ BG(X,r)) (follows from (7.1)).

We now show how to obtain (7.4) using (7.1), (7.2) and (7.3).
From (7.1) and (7.2) we obtain

BG(↓X,r) ∩BG(↑X,r) = ((↓X) ∪BG(X,r)) ∩ ((↑X) ∪BG(X,r))
=↓ (BG(X,r))∩ ↑ (BG(X,r)).

This is equivalent to

BG(↓X,r) ∩BG(↑X,r) = (↓X∩ ↑X) ∪BG(X,r))
=↓ (BG(X,r))∩ ↑ (BG(X,r)).

Using (7.3) we have

BG(↓X∩ ↑X,r) = (↓X∩ ↑X) ∪BG(X,r)) =↓ (BG(X,r))∩ ↑ (BG(X,r)).

The required equalities follow by definition of the operator Conv.
We now prove (7.1).

Basis step: r = 1.
Since X ⊆↓X we have BG(X,1) ⊆ BG(↓X,1). Hence, we have

BG(↓X,1) ⊇ (↓X) ∪BG(X,1).

From X ⊆ BG(X,1) we deduce that ↓X ⊆↓ (BG(X,1)). Hence,

(↓X) ∪BG(X,1) ⊆↓ BG(X,1).

Next, we prove that BG(↓ X,1) ⊆ (↓ X) ∪BG(X,1). Let x ∈ BG(↓ X,1).
There exists then y ∈↓X at distance at most 1 from x that is either y = x or
y ∥ x. If y = x then x ∈↓X. Otherwise, since y ∈↓X there is y1 ∈X such that
y ≤ y1. If y1 is incomparable or equal to x then x ∈ BG(X,1). Otherwise y1
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is comparable to x. Necessarily, x ≤ y1 since x ∥ y. Hence x ∈↓X.
Inductive step: Let r > 1. We suppose true the equalities

BG(↓X,r − 1) = (↓X) ∪BG(X,r − 1) =↓ BG(X,r − 1).
We apply the operator T Ð→ BG(T,1) to each term of the previous equalities
and obtain

BG(BG(↓X,r−1),1) = BG((↓X)∪BG(X,r−1),1) = BG(↓ BG(X,r−1),1).
We have

BG(BG(↓X,r − 1),1) = BG(↓X,r) (see (1) of Lemma 7.1).

Also,

BG((↓X) ∪BG(X,r − 1),1) = BG(↓X,1) ∪BG(BG(X,r − 1),1)
(see (2) of Lemma 7.1))

= BG(↓X,1) ∪BG(X,r)
(see (2) of Lemma 7.1)

= (↓X) ∪BG(X,1) ∪BG(X,r)
(follows from (7.1) with r = 1).

= (↓X) ∪BG(X,r).
Finally we have

BG(↓ (BG(X,r − 1)),1) = ↓ BG((BG(X,r − 1)),1)
= ↓ (BG(X,r)).

□

8. A proof of Theorem 1.10 and some consequences

We now proceed to the proof of Theorem 1.10.

Proof. (a) Apply successively equations (7.1), (7.2) and (7.4) of Lemma
7.2. (b) Suppose r = 1. Let G′ ∶= G↾BG(X,1) and x, y ∈ BG(X,1). Let
n ∶= dG(x, y). Clearly, n ≤ dG′(x, y). To prove that the equality holds, we
may suppose that 2 ≤ n < ∞. We argue by induction on n. Let u0, . . . , un
be a path in G connecting x and y. If n ≥ 4, we have x0 < x2 < xn by
Lemma 3.1. Since BG(X,1) is convex, it contains x2, hence, by induction,
dG(x,x2) = dG′(x,x2) = 2 and dG(x2, y) = dG′(x2, y) = n−2, hence dG(x, y) =
dG′(x, y). Thus, to conclude, it suffices to solve the cases n = 2 and n = 3.
Let x′, y′ ∈ X with x′ incomparable or equal to x and y′ incomparable or
equal to y. If un−1 is incomparable or equal to y′ then xn−1 ∈ BG(X,1).
From the induction, dG′(x,xn−1) = dG(x,xn−1) hence dG′(x, y) = dG(x, y) as
required. Hence, we may suppose un−1 comparable to y′, and similarly u1
comparable to x′.

Also, if x′ is incomparable or equal to x2 then x,x′, x2 is a path in BG(X);
if n = 2 we have dG′(x, y) = 2 as required, if n = 3, then x,x′, x2, y is a path in
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BG(X) and dG′(x, y) = 3 as required. Thus we may suppose x′ comparable
to x2 and, similarly, y′ comparable to xn−2.

Since x′ is incomparable or equal to x0 and, by Lemma 3.1, x0 < x2, we
have x′ < x2. Similarly, we have xn−2 < y′. Since x1 is comparable to x′ and
incomparable to x2 we deduce x′ ≤ x1 from x′ < x2. Similarly, we deduce
xn−1 ≤ y′. For n = 2 we have x′ ≤ x1,≤ y′ and for n = 3, x′ ≤ x1, x2 ≤ y′.
By order convexity of X, x1 ∈ X (and also x2 ∈ X if n = 3, hence the path
x = x0, x1, x2 = y if n = 2 and the path x = x0, x1, x2, x3 = y if n = 3 is in
BG(X) and thus dG′(x, y) = n.

Suppose r > 1. Then from (a) above, BG(X,1) order convex. Via the
induction hypothesis, G↾BG(BG(X,1),r−1) is an isometric subgraph of G. Since
BG(X,r) = BG(BG(X,1), r − 1), G↾BG(X,r) is an isometric subgraph of G.

□

As the proof of the Lemma 7.2 suggests, balls are not necessarily geodesi-
cally convex (for an example, look at the ball B(x,1) in a four element
cycle). A consequence of Theorem 1.10 is that the order convexity of balls
is equivalent to the following inequality:

Corollary 8.1. Let P be a poset and let G be its incomparability graph.
Then

(8.1) dG(u, v) ≤ dG(x, y) for all x ≤ u ≤ v ≤ y in P.

Proof. The inequality above amounts to dG(u, v) ≤ dG(x, v) ≤ dG(x, y). We
prove the first inequality; the second inequality follows by the same argument
applied to the dual of P . We may suppose that x < u < v, otherwise nothing
to prove. Let n ∶= dG(v, x). By (a) of Theorem 1.10, BG(v, n) is order
convex. Since x, v ∈ BG(v, n) and x ≤ u ≤ v, then u ∈ B(v, n) amounting to
dG(u, v) ≤ n = dG(x, v). Conversely, assuming that inequality (8.1) holds,
observe that every ball BG(x, r) is order-convex. We may suppose r ≥ 1,
otherwise the conclusion is obvious. Let u, v ∈ BG(x, r) and w ∈ P with
u < w < v. If x ∥ w, then dG(x,w) = 1 ≤ r hence w ∈ BG(x, r). If not, then
either x < w or w < x. In the first case, from x < w < v, inequality (8.1)
yields dG(x,w) ≤ dG(x, v) ≤ r hence w ∈ BG(x, r), whereas in the second
case, from u < w < x, inequality (8.1) yields dG(w,x) ≤ dG(u,x) ≤ r hence
w ∈ BG(x, r). □

Corollary 8.2. δG(X) = δG(ConvP (X)) = δG(ConvG(X)) for every subset
X of a poset P .

Proof. Since by (a) of Theorem 1.10, each ball BG(x, r) is order convex,
ConvP (X) ⊆ ConvG(X). Hence

δG(X) ≤ δG(ConvP (X)) ≤ δG(ConvG(X)).

The equality δG(X) = δG(ConvG(X)) is a general convexity property
of metric spaces. Let r ∶= δG(X). Let x, y ∈ ConvG(X). We prove that
dG(x, y) ≤ r. First X ⊆ BG(x, r). Indeed, let z ∈ X; since δG(X) = r,
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X ⊆ BG(x, r). Since ConvG(X) is the intersections of balls containing X,
we have Conv(X) ⊆ BG(z, r), hence z ∈ BG(x, r). Next, from X ⊆ BG(x, r)
we deduce Conv(X) ⊆ BG(x, r) hence y ∈ BG(x, r) that is dG(x, y) ≤ r. □

Lemma 8.3. Let P ∶= (V,≤) be a poset and G be its incomparability graph.
Let x, y, z ∈ V be such that x < z < y. Then

max{dG(x, z), dG(z, y)} ≤ dG(x, y) ≤ dG(x, z) + dG(z, y) ≤ dG(x, y) + 2.

Proof. The first inequality follows from Corollary 8.1. The second inequality
is the triangular inequality. We now prove the third inequality. Let

p ∶= dG(x, z), q ∶= dG(z, y), r ∶= dG(x, y).

Claim 8.4. Let x0 ∶= x, . . . , xr ∶= y be a path from x to y. Then there exist
i /∈ {0, r} such that z is incomparable to xi.

Subproof. By induction on r. Note that since x < y we have r ≥ 2. If r = 2,
then necessarily z is incomparable to x1. Suppose r > 2. Then z ≰ x1. If
z is incomparable to x1, then we are done. Otherwise x1 < z and we may
apply the induction hypothesis to x1, y and the path x1, . . . , xr = y. This
completes the proof of Claim 8.4. ◻

Let i be such in Claim 8.4. Then x0 ∶= x, . . . , xi, z is a path from x to z of
length i+1 and z, xi, xi+1, . . . , xr is a path from z to y of length r−i+1. Then
p + q ≤ i + 1 + r − i + 1 = r + 2. The proof of the lemma is now complete. □

Lemma 8.5. Let x0, . . . , xn be an isometric path in a graph G with n ≥ 2.
There exists a vertex xn+1 such that x0, . . . , xn, xn+1 is an isometric path in
G if and only if BG(xn,1) ⊈ BG(x0, n).

Proof. ⇒ is obvious.
⇐ Suppose BG(xn,1) ⊈ BG(x0, n) and let xn+1 ∈ BG(xn,1) ∖BG(x0, n).

Claim 8.6. dG(x0, xn+1) = n + 1.

Indeed, since xn+1 ∈ BG(xn,1)∖BG(x0, n) we have dG(x0, xn+1) > n. From
the triangular inequality dG(x0, xn+1) ≤ dG(x0, xn) + dG(xn, xn+1) = n + 1.

Claim 8.7. dG(xj , xn+1) = n + 1 − j for all 0 ≤ j ≤ n.

Indeed, From the triangular inequality

dG(xj , xn+1) ≤ dG(xj , xn) + dG(xn, xn+1) = n − j + 1.

Similarly,

dG(x0, xn+1) ≤ dG(x0, xj) + dG(xj , xn+1)
and therefore

dG(xj , xn+1) ≥ dG(x0, xn+1) − dG(x0, xj) = n + 1 − j.

The equality follows. □
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We could restate Lemma 8.5 as follows. There is an isometric path of
length n + 1 starting at some vertex x0 if there is some xn ∈ BG(x0, n) such
that BG(xn,1) ⊈ BG(x0, n).

Another consequence of the convexity of balls in an incomparability graph
is the following:

Lemma 8.8. Let G be the incomparability graph of a poset P . If a ball
contains infinitely many vertices of a one way infinite induced path then it
contains all vertices except may be finitely many vertices of that path.

Proof. Let P∞ be an infinite induced path of G and (xn)n∈N be an enumer-
ation of its vertices, so that (xn, xn+1) ∈ E(G) for n ∈ N. Without loss of
generality we may suppose that x0 < x2 (otherwise, replace the order of P by
its dual). By Lemma 3.1 we have xi < xj for every i+2 ≤ j. Let BG(x, r) be
a ball of G containing infinitely many vertices of P∞. Let xi ∈ P∞ ∩B(x, r).
We claim that xj ∈ P∞∩B(x, r) for all j ≥ i+2. Indeed, due to our hypothe-
sis, we may pick xr ∈ P∞ ∩B(x, r) with r ≥ j + 2. We have xi < xj < xr. Due
to the convexity of B(x, r) we have xj ∈ B(x, r). This proves our claim. □

Said differently:

Lemma 8.9. If a one way infinite induced path P∞ has an infinite diameter
in the incomparability graph G of a poset then every ball of G with finite
radius contains only finitely many vertices of P∞.

9. Induced infinite paths in incomparability graphs: A proof of
Theorem 1.4

The proofs of (1) and (2) of Theorem 1.4 are similar. We construct a
strictly increasing sequence (yn)n∈N of vertices such that 3 ≤ dG(yn, yn+1) <
+∞ for all n ∈ N and we associate to each n ∈ N a finite path Pn ∶=
z(n,0), z(n,1), . . . , z(n,rn) of G of length rn ∶= dG(yn, yn+1) joining yn and yn+1.
We show first that the graph G′ ∶= G↾⋃n∈N V (Pn) is connected and has an in-
finite diameter. Next, we prove that it is locally finite. Hence from Kőnig’s
Lemma (1.5), it contains an isometric path. This path yields an induced
path of G. The detour via Kőnig’s Lemma is because the union of the two
consecutive paths Pn and Pn+1 do not form necessarily a path. In the first
proof, our paths have length 3. In the second proof, their end vertices have
degree at least 3.

Lemma 9.1. Let P ∶= (V,≤) be a poset so that its incomparability graph G
is connected and has infinite diameter. Let x ∈ V be arbitrary. Then at least
one of the sets

d+G(x) ∶= {dG(x, y) ∶ x < y ∈ V } or d−G(x) ∶= {dG(x, y) ∶ y ∈ V and y < x}
is unbounded in N. Furthermore, if d+G(x) ∶= {dG(x, y) ∶ x < y ∈ V } is
unbounded in N and z > x, then d+G(z) ∶= {dG(z, y) ∶ z < y ∈ V } is unbounded
in N (in particular, z cannot be maximal in P ).
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Proof. Suppose for a contradiction that the sets

d+G(x) ∶= {dG(x, y) ∶ x < y ∈ V } and d−G(x) ∶= {dG(x, y) ∶ y ∈ V and y < x}

are bounded. Let r ∶=maxd+G(x) and r′ ∶=maxd−G(x). Then

V ∶= BG(x,max{2, r, r′})

and therefore the diameter of G is bounded contradicting our assumption.
Now let z > x and suppose for a contradiction that

d+G(z) ∶= {dG(z, y) ∶ z < y ∈ V }

is bounded and let r ∶= maxd+G(z). Let x < y. If y ≤ z then d(x, y) ≤ d(x, z)
by Lemma 8.3; if z ∥ y then d(x, y) ≤ d(x, z) + 1; if z ≤ y then we have
d(x, y) ≤ d(x, z) + d(z, y) ≤ d(x, z) + r, hence, the set d+G(x) is bounded,
contradicting our assumption. □

9.1. Proof of (1) of Theorem 1.4. We construct a sequence (xn)n∈N of
vertices (see Figure 6). We pick x0 ∈ V . According to Lemma 9.1, one of
the sets

d+G(x0) ∶ = {dG(x0, y) ∶ x0 < y ∈ V } and
d−G(x0) ∶ = {dG(x0, y) ∶ y ∈ V and y < x0}

is unbounded. We may assume without loss of generality that the set d+G(x0)
is unbounded. Choose an element x3 > x0 at distance three from x0 in G and
let x0, x1, x2, x3 be a path joining x0 to x1. Note that necessarily we have
x0 < x2 and x1 < x3. Now suppose constructed a sequence x0, x1, . . . , x3n
such that x0 < x3 < ⋅ ⋅ ⋅ < x3n and such that x3i, x3i+1, x3i+2, x3i+3 is a path of
extremities x3i and x3(i+1) for i < n. According to Lemma 9.1, the set
d+G(x3n) is unbounded. Hence, it contains a vertex x3(n+1) at distance
three from x3n. Let x3n, x3n+1, x3n+2, y3n+3 be a path of extremities x3n
and x3(n+1). By Lemma 3.1 we have necessarily:

(9.1) x3n < x3n+2 and x3n+1 < x3n+3.

Let P ′ be the poset induced on the set V ′ ∶= {xn ∶ n ∈ N} and G′ be the
incomparability graph of P ′. According to our construction, G′ contains a
spanning path (not necessarily induced), hence it is connected.

Claim 9.2. dG(x0, x3n) ≥ n + 2 for every n ≥ 1.

Since dG′(x0, x3n) ≥ dG(x0, x3n)), it follows that the diameter of G′ is
infinite.
Subproof. We prove the inequality of the claim by induction on n ≥ 1. By
definition, the inequality holds for n = 1. Suppose the inequality holds for
n. It follows from Lemma 8.3 that

n + 5 ≤ dG(x0, x3n) + dG(x3n, x3(n+1)) ≤ dG(x0, x3(n+1)) + 2

and therefore the inequality holds for n + 1. ◻
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x_0 x_1

x_2 x_3

x_4 x_5

x_6 x_7

x_8 x_9

x_10 x_11

x_12

Figure 6.

Claim 9.3. The incomparability graph of P ′ is locally finite, that is for all
x ∈ P ′, incP ′(x) ∶= {y ∈ V ′ ∶ x ∥ y} is finite.

In fact, incP ′(x) has at most six elements.
We have

(a) incP ′(x3n) ⊆ {x3n−1, x3n+1} for n ≥ 1.
(b) incP ′(x3n+1) ⊆ {x3(n−2)+2, x3(n−1)+1, x3(n−1)+2, x3n, x3n+2, x3(n+1)+1} for

n ≥ 2.
(c) incP ′(x3n+2) ⊆ {x3n−1, x3(n+1), x3(n+1)+1x3(n+1)+2, x3(n+2)+1} for n ≥ 1.
(d) incP ′(x0) = {x1}, incP ′(x1) ⊆ {x0, x2, x4}, incP ′(x2) ⊆ {x1, x3, x5, x7}

and incP ′(x4) ⊆ {x1, x3, x5, x7}.
Subproof.

(a) Let n ∈ N. By inequalities (9.1) stated above, we have

x3n−2 < x3n < x3n+2.

Let n′ ∈ N be such that n < n′. By construction, x3n < x3n′ . By in-
equalities (9.1) again we have x3n′ < x3n′+2, hence x3n < x3n′+2. Since
x3n < x3n′ and x3n′+1 is incomparable to x3n′ we infer that x3n′+1 ≰ x3n.
We have dG(x3n, x3n′) ≥ 3; indeed, if n′ = n + 1, dG(x3n, x3n′) = 3 by
construction, otherwise apply the first inequality of Lemma 8.3 with
x = x3n, z = x3(n+1) and y = x3n′ . Since dG(x3n, x3n′) ≥ 3 and x3 is
incomparable to x3n+1, the vertices x3n and x3n′+1 cannot be incompa-
rable; it follows that x3n < x3n′+1.

Since a poset and its dual have the same incomparability graph, we
deduce that if n′ < n, then x3n′ , x3n′+1, x3n′+2 < x3n. Hence, incP ′(x3n) ⊆
{x3n−1, x3n+1} for n ≥ 1.

(b) Since x3n−3 < x3n and x3n and x3n+1 are incomparable we infer that
x3n+1 ≰ x3n−3. It follows that x3n−3 < x3n+1 because otherwise x3n−3,
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x3n+1, x3n would be a path of length two contradicting our assumption
that dG(x3n−3, x3n) = 3. From Lemma 3.1, we deduce that if k < 3n− 4,
then xk < x3n−3 and hence xk < x3n+1. Hence, if k < 3n − 1 and xk is
incomparable to x3n+1, then k ∈ {3n − 4,3n − 2}. Since x3n+1 < x3n+3
it follows from Lemma 3.1 that if k > 3n + 4, then xk > x3n+4 and
hence xk /∈ incP ′(x3n+1). Hence, x3n and x3n+1 are possible elements
incomparable to x3n+1, hence the required inclusion.

(c) Since x3n < x3n+2 it follows from Lemma 3.1 that if xk, for k < 3n,
is incomparable to x3n+2 then k ∈ {3n − 1,3n + 3}. Now observe that
x3n+2 < x3n+6 because otherwise x3n+3, x3n+2, x3n+6 is a path of length
two contradicting dG(x3n+3, x3n+6) = 3. By duality we infer that if
k > 3n + 4, then xk incomparable to x3n+2 implies k ∈ {3n + 5,3n + 7}.
The required inclusion readily follows.

(d) We have x0 < x3 and x0 < x2. Since dG(x0, x3) = 3 and x3 incomparable
to x4 we must have x0 < x4. From incP ′(x3) ⊆ {x2, x4} we deduce that
x1 is the only element incomparable to x0. From x1 < x3 we deduce that
incP ′(x1) ⊆ {x0}∪ incP ′(x3) and therefore incP (x1) ⊆ {x0, x2, x4}. From
x2 < x6 and incP (x6) ⊆ {x5, x7} we derive incP ′(x2) ⊆ {x1, x3, x5, x7}.
Similarly, we have incP ′(x4) ⊆ {x1, x3, x5, x7}. ◻

From Claim 9.2 and Claim 9.3, Inc(P ′) is connected, locally finite and has
an infinite diameter. From Kőnig’s Lemma, G′ contains an infinite isometric
path, hence G contains an infinite induced path. This completes the proof
of (1). ◻

9.2. Proof of (2) of Theorem 1.4. We break the proof into two parts.

Claim 9.4. If G is a connected incomparability graph of infinite diameter
and if the set of vertices of degree at least 3 in G has infinite diameter, then
G contains an infinite induced path such that the set of vertices of this path
with degree at least 3 in G has an infinite diameter.

Subproof. Let x be any vertex in G, I ∶= incP (x)∪ ↓ x and F ∶= incP (x)∪ ↑ x.
According to Theorem 1.10, I and F are order convex and G↾I and G↾F are
isometric subgraphs of G. Since, trivially, V (G) = I ∪ F , every vertex of
degree at least 3 belongs to I or to F . Since the diameter in G of the set
of vertices of degree at least 3 is infinite and G↾I and G↾F are isometric
subgraphs we infer that the diameter in G↾I or in G↾F of the set of vertices
of degree at least 3 is infinite. Choose y of degree at least 3. We may assume
without loss of generality that the diameter in G↾F of the set of vertices of
degree at least 3 is infinite. We start by showing that P contains an infinite
chain of elements whose degree is at least 3 in G. Suppose constructed a
sequence y0 ∶= y < y1 < ⋅ ⋅ ⋅ < yn−1 of vertices of degree at least 3 such that
dG(yi, yi+1) > 3 for all i ≤ n − 2. Let yn > x0 be a vertex of degree at least
3 such that dG(yn−1, yn) > ∑n−2

j=0 dG(yj , yj+1). This choice of yn is possible
since the diameter in G↾F of the set of vertices of degree at least 3 is infinite.
Then yn−1 and yn are comparable in P . It follows from Corollary 8.1 that
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yn−1 < yn. Hence, the sequence (yi)i∈N forms a chain in P . For all n ∈ N,
let Pn ∶= z(n,0), z(n,1), . . . , z(n,rn) be a path in G of length rn ∶= dG(yn, yn+1)
joining yn and yn+1. The graph G′ ∶= G↾∪i∈NV (Pi) is connected and has infinite
diameter.

Claim 9.4.a. G′ is locally finite.

Subproof. It suffices to prove that for n + 2 ≤ m, every vertex of Pn is
comparable to every vertex of Pm. Let zn,i ∈ Pn and zm,j ∈ Pn.
Case 1: Suppose first i = rn − 1.

(a) z(n,rn−1) ≤ ym, z(m,1). Indeed, z(n,rn−1) and ym are comparable, oth-
erwise yn+1, z(n,rn−1), ym form a path with extremities yn+1 and ym
hence dG(yn+1, ym) ≤ 2. This is impossible since

dG(yn+1, ym) ≥ dG(yn+1, yn+2) ≥ 4.
Furthermore, z(n,rn−1) < ym, otherwise, since yn+1 < ym, we obtain
yn+1 < z(n,rn−1) by transitivity, while these vertices are incompara-
ble. Similarly, z(n,rn−1) and z(m,1) are comparable otherwise yn+1,
z(n,rn−1), z(m,1), ym form a path with extremities yn and ym hence
dG(yn+1, ym) ≤ 3, while this distance is at least 4. Necessarily,
z(n,rn−1) < z(m,1), otherwise since z(n,rn−1) < ym, we have zm,1 < ym
which is impossible.

(b) By symmetry, yn+1, z(n,rn−1) ≤ zm,1.
(c) z(n,rn−1) ≤ z(m,j). We just proved it for j = 0,1. If j > 1, this follows

from ym < zm,i by transitivity.

Case 2: Next, suppose i = rn.
In this case z(n,i) = yn+1. If j ≥ 2, we have

z(n,i) = yn+1 < ym = z(m,0) < z(m,j).

If j = 1, this is just item (c) above.
Case 3: Finally, suppose that i < rn − 1.

In this case, z(n,i) < yn+1 < z(m,j). ◻
Since G′ is connected, locally finite and has an infinite diameter, Kőnig’s

Lemma ensures that it contains an infinite isometric path P∞. We claim
that P∞ contains an infinite number of vertices of degree at least 3 in G.
Clearly, V (P∞) meets infinitely many Pi’s. For each i ∈ N let ji ∈ V (Pi) be
the largest such that z(i,ji) ∈ V (P∞). Then the degree of z(i,ji) is at least 3
in G. Indeed, if z(i,ji) ∈ {yi, yi+1}, then we are done. Otherwise z(i,ji) is not
an end vertex of Pi. Then z(i,ji) must have a neighbour in P∞ which is not

in Pi and therefore must have degree three. So far we have proved that G′

contains an infinite isometric path P∞ containing infinitely many vertices of
degree at least 3. Hence, G contains an infinite induced path P∞ containing
infinitely many vertices of degree at least 3. This proves our claim. ◻
Claim 9.5. If G is a connected incomparability graph containing an infinite
induced path such that the set of vertices of this path with degree at least 3
in G has an infinite diameter then G contains either a caterpillar or a kite.
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Subproof. Let (xn)n∈N be a sequence of vertices of G with (xn, xn+1) ∈ E(G)
for n ∈ N forming an infinite induced path P∞. Suppose that this path
contains infinitely many vertices with degree at least 3 in G forming a set
of infinite diameter in G.

Claim 9.5.a. There is an infinite sequence (yn)n of vertices in V ∖P∞ form-
ing an independent set and a family of disjoint intervals In ∶= [l(n), r(n)] of
N such that {l(n), r(n)} ⊆ BG(yn,1) ∩P∞ ⊆ In for all n ∈ N.

Subproof. Pick xi0 ∈ P∞ with degree at least 3 in G and set y0 arbitrary
in BG(xi0 ,1) ∖ P∞. According to Lemma 8.9 the ball BG(y0,1) contains
only finitely many vertices of P∞. Let l(0), resp., r(0) be the least, resp.,
the largest integer k such that xk ∈ BG(y0,1). Let n > 0. Suppose (ym)m,
Im ∶= [l(m), r(m)] be defined for m < n. By Lemma 8.9,

P∞ ∩ ( ⋃
m<n

BG(ym,2))

is finite, hence there is a vertex xin ∈ P∞ with degree at least 3 such that
every vertex in the infinite subpath of P∞ starting at xin is at distance
at least 3 of any ym. Pick yn ∈ B(xin ,1) ∖ P∞ and set In = [l(n), r(n)]
where l(n), resp., r(n) be the least, resp., the largest integer k such that
xk ∈ BG(yn,1). ◻

In order to complete the proof of Claim 9.5 we show that the graph G′

induced on P∞⋃{yn ∶ n ∈ N} contains a caterpillar or a kite. For that,
we classify the vertices yn. We say that yn has type (0) if l(n) = r(n)
(that is yn has just one neighbour on P∞.) If the set Y0 of vertices of
type (0) is infinite then trivially G↾P∞⋃Y0 is a caterpillar (see Figure 2).
We say that yn has type (1) if r(n) = l(n) + 1. Again, trivially, if the
set Y1 of vertices of type (1) is infinite then G↾P∞⋃Y1 is a kite of type
(1). We say that yn has type (2) if r(n) = l(n) + 2. It has type (2.1) if
(y(n), xl(n)+1) ∈ E(G) while it has type (2.2) if (y(n), xl(n)+1) /∈ E(G). If
for i = 1,2 the set Y2.i of vertices of type (2.i) is infinite then G↾P∞⋃Y2.i

is a kite of type (i + 1) (see Figure 2). We say that yn has type (3) if
r(n) ≥ l(n) + 3. It has type (3.1) if (y(n), xl(n)+1) ∈ E(G) while it has type
(3.2) if (y(n), xl(n)+1) /∈ E(G). If the set Y3.i of vertices of type 3.i is infinite
delete from P∞ the set Y ∶= ⋃n∈Y3.i

{xm ∶ m ∈ {l(n + 2, . . . , r(n) − 1}. Then
G↾(P∞⋃Y3.i)∖Y is a kite of type (2) if i = 1 or a caterpillar if i = 2 (see Figure
2). ◻

10. Example 1.7

We define the poset satisfying the conditions stated in Example 1.7. For
a poset P = (V,≤) we set for every x ∈ V we set

incP (x) ∶= {y ∈ V ∶ x ∥ y}.
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Let P ∶= (X,≤) be the poset defined on X ∶= N×N×{0,1} as follows. We
let (m,n, i) ≤ (m′, n′, i′) if

i = i′ and [n < n′ or (n = n′ and m ≤m′)],
or

i ≠ i′ and [n + 1 < n′ or (n + 1 = n′ and m ≤m′)].
We set An ∶= {(m,n,1) ∶ m ∈ N} for all n ≥ 0 and Bn ∶= {(m,n,0) ∶ m ∈ N}
and note that ⋃n∈NAn and ⋃n∈NBn are two total orders of order type ω2.
In particular P is coverable by two chains and hence has width two.

Claim 10.1. ≤ is an order relation.

Proof. Reflexivity and antisymmetry are obvious. We now prove that ≤ is
transitive. Let (m,n, i), (m′, n′, i′), (m′′, n′′, i′′) be such that

(m,n, i) ≤ (m′, n′, i′) ≤ (m′′, n′′, i′′).
Note that since {i, i′, i′′} ⊆ {0,1} at least two elements of {i, i′, i′′} are equal.
if i = i′ = i′′ then clearly (m,n, i) ≤ (m′′, n′′, i′′). Next we suppose that there
are exactly two elements of {i, i′, i′′} that are equal. There are three cases
to consider.
Case 1: i = i′.

Since (m,n, i) ≤ (m′, n′, i′) we have

(10.1) n < n′ or (n = n′ and m ≤m′).
Since i′ ≠ i′′ and (m′, n′, i′) ≤ (m′′, n′′, i′′) we have

(10.2) n′ + 1 < n′′ or (n′ + 1 = n′′ and m′ ≤m′′).
If n + 1 < n′′, then since i ≠ i′′ it follows that (m,n, i) ≤ (m′′, n′′, i′′).
Suppose n′′ ≤ n + 1. If n′ + 1 < n′′, then n′ < n. It follows from (10.1)
that n = n′ and hence n + 1 < n′′ proving that (m,n, i) ≤ (m′′, n′′, i′′).
Else, n′′ ≤ n′ + 1. It follows from (10.2) that n′ + 1 = n′′ and m′ ≤m′′. If
n < n′, then n + 1 < n′′ and once again we have (m,n, i) ≤ (m′′, n′′, i′′).
Otherwise it follows from (10.1) that n = n′ andm ≤m′. Hence, n+1 = n′′
and m ≤m′′ proving that (m,n, i) ≤ (m′′, n′′, i′′).

Case 2: i = i′′.
Since (m,n, i) ≤ (m′, n′, i′) and i ≠ i′ we have

(10.3) n + 1 < n′ or (n + 1 = n′ and m ≤m′).
Since (m′, n′, i′) ≤ (m′′, n′′, i′′) and i′ ≠ i′′ we have

(10.4) n′ + 1 < n′′ or (n′ + 1 = n′′ and m′ ≤m′′).
We prove that n < n′′. We suppose n′′ ≤ n and we argue to a contradic-
tion. We claim that none of n + 1 < n′ and n′ + 1 < n′′ can hold. Indeed,
suppose n+1 < n′. Then n′′ < n′ and hence n′+1 < n′′ cannot be true. It
follows from (10.4) that n′+1 = n′′. But then n′′ = n′+1 > n′ > n′′ which is
impossible. Now suppose n′+1 < n′′. Then n′+1 < n < n+1 < n′ and this
is impossible. It follows from (10.3) and (10.4) that n+1 = n′ and m ≤m′
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and n′+1 = n′′ and m′ ≤m′′. Hence, we have proved our claim that none
of n + 1 < n′ and n′ + 1 < n′′ can hold. It follows from (10.3) and (10.4)
that n+ 1 = n′ and n′ + 1 = n′′, and in particular n+ 2 = n′′. This contra-
dicts n′′ ≤ n. Hence, n < n′′ and therefore (m,n, i) ≤ (m′′, n′′, i′′) since
i = i′′.

Case 3: i′ = i′′.
Since (m,n, i) ≤ (m′, n′, i′) and i ≠ i′ we have

(10.5) n + 1 < n′ or (n + 1 = n′ and m ≤m′).
Since (m′, n′, i′) ≤ (m′′, n′′, i′′) and i′ = i′′ we have

(10.6) n′ < n′′ or (n′ = n′′ and m′ ≤m′′).
If n + 1 < n′′, then (m,n, i) ≤ (m′′, n′′, i′′) since i ≠ i′′. We claim that
none of n+ 1 < n′ and n′ < n′′ can hold. Suppose n+ 1 < n′. Then n′′ < n
and it follows from (10.6) that n′ = n′′. But then n′′ ≤ n + 1 < n′ = n′′

which is impossible. Suppose n′ < n′′. Then n′ < n+1 and it follows from
(10.5) that n+1 = n′. But then n+1 = n′ < n′′ < n+1 which is impossible.
Hence, none of n + 1 < n′ and n′ < n′′ can hold. It follows from (10.5)
and (10.6) that (n + 1 = n′ and m ≤ m′) and (n′ = n′′ and m′ ≤ m′′).
Therefore, (n + 1 = n′′ and m ≤m′′) proving that (m,n, i) ≤ (m′′, n′′, i′′)
as required.

□

Claim 10.2. Let j ∈ N. Then for all x ∈ Aj, ∣BInc(P )(x,1) ∩Bj+1∣ is finite.

Proof. Let x ∶= (m,j,1) ∈ Aj . Then

BInc(P )(x,1) ∩Bj+1 = {(k, j + 1,0) ∶ 0 ≤ k ≤m − 1}.
□

Claim 10.3. Let j ∈ N. Then for all x ∈ Bj, ∣BInc(P )(x,1) ∩Aj+1∣ is finite.

Proof. Let x ∶= (m,j,0) ∈ Bj . Then

BInc(P )(x,1) ∩Aj+1 = {(k, j + 1,1) ∶ 0 ≤ k ≤m − 1}.
□

Claim 10.4. Let j ∈ N. Then for all x ∈ Aj and for all y ∈ BInc(P )(x,1) ∩Bj+1,

∣BInc(P )(y,1) ∩Aj+2∣ < ∣BInc(P )(x,1) ∩Bj+1∣.

Proof. Let x ∶= (m,j,1) ∈ Aj . It follows from Claim 10.2 that ∣N(x)∩Bj+1∣ =
m. Let y ∈ BInc(P )(x,1) ∩Bj+1, say y = (m′, j + 1,0) and note that m′ <m.

Then it follows from Claim 10.3 that ∣BInc(P )(x,1)∩Bj+2∣ =m′. Sincem′ <m
we are done. □

Claim 10.5. Let j ∈ N. Then for all x ∈ Bj and for all y ∈ BInc(P )(x,1) ∩Aj+1,

∣BInc(P )(y,1) ∩B2+1∣ < ∣BInc(P )(x,1) ∩Aj+1∣.

Proof. Symmetry and Claim 10.4. □
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Claim 10.6. If there exists and infinite isometric path (xi)i∈N in Inc(P )
starting at x0 = (0,0,1), then x2n ∈ A2n−1 and x2n+1 ∈ B2n.

Proof. From B0 = incP (x0) ∶= {y ∈ X ∶ y incomparable to x in P} follows
that x1 ∈ B0. Suppose for a contradiction that x2 /∈ A1. Then x2 ∈ A0.
In this case x3 ∈ B1 (this is because x0 < x3). But then x4 ∈ A2 because
otherwise x4 ∈ A1 and hence the distance from x0 to x4 would be two which
is not possible. By the same token x5 ∈ B3 and more generally x2n+1 ∈ B2n−1
and x2n−2 ∈ An. This is impossible. Indeed, suppose x2 = (i,0,0) then
x3 = (j,1,1) with j < i and then x4 = (k,2,0) with k < j. Continuing this
way we have a decreasing sequence of nonnegative integers. □

Claim 10.7. Let y ∈ BInc(P )(x0,1)∩B0. Then the lengths of isometric paths
starting at x0 and going through y is bounded.

Proof. Follows from Claims 10.4, 10.5 and 10.6. □

We conclude that there is no isometric path in Inc(P ) starting at (0,0,1).
It follows from Theorem 1.6 that Inc(P ) has no isometric infinite path.

11. Interval orders: A proof of Theorem 1.8 and Example 1.9

We recall that an order P is an interval order if P is isomorphic to a
subset J of the set Int(C) of nonempty intervals of a chain C, ordered as
follows: if I, J ∈ Int(C), then
(11.1) I < J if x < y for every x ∈ I and every y ∈ J.

The following proposition encompasses some known equivalent properties
of interval orders. Its proof is easy and is left to the reader.

Proposition 11.1. Let P ∶= (V,≤) be a poset. The following propositions
are equivalent.

(i) P is an interval order.
(ii) P does not embed 2⊕ 2.
(iii) The set {(↓ x) ∖ {x} ∶ x ∈ V } is totally ordered by set inclusion.
(iv) The set {(↑ x) ∖ {x} ∶ x ∈ V } is totally ordered by set inclusion.

Lemma 11.2. Let P = (V,≤) be an interval order and x ∈ V . Then the
neighbours of x (in Inc(P )) that lay on an induced path of length at least
two in Inc(P ) and starting at x and whose vertices are in incP (x)∪ ↑ x form
an antichain in P .

Proof. Let x ∶= x0, x1, . . . , xn and x ∶= x′0, x
′
1, . . . , x

′
n′ be two induced paths

in Inc(P ) with n,n′ ≥ 2 and whose vertices are in incP (x)∪ ↑ x. Note that
necessarily x < x2 and x < x′2. Suppose for a contradiction that x1 and x′1 are
comparable. Suppose x1 < x′1. Since x < x2 and x1 is incomparable to x and
to x2 and x is incomparable to x′1 and P is an interval order we infer that x′1
is comparable to x2 and hence x < x′1 or x1 < x2, which is impossible. The
case x′1 < x1 can be dealt with similarly by considering the comparabilities
x′1 < x1 and x < x′2. □
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11.1. Proof of Theorem 1.8. Let x0 ∈ P and set I0 ∶= incP (x0)∪ ↓ x0
and F0 ∶= incP (x0)∪ ↑ x0. Clearly, V (G) = I0 ∪ F0. Furthermore, since the
diameter of G is infinite and G↾I0 and G↾F0 are connected graphs we infer
that the diameter in G↾I0 or in G↾F0 is infinite. We may assume without loss
of generality that the diameter of G0 ∶= G↾F0 is infinite. Hence, the lengths
of isometric paths in G0 starting at x0 are unbounded.

Claim 11.3. There exists x1 ∈ incP (x0) such that the lengths of isometric
paths in G0 starting at x0 and going through x1 are unbounded.

Proof. Since the antichains of P are finite, there are only finitely many
neighbours of x0 in G0 laying on isometric paths starting at x0 and of length
at least two. Hence there must be a neighbour x1 of x in G0 such that the
lengths of isometric paths in G↾F0 starting at x0 and going through x1 are
unbounded.

Now suppose constructed an isometric path x0, . . . , xn such that xi < xj
for all j − i ≥ 2 and that the lengths of isometric paths starting at x0 and
going through x0, . . . , xn are unbounded. From Lemma 11.2 we deduce that
there are only finitely many neighbours of xn that lay on such isometric
paths. Applying Claim 11.3 to xn we deduce that there exists xn+1 > xn−1
such that x0, . . . , xn, xn+1 is an isometric path of length n + 1. □

We now proceed to the proof of Example 1.9.

Proof. We totally order the set N×N as follows: (n,m) ≤ (n′,m′) ifm <m′ or
(m =m′ and n ≤ n′). Consider the set Q of intervals Xn,m ∶= [(n,m), (n,m+
1)] ordered as in (1.1) above and set G ∶= Inc(Q). Then Xn,m ≤Xn′,m′ if and
only if m+1 <m′ or (m+1 =m′ and n ≤ n′). Equivalently, {Xn,m,Xn′,m′} is
an edge of G if and only if m =m′ or (m′ =m+ 1 and n′ < n) or (m =m′ + 1
and n < n′).

Claim 11.4. G is connected and has infinite diameter.

Subproof. Let Xn,m and Xn′,m′ be two elements of Q so that n ≤ n′. We may
suppose without loss of generality that Xn,m ∩Xn′,m′ = ∅. We may suppose
without loss of generality that m < m′. Consider the sequence of intervals
Xn,m,Xn′,m,Xn+1,m+1,Xn,m+2,Xn′,m+2, . . . ,Xn′,m′ . This is easily seen to be
a path in G proving that G is connected. ◻

Claim 11.5. G has no isometric infinite path starting at X0,0.

Subproof. Let X0,0 =∶ Y0, . . . , Yr, . . . be an isometric path. Then Y1 = Xn1,0

for some n1 ∈ N. Now Y2 must intersect Y1 but not Y0. Hence, Y2 = Xn2,1

for some n2 < n1. Now Y3 must intersect Y2 but not Y1. Suppose Y3 =
Xn′,1. Then n1 < n′. But then Xn′+1,0 intersects Y3 and Y0 and therefore
the distance in G between Y0 and Y3 is two contradicting our assumption
that X0,0 =∶ Y0, . . . , Yn, . . . is isometric. Hence, we must have Y3 = Xn3,2

for some n3 < n2. An induction argument shows that Yr = Xnr,r−1 with
nr < nr−1 < ⋯ < n1. Since there are no infinite strictly decreasing sequences
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of positive integers the isometric path X0,0 =∶ Y0, . . . , Yr, . . . must be finite.
This completes the proof of Claim 11.5. ◻
It follows from Theorem 1.6 that G has no isometric path. □
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