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PREFACE

My purpose is to present the main results on prime 2-structures. We
consider primality in terms of the usual modular decomposition. We are
mainly interested in the downward hereditary properties of primality. The
first six sections are devoted to finite prime 2-structures whereas the last
four sections are devoted to infinite prime 2-structures. The main focus is
to establish results from the literature proven for graphs, digraphs, binary
relational structures, etc., in the setting of 2-structures.

In section 1, we provide the definition of a 2-structure. The 2-structures
are the suitable generalizations of usual structures in graph theory, such as
graphs and digraphs, to study the modular decomposition. In a 2-structure,
the link between two vertices is not an edge or an arc, but a type of links,
that is, an equivalence class of ordered pairs of distinct vertices. In this
manner, a 2-structure is defined as an equivalence relation on the set of
ordered pairs of distinct vertices. This equivalence relation is sufficient to
define the notion of a module.

In section 2, we define different types of connectedness for 2-structures.
They generalize known connectedness for graphs and tournaments. We ex-
amine the components which are generated by these different types of con-
nectedness. This examination leads us to introduce the notions of a module,
a modular cut, and a strong module. These three notions induce three dif-
ferent types of primality. We study these three types of primality, and we
conclude with Gallai’s decomposition theorem.

In section 3, we examine the prime 2-substructures in a prime 2-struc-
ture. First, we prove that every vertex is covered by prime 2-substructures
of size 3, 4, or 5. Second, we introduce the outside partition associated
with a prime 2-substructure. The outside partition allows us to build from
a prime 2-substructure a new prime 2-substructure by adding two vertices.
The first downward hereditary property of primality follows: A prime 2-
structure admits prime 2-substructures obtained by removing one or two
vertices.

In section 4, we characterize the critical 2-structures, that is, the prime
2-structures with the property that all the 2-substructures obtained by re-
moving one vertex are decomposable. We introduce the primality graph
associated with every prime 2-structures. Its edges are the unordered pairs
whose removal provides a prime 2-substrucure. We examine the neighbour-
hoods of the primality graph of a critical graph. We deduce that the primal-
ity graph of a critical graph is a path, a cycle of odd length or a path of odd
length together with one isolated vertex. For each of these four types, we
characterize the corresponding critical 2-structures. The characterization
of critical 2-structures constitutes an important step in the study of prime
2-structures.
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In section 5, we demonstrate the Schmerl-Trotter theorem: a prime 2-
structure, with at least seven vertices, admits an unordered pair whose re-
moval provides a prime 2-substructure. In other words, the primality graph
of a prime graph, with at least seven vertices, is nonempty. The Schmerl-
Trotter theorem is the first substantial theorem in the study of prime 2-
structures. It is an important downward hereditary property of primality.
We prove also different refinements of the Schmerl-Trotter theorem.

In section 6, we characterize the prime 2-structures that are minimal for
a singleton or an unordered pair. Precisely, a prime 2-structure is minimal
for a vertex subset if every proper induced 2-substructure with at least three
vertices containing this vertex subset is not prime. We mainly characterize
the prime 2-structures with at least six vertices that are minimal for an
unordered pair. This characterization allows us to provide a concise proof
of the Schmerl-Trotter theorem.

Section 7 is devoted to the following compactness theorem on infinite
prime 2-structures. An infinite 2-structure is prime if and only if every
finite vertex subset is contained in a finite vertex subset which induces a
prime 2-substructure.

Section 8 is the analogue of section 4 for infinite 2-structures. Precisely,
we characterize the infinite prime 2-structures, all the 2-substructures of
which are obtained by removing one vertex are decomposable, and which
admit at least a prime 2-substructure obtained by removing finitely many
vertices.

In section 9, we characterize finite or infinite partially critical 2-structures.
A prime 2-structure is partially critical whenever the removal of every vertex
outside a given proper and prime 2-substructure provides a decomposable
2-substructure. As in section 3, we associate with the prime 2-substructure
an outside partition. We also associate with it an outside graph which plays
an important role in our characterization.

Finally, in section 10, we provide a downward hereditary property of
primality in the case of infinite 2-structures. Precisely, we prove that an
infinite prime 2-structure admits a proper vertex subset equipotent to the
vertex set which induces a prime 2-substructure.
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1. 2-STRUCTURES

A 2-structure [14] o consists of a vertex set V(o) , and of an equivalence
relation =, defined on (V (o) x V(c)) ~ {(v,v) :veV(co)}. The cardinality
of V(o) is denoted by v(c). A wertex subset of o is a subset of V(o). The
set of the equivalence classes of =, is denoted by E(o) . Given a 2-structure
o, if E(o) admits a unique element e, then o is said to be constant or
e-constant.

Warning. Unless indicated to the contrary, we consider 2-structures
to be finite.

Notation 1.1. Let o be a 2-structure. Given distinct v, w € V' (o), the equiv-
alence class of =, to which (v, w) belongs is denoted by (v,w), . Moreover,
set

[U, w]a = ((vaw)m (wav)a)7
and

<v,w>={(v,W)q, (W,0)s}.

Let o be a 2-structure. With each W € V(o) associate the 2-substructure
o[W] of o induced by W defined on V(o[W]) = W such that

Zoiw] = (Zo) W)~ {(ww)we W'} -

Given W c V(o), o[V (o)~ W] is denoted by 0 — W, and by o — w when
W ={w}.
We use the next notation.

Notation 1.2. Let S be a set. Given W € S x S, set W* = {(v,w) : (w,v) €

We associate with a 2-structure o its dual o* defined on V(¢*) = V(o)
as follows. Given x,y,v,w € V(o"), with z # y and v + w, (z,y) =5+ (v,w) if
(y,7) =5 (w,v). Hence E(c*) ={e* :e € E(0)}. A 2-structure o is reversible
if o = 0*. Hence, a 2-structure o is reversible if and only if for each e € E (o),
e* € E(o). Let o be a reversible 2-structure. For each e € F (o), we have
e* e FE(o),s0 e=¢e" or ene* =@. A 2-structure o is symmetric if for each
e€ E(0), e =¢*. On the other hand, it is asymmetric if for each e € E(0),
ene* =g 11,

1.1. Isomorphism. Given 2-structures ¢ and 7, an isomorphism from o
onto 7 is a bijection from V(o) onto V(7) satisfying for x,y,v,w € V(0),
with z # y and v # w, (z,y) =, (v,w) if and only if (f(z),f(y)) =-

Lty general, a reversible 2-structure is neither symmetric nor asymmetric.

2-structure
vertex set
vertex subset

constant
e-constant

2-substructure

dual

reversible

symmetric
asymmetric

isomorphism
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neighbourhood
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(f(v), f(w)). Therefore, given a bijection f : V(o) — V (1), f is an isomor-
phism from o onto 7 if and only if f induces a bijection f: F(o) — E(7)
satisfying for any v, w € V (o), with v # w, we have

(f(v)7f(w))7' = i((v7w)a)‘

Two 2-structures are isomorphic if there exists an isomorphism from one
onto the other.

Let 0 be a 2-structure. An automorphism of o is an isomorphism from
o onto itself. For example, the identity function Idy () : V(o) — V(0o),
defined by Idy(,)(v) = v for every v € V (o), is an automorphism of o.
The family of the automorphisms of o, endowed with composition, is the
automorphism group of o. It is denoted by Aut(o). A 2-structure o is rigid
if Aut(o) = {Idy(s)}. On the other hand, it is vertez-transitive if for any
v,we V (o), there is f € Aut(o) such that f(v) = w.

Lastly, given 2-structures ¢ and 7, 0 embeds into 7 if o is isomorphic to
a 2-substructure of 7.

1.2. Graphs. A (simple) graph G is defined by a verter set V(G) and
an edge set E(G), where an edge of G is an unordered pair of distinct
vertices of G. Such a graph is denoted by (V(G), E(G)). For instance,
given a nonempty set S, Kg = (5, (g)) is the complete graph on S whereas
(S,2) is the empty graph. With each graph G we associate its complement
G=W(G), (VNN E@WG)).

A graph G is multipartite with a partition P of V(G) if the subgraph
G[X] of G induced by X is empty for each X € P. It is bipartite when | P| = 2.
Given n > 2, the path P, is the graph defined on V(P,) = {0,...,n -1} as
follows. Given v,w € {0,...,n -1}, with v # w, {v,w} e E(P,) if v —w|=1
(see Figure 1.1). The length of the path P, is n - 1.

0 1 n-2 n-1

FiGURE 1.1. The path P,

Given n > 3, the cycle C), is the graph defined on V(C,) = {0,...,n -1}
obtained from P, by adding the edge {0,n —1}. The length of C,, is n.

Let G be a graph. Given a vertex v of GG, a neighbour of v is a vertex w
of G such that {v,w} € E(G). The neighbourhood of v is the set Ng(v) of
its neighbours, and dg(v) = [Ng(v)| is its degree. Given a nonempty subset
X of V(G), G[X] is connected if for any =,y € X, with x # y, there are
elements xg,...,z, of X such that zo = x, z, =y, and {z, zms1} € E(G)
for every 0 < m < n—1. Given a nonempty subset X of V(G), G[X] is a
component of G if G[X] is connected, and for any z € X and ve V(G)\ X,
{z,v} ¢ E(G). A vertex v of a graph G is isolated if G[{v}] is a component
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of G.

Let G and H be graphs such that V(G)nV(H) = @. The disjoint union
of G and H is the graph Go H = (V(G)uV(H),E(G)UE(H)). If V(G)n
V(H) + @, then we can define G @ H up to isomorphism by considering a
graph H' such that H ~ H', and V(G)nV(H') = 2.

A graph G is identified with the symmetric 2-structure o(G) defined on
V(o(@)) = V(G) as follows. Given z,y,v,w € V(o(G)), with z # y and
v#Ew,

{z,y},{v,w} € E(G)
(:v,y) =0(@) (U7w) if Jor
{z,y},{v,w} ¢ E(G).
Given a graph G, observe that o(G) = o(G). A graph is self-complementary

if it is isomorphic to its complement. Consider a self-complementary graph

G. Since 0(G) = 0(G), an isomorphism from G onto G is an automorphism
of o(G).

1.3. Digraphs. A digraph D is defined by a vertex set V(D) and an arc set
A(D), where an arc of D is an ordered pair of distinct vertices of D. Such
a digraph is denoted by (V(D), A(D)). With each digraph D we associate
its dual D* defined on V(D*) = V(D) as follows. Given v, w € V(D*), with
v#w, (v,w) e A(D") if (w,v) € A(D). Given a vertex v of a digraph D,
the in-neighbourhood of v is the set Ny (v) = {w e V(D) : (w,v) € A(D)},
and its out-neighbourhood is the set Nj,(v) = {w e V(D) : (v,w) € A(D)}.

A digraph D is identified with the 2-structure o (D) defined on V (¢(D)) =
V(D) as follows. Given z,y,v,w e V(o(D)), with x #y and v  w,

(z,y), (v,w) € A(D)
(ar,y) =5(D) (v,w) if {or
(z,9), (v,w) ¢ A(D).

A digraph D is a tournament if for any v, w € V(D), with v # w, |[A(D) n
{(v,w), (w,v)}| = 1. Tt is a transitive digraph provided that for any u,v,w €
V(D), if (u,v) € A(D) and (v,w) € A(D), then (u,w) € A(D). A transitive
digraph is also called a (strict) partial order. With each partial order O, we
associate its comparability graph Comp(O) defined on V(Comp(O)) = V(O)
as follows. For any v,w € V(Comp(0)), with v # w, {v,w} € E(Comp(O))
if (v,w) € A(O) or (w,v) € A(O). A linear order is a transitive tournament.
Given a nonempty set S of integers, the usual linear order on S is denoted
by Lg. Given m > 1, Ly . -1} is also denoted by L. Given n > 1, we
consider the tournament Tby,,1 defined on V (T,41) ={0,...,2n} by

Ton+1 = (2n) = Log,

(2n,2m) € A(Ton+1) for 0<m<n -1,

and

(2m+1,2n) € A(Tap+1) for 0<m <n—1 (see Figure 1.2).

disjoint union

self-

complementary

digraph
vertex set
arc set

dual

in-neighbourhood
out-neighbourhood

tournament
transitive digraph

partial order
comparability
graph

linear order
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2n

FIGURE 1.2. The tournament 75,1

Consider a reversible 2-structure o. Given e € E(o), the 2-structure o is
linear or e-linear if (V(o),e) is a linear order.

Remark 1.3. Consider an e-linear 2-structure o, where e € E(c). We have
(V(0),e) is a linear order. Clearly, (V(o),e*) is a linear order as well.
Since o is reversible, e* € E(o). Thus, o is (e*)-linear, and E (o) = {e,e*}.
Moreover, we have o = o ((V(0),¢e)) =a((V(0),e")).
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2. CONNECTEDNESS AND MODULES

We use the following notation.

Notation 2.1. Let o be a 2-structure. For W, W’ c V (o), with WnW' = &,
W «—, W' signifies that (v,v") =, (w,w’) and (v',v) =, (w',w) for any
v,w e W and v, w’ € W'. The negation is denoted by W <, W' . Given
veV(o) and W c V(o) {v}, {v} <=, W is also denoted by v «—, W .
The negation is denoted by v </, W .

Given W, W' c V(o) such that W «—, W', (W, W'), denotes the equiv-
alence class (w,w"), of (w,w’), where w € W and w’ € W’. Furthermore,
set

(W W e = (W, W)g, (W, W)o).

Lastly, given v € V(o) and W € V(o) {v} such that {v} «—, W, ({v}, W),
is also denoted by (v, W), , (W,{v}), is denoted by (W,v), , and [{v}, W],
is denoted by [v, W], .

2.1. Different types of connectedness. Let o be a 2-structure. With
each (e, f) € E(o) x E(0), we associate a type of connectedness. Given
(e,f) € E(0) x E(0), we require that if o is not connected in terms of the
type associated with (e, f), then the ordered pairs of vertices that are not
in the same component, belong to e or f.

Given a 2-structure o, consider e, f € E(c). We define on V(o) the
equivalence relation ~(, ry in the following way. Given v,w € Vo), v N(e,f) W

if v = w or v # w and there exist sequences vg,...,v, and wq,...,w, of

vertices of ¢ satisfying

e vy =v and v, = w;

o for 0<i<m-—1, [v,vis1]s # (€, f);

e wy=w and w, = v;

o for 0<j<n—1, [wj,wji]s # (e, f).
Note that we do not need the second sequence wo,...,w, when e = f.
Moreover, for 0 < i < m -1, [vit1,vi]e # (f,e), and for 0 < j < n -1,
[wjs1,w;ls # (f,e). By considering the sequences v = wy,...,wp = w and
W = VU, ..., 00 = U, We obtain v ~(f .y w. Consequently, for any e, f € E(o)

and v,w € V(0), we have v »(. ) w if and only if w »(s ) v.

Definition 2.2. Let o be a 2-structure. Consider e, f € E(c). The equiv-
alence classes of ~(, ;) are called the {e, f}-components of 0. The family
of the {e, f}-components of ¢ is denoted by Cy. s1(c). Lastly, we say that
the 2-structure o is {e, f}-connected if it admits a unique {e, f }-component.

Moreover, the 2-structure o is connected if o is {e, f}-connected for all
e,feE(0).

{e, f }-components

{e, f}-connected
connected
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Remark 2.3. First, consider a graph G. Set
e1 ={(v,w): {v,w} ¢ E(G)}

and

eo = {(v,w) : {v,w} ¢ E(G)}.
We have
E(o(G)) ={eo, e1}.
The {eg}-components of o(G) are exactly the components of G, whereas
the {e; }-components of o(G) are exactly the components of G. Since o(G)
is symmetric, o(QG) is {eg, €1 }-connected.
Second, consider a tournament 7. We have

E(o(T)) = {A(T), A(T)" }.

The {A(T'), A(T)* }-components of o(T") are exactly the strongly connected
components of T. Since o(T') is asymmetric, o(T") is {A(T")}-connected,
and {A(T)"}-connected.

The following lemma is established in [23] for binary structures, that is,
labeled 2-structures [14].

Lemma 2.4. Given a 2-structure o, consider e, f € E(o). Let X be an
{e, f}-component of o. For each v eV (c)\X, we have v «—, X. Precisely,
for each y e V(o) \ X, we have [v,X ], = (e, f) or (f,e).

Proof. Let ve V(o) ~ X. Consider x € X. Since v # r) z, we have
(21) [Z’,’U]O-Z(e,f) or (f7e)'

For a contradiction, suppose that there exist x,y € X such that [z,v], #
[y,v]s. It follows from (2.1) that e # f. Morever, by interchanging x and y
if necessary, we can assume that [z,v], = (e, f) and [y,v], = (f,e). Hence
[v,2]s # (e, f) and [y,v]s # (e, f). Since x »( sy y, there exists a sequence
g, .- -, Ty satisfying

e xg=2x and x,, = y;

o for 0<i<m-—1, [z, zi41]0 # (€, f).

By considering the sequences o, ...,Tn,v and v,x, we obtain = ~( s v,
which contradicts v ¢ X. Therefore, [z,v], = [y,v]s for any z,y € X. It
follows from (2.1) that [v, X ], = (e, f) or (f,e). O

2.2. Modules and quotient. Given Lemma 2.4, we introduce the follow-
ing definition. Given a 2-structure o, a subset M of V(o) is a module** of

2-1This notion of a module generalizes the usual notion of module for a graph [34]. One
also uses homogeneous set [11, 28] for graphs. For a partial order, Gallai [18] uses closed
set (geschlossen Menge in German), and Kelly [26] uses autonomous set. For a linear order
L, the notion of a module of o(L) coincide with the classical notion of an interval of L.
For relations and multirelations [17], Fraissé introduced the notion of an interval [16]. It
is also used for digraphs [22, 33] . The notion of clan was introduced by Ehrenfeucht and
Rozenberg for 2-structures [13].
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o if for each v € V(o) N\ M, we have v «—, M. The classical properties of
modules follow.

Proposition 2.5. Let 0 be a 2-structure.

(M1) @, V(o), and {v}, where veV (o), are modules of o.

(M2) Given W ¢ V(a), if M is a module of o, then M nW is a module
of o[W1].

(M3) Let M be a module of o. For every N € M, N is a module of o[ M]
if and only if N is a module of o.

(M4) For any modules M and N of o, M n N is a module of o.

(M5) Given modules M and N of o, if MnN # @&, then MUN is a module
of o.

(M6) Given modules M and N of o, if MNN # @&, then N\ M is a module
of o.

(M7) Given modules M and N of o, if Mn N =@, then M «—, N.

Proof. 1t is easy to verify that the first assertion holds. For the second one,
consider a subset W of V(¢), and a module M of 0. Let v e WM. Clearly,
veV(o)\M. Since M is a module of o, we have v «—, M, s0 v «—, MnW.

For the third assertion, consider a module M of ¢ and a subset N of M.
By the preceding assertion, if IV is a module of o, then M n N = N is a
module of o[M]. Conversely, suppose that N is a module of o[M], and
consider v € V(o) N\ N. We have v € V(o) ~ M or v € M ~x N. In the first
instance, since M is a module of o, v «—, M, and hence v <, N. In the
second instance, v <—, N because N is a module of o[ M].

Now, let M and N be modules of o.

To verify that M n N is a module of o, consider v € V(B)\ (M nN). We
have ve (V(o)NM)u(V(o)\ N). By interchanging M and N if necessary,
assume that v € V(o) N\ M. As M is a module of o, v «—, M, and hence
v, MnN.

To show that MU is a module of o, suppose that there exists x € M nN.
Let ve V(o)N(MuUN). Since M is a module of o, z € M and v € V(o) M,
we have [v,M], = [v,x],. Similarly, we have [v,N], = [v,z],. It follows
that [v, M UN], = [v,z],. Thus v <>, M UN.

Lastly, to prove that N \ M is a module of o, suppose that there exists
xeM~NN. Let ve V(o) N (N~ M). Clearly, ve (V(o)N N)u(MnN).
First, suppose that v € V(o) N N. Since N is a module of o, v <, N, so
v <5 N ~ M. Second, suppose that v € M n N. Consider u,u’ € N \ M.
We have to verify that v «—, {u,u’'}. Since M is a module of o, z,v € M
and u € V(o) N\ M, we have [v,u]s = [z,u],. Similarly, [v,u'], = [z,u'],.
Moreover, we have [z,u], = [x,u’], because N is a module of o with u,u’ €
N and z € V(o) N N. It follows that [v,u], = [v,u]s, sO0 v <=4 {u,u’}.

Finally, let M and N be nonempty modules of o such that M n N = @.
Consider z € M and y € N. For any v € M and w € N, we have [v,w], =
[z,w], because M is a module of ¢ with z,v € M and w € V(o) ~ M.
Furthermore, [z, w], = [x,y], because N is a module of o with y,w € N and
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x € V(o) N N. Therefore, [v,w], = [z,y], for any v € M and w € N. Thus
M «—, N. (|

Let o be a 2-structure. Following assertion (M1) of Proposition 2.5, the
modules @, V(0), and {v}, where v € V(0), are called trivial modules. A
2-structure is indecomposable if all its modules are trivial 22 . Otherwise, it
is decomposable. Observe that a 2-structure, with at most two vertices, is
indecomposable. This leads us to the following notion. A 2-structure o is
prime if o is indecomposable, with v(c) > 3.

For instance, if o is a constant 2-structure, then all the subsets of V' (o) are
modules of 0. Hence, a constant 2-structure o is decomposable if v(o) > 3.
The same holds for linear 2-structures. Instead, consider a linear 2-structure
o such that v(o) > 3. By Remark 1.3, there exists a linear order L such that
o =0(L). As above mentioned, the intervals of L are modules of 0. By
denoting by v and w the first two vertices of L, we obtain that {v,w} is an
interval of L. Thus, {v,w} is a nontrivial module of ¢, so ¢ is decomposable.

Fact 2.6. Forn >4, the path P, (see Figure 1.1) is prime.

Proof. Let M be a module of P, with |M|> 2. We have to show that M =
{0,...,n—1}. Consider p,q € M such that 0 < p < q. Since {p—1,p} € E(F,)
and {p—-1,q} ¢ E(P,), we have p— 1€ M. In the same manner, if 0 <p -1,
then p—2¢e M. It follows that {0,...,p} € M. Similarly {q,...,n—1} < M.
Therefore

{0,...;p}u{q,...,n-1} < M.

Now, consider p, q € M such that p < g and Mn{p,...,q} = {p,q}. Suppose
for a contradiction that p < ¢ —1. Since {p,p+1} € E(P,) and p+1 ¢ M,
we have {x,p+1} € E(P,) for every = € M. Therefore M ¢ {p,p+2}. Since
{0,...,p}u{q,...,n=1} € M, we obtain p=0, ¢ =n—-1=2. Since n >4, we
have p=¢g-1. Thus M ={0,...,n-1}. O

Fact 2.7. Forn > 1, the tournament To,.1 (see Figure 1.2) is prime.

Proof. Consider a module M of Ty,.1 such that |M| > 2. We have to show
that M = {0,...,2n}. By Proposition 2.5, M n{0,...,2n -1} is a module
of T9n41[{0,...,2n - 1}] = Lg,. Since M n{0,...,2n — 1} # &, there exist
p,q € {0,...,2n — 1} such that p < ¢ and M n{0,...,2n -1} = {p,...,q}.
If p = q, then 2n € X because |M| > 2. If p < g, then 2n € X because
2n <5 {2m,2m + 1} for 0 < m < n-1. Thus 2n € M. Since (2n,0) €
A(Top+1) and (0,7) € A(Top41) for 1 <7 <2n -1, we have 0 € M. Since
(2n-1,2n) € A(Top+1) and (r,2n—1) € A(Top+1) for 0 <r < 2n -2, we have
2n—1¢e M. Consequently, p=0, g=2n-1 and M ={0,...,2n}. O

Let o be a 2-structure. For any e, f € E(0), the {e, f }-components of ¢ are
modules of o by Lemma 2.4. Hence, the family Cy, ry(o) (see Definition 2.2)
realizes a partition of V(o) in modules of o. Generally, we introduce the
following definition. A partition P of V(o) is a modular partition of o if all

2-2Ehrenfeucht et al. [13, 14] use primitive instead of indecomposable.
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the blocks of P are modules of ¢. Given a modular partition P of o, it follows
from assertion (MT7) of Proposition 2.5 that for distinct X,Y € P, we have
X «—, Y. Hence, the blocks of P can be considered as the vertices of a new
2-structure defined in the following manner. With each modular partition
P of o, we associate the quotient o/P of o by P defined on V(¢/P) = P as
follows. Given X, X" Y)Y’ eV (c/P), with X # X" and Y #Y”,

(XaX,) E(U/P) (Ya Y,) if (l'axl) =0 (yay,)a

where 1€ X, 2’ e X', yeY,and ¢y €Y',
Let o be a 2-structure. Given e, f € E(0), Cy. 51(0) is a modular partition
of o as mentioned above. We characterize the quotient o/Cy. ry (o) as follows.

Proposition 2.8 (Ille [23]). Let o be a 2-structure. For every e € E(o),
0/Ciey(0) is constant. Moreover, for distinct e, f € E(0), 0/Ci p(0) is
linear.

Proof. To begin, consider e € E(c). Given distinct X,Y € Cy.y (o), it follows
from Lemma 2.4 that

(2.2) (X,Y), =e.

Consider X, X", YY" € Cfey(0), with X # X" and YV # Y'. Let z € X,
' e X' yeVY, and y' € Y'. It follows from (2.2) that (x,2'), = e and
(v,9")o = e, so (x,2') =, (y,y'). By the definition of quotient, we have
(X, X" =(o/Ci(0)) (¥, Y"). Hence 0/Cycy () is constant.

Now, consider distinct e, f € E(0). Given distinct X,Y € Cy. p(0), it
follows from Lemma 2.4 and assertion (M7) of Proposition 2.5 that

(23) [Xv Y]a = (6, f) or (f7 6).

Set
e[Cie,y(0) ={(X,Y) €Cye sy(0) xCepy(0) : X # Y, (X, Y ) = €}
and

flCe.py(0) ={(X,Y) €Cre j1(0) x Ce 5y (0) : X # Y, (X, Y)o = f}.
We prove that

(2.4) E(0[Cie.51(0)) ={e[Cie,pr(0), fCie, 1y (0) }-

Consider X, X", YY" € Cioyy(0), with X # X" and YV # Y. Let 2 € X,
' e X' yeY, and y €Y', First, suppose that (X, X") =(0/C1ey(0)) (Y, Y.
By the definition of quotient, we have (z,z") =, (y,v), so (z,2")s = (y,4')0-
By (2.3), (z,2")s,(y,y")s € {e,f}. Thus, either (z,2')s = (y,4¥')s = €
or (z,2")s = (y,4')e = f. In the first instance, we obtain (X, X"), =
(Y,Y")y = e, and hence (X, X'), (Y,Y") €e/Ci. (o). In the second one, we
have (X, X'),(Y,Y") € f/Cc sy(0). Second, suppose that (X, X"),(Y,Y") €
e/Cie,1y(0). We have (X, X") = (Y,Y"), = e. Thus (z,2")s = (y,4')s = €, 50

quotient
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(z,2") =, (y,y"). By the definition of quotient, we have (X, X") =(0/Ciey (7))
(Y,Y"). Similarly, we have

(X, X") 2(0/c0 (o)) YY)

when (X, X"), (Y,Y") € f/Cc 53(0). Consequently (2.4) holds.
We continue by showing that

(2.5) (e/Cie,ry ()" = f[Ce,y(0).

Consider distinct X,Y € C. sy(0). Suppose that (X,Y) € (e/Cqc p(0))"
We have (Y, X) € e/Cic 51(0), so (Y, X)y =e. By (2.2), [X,Y], = (e, f) or
(f,e). Since (Y,X)s = e, we obtain (X,Y), = f, so (X,Y) € f/C. 5, (o).
Conversely, suppose that (X,Y) € f/C;. s1(0). We have (X,Y), = f. By
(2.2), [X,Y]s = (e, f) or (f,e). Hence (Y, X), =¢, so (Y, X) €e/Ci. (),
that is, (X,Y) € (¢/Ci,11(0))*. Consequently (2.5) holds.

To conclude, we have to prove that (Ci. (o), e/Cie (o)) is a linear
order. It follows from (2.4) and (2.5) that (C¢. ry(0),e/Cqc r3(0)) is a tour-
nament. Thus, we have to verify that (Cy. s (0),e/Cie (o)) is transitive.
Consider X,Y,Z € Cy (o) such that (X,Y),(Y,Z) € ¢/Cy sy(0). Since
(X,Y),(Y,Z) ee/[Ce 1y (0), we have (X,Y ), = (Y, Z), = e. It follows from
(2.3) that [X,Y], = [Y,Z]s = (e,f). Since e # f, we have X # Z. Let
xeX,yeY,and z € Z. We obtain [z,y]s = [y,2], = (f,e). Since e # f,
we have [2,y]s # (e, f) and [y, z]s # (e, f). Since X # Z, we have x ¢, 5) 2.
It follows that [z, z], = (e, f). By (2.3), [X,Z], = (e, f). Consequently,
(Cie,53(0),€[Cie 1 () is transitive. O

Notation 2.9. Given a 2-structure o, consider a partition P of V(o). With
W c V (o), we associate the set W /P of the blocks X of P such that X nW =
@. Moreover, with @ € P, we associate the union U@ of the elements of Q).

In the following result, we compare the modules of a 2-structure with
those of its quotients.

Lemma 2.10. Given a 2-structure o, consider a modular partition P of o.

(1) If M is a module of o, then M|P is a module of o/P.
(2) If Q is a module of o/ P, then UQ a module of o.

Proof. First, we consider a module M of 0. Consider X € P\ (M/P), and
Y,Z e M/P. Let z € X. Since Y,Z € M/P, there exist y,z € M such that
yeYnM and ze€ ZnM. Since M is a module of o, we have (z,y) =, (z, 2)
and (y,7) = (2,2). By the definition of quotient, (X,Y") =(,/p) (X, Z) and
(Y, X) =(,/p) (Z,X). Thus, M/P is a module of o/P.

Second, let @ be a module of o/P. Consider v € V(o) \ (UQ), and
Y,z € (UQ). Since v e V(o) N (UQ), there exist X € P\ @ such that v e X.
Furthermore, since y,z € (UQ), there exist Y,Z € @ such that y € Y and
z € Z. Since @ is a module of ¢/P, Y,Z € Q and X € P\ @, we have
(X,Y) =5p (X,Z) and (Y, X) =,/p (Z,X). It follows from the definition
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of quotient that (v,y) =, (v,2) and (y,v) =, (z,v). Therefore, UQ is a
module of o. U

2.3. Modular cuts. Given a 2-structure o, we continue the examination of
the properties of the {e, f}-components of o, where e, f € E(c). The next
result is a consequence of Proposition 2.8.

Corollary 2.11 (Ille [23]). Given a 2-structure o, considere, f € E(c). Ifo
is not {e, f }-connected, then there evists X € C¢. 5y(0) such that [ X,V (o)~

X]O’: (evf)'

Proof. If e = f, then it follows from Proposition 2.8 that [X,V (o) \ X], =
(e,e) for every X € Ciy(0). Suppose that e # f. By Proposition 2.8 and
Remark 1.3, there exists a linear order L defined on V(L) = Cy, 5,(o) such
that o/Cy. ry(0) = o(L). The least vertex Y of L satisfies [Y,V () \ Y], =
(e, f) or (f,e). Similarly, the greatest vertex Z of L satisfies [Z,V (o) \
Z)o = (e, f) or (f,e). Since [Y,Z], # [Z,Y ]s, we have [Y,V(o)\Y], #
[Z,V(c)\Z],. Therefore, there exists X € {Y, Z} such that [ X,V (c)\X], =
(e, f). 0

In Corollary 2.11, observe that X and V(o) \ X are modules of o. This
leads us to the following definition. Given a 2-structure o, a subset X of
V(o) is a modular cut>3 of o if X and V(o) \ X are modules of o. For
instance, @ and V(o) are modular cuts of o, called trivial modular cuts.
A 2-structure is uncuttable if all its modular cuts are trivial, otherwise it is
cuttable >*. The following characterization of uncuttable 2-structures follows
from assertion (M7) of Proposition 2.5 and from Corollary 2.11.

Proposition 2.12 (Ille [23]). A 2-structure is uncuttable if and only if it is
connected.

Proof. Let o be a 2-structure. To begin, suppose that ¢ is not connected.
There exist e, f € E(o) such that o is not {e, f}-connected. By Corol-
lary 2.11, o admits a nontrivial modular cut among its {e, f}-components.
Hence o is cuttable.

Conversely, suppose that ¢ is cuttable, and consider a nontrivial modular
cut X of o. Since X is a nontrivial modular cut of o, X and V(o) \ X are
nonempty modules of o. It follows from assertion (M7) of Proposition 2.5
that there exist e, f € E(o) such that [X,V (o) N\ X], = (e, f). Conse-

quently, there is no sequence xy, . .., x, satisfying xg € X, x, € V(o) X, and
[T, Tm+1]o # (€, f) for m € {0,...,n—1}. Thus o is not {e, f}-connected,
so o is not connected. (]

23 Also called cut in [8] for digraphs.
24Ehrenfeucht, Harju, and Rozenberg [14] say that a 2-structure has the 2-block prop-
erty if it is cuttable.

modular cut
trivial modular cut
uncuttable

cuttable
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2.4. Strong modules and Gallai’s decomposition. Let ¢ be a 2-struc-
ture. If o is prime, then {V (o)} and {{v}:v eV (o)} are the only modular
partitions of o. On the other hand, if ¢ is constant, then every partition
of V(o) is a modular partition of o. Hence, in order to obtain a successful
modular decomposition process, we have to associate intrinsically a mod-
ular partition with each 2-structure and to characterize the corresponding
quotient. Furthermore, for the efficiency of the process, we require that if
we repeat the process a second time, we would get an isomorphic quotient.
For instance, consider a binary structure o, and suppose that o is not {e}-
connected, where e € E(o). First, given Lemma 2.4, we can associate with
o the modular partition Cy. (o). By Proposition 2.8, the corresponding
quotient 0/Cy.y (o) is constant. Set

7=0/Ciey(0),
and
€= (Ciey(0) xCiey (o)) N{(X, X) : X € Cyey(0) }-

Since 7 is constant, we have E(7) = {€}. Moreover, |C¢.y(0)| > 2 because
o is not {e}-connected. Thus 7 is not {e}-connected. Second, associate
with 7 the family C¢.y(7) of its {e}-components. Since E(r) = {e}, the
{e}-components of 7 are reduced to singletons. Therefore, the quotient of
T/C{E} (7) is isomorphic to 7. To proceed for any 2-structure o, we return

to the examination of the properties of the {e, f}-components of o, where
e, feE (o).

Lemma 2.13 (Ille [23]). Given a 2-structure o, consider an {e, f}-compo-
nent X of o, where e, f € E(o). For every module M of o, if X n M # @,
then X c M or M cX.

Proof. Let M be a module of ¢ such that X n M # @ and X \ M = @. We
have to show that M ¢ X. Consider x € X N\ M and y ¢ X n M. Since
X is an {e, f}-component of o containing x and y, there exist sequences
x = T0,...,p =y and ¥y = yo,...,Yq = * of elements of X such that for
0<m< b- 17 [xmamerl]O' * (eyf)a and for 0 < m < q- 17 [ymaym+1:|o *
(e, f). Since g ¢ M and x, € M, there exists m € {0,...,p— 1} such that
T € X N M and xy,41 € X n M. Similarly, since yo € M and y, ¢ M,
there exists n € {0,...,¢ — 1} such that y, € X n M and yp41 € X N~ M.
Now, let v € M. Since M is a module of o, x41,v € M and x,, ¢ M, we
have [Ty, Tm+1]o = [Tm,v]s. Hence [z, v], # (e, f). Since y,,v € M and
Yn+1 # M, [YnsYn+1)o = [VsYn+1]o. Thus [v,yn+1]e # (€, f). By considering
the sequences = = g, ..., Tm,v and v,Yn+1,...,Yq = T, We obtain z ¥ r) v.
It follows that v € X. Therefore M ¢ X.

This result leads us to introduce the following definition. Given a 2-
structure o, a subset M of V(o) is a strong module >5 of ¢ provided that

25150 called prime module in [14] for 2-structures, and strong interval for digraphs.
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M is a module of o, and for every module N of o, we have
ifMnN=+@, then Mc N or Nc M.

Given e, f € E(0), it follows from Lemma 2.13 that each {e, f}-component
of 0 is a strong module of 0. As for modules, @, V(o) and {v}, ve V(0), are
strong modules of o, called trivial strong modules. A 2-structure is primitive
26 if all its strong modules are trivial. Three types of primitive 2-structures
occur.

Lemma 2.14. Given a 2-structure o, if o is prime, constant, or linear,
then o is primitive.

Proof. If o is indecomposable, then all its modules are trivial, and hence all
its strong modules are also. Therefore, if ¢ is prime, then o is primitive.

Now, suppose that o is constant or linear. Recall that a 2-structure with
at most 2 vertices is indecomposable. Hence, suppose also that v(o) > 3. To
show that ¢ is primitive, it suffices to verify that every nontrivial module M
of ¢ is not strong, that is, there exists a module N of ¢ such that M nN = @&,
M~N=+@and N\ M #@.

Suppose that o is constant. As previously observed, any subset of V(o)
is a module of o. Consider distinct x,y € M, and v € V(o) ~ M. The module
{z,v} of o satisfies x € M n{z,v}, ye M ~{x,v} and v e {z,v} \ M.

Lastly, suppose that ¢ is linear. By Remark 1.3, there exists a linear order
L defined on V(L) = V(o) such that o = 0(L). Recall that the modules
of o are exactly the intervals of L. Hence, M is a nontrivial interval of
L. Up to isomorphism, we can assume that L = L,, where n > 3. Since
M is a nontrivial interval of L, M = [p,q], where 0 < p < ¢ <n-1 and
(p,q) # (0,n —1). Observe that o = 0(L") as well. Thus, by considering L*
instead of L if necessary, we can assume that p > 1. To conclude, it suffices
to consider for N the interval [0,p] of L. O

The analogue of Lemma 2.10 for strong modules follows.

Lemma 2.15. Given a 2-structure o, consider a modular partition P of o.

(1) If M is a strong module of o, then M|P is a strong module of o/P.
(2) Suppose that all the blocks of P are strong modules of o. If Q is a
strong module of o/ P, then UQ is a strong module of o.

Proof. First, let M be a strong module of o. By Lemma 2.10, M /P is a
module of o/P. Consider a module @ of o/P such that Q n (M/P) # @. If
|M/P| =1, that is, if there is X € P such that M ¢ X, then M /P = {X}, so
X €@ and M/P c Q. Hence suppose that |[M/P| > 2. For each X € M/P,
we have M n X # @ and M \ X # @g. Since M is a strong module of o,
X ¢ M. Consequently M =u(M/P). By Lemma 2.10, u@ is a module of o.
Clearly M n(uQ) # @ because Q@ n (M /P) # @. Since M is a strong module

26Als0 called special in [14] .

primitive
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of o, we have M < u@ or uQ ¢ M. Since M =uU(M/P), we obtain M /P c Q
or @ € M/P. Consequently, M/P is a strong module of o/P.

Second, let @ be a strong module of o/P. Consider a module M of o
such that there exists z € (UQ) N M. Denote by X the block of P containing
x. Clearly X € @n (M/P). By Lemma 2.10, M /P is a module of o/P.
If IM/P| =1, then M ¢ X cu@. Thus suppose that |[M/P| > 2. Consider
Y e M/P. Since |M/P|>2, we have Y n M + @ and M \Y # @. Moreover,
Y is a strong module of o because Y € P. It follows that Y € M. Therefore
M = u(M/P). Since @ is a strong module of /P and X € Q n (M/P),
we have Q € M/P or M/P < Q. Tt follows that uQ € M or M ¢ uUQ.
Consequently, U@ is a strong module of o. O

In the second assertion of Lemma 2.15, the hypothesis that all the blocks
of P are strong modules of o is necessary. Indeed, for each X € P, {X} is a
strong module of o/P, so we must have u{X} = X is a strong module of o.

The following property of the {e, f}-components of a 2-structure o, where
e, f € E(o), completes our examination.

Lemma 2.16 (Ille [23]). Let o be a 2-structure o. Consider an {e, f}-
component X of o, where e, f € E(c). For every strong module M of o, if
X cM, then M =X or M=V (o).

Proof. Let M be a strong module of o such that X ¢ M ¢ V(o). We have
to show that M = V(o). It follows from Lemma 2.4 that C¢ fy(0) is a
modular partition of . Furthermore, each block of Cy. ) (0) is a strong
module of ¢ by Lemma 2.13. Since M is a strong module of o, it follows
from Lemma 2.15 that M/Ci, ry(o) is a strong module of 0/Cy. y(o). By
Proposition 2.8, 0/Cy, ¢, () is constant or linear. Thus, ¢/Cy, () is prim-
itive by Lemma 2.14. Therefore, M /Cy, s1(0) is a trivial strong module of
O’/C{&f}(a). Since X ¢ M, |M/C{e7f}(0)| > 2, s0 M/C{eyf}(J) = C{e,f}(a).
Lastly, consider Y € Cy. y(0). Since M/Ci. s,(0) = Ciepy(0), we have
YnM=+@and M\NY # @ Since M is a strong module of o, we obtain
Y ¢ M. It follows that M =V (o). O

Notation 2.17. Let o be a 2-structure. Suppose that o is not {e, f}-
connected, where e, f € E(c). It follows from Lemma 2.16 that Cy. £ (o) is
the set of the strong modules of ¢ that are maximal under inclusion among
the proper strong modules of . In a general way, we associate with each
2-structure o the set II(o) of the strong modules of o that are maximal
under inclusion among the proper strong modules of o. (Note that II(o)
can be empty when o is infinite.)

Proposition 2.18. Let o be a 2-structure such that v(o) > 2. The set II(o)
constitutes a modular partition of o*7, and the quotient o [TI(c) is primitive.

Proof. To begin, consider X,Y € II(o) such that X nY # @. Since X
is a strong module of o, we have X ¢ Y or Y ¢ X. It follows from the

2.TRecall that we consider finite 2-structures.
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maximality of X and Y that X =Y. Moreover, consider v € V(o). As
previously mentioned, {v} is a strong module of 0. Denote by S, the set of
the proper strong modules of o containing v. Since v(o) > 2, {v} € S,. Let
M,N €S,. We have ve M nN. Since M is a strong module of o, we obtain
M c N or N ¢ M. Therefore, (S,,%) is a linear order. Since V(o) is finite,
(Sy,%) admits a greatest element M,. Clearly, M, € II(c). Consequently,
we have UII(0) = V(o). It follows that II(¢) is a modular partition of o.
Now, we prove that o/II(o) is primitive. Consider a strong module @ of
o/TI(o) such that |Q| > 2. We have to show that @ = II(¢). Since all the
blocks of II(¢) are strong modules of o, it follows from Lemma 2.15 that U@
is a strong module of 0. Given X € @, we have X ¢ (UQ) because |Q| > 2.
By the maximality of X, u@ =V (o), and hence Q =1I(0). O

The characterization of primitive 2-structures is an easy consequence of
Lemma 2.14, and of the following two propositions.

Proposition 2.19. Given a primitive 2-structure o such that v(c) > 3, o
is prime if and only if o is uncuttable.

Proof. To begin, suppose that ¢ is cuttable, and consider a nontrivial mod-
ular cut X of o. Since v(c) >3, X or V(o) ~ X are nontrivial modules of
o. Therefore o is decomposable.

Conversely, suppose that ¢ is decomposable. Hence ¢ admits nontrivial
modules. Consider a module M of ¢ that is maximal under inclusion among
the nontrivial modules of ¢. Since ¢ is primitive, M is not a strong module
of 0. Thus there exists a module N of ¢ such that M n N # &, M\ N # &,
and N \ M # @. By assertion (M5) of Proposition 2.5, M u N is a module
of o because M NN # @. Since N\ M # @&, we have M ¢ M uN. By the
maximality of M, we obtain M UN = V(o). Thus N\ M = V(o) \ M.
By assertion (M6) of Proposition 2.5, N\ M = V(o) ~ M is a module of
o because M \ N % @&. Consequently, M is a nontrivial modular cut of o.
Therefore o is cuttable. ]

Proposition 2.20. Given a 2-structure o, o is primitive and cuttable if
and only if o is constant or linear, with v(o) > 2.

Proof. Suppose that o is constant or linear, with v(¢) > 2. By Lemma 2.14,
o is primitive. Since ¢ is constant or linear, it follows from Corollary 2.11
that there exists v € V(o) such that {v} is a modular cut of o. Since
v(o) 22, {v} is a nontrivial modular cut of o, so ¢ is cuttable.

Conversely, suppose that o is primitive and cuttable. By Proposition 2.12,
there exist e, f € (o) such that o is not {e, f}-connected. Furthermore, by
Lemma 2.13, each {e, f }-component of o is a strong module of o. Since o is
primitive and not {e, f }-connected, each {e, f}-component of ¢ is reduced to
a singleton. Consequently, the function V(o) — Cy, 5y(0), defined by v ~
{v} for every v € V (o), realizes an isomorphism from o onto o/Cy sy(0). Tt
follows from Proposition 2.8 that ¢ is constant or linear. Note that v(o) > 2
because o is cuttable. O
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There is another approach to establish the forward direction of Proposi-
tion 2.20. It reveals the importance of the notion of a modular cut in the
study of nonconnected 2-structures.

Second proof of the forward direction of Proposition 2.20. Let o be a cut-
table and primitive 2-structure. We consider a maximal set S under inclusion
among the sets of modular cuts of ¢ that are linearly ordered by inclusion.
By the maximality of S, we have @,V (o) € S, and S\{@,V (0)} # & because
o is cuttable. We denote the elements of S by Xo,...,X,, where n > 2, in
such a way that
?=Xog ¢ Xn=V(0).
Let m € {0,...,n—1}. We show that
Xm+1 N Xy, is a strong module of o.

Since V(o) \ X,, is a module of o, X;,.1 N (V(0) N Xpp) = Xope1 N Xpy I8 2
module of o by assertion (M4) of Proposition 2.5. Now, consider a module
M of o such that M n (X1 N X)) # @, and M N (X1 N X)) +# 3. We
have to verify that (X;+1 N\ X)) € M. Since M \ (X 41 N X)) # @, we have
MnX,+dor Mn(V(o)NXm+1) #2. Theset {V(o)NX,:0<p<n}is
also maximal under inclusion among the sets of modular cuts of o that are
linearly ordered by inclusion. So, by interchanging S and {V (o)~ X, :0 <
p < n} if necessary, we can assume that

MnX,, +@.
We verify that
Xm U (M n X,41) is a modular cut of o.

Since X, N (M N X41) = M0 Xy, XU (M N X,41) is a module of o by
assertion (M5) of Proposition 2.5. Clearly, V(o) \ (X; U (M N Xp41)) =
V(o) N X)) N (M 0 Xppie1). Since (M 0 Xppi1) N (V(0) N X)) = M n Xy,
it follows from assertion (M6) of Proposition 2.5 that (V (o) \ X;n) N (M n
Xm+1) =V (o)N (XU (M nX41)) is a module of o. Therefore, X, u(Mn
Xm+1) 1s a modular cut of o.

Since X, U (M N Xppi1) = X U (M 0 (Xppe1 N X)), we have

Xm & Xm U (M N Xm+1) < Xm+1-

It follows from the maximality of S that X,, u (M n X;41) = Xppe1 or,
equivalently, (X,+1 N X)) € M.

Consequently, X,,+1\ X,y is a strong module of o for every m € {0,...,n-
1}. Since o is primitive, |X;+1 N Xpp| = 1 for every 0 < m < n - 1. Denote
by %41 the unique element of X,,41 N X,,,. We have X, = {x1,..., 2}
for each 0 < m < n. In particular, V(o) = X,, = {x1,...,2,}. Consider
p,q € {1,...,n} such that p < ¢q. Since X, = {x1,...,2,} is a module of o,
we obtain [zp, zq]s = [21,24]s. Since V(o) \ X1 = {x2,...,2,} is a module
of o, [z1,24]6 = [x1,22]5. Thus

[xp, Tqlo = [1,22]5 for any p,qg e {1,...,n} such that p <gq.
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It follows that o is constant if (z1,22)s = (22,21)s, and o is linear if
(z1,22)0 # (22,21)0- (|

The characterization of primitive 2-structures follows.

Theorem 2.21 (Ille [23]%%). Given a 2-structure o, o is primitive if and
only if o is prime, constant, or linear.

Proof. By Lemma 2.14, if o is prime, constant, or linear, then ¢ is primi-
tive. Conversely, we verify that if ¢ is primitive and decomposable, then o
is constant or linear. Hence, suppose that ¢ is primitive and decomposable.
Obviously, v(c) > 3 because o is decomposable. It follows from Proposi-
tion 2.19 that o is cuttable, and it suffices to apply Proposition 2.20. [l

The next result, called Gallai’s decomposition theorem, is a direct conse-
quence of Proposition 2.18 and Theorem 2.21.

Theorem 2.22 (Gallai [18, 28)%Y ). Given a 2-structure o, with v(o) > 2,
the quotient o[/Il(o) is prime, constant, or linear.

Remark 2.23. Chein, Habib, and Maurer [9] adopted a different approach
to establish Theorem 2.22 for partitive hypergraphs, which constitutes a nice
generalization of Theorem 2.22. We transcribe it in terms of symmetric 2-
structures. (The set of the modules of a symmetric 2-structure is a partitive
hypergraph.) Given a symmetric 2-structure o, define a partial order O on
the set of the modular partitions of o as follows. Given distinct modular
partitions P and @ of o, (P,Q) € A(Q) if for every X € P, there exists
Y € @ such that X ¢ Y. Clearly, {{v} : v e V(0)} is the least vertex of
O, and {V (o)} is the greatest one. Furthermore, with modular partitions
P and @ of o associate their join P v ), and their meet P A () defined as
follows. First, given distinct v, w € V(o), v and w belong to the same block
of P v Q if there exist Xy, ..., X, € Pu @ satisfying v € X, w € X,,, and for
0<i<n-1(whenn>1), X;nX;,1 #@. Second, given distinct v,w € V (o),
v and w belong to the same block of P A @ if there exist X ¢ P and Y € )
such that v,we X nY. Clearly, Pv @ and P A () are modular partitions of
o. Therefore, O is a lattice, that is, for any modular partitions P, @), and
R of o, we have: if (P,R),(Q,R) € A(Q), then ((PvQ),R) ¢ A(0), and if
(R,P),(R,Q) € A(0), then (R,(P AQ)) € A(0O). The maximal vertices of
O-{V(o)} are called the coatoms of Q. Lastly, Chein, Habib, and Maurer
observed that II(o) is the meet of all the coatoms of Q.

28Ehrenfeucht, Harju and Rozenberg [14, Theorem 5.3] established a more general
result. They associate with a decomposable and primitive 2-structure o a graph I' defined
on V(T') = V(o) as follows. Given distinct v,w € V(T'), vw € E(T") if {v,w} is a module
of 0. Then, they proved that either I' is complete or I' is a path. In the first instance, o
is constant whereas o is linear in the second one.

2.9Gallai [18] demonstrated this theorem for graphs; Boussairi, Ille, Lopez, Thomassé
[8, Theorem 5] for digraphs; Ehrenfeucht, Harju, and Rozenberg [14, Theorem 5.5] for
2-structures; Ille [23, Theorem 2] for binary structures.

join
meet

lattice

coatoms
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We specify Theorem 2.22 as follows.

Theorem 2.24. Given a 2-structure o, with v(o) > 2, the assertions below
hold.

(1) There exists e € E(o) such that o is not {e}-connected if and only if
[I(0) = Ciey (o) and ofll(o) is constant.

(2) There exist distinct e, f € E(o) such that o is not {e, f}-connected
if and only if Tl(0) = Cie 5y (o) and o/I1(0) is linear.

(3) The 2-structure o is connected if and only if o/Il(c) is prime.

Proof. To begin, suppose that there exist e, f € F(o) such that o is not
{e, f}-connected. It follows from Lemma 2.4, Lemma 2.13, and Lemma 2.16
that II(c) = C, sy (o). By Proposition 2.8, ¢/II(0) is constant if e = f, and
o/Il(o) is linear if e # f. Conversely, suppose that o/II(o) is constant or
linear. There exists X € II(o) such that {X} is a modular cut of o/II(0).
By Lemma 2.10, X is a modular cut of o. It follows from assertion (M7) of
Proposition 2.5 that there exist e, f € F(o) such that [ X,V (o)~ X], = (e, f).
Therefore, o is not {e, f}-connected.

Lastly, suppose that o is {e, f}-connected for any e, f € E(c). By Propo-
sition 2.12, o is uncuttable. It follows that |II(¢)| > 3. For every modular
cut @ of o/TI(0), uUQ is a modular cut of o by Lemma 2.10. Thus ¢/II(0)
is uncuttable as well. Moreover, by Proposition 2.18, ¢/TI(0) is primitive.
Since [II(o)| > 3, it follows from Proposition 2.19 that o/II(c) is prime.
Conversely, suppose that o/II(o) is prime. Since [II(o)|> 3, o/II(0) is nei-
ther constant nor linear. It follows from the first two assertions that o is
connected. ]

Notation 2.25. Let o be a nonconnected 2-structure. It follows from The-
orem 2.24 that there exists a unique subset v(o) of E(o) such that |[v(o)| =1
or 2, and o is not v(o)-connected. The v(o)-components of o are simply
called the components of o, and C,(,)(o) is denoted by C(o).

Finally, the last assertion of Theorem 2.24 is developed as follows.

Theorem 2.26. Given a 2-structure o, with v(o) > 2, the following asser-
tions are equivalent

(1) o is connected;

(2) o is uncuttable;

(3) o/ll(o) is prime;

(4) There ezists a modular partition P of o such that o/P is prime;

(5) |TI(o)| > 3 and II(o) is the set of the maximal modules of o under
inclusion among the proper modules of o.

Proof. We denote by M the set of the maximal modules of o under inclusion
among the proper modules of 0. Hence, (5) is restated as follows

[II(o)| > 3 and II(0) = M.
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By Proposition 2.12, the first two assertions are equivalent. Hence, it
follows from the last assertion of Theorem 2.24 that the first three assertions
are equivalent.

Clearly, (3) implies (4). Now, we show that (4) implies (5). Suppose that
there exists a modular partition P of o such that o/P is prime. First, we
prove that for every module M of o,

(2.6) if |[M/P|> 2, then M/P = P.

Let M be a module of o such that |[M/P| > 2. By Lemma 2.10, M/P is
a module of o/P. Thus M/P = P because o/P is prime. Therefore (2.6)
holds. Second, we prove that for every module M of o,

(2.7) if |[M/P|>2, then M =V (o).

Let M be a module of o such that |[M/P| > 2. By (2.6), M/P = P. For
a contradiction, suppose that M # V(o), and consider X € P such that
X N\ M # @. By assertion (M6) of Proposition 2.5, M \ X is a module of o.
We have (M ~ X)/P = P~ {X}. Since |P| > 3, we obtain [(M \ X)/P| > 2
and (M \~ X)/P # P, which contradicts (2.6). It follows that X ¢ M for
every X € P, so M = V(o). Therefore (2.7) holds. Third, we prove that
P =M. Given X € P, consider a module M of ¢ such that X ¢ M. Since
X¢M,|M/P|>2. By (2.7), M =V (o). Thus P ¢ M. Conversely, consider
Y e M. Since Y # V(0), it follows from (2.7) that there exists X € P such
that Y ¢ X. By the maximality of Y, Y = X, so Y € P. Therefore M c P.
It follows that P = M. Fourth, we verify that the blocks of P are strong
modules of 0. Given X € P, consider a module M of ¢ such that XnM # @&
and M ~ X # @. We have |[M/P|>2. By (2.7), M = V(o). Hence X c M.
It follows that X is a strong module of o. Since P = M, X € M. It follows
that X e II(¢). Therefore P c II(o). Since P and II(¢) are partitions of
V (o), we obtain P =1I(o). Consequently

P=T(0) =M.

Note that [II(o)| > 3 because II(¢) = P and o/P is prime. It follows that
(4) implies (5).

Lastly, we show that (5) implies (3). Hence suppose that |II(¢)| > 3 and
II(o) = M. Since [II(¢)| > 3, we have to show that ¢/II(c) is indecompos-
able. Let @@ be a module of ¢/II(¢) such that |Q| > 2. We have to verify that
Q@ =TI(0). By Lemma 2.10, u@ is a module of o. Consider X € (). Since
II(o) = M, we have X € M. Since |@Q| > 2, we obtain X ¢ uQ. It follows
from the maximality of X that u@Q = V(o). Hence @ =1I(0). O
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3. PRIME 2-SUBSTRUCTURES OF A PRIME 2-STRUCTURE: THE FIRST
RESULTS

Notation 3.1. Let o be a 2-structure. For n € {3,...,v(c) -1}, we de-
note by #, (o) the set of X ¢ V(o) such that o[ X] is prime and |X| = n.
Furthermore, we denote by %, (c) the union of the elements of #, (o).

Question 3.2. Let o be a prime 2-structure. A natural question is:
For which ne{3,...,v(0) -1}, is P, (o) + &7
Obviously, we can refine the question as follows. Given v € V(¢), for which
ne{3,...,v(c) -1}, do we have v e Z,(0)?
For instance, given n > 2, consider the graph Bag, 1 defined on V(Bap41) =
{0,...,2n} by
E(Baop+1) ={{i,j} 4,7 €{0,...,n=1},i#j}

u{{i,i+n}:ie{0,...,n—-1}}
u{{i,2n}:i€{0,...,n—1}} (see Figure 3.1).

The graph Bs is called the bull.

NB7(6)

Ficure 3.1. The graph By

Claim 3.3. Bg,1 — 2n is prime.

Proof. Consider a module M of By,.1 — 2n such that |M| > 2. We have
to show that M = {0,...,2n - 1}. For a contradiction, suppose that M n
{0,...,n-1} = @. Hence M < {n,...,2n—1}. Since |M| > 2, there exist
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distinct 4,7 € {0,...,n — 1} such that ¢ + n,j + n € M, which is impossible
because i ¢ M with {i,i+n} € E(Bap+1) and {i,j+n} ¢ E(Bap+1). It follows
that M n{0,...,n -1} # @. Similarly, M n{n,...,2n-1} # @.

We prove that for every i € {0,...,n -1},

(3.1) ieM —i+nelM.

Indeed, consider i € M n{0,...,n-1}. Since M n{n,...,2n -1} # @, there
exists j € {0,...,n -1} such that j+n e M n{n,....2n-1}. If i = j,
then i + n € M. Suppose that i # j. We have {i,i + n} € E(Bay+1) and
{j+n,i+n} ¢ E(Bap1). Since M is a module of By,.1 — 2n such that
i,7+mn € M, we obtain ¢ +n € M. Hence (3.1) holds. Now, we prove that for
every i €{0,...,n—1},

(3.2) ieM < i+nelM.

Since (3.1) holds, consider i € {0,...,n — 1} such that i + n € M. Since
Mn{0,...,n—1} # @, there exists j € {0,...,n—1}nM. If j =4, then i € M.
Suppose that i # j. Since (3.1) holds, j+n € M. We have {i,i+n} € E(Bap+1)
and {i,7 +n} ¢ E(Baps1). Since M is a module of By,1 — 2n such that
i+mn,j+neM, we obtain i € M. Hence (3.2) holds.

Lastly, since (3.2) holds, there exists i € {0,...,n—1} such that i,i+n € M.
For each j € {0,...,n—1} \ {¢}, we have {i,j} € E(Bay+1) and {i +n,j} ¢
E(Bap+1). Since M is a module of Bgyy1 — 2n such that i,i+n € M, we
obtain j € M. Therefore {0,...,n -1} ¢ M. It follows from (3.2) that
M={0,...,2n-1}. O

Claim 3.4. Bo,,1 is prime.

Proof. Consider a module M of Bs,.1 such that |M| > 2. We have to show
that M = {0,...,2n}. For a contradiction, suppose that 2n ¢ M. By asser-
tion (M2) of Proposition 2.5, M is a module of Bay,1 —2n. Since M| > 2, it
follows from Claim 3.3 that M = {0,...,2n—-1}, which is impossible because
{0,2n} € E(Bap+1) and {n,2n} ¢ E(Bap+1). Thus 2n e M.

We prove that |M \ {2n}| > 2. We have M \ {2n} # @& because |M| > 2.
First, suppose that there exists i € M n {0,...,n —1}. Since {i,i +n} €
E(Bap+1) and {i +n,2n} ¢ E(Bay+1), we have i +n € M. Second, suppose
that there exists i € {0,...,n—1} such that i+n € M. Consider j € {0,...,n—
1}~ {i}. Since {j,2n} € E(Bap+1) and {j,i+n} ¢ E(Bap+1), we have j e M.
It follows that |M \ {2n}| > 2.

By assertion (M2) of Proposition 2.5, M \ {2n} is a module of Bay1 —2n.
Moreover, Bap.1 —2n is prime by Claim 3.3. Since |[M \ {2n}| > 2, we obtain
M~ {2n}={0,...,2n—1}. Thus M ={0,...,2n} because 2n € M. O

Claim 3.5. We have 2n € %5(327“_1) AN (%3(32,“.1) U<@4(Bgn+1)).

Proof. Tt follows from Claim 3.4 that the 2-substructure Bgy,.1[{0,1,n, n +
1,2n}] is prime because it is isomorphic to Bs. Thus 2n € %5(Bap+1)-

Now, consider X ¢ V(Bap+1) such that | X| =3 or 4, and 2n € X. We have
to prove that Ba,.1[X] is decomposable.
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First, suppose that for alli € Xn{0,...,n-1} and all j € Xn{n,...,2n-1},
we have j—i # n. We have (Xn{0,...,n-1})u{2n} and Xn{n,...,2n-1}
are modules of By, 1[X]. If (Xn{0,...,n—-1})u{2n} is a trivial module of
Bopi1[X], then X € {n,...,2n}, and hence Xn{n,...,2n-1} is a nontrivial
module of Bay1[X]. Therefore, (Xn{0,...,n-1})u{2n} or Xn{n,...,2n-
1} are nontrivial modules of Bag,,,1[X].

Second, suppose that there exists i € {0,...,n—1} such that i,i+n e X. If
X n{0,...,n=1} = {i}, then {i+n,2n} is a nontrivial module of Bg,,1[X].
Otherwise, if there exists j € {0,...,n—1}~{i} such that X = {4, j,i+n,2n},
then {j,2n} is a nontrivial module of By,,,1[X]. O

In Corollary 3.9, we establish that such a vertex 2n is unique.
3.1. Sumner’s theorem.

Remark 3.6. Let o be a prime 2-structure. Consider
(33) ’U¢<@3(O')Uz@4(0).

Let X € V(o) such that v e X and |X| =3 or 4. We verify that o[ X] is not
connected. Otherwise, o[ X] is connected, and it follows from Theorem 2.26
that o[ X]/TI(c[X]) is prime. Consider a subset X’ of X such that v € X'
and | X' nY| =1 for each Y € II(¢[X]). The function f:II(c[X]) — X',
satisfying X' nY = {f(Y)} for each Y € II(¢[X]), realizes an isomorphism
from o[ X]/TI(¢[X]) onto o[X']. Thus, o[X'] is prime with v € X’ and
| X'| = 3 or 4, which contradicts (3.3).

Notation 3.7. Consider a 2-structure o. Let v € V(o). For e, f € E(0), set
NED () = {w e V(o) ~ (v} : [v,w]s = (e, f)}-

Proposition 3.8 (Ille [23]*1). Given a prime 2-structure o, consider v ¢
R3(0) UAy(0).

(1) For each e € E(0), U[Née’e)(v)] is e-constant.

(2) For distinct e, f € E(0), J[Née’f)(v)] is e-linear (and f-linear).

Proof. Consider e, f € E(o) such that N(,(.e’f)(v) # @. We prove that each
{e, f}-component C of U[Née’f)(v)] is a module of 0. Consider z € V(o)\C.
We have to verify that x «—, C. Since C ¢ Née’f)(v), we have [v,C], =
(e,f). Hence, suppose that z # v. Moreover, since C is a module of
U[N(,(.e’f)(v)] by Lemma 2.4, suppose that x ¢ Née’f)(v). Thus suppose
that
¢ NP (v) U {u}.

Let v € C. Since 7 ¢ Née’f)(v) and x ¢ Née’f)(v), {7, x} is not a module of
ol[{v,x,~v}]. Since o[{v,x,~}] is decomposable, {v,x} or {v,~v} are modules
of o[{v,z,v}]. First, suppose that {v,7} is a module of o[{v,z,v}]. We

3-1Cournier and Ille [12] established this proposition for digraphs. Ille [23] proved this
proposition for binary structures, that is, labeled 2-structures [14].
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obtain  <—, {v,v}. Thus [z,7], = [z,v],, sO 7 € NCEI’U](’ (x). Second,
suppose that {v,z} is a module of o[{v,z,7}]. We obtain v «—, {v,z}.
Hence [z,7v], = [v,7]o. Since C ¢ Née’f)(v), we obtain vy € N§e7f)(x).
Therefore
(3.4) C ¢ NP (z) u NP (2).
Suppose that < v,z >,= {e, f} (see Notation 1.1). We obtain e # f and
[v,2]s = (f,e) because = ¢ Née’f)(v). It follows from (3.4) that [z,C], =
(e, f). Now, suppose that <v,z>,% {e, f}. We obtain

(C AN (2)) n (C N (2)) = 2.

Consider ~y € CnNLEvle (z) and § € CnNée’f)(x). By Remark 3.6, o[{v,z,~,
d}] is not connected. Since <v,y>,=<v,d>,=<x,0>,= {e, f}, we obtain

v(o[{v,z,7,0}]) = {e, f} (see Notation 2.25).

Furthermore, since <v,x>,# {e, f} and <x,vy>,=<v,x>,, we have

{v,z,7v} eCo[{v,2,7,0}]).
By Lemma 2.4, 0 «—, {v, 2,7}, and hence [v,d], = [v,0]s = (e, ). Conse-
quently, if Cn N (2) @ and CANS (2) # @, then [CANL (2),Cn
Née’f)(x)]g = (e, f). Since o[C] is {e, f}-connected and C ¢ Née’f)(x) U
N(E“’”’”]”(a:) by (3.4), we have C ¢ NU[I’U]G(.T) or C ¢ Née’f)(a:). In both
instances, we obtain x «—, C.

Consequently, the {e, f}-components of U[Née’f)(v)] are modules of o.
Since o is prime, they are reduced to singletons. Thus, the function from

Née’f)(v) onto C{evf}(a[Na(e’f)(v)), defined by
u s {u} for every u e N (v),

is an isomorphism from U[Née’f )(v)] onto

[N (0)]/Cpe. 1 (oINS (0)]).

It follows from Lemma 2.4 and Proposition 2.8 that U[Nge’f)(v)] is e-
constant if e = f, and J[Née’f)(v)] is e-linear if e # f. O

Corollary 3.9 (Tlle [23]3?). Given a prime 2-structure o, we have
V(o) N (Z3(0) v Za(0)) < 1.

Proof. For a contradiction, suppose that there exist distinct z,y € V(o)
(Z#3(0) U Z4(c)). We prove that o is decomposable. This is the case if
{z,y} is a module of o because v(c) > 3. Hence, suppose that {z,y} is not
a module of o, and consider v € V(o) \ {z,y} such that v </>, {x,y}. Since
o[{x,y,v}] is decomposable, {x,v} or {y,v} are modules of o[{x,y,v}].

3-2Cournier and Ille [12] proved this corollary for digraphs. Ille [23] proved this propo-
sition for binary structures, that is, labeled 2-structures [14]
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Suppose that {z,v} is a module of o[{x,y,v}]. Thus x,v € N(gy’x](’ (y). By
Proposition 3.8, <x,v>,=<x,y>,. It follows that

(3.5) <L, U>=<Y, V>=<T,Y > .

Since v <, {z,y} and < z,v >,=<y,v >,, we obtain |<z,v>,| = 2 and
[z,v]s = [v,y]s. Since {z,v} is a module of o[{z,y,v}], we have

(36) [I)U]O' = [Uuy]a = [1"73/]0'

We obtain also that (3.6) is satisfied when {y,v} is a module of o[{z,y,v}].
Consequently, by setting

W={veV(o){z,y}:v by {z,y}},

we obtain that W u{z} is a module of o[W u{z,y}]. We show that Wu{z}
is a module of 0. By assertion (M3) of Proposition 2.5, it suffices to verify
that W u {x,y} is a module of o. Consider v,w € V(o) \ {x,y} such that
v <o {z,y} (l.e. veW) and w «—, {x,y}. We prove that

(3.7) w «—, {x,y,v}.

By Remark 3.3, B[{z,y,u,w}] is not connected. We distinguish the follow-
ing two cases.
CASE 1: <z,y>,# v(o[{z,y,v,w}]) (see Notation 2.25).
Since < ,v >5=< Y,V >;=< T,y >, by (3.5), it follows from Lemma 2.4
and Proposition 2.8 that {x,y,v} € C(o[{x,y,v,w}]). By Lemma 2.4,
{z,y,v} is a module of o[{z,y,v,w}], and hence w «—, {x,y,v}.
CASE 2: <x,y>,=v(o[{z,y,v,w}]) (see Notation 2.25).
Since w «—, {x,y}, we have <z, w >,=<y,w >,. For a contradiction,
suppose that
<x,w>,# v(o[{z,y,v,w}]).

By Lemma 2.4 and Proposition 2.8, {z,y,w} € C(c[{z,y,v,w}]). By
Lemma 2.4, {z,y,w} is a module of B[{x,y,v,w}], which contradicts
v <o {x,y}. It follows that <z, w>,=v(o[{x,y,v,w}]). Since w <,
{:Uay}7 [wv{xvy}](f = [xvy]U or [y7x]0' Suppose that

[w, {x7y}]cr = [xa y]o-

Since | <z,y>o | =2 and [v,z]s = [y, 2], by (3.6), {v,w} is not a module
of o[{z,v,w}]. Since o[{z,u,w}] is decomposable, we have {z,v} is
a module of o[{z,v,w}] and [w,v], = [w,x]s = [z,y]s or {z,w} is a
module of o[{z,v,w}] and [w,v], = [z,v],. Since [z,v]s = [z,y]s by
(3.6), we obtain

[wv {CC,y,U}]g = [xvy]ff
in both instances. When [w,{z,y}], = [y, z],, we obtain

[w,{z,y,v}]o = [y, 2]o
by considering o[{y,u,w}] instead of o[{x,u,w}].
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In both cases, we obtain that (3.7) holds. It follows that W u {x,y} is a
module of . By assertion (M3) of Proposition 2.5, Wu{z} is a module of o.
Hence o is decomposable. Consequently |V (o) N (#3(0) uZ4(0))|<1. O

Sumner’s theorem is an immediate consequence of Corollary 3.9.
Theorem 3.10 (Sumner [35]33). Given a prime 2-structure o, we have
P3(o)u Py(o) + @.
Sumner’s theorem is improved as follows.

Theorem 3.11 (Cournier, Ille [12]*>%). Given a prime 2-structure o, we
have
V(o) =R3(c) UZRy(0)uZs(0).

Proof. We prove that
V(o) N (Z3(0)uZy(0)) € %5(0).

Hence, consider v € V(o) \ (%Z3(0) U Z%4(0)). By Corollary 3.9, V(o) \
(#3(0) U Z4(0)) = {v}. Thus, by considering an element of V(o) \ {v},
we obtain X € P3(0) U P4(0) such that X ¢ V(o) \ {v}. We prove that
o[X u{v}] is prime. Otherwise, o[ X U {v}] admits a nontrivial module
M. By assertion (M2) of Proposition 2.5, M n X is a module of o[X].
Since |M| > 2, M n X # @&. Since o[ X] is prime, we obtain |[M n X| = 1
or M nX =X. In the first instance, there is y € X such that M = {y,v}.
Since {y,v} is a module of o[ X U {v}], the function X — (X \ {y}) u{v},
defined by y = v and z — z for each z € X \ {y}, is an isomorphism from
o[X] onto o[ (X N {y}) u{v}]. Thus o[(X ~ {u}) U {v}] is prime, which
contradicts v € V(o) \ (#Z3(c) UZa(0)). In the second instance, v «—, X.
Hence there exist e, f € E(o) such that X ¢ NO(.e’f)(v). By Proposition 3.8,

O'[Née’f )(v)] is constant or linear. Therefore, o[ X ] is constant or linear as
well, which contradicts the fact that o[ X ] is prime. Consequently o[ Xu{v}]
is prime. O

3.2. The Ehrenfeucht—Rozenberg theorem. We continue examining the
existence of prime 2-substructures of cardinality greater than 5 in a prime
2-structure (see Question 3.2).

Notation 3.12. Given a 2-structure o, suppose that there exists X ¢ V(o)
such that o[X] is prime. By Theorem 3.10, such a subset X exists if o is
prime with v(o) > 5. The discussion on M nX in the proof of Theorem 3.11,
where M is a module of o[ X u{v}], leads us to consider the following subsets
of V(e)N X
e Ext,(X) denotes the set of v € V(o) \ X such that o[ X u{v}] is
prime;

3-3Sumner [35] demonstrated this theorem for graphs.
34Cournier and Tlle [12] proved this theorem for digraphs, and Ille [23] for binary
structures by using the same proof.
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e (X), denotes the set of v € V(¢) \ X such that X is a module of
o[X U {v}:

e For each y € X, X,(y) denotes the set of v € V(o) \ X such that
{y,v} is a module of o[ X U {v}].

Furthermore, p(, x) denotes the set {Exty(X),(X)s} u{Xs(y) 1 ye X}

Lemma 3.13. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. The set p, x) constitutes a partition of V(o) ~ X.

Proof. To begin, we verify that the union of the elements of p(, x) equals
Vo)~ X. Let ve V(o) X. If o[ X u{v}] is prime, then v € Ext,(X).
Suppose that o[X U {v}] is decomposable. Hence, o[X U {v}] admits a
nontrivial module M. By assertion (M2) of Proposition 2.5, M n X is a
module of o[X]. Since M is a nontrivial module of o[X u {v}], we have
|M|>2,s0 MnX # @. Since o[ X ] is prime, we obtain |[M|=1or MnX = X.
In the first instance, there exists y € X such that MnX = {y}. Since |M| > 2,
we obtain M = {y,v}, and hence v € X,(y). In the second instance, we
obtain M = X because M # X u{v}. It follows that v € (X),.

Now, we show that the elements of p(, x) are pairwise disjoint. By
definition of the elements of p(, x), we have Ext,(X) n(X), = @, and
Exts(X) N X, (y) =@ for every y € X.

Let y € X. Suppose for a contradiction that there exists v € X, (y) N (X ),-.
We obtain that {y,v} and X are modules of o[ X u{v}]. By assertion (M6)
of Proposition 2.5, X \ {y,v} = X ~ {y} is a module of o[ X U {v}] because
v e {y,v} N~ X. By assertion (M2) of Proposition 2.5, X \ {y} is a module
of o[X], which contradicts the fact that o[X] is prime. It follows that
Xo(y) n(X)o = @.

Lastly, consider distinct ¥,z € X. Suppose for a contradiction that there
is v e Xyo(y) N Xo(2). We obtain that {y,v} and {z,v} are modules of
o[X u{v}]. By assertion (M5) of Proposition 2.5, {y,v}u{z,v} = {y, z,v}
is a module of o[ X U {x}] because v € {y,v} n{z,v}. By assertion (M2) of
Proposition 2.5, X n{y, z,v} = {y, 2} is a module of o[ X ], which contradicts
the fact that o[X] is prime. O

Lemma 3.13 justifies the following definition.

Definition 3.14. Given a 2-structure o, consider X ¢ V(o) such that o[ X |
is prime. By Lemma 3.13, p(,,x) is a partition of V(o) ~ X. It is called the
outside partition induced by ¢ and X.

Given a 2-structure o, consider X ¢ V(o) such that o[ X] is prime. We
study the modules of o[ X u{v,w}], where v,w e V(o) ~ X. We begin with
two remarks.

Remark 3.15. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime.
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e For every v € (X),, X is a module of o[X u {v}], that is, v «—,
X. Thus, X is a module of o[X U (X),], and X is a module of
o[X u{v,w}] for v,w e (X),.

e Let y e X. For z € X ~ {y} and v € X,(y), we have z <, {y,v}
because {y,v} is a module of o[X u {v}]. Therefore z «<—, {y} U
X, (y). Consequently {y}uU X, (y) is a module of o[ X U X,(y)], and
{y,v,w} is a module of o[ X U {v,w}] for v,w € X,(y).

Remark 3.16. Given a 2-structure o, consider X ¢ V(o) such that o[ X]

is prime. Suppose that o admits a nontrivial module M. By assertion (M2)

of Proposition 2.5, X n M is a module of o¢[X]. Since o[ X] is prime, we

obtain XNnM =@, [ X nM|=1or X nM =X. We consider the three cases

below.

Case 1: XnM =g.
We prove that there exists B € p(,, x) such that M ¢ B. For distinct v, w €
M, we have (X u{v,w})n M = {v,w} is a module of o[ X U {v,w}] by
assertion (M2) of Proposition 2.5. Therefore, the function f: Xu{v} —
X u{w}, defined by v » w and y ~ y for every y € X, is an isomorphism
from o[ X u {v}] onto o[X U {w}]. Consequently, if v € Ext,(X), that
is, o[ X U {v}] is prime, then o[ X u {w}] is prime too, so w € Ext,(X).
Furthermore, if v € (X),, that is, if X is a module of o[ X U {v}], then
f(X) =X is amodule of o[ X u{w}], so w € (X),. Lastly, given y € X, if
v e X(y), that is, {y,v} is a module of o[ X U{v}], then f({y,v}) = {y,w}
is a module of o[ X U {w}], so w e X;(y). Therefore, v and w belong to
the same block of p(, x).

CASE 2: There is y € X such that X n M = {y}.
We verify that M ~ {y} #+ @ and M ~ {y} € X,(y). We have M \ {y} + &
because |M| > 2. For each v € M \ {y}, it follows from assertion (M2) of
Proposition 2.5 that (X u{v})n M = {y,v} is a module of o[X U {v}]
or, equivalently, v € X, (y).

Case 3: X c M.
Since M is a nontrivial module of o, we have M ¢ V(o). Moreover,
(V(e) N M) c (X),. Indeed, for each v € V(o) \ M, it follows from
assertion (M2) of Proposition 2.5 that (X u{v})nM = X is a module of
o[ X u{v}] or, equivalently, v € (X),.

Lemma 3.17. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. The following statements hold.
(P1) Forve(X), andw e X,(y), wherey € X, if o[ X u{v,w}] is decom-
posable, then X u{w} and {y,w} are the only nontrivial modules of
o[X u{v,w}].
(P2) For v e (X), and w € Ext,(X), if o[X u{v,w}] is decomposable,
then X u{w} is the unique nontrivial module of o[ X U {v,w}].
(P3) Given distincty,z € X, forve X,(y) andw € Xy(2), if o[ Xu{v,w}]
is decomposable, then {y,v} and {z,w} are the only nontrivial mod-

ules of o[ X U {v,w}].
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(P4) Given y € X, for v e X,(y) and w € Exty(X), if o[ X u{v,w}] is
decomposable, then {y,v} is the unique nontrivial module of o[ X U
{v,w}].

(P5) Given distinct v,w € Exty(X), if o[ X u{v,w}] is decomposable, then
{v,w} is the unique nontrivial module of o[ X v {z,y}].

Proof. For statements (P1),...,(P5) above, consider v,w € V(o) \ X such
that v # w. Suppose that o[X U {v,w}] admits a nontrivial module M.
By assertion (M2) of Proposition 2.5, X n M is a module of ¢[X]. Since
o[X] is prime, we obtain [X n M| <1 or X nM = X. Observe that in
statements (P1), (P2), (P3), and (P4) above, v and w do not belong to the
same block of p(, x). By Remark 3.16, we have X n M # @. Hence, we have
|XnM|=1or XnM =X in statements (P1), (P2), (P3), and (P4) above.

For statement (P1), suppose that v € (X), and w € X,(y), where y € X.
As above observed, X ¢ M or there is z € X such that X n M = {z}. First,
suppose that X ¢ M. Since w € X,(y), w ¢ (X), by Lemma 3.13. It
follows from Remark 3.16 that w € M. Since M # X U {v,w}, we obtain
M = X u{w}. Thus v «—, X U{w}, so v «—, {y,w}. Since w € X,(y),
that is, {y,w} is a module of o[ X u{w}], we obtain that {y,w} is a module
of o[X u{v,w}]. Second, suppose that X n M = {z}. By Lemma 3.13,
v ¢ X,(2). It follows from Remark 3.16 that v ¢ M. Therefore M = {z,w}
because |M| > 2. We obtain w € X,(z). By Lemma 3.13, y = z. Since {y,w}
is a module of o[ X U {v,w}], we have v «—, {y,w}. We have also v «—, X
because v € (X),. Thus v «<—, X u{w}, and hence X u{w} is a module of
o[ X u{v,w}].

For statement (P2), suppose that v € (X), and w € Ext,(X). We verify
that |X n M| > 2. Otherwise, there exits y € X such that X n M = {y}.
By Remark 3.16, M ~ {y} + @ and M ~ {y} € X,(y), which contradicts
Lemma 3.13. Therefore, | X n M| > 2, and hence X ¢ M. Since w ¢ (X),, we
obtain w € M by Remark 3.16. Hence M = X u{w} because M ¢ X{v,w}.

For statement (P3), suppose that v € X,(y) and w € X,(z), where y, z € X
and y # z. Suppose for a contradiction that X ¢ M. By Remark 3.16,
{v,w} M # @ and {v,w} ~ M ¢ (X),, which contradicts Lemma 3.13.
Consequently, X \ M # &, and hence there exists ¢ € X such that X n M =
{t}. By Remark 3.16, M ~ {t} # @ and M ~ {t} € X,(¢). It follows from
Lemma 3.13 that ¢ € {y,z}. By interchanging y and z, and hence v and
w if necessary, we can assume that y = ¢t. As previously, M ~ {y} + @ and
M ~{y} ¢ X,(y). By Lemma 3.13, w ¢ X,(y), and hence w ¢ M. Since
|M| > 2, we obtain M = {y,v}. It remains to show that {z,w} is a module
of o[ X u{x,y}] as well. Since {z,w} is a module of o[ X u {w}], it suffices
to verify that v «—, {z,w}. We have [z,y], = [2,v]s and [w,y]s = [w,v]s
because {y,v} is a module of o[ X U {v,w}]. Furthermore, we have [z,y], =
[w,y]s because {z,w} is a module of o[ X u{w}]. Therefore [2,v], = [w,v],.

For statement (P4), suppose that v € X,(y), where y € X, and w €
Ext,(X). Suppose for a contradiction that X ¢ M. By Remark 3.16,
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{v,w} M # @ and {v,w} ~ M ¢ (X),, which contradicts Lemma 3.13.
Consequently, X \ M # &, and hence there exists z € X such that X n M =
{z}. By Remark 3.16, M ~ {z} # @ and M \ {z} € X,(z). By Lemma 3.13,
w ¢ Xs(v), sow ¢ M. Since |M| > 2, we obtain M = {z,v}. By Lemma 3.13,
we have z = y.

For statement (P5), suppose that v,w € Ext,(X). First, suppose that
X ¢ M. By Remark 3.16, {v,w}\ M # @ and {v,w}~ M ¢ (X),. It follows
from Lemma 3.13 that X \ M # @&. Second, suppose that there exists y € X
such that X n M = {y}. By Remark 3.16, M ~ {y} #+ @ and M \ {y} ¢
X, (y). It follows from Lemma 3.13 that |[X n M| # 1. Consequently, we
have X \ M # @, and |X n M| # 1. By Remark 3.16, X n M = @, and hence
M = {v,w}. O

The following result is a direct consequence of Lemma 3.17.

Corollary 3.18. Given a 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. The following two assertions hold.
(Ql) Forve(X), andwe V(o) N (X U(X)s), if o[ X u{v,w}] is decom-
posable, then X u{w} is a nontrivial module of o[ X U {v,w}].
(Q2) Givenye X, forve X,(y) and we V(o) N (XuX,(y)), if o[ XU
{v,w}] is decomposable, then {y,v} is a nontrivial module of o[ X U
{v,w}].
At present, we are ready to establish the Ehrenfeucht—Rozenberg theorem.

Theorem 3.19 (Ehrenfeucht and Rozenberg [13]). Given a 2-structure o,
consider X ¢ V(o) such that [V (o)~ X|> 2 and o[ X] is primitive. If o is
prime, then there exist distinct v,w € V(o) N X such that o[ X U {v,w}] is
primitive. More precisely, if o is prime, then the following two statements

hold.
(1) If (X)o + @, then there exist v e (X), and w e V(o) N (X U(X),)
such that o[ X U {v,w}] is prime.
(2) For each y € X, if X5(y) # &, then there exist v € X, (y) and w €
V(o) N (X uX,(y)) such that o[ X u{v,w}] is prime.

Proof. First, suppose that (X), # @. Since o is prime, V(o) \ (X), is not a
module of o. Thus, there exists v € (X ), such that v </, V(o) (X),. But
v «<—, X because v € (X),. It follows that there exists w € V(o) (X U(X),)
such that v <>, X u{w}. It follows from assertion (Q1) of Corollary 3.18
that o[ X U {v,w}] is prime.

Second, consider y € X such that X,(y) # @. Since o is prime, {y} u
X, (y) is not a module of . By Remark 3.15, {y} u X,(y) is a module of
o[XuX,(y)]. Consequently, there exists w e V(o) \ (X UX,(y)) such that
w <> {y} U X,;(y). Observe that for u e V(o) N~ ({y} U Xs(y)), we have
u <« {ytuX,(y) if and only if u «—, {y,v} for every v € X, (y). It follows
that there is v € X, (y) such that w </f>, {y,v}. Therefore, {y,v} is not a
module of o[ X U {v,w}]. Tt follows from assertion (Q2) of Corollary 3.18
that o[ X U {v,w}] is prime.
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Finally, suppose that (X), = @, and X,(y) = @ for each y ¢ X. By
Lemma 3.13, we have V(0)\ X = Ext,(X). Since o is prime, V (c)\ X is not
a module of o. Therefore, there exist y € X and distinct v,w € V(o)X such
that y </>, {v,w}. We obtain that {v,w} is not a module of o[ X U {v, w}].
Since v,w € Ext,(X), it follows from statement (P5) of Lemma 3.17 that
o[X u{v,w}] is prime. O

The next result, called the parity property, follows by applying Theo-
rem 3.19 several times. It also provides an upward hereditary property of
primality.

Corollary 3.20 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-struc-
ture o, consider X ¢ V(o) such that o[X] is prime. For each n >0 such
that |V (o) N X| > 2n, there exists Y € V(o) N X such that |Y| = 2n and
o[X uY] is prime.

The next result is a simple consequence of Corollary 3.20.

Corollary 3.21 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-struc-
ture o, consider X ¢ V(o) such that o[X] is prime. There exist v,w €
V(o) N X such that o —{v,w} is prime.

Proof. Tt suffices to apply Corollary 3.20 with n = [%] - 1. O

The first downward hereditary property of primality ends the section. It is
an immediate consequence of Theorem 3.10 and Corollary 3.21. The second
downward hereditary property of primality is the Schmerl-Trotter theorem
(see Theorem 5.3).

Proposition 3.22 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-
structure o, with v(o) > 5, there exist v,w € V(o) such that o — {v,w} is
prime.

Proof. By Theorem 3.10, there exists X ¢ V(o) such that o[X] is prime,
and | X| =3 or 4. To conclude, it suffices to apply Corollary 3.21. O
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4. CRITICAL 2-STRUCTURES

Given n > 2, the tournament 75,1 (see Figure 1.2) is prime by Fact 2.7.
Moreover, we have

e T5,41 — 2n = Loy, and, for instance, {0,1} is a nontrivial module of

Ton+1 - 2n;
e {2,...,2n} is a nontrivial module of T;,41 — 0;
e {0,...,2n -3} is a nontrivial module of T5,+1 — (2n - 1);

e for 1<p<2n-2, {p—1,p+1} is a nontrivial module of Ts,.1 — p.
This leads us to the following definition.

Definition 4.1. Given a prime 2-structure o, a vertex v of o is critical
(in terms of primality) if o — v is decomposable. The set of the noncritical
vertices of o is called the support of o, it is denoted by # (o). Generally, a
proper subset W of V(o) is critical if o — W is decomposable. A primitive
2-structure is critical if all its vertices are critical.

From the example above, given n > 2, the tournament Tb,,; is criti-
cal. Since critical 2-structures exist, the only attempt to improve Proposi-
tion 3.22 is to answer the following question positively.

Question 4.2. Let o be a prime 2-structure. If v(o) is large enough, then
does there exist Z ¢ V(o) such that o[ Z] is prime and |V (o) \ Z| = 27

The second downward hereditary property of primality, that is, the
Schmerl-Trotter theorem (see Theorem 5.3) answered Question 4.2 posi-
tively. Before providing such an answer, Schmerl and Trotter [33] charac-
terized the critical partial orders, graphs, tournaments, etc.. Bonizzoni [4]
independently characterized the critical 2-structures. To describe the struc-
ture of the critical digraphs, Boubabbous and Ille [7] study the components
of the primality graph*! associated with every prime 2-structure. The pri-
mality graph was introduced by Ille [20] as below. It plays a decisive role in
the structural study of the prime 2-structures.

4.1. The primality graph.

Definition 4.3. Given a prime 2-structure o, the primality graph P(o) of
o is the graph defined on V(P(¢)) = V (o), the edges of which are the
noncritical unordered pairs. Therefore, given v,w € V (o), with v # w, we
have

{v,w} € E(P(0)) if and only if o — {v,w} is prime.

To begin, given a prime 2-structure o, we examine the neighbourhood
Np(sy(v) of a critical vertex v of o.

Lemma 4.4 (Ille [20]). Let o be a prime 2-structure with v(o) > 5. For
every v e V(o) N (o), we have dp(y(v) < 2. Moreover, we have

41The same approach is adopted in [6] to characterize the critical infinite digraphs.

critical

support

primality graph
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(1) if dpoy(v) =1, then V(o) N (Np(oy(v)U{v}) is the unique nontrivial
module of o —v;

(2) if dpy(v) = 2, then Npy(v) is the unique nontrivial module of
o-v.

Proof. To begin, we prove that dp,)(v) < 2 for each v € V(o) ~ (o).
Consider v € V(o) N #(0) such that Np(,(v) # @. Let w € Np(,y(v). Set

X =V (o)~ {v,w}.
Hence, o[ X] is prime. Since v ¢ .#(0), 0 — v is decomposable. Thus,
(4.1) w ¢ Ext,(X) (see Notation 3.12).

By Lemma 3.13, w € (X), or w € X,(y), where y € X. Therefore, we
distinguish the following two cases.
CASE 1: w e (X),.
For every y € X, X \ {y} is a nontrivial module of o — {v,y}. Therefore
Yy ¢ Np(o)(v). Consequently,

(4.2) if there exists w € Np(,)(v) N (X)o , then Np,y(v) = {w}.

CASE 2: There exists y € X such that w e X,(y).
For every z € X \ {y}, {y,w} is a nontrivial module of o — {v, z}. Con-
sequently, z ¢ Np(o)(v), and hence Np(,y(v) € {y,w}. Since {y,w} is a
module of o[ X U {w}], the function X — (X \ {y}) u{w}, defined by
y~w and z ~ z for every z € X \ {y}, is an isomorphism from o - {v, w}
onto o — {v,y}. It follows that y € Np(,)(v). Consequently, given y € X,

(4.3) if there exists w € Np(,y(v) N X, (y), then Np,y(v) = {y, w}.

It follows from both cases above that dp(,)(v) < 2.

Now, consider v € V(o) ~ /(o) such that dp,)(v) = 1. Denote by w
the unique neighbour of v in P(0). Set X = V(o) \ {v,w}. It follows from
(4.3) that w ¢ X,(y) for every y € X. Moreover, w ¢ Ext,(X) by (4.1). By
Lemma 3.13, w € (X),, and V(o) ~ {v,w} is the only nontrivial module of
o-v.

Lastly, consider v € V(o) \.#(0) such that dp(,)(v) = 2. Denote by w and
w’ the neighbours of v in P(0). Set X =V (o)~ {v,w}. It follows from (4.2)
that w ¢ (X),. Moreover, w ¢ Ext,(X) by (4.1). By Lemma 3.13, there
exists y € X such that w e X,(y). By (4.3), Np(o)(v) = {y,w}. Therefore,
w' =y, sowe X,(w). It follows from Lemma 3.13 that {w,w’} is the only
nontrivial module of o —v. (]

Given a prime 2-structure o, consider a component C' of P(¢) such that
v(C)>2and V(C)c V(o) NS (o). It follows from Lemma 4.4 that C' is a
cycle or a path.

Proposition 4.5 (Boudabbous and Ille [7]). Let o be a prime 2-structure
with v(c) > 5. For every component C of P(c) such that v(C) > 2 and
V(C)c V(o) FL(0), the following statements hold.
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(1) If C is a cycle, then its length is odd and V(C) =V (0);
(2) If C is a path of odd length, then |V (o) NV (C)| < 1;
(3) If C is a path of even length, then V(C) =V (o).

Proof. We denote the vertices of C' by 0,...,v(C) -1 in such a way that
C= C’U(C) or PU(C)'

First, suppose that v(C) > 3 and C = C,,(¢). For a contradiction, suppose
that v(C) is even. Hence, v(C') = 2n, where n > 2. We show that {1,2n-1} is
a nontrivial module of 0. Since Np(,)(0) = {1,2n~1}, {1,2n~1} is a module
of 0 —0 by Lemma 4.4. To show that {1,2n -1} is a nontrivial module of o,
it suffices to verify that [0,1], = [0,2n—1],. For me {1,...,n -1}, we have
Npy(2m) = {2m-1,2m +1}. By Lemma 4.4, {2m ~1,2m + 1} is a module
of o0 — 2m. In particular, we obtain [0,2m — 1], = [0,2m + 1],. Therefore,
we have [0,1], = [0,3], = -+ = [0,2n - 1],. Consequently, {1,2n -1} is a
nontrivial module of o, which contradicts the fact that o is prime. It follows
that v(C') is odd. Hence v(C') = 2n + 1, where n > 1. For a contradiction,
suppose that V(C') ¢ V(o). We show that V(C) is a module of 0. Consider
veV(o)\V(C). Forme{0,...,n-1}, we have Np(,(2m+1) = {2m, 2m+2}.
By Lemma 4.4, {2m,2m+2} is a module of o —(2m+1). We obtain [v,0], =
[vV,2]0 = -+ = [v,2n],, 8O v <>, {0,2,...,2n}. Similarly, since for m €
{1,...,n=1}, Np(sy(2m) = {2m~1,2m+1}, we have v «—, {1,3,...,2n-1}.
Since Np(,(0) = {1,2n}, [v,2n]s = [v,1],. It follows that v <—, V(C).
Consequently, V(C') is a nontrivial module of o, which contradicts the fact
that o is prime. Therefore V(C) = V(o).

Second, suppose that v(C) > 2, v(C) is even, and C = P,y. Hence
v(C) = 2n, where n > 1. For a contradiction, suppose that n = 1. We
obtain Np(,(0) = {1} and Np()(1) = {0}. By Lemma 4.4, V(o) ~ {0,1} is
a module of 0 -0 and o — 1. Thus V(o) ~ {0,1} is a nontrivial module of
o. Therefore n > 2. We show that V(o) \ V(C) is a module of o. Consider
veV(a)\V(C). Since Np(,y(2m+1) = {2m,2m +2} for m € {0,...,n -2},
we have v «—, {0,2,...,2n - 2}. Moreover, since Np()(2n - 1) = {2n - 2},
[v,2n - 2], = [1,2n - 2],. It follows that for any v,w € V(o) \ V(C) and
me{0,...,n-1}, [v,2m], = [w,2m],. Similarly, for v e V(o) \ V(C), we
have v <=, {1,3,...,2n — 1} because Np(,)(2m) = {2m —1,2m + 1} for m €
{1,...,n=1}. Now, since Np()(0) = {1}, [v,1], = [2n~2,1],. Consequently,
for any v,w e V(o)\V(C) and m € {0,...,n-1}, [v,2m+1], = [w,2m+1],.
Consequently, V(o) ~ V(C) is a module of o. Since ¢ is prime, we obtain
[V(e)\V(C)|< 1.

Lastly, suppose that v(C') is odd. Hence v(C) =2n + 1, where n > 1. For
a contradiction, suppose that V(C) ¢ V(o). We show that V(o) \ {1} is
a nontrivial module of o. Since Np(;)(0) = {1}, V(o) ~ {0,1} is a module
of 0 -0 by Lemma 4.4. Let v € V(o) \ V(C). It suffices to verify that
[1,v]s =[1,0],. We distinguish the following two cases.

CASE 1: n=1.
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We have Np(;)(2) = {1}. By Lemma 4.4, V(o) \ {1,2} is a module of
o — 2. In particular, we obtain [1,v], = [1,0],.
CASE 2: n > 2.
Since for m € {1,...,n =1}, Np(;y(2m) = {2m - 1,2m + 1}, we obtain
ve—>,{1,3,...,2n-1} and 0 <—, {1,3,...,2n—1}. Therefore, [1,v], =
[2n - 1,v], and [1,0], = [2n - 1,0],. Furthermore, since Np()(2n) =
{2n -1}, [2n-1,v], = [2n - 1,0],. It follows that [1,v], = [1,0],.
In both cases above, V(o) \ {1} is a nontrivial module of o, which con-
tradicts the fact that o is prime. Consequently, V(C) = V(o). O

Corollary 4.6 (Boudabbous and Ille [7]). For every critical 2-structure o,
with v(o) > 5, there exists n > 2 such that P(o) is isomorphic to Pon ® Koy,
Poi1, Cops1, or Poy. (In the last instance, n > 3.)

Proof. By Proposition 3.22, there exist v,w € V(o) such that o — {v,w}
is prime. Since o is critical, we have v # w, and hence {v,w} ¢ E(P(0)).
Consider the component C' of P(¢) containing v and w. As observed before
stating Proposition 4.5, it follows from Lemma 4.4 that C is a cycle or a
path. To begin, suppose that C is a cycle. It follows from Proposition 4.5
that there exists n > 2 such that P(¢0) ~ Cg,41. Similarly, if there exists
n > 2 such that C is a path of length 2n, then V(C) = V (o), and hence
P(o) ~ Pap+1. Lastly, suppose that there is n > 2 such that C is a path
of length 2n — 1. By Proposition 4.5, [V (o) ~ V(C)| < 1. Obviously, if
V(C) =V (o), then n >3 and P(0) ~ Py,. Suppose that [V (o) C|=1. The
single element of V(o) \ V(C) is an isolated vertex of P(c) because C is a
component of P(c). Therefore, P(0) = Py, @ Koy O

We end the section with some specific results on critical 2-structures. The
first one follows from Corollary 3.20.

Corollary 4.7. Let o be a critical 2-structure o such that v(o) > 5. Let
X ¢ V(o).

(1) If o[ X] is prime, then v(o) —|X| is even.

(2) Moreover, if o[ X] is prime and |X| >4, then o[ X] is critical.

Proof. Let X ¢ V(o) such that o[ X] is prime. For a contradiction, suppose
that v(o) — |X| = 2n + 1, where n > 0. By Corollary 3.20, there exists Y ¢
V(o)~X such that |Y] = 2n and o[ XUY] is prime. We have |V (o)~ (XUY)| =
1. By denoting by v the unique element of V(o) (X uUY'), we obtain o —v is
prime, which contradicts the fact that o is critical. Consequently, v(o)—|X|
is even.

Now, suppose that |X| > 4. For each x € X, we have v(c) — | X ~ {z}| is
odd. It follows from the first assertion that o[ X \ {z}] is decomposable.
Consequently, o is critical. O

The second result follows from Lemma 4.4 and Corollary 4.6.

Corollary 4.8. Let o be a critical 2-structure o such that v(c) > 5. For
e,fe E(P(0)), we have o —e~o - f.
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Proof. Consider distinct e, f € E(P(0)). It follows from Corollary 4.6 that
e and f are contained in the same component of P(c). Consequently, there
exist distinct vertices v, ..., v, of o satisfying

e {vo,v1}=¢;

e p>2, and {vp-1,0p} = f;

o forie{0,...,p—1}, {vi,vis1} € E(P(0)).
Let 7 € {0,...,p—1}. We have v;_1,v41 € Np(s)(v;). Since v; ¢ (o),
it follows from Lemma 4.4 that N]P’(U) (Ul) = {Ui_l,vi+1}, and {’Ul'_l,vlq_l} is
a module of o —v;. Thus, 0 — {vj-1,v;} ~ 0 — {v;,viz1}. It follows that
o—{vo,v1} 20 —{vp-1,vp}, that is, c —e~ 0 - f. O

The third result is an easy consequence of Corollaries 4.7 and 4.8.

Corollary 4.9. Let o be a critical 2-structure o such that v(o) > 6. Let
X,Y ¢ V(o) such that |X|=1Y| and |X| > 4. If o[X] and o[Y] are prime,
then o[ X ]~ o[Y].

Proof. By Corollary 3.21, there exist x,z’ € V(o) \ X such that o —{z, 2} is
prime. Since o is critical, we have z # 2’. Thus, v(o) —|X| > 2. We proceed
by induction on v(c) — |X| > 2. If v(o) — |X| = 2, then it suffices to apply
Corollary 4.8. Hence, suppose that v(o) — |X| > 3. Similarly, there exist
distinct y,y" € V(o) N\ Y such that o — {y,y’} is prime. By Corollary 4.8,
o—{x,2'} ~o-{y,y'}. Therefore, there exists Y’ ¢ V(o) \ {z,2'} such that
o[Y'] ~o[Y]. Since o — {x,z'} is prime and v(o) > 6, o — {x, 2} is critical
by Corollary 4.7. To conclude, it suffices to apply the induction hypothesis
to o — {x,2'} with o[ X] and o[Y"]. O

Lastly, we obtain the following result.

Corollary 4.10. Let o be a critical 2-structure o such that v(c) > 6. Con-
sider X,Y ¢ V(o) such that o[X] and o[Y] are prime. If 4 <|X| < |Y],
then o[ X ]| embeds into o[Y].

Proof. By Corollary 4.9, o[X] ~ o[Y] if |X| = |Y|. Hence, suppose that
| X| < |Y]. By Corollary 4.7, there exist m >n > 0 such that v(o) - |X|=2m
and v(o) — Y] = 2n. By applying Theorem 3.19 (m —n) times from o[ X],
we obtain X ¢ X’ ¢ V(o) such that o[X'] is prime, and |X'| = |Y|. By
Corollary 4.9, we have o[X'] ~ o[Y]. It follows that o[X] embeds into
olY]. O

4.2. The characterization of critical 2-structures. Given a critical 2-
structure o, it follows from Corollary 4.6 that o has four possible types
according to whether P(o) is isomorphic to Psy,, P, @ Kony, Pons1, or
Con+1- The following remark is very useful in the characterization of critical
2-structures of a given type.

Remark 4.11. Consider a set S. We denote by A(S) the set of all 2-
structures defined on S. We consider the partial order <g defined on A(S)
as follows. Given 0,7 € A(S), 0 <g 7 if (0 # 7 and) for every e € E(0), there
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exists f € E(7) such that e ¢ f. Consider 0,7 € A(S). As in Remark 2.23,
we define their meet o A 7 and their join o v 7 as follows. Given x,y,v,w €
V(o), with z # y and v # w, (z,9) =gar (v,w) if (2,y) =5 (v,w) and
(z,y) =r (v,w). Hence

E(ocnT)={enf:ecE(o),feE(r),enf+ad}.

Given z,y,v,w € V (o), with z # y and v # w, (x,y) =5vr (v,w) if there
exists a sequence (e, ..., e,) of elements of E(o)UE(7) such that (x,y) € eq,
(v,w) € ey, and (when n > 1,) e;nejy1 # @ for 0 <i <n-1. Hence, A(S)
ordered by <g is a lattice.

Since it is easy to verify that the next fact holds, we omit its proof.

Fact 4.12. Given o,7 € A(S), the following statements hold.

(1) If o <g 7, then all the modules of o are modules of .
(2) The modules of o AT are exactly the modules of both o and T.

We obtain the following consequences.

Fact 4.13. Given 0,7 € A(S) such that o <g T, the next statements hold.

(1) If T is prime, then o is prime too.

(2) For eachne{3,...,|S|-1}, we have
Pn(1) € Pp(o) (see Notation 3.1).

In particular, when T is prime, we have .#(7) € /(o) and P(1) ¢
P(o).

It follows from the first statement of Fact 4.13 that the set of the prime
2-structures defined on S is an ideal of the lattice (A(S),<s). We end
the remark with the following consequence of Lemma 4.4, Fact 4.12, and
Fact 4.13.

Fact 4.14. Consider o,7 € A(S). Suppose that o and T are critical. Suppose
also that P(o) = P(7). Lastly, suppose that P(c) does not have isolated
vertices. Under these assumptions, we obtain that o A T is critical, and

P(o A1) =P(0).

Proof. To begin, we verify that o A 7 is prime. We have 0 AT <g 0 and o is
prime. By the first statement of Fact 4.13, o A 7 is prime.

Now, we show that o A 7 is critical, and P(c A7) = P(0). Let v € V(o).
Since P(0) does not have isolated vertices, dp(,)(v) # 0. Since v is a critical
vertex of g, it follows from Lemma 4.4 that dp(,)(v) = 1 or 2. We distinguish
the following two cases.

CAsE 1: dIF’(U) ('U) =2.
Since P(0) = P(7), we have Np(,)(v) = Np(ry(v). Furthermore, since v is
a critical vertex of o and 7, it follows from Lemma 4.4 that Np(,)(v) is a
nontrivial module of 0 —v and 7—v. Note that (c—v)A(7-v) = (6 AT)-v.
Therefore, it follows from the second statement of Fact 4.12 that Np(,(v)
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is a nontrivial module of (o A7) —v. Thus, v is a critical vertex of o A T,
and

Np(onry (V) € Np(o)(v).
Lastly, it follows from the second statement of Fact 4.13 that

N]P’(a) (U) = N]P’(U/\T) (U)

Consequently, we obtain Np(yar)(v) = Np(s)(v).
CASE 2: dp(s)(v) = 1.
Since P(0) = P(7), we have Np(,)(v) = Np(;y(v). Furthermore, since v
is a critical vertex of o and 7, it follows from Lemma 4.4 that V(o) \
(Np(o)(v) U{v}) is a nontrivial module of o — v and 7 —v. We conclude
as in the preceding case.
It follows from both cases above that o A 7 is critical, and P(oc A T) =

P(o).
4.2.1. The type Ps,.

Proposition 4.15. Given n > 3, consider a 2-structure T defined on V(1) =
{0,...,2n—1}. The following two statements are equivalent
(1) 7 is critical and P(7) = Pyy;
(2) <0,1>,#<0,2>, (see Notation 1.1), and for p,q € {0,...,2n -1}
such that p < q, we have

[0,1]; if p is even and q is odd,
[0,2]; otherwise.

(44) [pa q]T = {

Proof. To begin, suppose that 7 is critical and P(7) = P,,. First, we show
that (4.4) holds. Consider p,q € {0,...,2n — 1} such that p < q. We prove
that there exist p’ € {0,1} and ¢’ € {2n - 2,2n — 1} such that

(4.5) p'=pmod 2, ¢ =¢ mod 2, and [p,q], = [p'. ¢'].

For instance, suppose that p > 2. Since P(7) = P, we have Np()(p-1) =
{p-2,p}. By Lemma 4.4, {p-2,p} is a module of 7— (p—1). In particular,
we obtain [p,q]; = [p - 2,q]-. By iteration, we obtain p’ € {0,1} such that

p' =p mod 2 and [p,q]; = [p', q]-.

Similarly, we obtain ¢’ € {2n—2,2n -1} such that ¢’ = ¢ mod 2 and [p’, ¢]~
[p',q']r. Therefore, (4.5) holds. It follows from (4.5) that for any p’, ¢
{0,...,2n -1},

m |l

(4.6) if p <q', p’ =p mod 2 and ¢’ = ¢ mod 2, then [p,q], = [p',¢']-.

We distinguish the following four cases, where p,q € {0,...,2n—1} such that
D<q.
CASE 1: p and q are even.

By (4.6), [p,q]- = [0,2],.
CASE 2: p and q are odd.
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By (4.6), [p,q]; = [1,2n~1];. Since P(7) = Py, we have Np(,)(0) = {1}.
By Lemma 4.4, {2,...,2n-1} is a module of 7—0. In particular, we obtain
[1,2n - 1]; = [1,2n - 2];. Moreover, we have Np(;)(2n - 1) = {2n - 2}.
By Lemma 4.4, {0,...,2n -3} is a module of 7 — (2n —1). In particular,
we obtain [1,2n - 2]; = [0,2n - 2],. By (4.6), [0,2n - 2], = [0,2],.
Consequently, we obtain [p, ¢], =[0,2];.

CASE 3: pis even and ¢ is odd.
By (4.6), [p,q]- = [0,1].

CASE 4: pis odd and q is even.
By (4.6), [p,q]r = [1,2];. Since Np(;y(0) = {1}, we have {2,...,2n -1}

is a module of 7 - 0. In particular, we obtain [1,2], = [1,2n - 2];.

Since Np(;)(2n —1) = {2n - 2}, we have {0,...,2n - 3} is a module of
7—(2n-1). In particular, we obtain [1,2n - 2], = [0,2n -2],. By (4.6),
[0,2n - 2], =[0,2],. Consequently, we obtain [p,q], =[0,2].

It follows from the four cases above that (4.4) holds.

Second, we show that <0,1>,;#<0,2>,. Since 7 is prime, 7 is neither
constant nor linear. It follows from (4.4) that [0,1]; # [0, 2],. Furthermore,
since Np(y(1) = {0,2}, it follows from Lemma 4.4 that {0,2} is a module
of 7 — 1. Since 7 is prime, {0,2} is not a module of 7. Therefore, we have
[0,1]; # [2,1];. Since [2,1]; =[2,0]; by (4.4), we obtain [0,1], # [2,0];.
Consequently, we obtain [0,1], # [0,2], and [0,1], # [2,0],. It follows that
<0,1>,#<0,2>,.

Conversely, suppose that < 0,1 >.#< 0,2 >, and (4.4) holds. Since <
0,1>:#<0,2>,, we have

[0,1]- #[0,2];
(4.7) and
[0,1] # [2,0],.
We prove by induction on k € {2,...,n} that
(4.8) 7[{0,...,2k - 1}] is prime.

To begin, we verify that 7[{0,1,2,3}] is prime. By (4.4), we have [0,2]; =
[1,2]; = [1,3]; and [0,1], = [0,3]; = [2,3];. Using (4.7), it is easy to
verify that for each W ¢ {0,1,2,3}, with |[W| = 2 or 3, W is not a mod-
ule of 7[{0,1,2,3}]. Therefore, 7[{0,1,2,3}] is prime. Now, suppose that
7[{0,...,2k = 1}] is prime, where k € {2,...,n—1}. Set

X={0,...,2k-1}.

By (4.4), we have [y,2k]; = [0,2]; for every y € X. Thus, 2k € (X),.

Furthermore, it follows from (4.4) that for every y e X \{2k-1}, [y,2k-1], =

[y,2k + 1];. Therefore, 2k +1 € X (2k —1). Lastly, by (4.4), we have

[2k-1,2k], = [0,2], and [2k+1,2k], = [1,0],. By (4.7), {2k-1,2k+1} is not

a module of 7[ XU{2k, 2k+1}]. Tt follows from statement (P1) of Lemma 3.17

that 7[ X U{2k,2k+1}] = 7[{0, ..., 2k+1}] is prime. Consequently, 7 is prime.
Now, we verify that 7 is critical. We consider the following cases.
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CASE 1: pe{2,...,2n-1}.
We have [1,p], =[0,2],. Hence, {2,...,2n -1} is a module of 7 - 0.
CASE 2: pe{0,...,2n - 3}.
We have [p,2n - 2]; = [0,2];. Thus, {0,...,2n — 3} is a module of
T-(2n-1).
CAsE 3: pe{l,...,2n-2}.
Consider v e V(1) {p-1,p,p+1}. Since p—1 = p+ lmod 2, it follows
from (4.4) that [v,p—1]; = [v,p+1];. Therefore, {p—1,p+1} is a module
of T —p.

It follows that 7 is critical.

Lastly, we have to prove that P(7) = Py,. Let p € {0,...,2n - 2}. The
function {0,...,2n -1}~ {p,p+1} — {0,...,2n - 3}, defined by ¢ ~ ¢ if
g<p-1land g~ qg-2if ¢ > p+2,is an isomorphism from 7 - {p,p + 1}
onto 7[{0,...,2n—-3}]. It follows from (4.8) that 7[{0,...,2n—3}] is prime.
Hence 7 - {p,p + 1} is prime too, so {p,p+1} € E(P(7)). It follows that

(4.9) E(Py,) c E(P(7)).
Thus, since 7 is critical, it follows from Lemma 4.4 that
(4.10) for pe{l,...,2n -2}, Npry(p) ={p-1,p+1}.

By (4.9), 1 € Np(;)(0). As previously seen, {2,...,2n -~ 1} is a nontrivial
module of 7 - 0. Since [{2,...,2n - 1}| >4, it follows from Lemma 4.4 that
dp(7y(0) = 1. Therefore,

(4.11) Np(7)(0) = {1}.
By (4.9), 2n -2 € Np(;)(2n - 1). Furthermore, it follows from (4.10) that
Np-y(2n=1)n{l,...,2n - 3} = @. Finally, by (4.11), 0 ¢ Np(-)(2n - 1).
Thus,

N]P’(T)(2n - 1) = {2’]7, - 2}
Consequently, we obtain that P(7) = Pyy,. O

By using Proposition 4.15, we construct critical graphs, digraphs or 2-
structures of type P», that allow us to characterize the critical 2-structures
of type P»,. We use the following notation.

Notation 4.16. Let n > 2. Recall that A(L,) is the set of ordered pairs
(p,q), where 0<p<g<n-1. Given i,5 € {0,1}, set

ALn) iy = {(p.0) € A(Ln) :p =i mod 2,q = j mod 2}.

Let 7 be a 2-structure defined on V(1) = {0,...,2n - 1}, where n > 3.
Suppose that < 0,1 >.#< 0,2 >,. Suppose also that 7 satisfies (4.4). By
Proposition 4.15, 7 is critical and P(7) = P,,. We distinguish the following
cases.

CaAsE 1: (0,2), =(2,0),.
Subcase a: (0,1)r =(1,0),.
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Since <0,1>,#<0,2>,, (0,1); # (0,2),. Therefore, we obtain

E(1) = {A(L2n)(0,1) Y (A(L2n)0,1))", (see Notation 1.2)
(4.12) (A(L2n) 0,0y Y A(L2n) (1,00 Y A(L2n)(1,1))
U (A(L2n) 0,0y Y A(L2n) 1,00 Y A(L2n) (1,1)) " }-

In fact, 7 is the 2-structure associated with a graph (see the end
half-graph of subsection 1.2). Given m > 1, we consider the half-graph Hap,
defined on V(Hay) ={0,...,2m — 1} as follows (see Figure 4.1). For
p,q € {0,...,2m — 1}, with p # q, {p,q} € E(Hay) if there exist
0<i<j<m-1such that {p,q} ={2i,2j + 1}. It follows from (4.12)

that
7 =0(Hap).
1 3 2m —1
0 2 2m -2

FIGURE 4.1. The half-graph Ho,,

Subcase b: (0,1); # (1,0).
We distinguish the following three subcases.

(1) Suppose that (1,0), = (0,2),. We obtain

E(7) = {A(L2n)(0,1)
(A(L2n)(0,0) Y A(L2n) (1,00 Y A(L2n)(1,1))
(4.13) U (A(La2n) 0,0y Y A(Lan ) (1,0) Y A(L2n)(1,1))"
U (A(L2n)0,1))" }-

In fact, 7 is the 2-structure associated with a partial order
(see Subsection 1.3). Given m > 2, we consider the partial
order (a2, defined on V(Q2m) = {0,...,2m — 1} as follows
(see Figure 4.2). For p,q € {0,...,2m -1}, with p # q, (p,q) €
A(Qa2m) if there exist 0 < i < j < m -1 such that (p,q) =
(24,25 +1).
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FIGURE 4.2. The partial order Qo

Observe that Comp(Q2,,) = Hap +2 . Tt follows from (4.13)
that

7=0(Q2n).
(2) Suppose that (0,1), = (0,2),. We obtain
E(7) = {(A(L2n)0,1)) "
(A(La2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1))
(4.14) U (A(L2n)(0,0) Y A(L2n) 1,00 Y A(L2n) (1,1))”
U A(Lan)(0,1)}-
It follows from (4.14) that

7=0((Q2n)")-
(3) Suppose that <0,1>; n<0,2>,=@. We obtain

E(7) = {A(L2n)(0,1), (A(L2n)0,1))
(4.15) (A(L2n)(0,0) Y A(L2n) (1,00 Y A(L2n)(1,1))
U (A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1))" }-
It follows from (4.13), (4.14), and (4.15) that
T=0(Q2) Ao((Q2,)") (see Notation 4.11).

Recall that by Proposition 4.15, 0(Q2,) A ((Q2,)*) is critical
and P(0(Q2,) Ao ((Q2)")) = Pan. Note that we obtain the

same by using Fact 4.14 because 0(Q2,) and o((Q2,)”) are
critical, and P(o(Q2y,)) = P(c((Q2r)*)) = Pap. Note also that

0(Q2n) Ao ((Q2n)") = 0(Han) Ao (Qan) = 0(Han) Ao ((Q2n)")-

42The following theorem is due to Gallai [18, 28] .

Theorem 4.17 (Gallai [18, 28]). A partial order is prime if and only if its comparability
graph is prime.

Let m > 3. As showed above, o(H2,), and hence Ha, are critical. Moreover, P(Hs,) =
Py, Tt follows from Theorem 4.17 that Q2, is critical, and P(Q2n) = Pan.
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CaAsE 2: (0,2) #(2,0),.
Subcase a: (0,1)r = (1,0),.
We distinguish the following three subcases.
(1) Suppose that (0,1); = (2,0),. We obtain
E(7) = {(A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1))>
(4.16) A(Lan) 0,1y Y (A(L2n)0,1))”
U (A(La2n) 0,0y Y A(L2n) 1,0y Y A(L2n)(1,1)) " }-
In fact, 7 is the 2-structure associated with a partial order.
Given m > 2, we consider the partial order R, defined on
V(Rapm) = {0,...,2m — 1} as follows (see Figure 4.3). For
p,q€1{0,...,2m ~ 1}, with p # ¢, (p,q) € A(Rz,) if p < ¢ and
either p is odd or ¢ is even. Equivalently, Rs,, is obtained

from the linear order Lo, by removing the arcs (2i,2j + 1)
for0<i<j<m-1.

2m—2\1 2m -1
’ 2m -3

4
2 3
0 1

FIGURE 4.3. The partial order Ra,

Observe that Comp(Ray,) = Hap,. It follows from (4.16)
that
T =0(Ran).
(2) Suppose that (0,1); =(0,2),. We obtain
E(7) = {A(L2n)0,1) Y (A(L2n)(0,1))"
(4.17) U (A(LQn)(o,(]) U A(L2n)(1,0) @] A(Lgn)(Ll)),
(A(L2n)0,0)Y A(L2n) (1,00 Y A(L2n)(1,1))" }-
It follows from (4.17) that

T=0((Ra2n)").
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(3) Suppose that <0,1>, N <0,2>,= @. We obtain
E(1) = {A(L2n)0,1) Y (A(L2n) 0,1)) "
(4.18) (A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n)(1,1))
(A(Lan) 0,0y Y A(L2n) 1,0y Y A(L2n)(1,1)) " }-
It follows from (4.16), (4.17) and (4.18) that
7=0(Rop) Ao ((Ran)")-
Note that
0(Ron) Ao((Ron)*) = 0(Haop) Ao(Ray) = 0(Hap) Ao((Ran)”).

Subcase b: (0,1), = (1,0).
We distinguish the following five subcases.

(1) Suppose that (0,1); = (0,2),. Since <0,1>,#<0,2 >, we
have (1,0), # (2,0),. We obtain
E(7) ={A(Lz2n)(0,1)
U (A(La2n)(0,0) Y A(L2n) (1,00 Y A(L2n)(1,1))>
(4.19) (A(L2n)0,1))">
(A(L2n) 0,0y Y A(L2n) (1,0) Y A(L2n)(1,1))" }-
It follows from (4.19) that
T=0((Q2:)") Ao((R2n)").
(2) Suppose that (1,0), = (0,2),. Since <0,1>,#<0,2 >, we
have (0,1), # (2,0),. We obtain
E(7) = {(A(L2n)0,1))"
U (A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n)(1,1));
(4.20) A(L2n) 0,15
(A(L2n) 0,0y Y A(L2n) (1,00 Y A(L2n) (1,1)) " }-
It follows from (4.20) that
7 =0(Q2n) Ao ((R2n)").
(3) Suppose that (0,1); = (2,0);. Since <0,1>,#<0,2 >, we
have (1,0), # (0,2),. We obtain
E(1) ={A(L2n)(0,1)
U (A(La2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1)) "
(4.21) (A(L2n)0,1))"
(A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1))}-
It follows from (4.21) that

T=0((Q2n)") Ao (Rap).
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(4) Suppose that (1,0); = (2,0);. Since <0,1>,#<0,2 >, we
have (0,1), # (0,2),. We obtain
E(7) = {(A(L2n)0,1))"
U (A(Lan) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1)) "
(4.22) A(L2n)(0,1)5
(A(La2n) 0,0y Y A(L2n) 1,0y Y A(L2n) (1,1)) }-
It follows from (4.22) that

7 =0(Q2n) Ao (Ran).
(5) Suppose that <0,1>, N <0,2>,= @. We obtain

E(7)={A(L2n)(0,1)
(A(L2n)0,1))"
(4.23) (A(L2n) 0,0y Y A(L2n) 1,0y Y A(L2n)(1,1))s
(A(L2n) 0,0y Y A(L2n) (1,00 Y A(L2n) (1,1)) " }-
It follows from (4.23) that

T=0(Q2,) Ao((Q2n)") Ao (Rayp).

Remark 4.18. We showed previously that o(Hay,), 0(Q2,), 0((Q2r)"),
0(Ran), and o((Rap)*) are critical. Furthermore, their primality graph
equals P,. We also obtained that some of their meets are also critical, and
admit P, as primality graph. Observe that, by Fact (4.14), all their meets
are also critical, and admit P, as a primality graph.

We summarize the previous examination in the next theorem.

Theorem 4.19 (Boudabbous and Ille*? [7]). Consider a 2-structure T de-
fined on V(1) ={0,...,2n— 1}, where n > 3. The following two statements
are equivalent
o 7 is critical, and P(7) = Pap;
¢ T= U(H2n)7 U(QQH)’ 0((@271)*) ’ U(RQR) ’ U((RQN)*) ’ U(QQn)/\
o((Q2n)") , o(Ran) Ao((R2n)") , 0(Q2n) Ao(Ran) , o(Q2n)A
o((Ran)"), o((Q2n)") Ao (Ran), 0((Q2n)") Ao ((R2n)”), or o(Qan)A
o((Q2n)") Ao (Ran).

The following result is an immediate consequence of Theorem 4.19.

Corollary 4.20. Consider a reversible 2-structure T defined on V(1) =
{0,...,2n -1}, where n > 3. The following two statements are equivalent

o 7 is critical, and P(7) = Pay;
o 7=0(Hz), 0(Q2n) Ao((Q2n)"), 0(Ran) Ao ((R2n)™), or 0(Q2n) A
o((Q2n)") Ao (Ran).

4-3Boudabbous and Ille [7] proved this theorem for digraphs.
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The next remark completes subsubsection 4.2.1. We use the following
notation.

Notation 4.21. Given n > 2, 7, denotes the permutation of {0,...,n -1}
which exchanges i and (n—1) —i for 1€ {0,...,n—1}.
Remark 4.22. Given n > 3, consider a critical 2-structure 7 defined on
V(1) =A0,...,2n -1}, and such that P(7) = P,. Set
E(7) = {A(Lan) (0,0) Y A(L2n) (1,1) Y A(L2n) (1,0
(A(L2n) 0,0y Y A(L2n) 1,1y Y A(L2n) (1,0))
A(LZH)(O,l)aA(L2n)20,1)}'
We obtain
(4.24) mon(e) = e* for each e € £(7).
Consider e € E(7). By Proposition 4.15, there exists B, ¢ £(7) such that

e= U f.
feBe
Thus, we obtain
man(e) = U man(f)

feBe

= U (by (4.24)

feBe
*
=e.
Consequently, 7, is an isomorphism from 7 onto 7*. If 7 is reversible, then
7 =71", and hence 7, is an automorphism of 7.

4.2.2. The type Pop @ Koy .
Proposition 4.23. Given n > 2, consider a 2-structure T defined on V(1) =
{0,...,2n}. The following two statements are equivalent

(1) 7 is critical, and P(7) = Pon ® K{2,;
(2) (0,1)r #(1,0),, and for p,qe{0,...,2n -1}, we have

(4.25) if p<q, then [p,qlr =[0,1];
moreover, for i€{0,...,n-1}, we have
(4.26) [2i,2n]; = [1,0]; and [2i+1,2n], =[0,1],.

Proof. To begin, suppose that 7 is critical, and P(7) = P, ® K{9,). In a
similar way as in the proof of Proposition 4.15, we verify that (4.4) holds.
For a contradiction, suppose that <0,1>,#<0,2>,. If n = 2, then it is not
difficult to verify that 7 — 4 is prime. Furthermore, if n > 3, then it follows
from Proposition 4.15 that 7—(2n) is critical, and hence prime. Since 7—(2n)
is decomposable, we obtain

(4.27) <0,1>,=<0,2>, .
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Since P(7) = Pon & Kjg,), we have Np(;)(0) = {1}. By Lemma 4.4,
{2,...,2n} is a module of 7 — 0. Since 7 is primitive, {0} U {2,...,2n}
is not a module of 7, so [1,0], # [1,2],. Since (4.4) holds, we have [1,2], =
[0,2];. Therefore, we obtain [1,0]; # [0,2];. It follows from (4.27) that
(0,1); # (1,0), and [0,1], = [0,2],. Since (4.4) holds and [0,1], = [0,2],,
(4.25) holds.

Lastly, we show that (4.26) holds. As previously seen, {2,...,2n} is a
module of 7 - 0. Hence we have [1,2n]; = [1,2];. Since (4.25) holds, we
have [1,2]; = [0,1];. We obtain [1,2n]; = [0,1];. Let i € {0,...,n - 2}.
Since P(7) = Pan ® K{ay,), we have Np(y(2i +2) = {27 +1,2i + 3}. By
Lemma 4.4, {2i +1,2i + 3} is a module of 7 - (2¢). In particular, we have
[2i+1,2n]; = [2i + 3,2n],. It follows that

[0,1]; =[1,2n], =[3,2n]; =--- = [2n—1,2n],.

Since P(7) = Pap, ® K{9,), we have Np(,)(2n—1) = {2n-2}. By Lemma 4.4,
{0,...,2n -3} u {2n} is a module of 7 — (2n — 1). In particular, we have
[2n-2,2n]; = [2n —2,0],. Since (4.25) holds, we have [2n -2,0]; =[1,0],.
We obtain [2n - 2,2n]; = [1,0];. Let i € {1,...,n—1}. Since P(7) =
Py, ® Koy, we have Np(,y(2i—1) = {2i-2,2i}. By Lemma 4.4, {27 -2,2i}
is a module of 7—(2i—1). In particular, we have [2i-2,2n], = [2i,2n],. It
follows that

[1,0], =[2n-2,2n], = [2n—4,2n]; =---=[0,2n],.

Consequently, (4.26) holds.

Conversely, suppose that (4.25) and (4.26) hold. Moreover, suppose that
(0,1)r # (1,0),. It follows that 7 = 0(To,+1) (see Figure 1.2). By Fact 2.7,
T is prime. We continue with the following observation

(4.28) for every pe{0,...,2n -2}, 7 - {p,p+ 1} is prime.

Indeed, consider p € {0,...,2n - 2}. Recall that 7 - {p,p+ 1} = 6(Ton+1) —
{p,p+1}. The bijection
e: {0,....2n}~{p,p+1} — {0,...,2n-2}

g<p-1 — q,

q>p+2 — q-2
is an isomorphism from 75,1 — {p,p + 1} onto T,_1. Hence, ¢ is an iso-
morphism from o(To,4+1) — {p,p + 1} onto o(To,-1). By Fact 2.7, o(T2y-1)
is prime. Thus, o(7T%,+1) — {p,p + 1} is prime as well. Consequently, (4.28)
holds. It follows from (4.28) that

(4.29) E(Py,) c E(P(7)).

Lastly, we prove that 7 is critical, and P(7) = P, @ K{g,). As already
observed, 7— (2n) = o(Lsa,). Hence 7—(2n) is decomposable. Furthermore,
since 7—(2n) = 0(Lay), 7—{p, 2n} is decomposable for each p € {0,...,2n-1}.
Thus,

(4.30) Np(oy(2n) = @.
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Consider p € {1,...,2n-2}. It follows from (4.25) and (4.26) that {p—-1,p+1}
is a module of 7—p. Therefore, p is a critical vertex of 7. Moreover, it follows
from (4.29) that {p—1,p+1} € Np(-)(p). Since p is a critical vertex of 7, it
follows from Lemma 4.4 that Np(,)(p) = {p-1,p+1}. Hence,

(4.31) for each pe {1,...,2n -2}, Np)(p) ={p-1,p+1}.

It follows from (4.25) and (4.26) that {2,...,2n} is a module of 7—0. There-
fore, 0 is a critical vertex of 7. By (4.31), 1 € Np()(0). Since {2,...,2n} isa

nontrivial module of 7 -0, with [{2,...,2n}| > 3, it follows from Lemma 4.4
that dIP’(T) (0) = 1. Thus,
(4.32) Np(7)(0) = {1}.

Finally, it follows from (4.25) and (4.26) that {0, ...,2n-3}u{2n} is a module
of 7= (2n —1). Therefore, 2n — 1 is a critical vertex of 7. By (4.30), 2n ¢
Np(s)(2n-1). By (4.31), 2n-2 € Np()(2n-1) and Np()(2n-1)n{1,...,2n~
3} =@. By (4.32), 0 ¢ Np(s)(2n-1). Consequently, Np(,y(2n-1) = {2n-2}.
It follows that 7 is critical, and P(7) = Pay, ® Koy, O

The next characterization is a simple consequence of Proposition 4.23 and
its proof.

Theorem 4.24 (Boudabbous and Ille** [7]). Consider a 2-structure T de-
fined on V(1) ={0,...,2n}, where n > 2. The following two statements are
equivalent

o 7 is critical, and P(7) = Pap ® K{op);
o 7 =0(Tons1) (see Figure 1.2).

In Remark 4.26, we determine the automorphism group of o(7b,11),
where n > 2. We use the following note.

Note 4.25. Consider a tournament 7. We denote by Iso(T,T™) the set of
the isomorphism from 7" onto its dual. We prove that

(4.33) Aut(o(T)) = Aut(T) ulso(T,T7).
Given z,y,v,w e V(o(T)), with z + y and v # w,
(z,y), (v,w) € A(T)
(z,9) =1y (v,w) if {or
(z,y), (v,w) ¢ A(T).
Therefore,
(z,y), (v,w) € A(T)

(2,9) =o(1) (v,w) if {or
(z,y), (v,w) € (A(T))".

44Boudabbous and Ille [7] proved this theorem for digraphs.
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It follows that
E(o(T)) = {A(T), (A(T))"}.

Given a permutation ¢ of V(T'), we have
@ € Aut(o(T))if and only if
p(A(T)) = A(T) and p((A(T))") = (A(T))"

p(A(T)) = (A(T))" and p((A(T))") = A(T).

Clearly, if @(A(T)) = A(T), then o((A(T))*) = (A(T))*. Similarly, if
©(A(T)) = (A(T))", then ¢((A(T))*) = A(T'). Therefore,

p(A(T)) = A(T)
w € Aut(o(T)) if and only if < or

p(A(T)) = (A(T))"

We have p(A(T)) = A(T) if and only if ¢ € Aut(T"). Analogously, ¢(A(T)) =
(A(T))* if and only if ¢ € Iso(T,T™). It follows that (4.33) holds.

Remark 4.26. Let n > 2. We verify that Tb,,,1 is rigid. Let ¢ € Aut(Top,41).
Since n > 2, 2n is the only vertex of T,4+1 such that Th,.1 — (2n) is a linear
order. Consequently, ¢(2n) =2n. It follows that ¢y 2,-1) € Aut(Tan41 -
(2n)). Since To,41 — (2n) is a linear order, To,11 — (2n) is rigid. Therefore,
©10,...2n-1} = 1do,. 2n—11- Since p(2n) = 2n, we obtain ¢ =1Idg . 25

We denote by 72, the extension of 7o, to {0,...,2n} defined by 72, (2n) =
2n (see Notation 4.21). Clearly, 73, is an isomorphism from Tb,.1 onto
(Tons1)*. Conversely, consider an isomorphism ¢ from To,11 onto (Thy,41)".
Recall that 2n is the only vertex of Th,41 such that Th,.1 — (2n) is a linear
order. Hence, 2n is the only vertex of (T5,+1)” such that (Th,41)" — (2n)
is a linear order. It follows that p(2n) = 2n. Therefore, ¢y, . 2,-1} is an
isomorphism from Tb,11—(2n) onto (Top+1)*—(2n). Since Toyp41—(2n) = Loy,
we obtain (g, .. 2n-1) = T2n. Consequently, we have ¢ = T2,.

It follows from Note 4.25 that

(4.34) Aut(o(T2n+1)) = {Idgo,... 20}, T2n -
4.2.3. The type Pop1-

Proposition 4.27. Givenn > 2, consider a 2-structure T defined on V(1) =
{0,...,2n}. The following two statements are equivalent
(1) 7 is critical, and P(7) = Paps1;
(2) (0,1); #(1,0), [0,1]- # [0,2], and for p,q € {0,...,2n} such that
p < q, we have

[0,2]; if p and q are even,
435 5 T = .
(4.35) [p.q] {[O, 1], otherwise.
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Proof. To begin, suppose that 7 is critical, and P(7) = Poy11. First, we show
that (4.35) holds. Consider p,q € {0,...,2n} such that p < q. We prove that
there exist p’ € {0,1} and ¢’ € {2n - 1,2n} such that

(4.36) p'=p mod 2, ¢ = ¢ mod 2, and [p,q], = [p',q']+.

For instance, suppose that p > 2. Since P(7) = P41, we have Np(,)(p-1) =
{p-2,p}. By Lemma 4.4, {p-2,p} is a module of 7— (p—1). In particular,
we obtain [p,q], = [p - 2,q],. By iteration, we obtain p’ € {0,1} such that

p' =p mod 2 and [p,q]; = [p', q]-.

Similarly, we obtain ¢’ € {2n—2,2n -1} such that ¢’ = ¢ mod 2 and [p’, ¢], =
[p',q']r. Therefore, (4.36) holds. It follows from (4.36) that for any p’,¢" €
{0,...,2n} such that p’ < ¢/,

(4.37) if p =p mod 2 and ¢’ = ¢ mod 2, then [p,q], = [p', ']~

We distinguish the following four cases, where p,q € {0,...,2n} such that

p<q.

CASE 1: p and q are even.
By (4‘37)’ [p’ QJT = [072]7'

CASE 2: p and q are odd.
By (4.37), [p,q]- = [1,2n~1],. Since P(7) = Pay41, we have Np(y(2n) =
{2n - 1}. By Lemma 4.4, {0,...,2n -2} is a module of 7 - (2n). In
particular, we obtain [1,2n - 1], =[0,2n - 1],. By (4.37), [0,2n - 1], =
[0,1],. Consequently, we obtain [p,q], = [0,1]-.

CASE 3: p is even and ¢ is odd.
By (4‘37)7 [p’ Q:|T = [07 1]7"

CASE 4: pis odd and q is even.
By (4.37), [p,q]- = [1,2]7. Since Np(;y(0) = {1}, we have {2,...,2n} is
a module of 7 — 0. In particular, we obtain [1,2]; = [1,2n - 1],. Since
Np(ry(2n) = {2n— 1}, we have {0,...,2n -2} is a module of 7~ (2n). In
particular, we obtain [1,2n - 1], =[0,2n - 1],. By (4.37), [0,2n - 1], =
[0,1],. Consequently, we obtain [p,q], = [0,1]-.

It follows from the four cases above that (4.35) holds.

Second, we verify that (0,1), # (1,0), and [0,1]; # [0,2],. If (0,1); =
(1,0),, then {2i:i€{0,...,n}} is a module of 7, which contradicts the fact
that 7 is critical, and hence prime. Hence (0,1), # (1,0),. Furthermore,
if [0,1]; = [0,2];, then 7 = 6(Lapn+1), which contradicts the fact that 7 is
prime. Thus [0,1]; #[0,2],.

Conversely, suppose that (0,1); # (1,0),, [0,1], # [0,2],, and (4.35)
holds. To begin, we prove that 7 is prime. We show by induction that

(4.38) for each m e {1,...,n} that 7[{0,...,2m}] is prime.

Since [0,1]; #[0,2], {0,1} and {1, 2} are not modules of 7[{0,1,2}]. More-
over, {0,2} is not a module of 7[{0, 1,2}] because (0,1), # (1,0),. It follows
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that 7[{0,1,2}] is prime. Now, consider m € {1,...,n-1}, and suppose that
7[{0,...,2m}] is prime. Set

X ={0,...,2m}.

Since (4.35) holds, we obtain 2m + 1 € (X), and 2m + 2 € X,(2m). Since
(0,1); # (1,0);, X u{2m + 2} is not a module of 7[{0,...,2m + 2}]. By
statement (P1) of Lemma 3.17, 7[{0,...,2m + 2}] is prime. Consequently,
(4.38) holds for every m € {0,...,n}. It follows that 7 is prime.

To continue, we make the following observation
(4.39) for every pe{0,...,2n -1}, 7= {p,p+ 1} is prime.
Indeed, let p € {0,...,2n —1}. Since (4.35) holds, the bijection

{0,....2n}~{p,p+1} — {0,...,2n-2}

qg<p-1 — q,
(ifp<2n-2) g2p+2 +— q-2.
is an isomorphism from 7—{p,p+ 1} onto 7[{0,...,2n—2}]. It follows from
(4.38) that 7[{0,...,2n —2}] is prime, so 7 — {p,p + 1} is as well.
(4.40) E(Popi1) € E(P(7)).

Lastly, we prove that 7 is critical, and P(7) = Pyy,41. Let pe {1,...,2n-1}.
Since (4.35) holds, {p—1,p+ 1} is a module of 7 — p. Thus, p is a critical
vertex of 7. By (4.40), {p—1,p+1} € Np(,)(p). Since p is a critical vertex
of 7, it follows from Lemma 4.4 that Np(;)(p) = {p—1,p+1}. Therefore, for
each pe {1,...,2n -1}, we have

(4.41) Npry(p) ={p-1,p+1}.

Since (4.35) holds, {2,...,2n} is a module of 7 — 0. Thus 0 is a critical
vertex of 7. It follows from (4.41) that 1 € Np(,(0). Since {2,...,2n} is a

nontrivial module of 7 -0, with [{2,...,2n}| > 3, it follows from Lemma 4.4
that dp(;y(0) = 1. Therefore,
(4.42) Np(ry(0) = {1}.

Finally, since (4.35) holds, {0,...,2n — 2} is a module of 7 - (2n). Thus
2n is a critical vertex of 7. It follows from (4.41) that 2n -1 € Np(,y(2n)
and Np(-(2n) n{1,...,2n -2} = @. By (4.42), 0 ¢ Np(;y(2n). Therefore,
Np(y(2n) = {2n - 1}. Consequently, 7 is critical, and P(7) = Paps1. O

Let 7 be a 2-structure defined on V(1) = {0,...,2n}, where n > 2. Suppose
that (0,1); # (1,0); and [0,1]; # [0,2];. Suppose also that 7 satisfies
(4.35). By Proposition 4.27, 7 is critical, and P(7) = Pa,11. We distinguish
the following cases.

Case 1: (0,2), =(2,0),.
We distinguish the following three subcases.
Subcase a: (0,2)r =(1,0),.
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We obtain
E(7) = {A(L2n+1)0,1) Y A(L2n+1) (1,00 Y A(L2n+1) (1,1)
(4.43) (A(L2n+1)(0,1) Y A(L2n+1) (1,0 Y A(L2n+1) (1,1))”

@] A(Lgn_,.l)(()’[)) @] (A(L2n+1)(0,0))*} (See Notation 416)

In fact, 7 is the 2-structure associated with a digraph (see subsec-
tion 1.3). Given m > 2, we consider the digraph Ds,.1 obtained
from the linear order Lo,,.1 by removing all the arcs between the
even integers (see Figure 4.4).

A

m—1
[ ]
24 2i+2 2m

FIGURE 4.4. The digraph Daoy,+1-

It follows from (4.43) that
7 =0(Daps1).
Subcase b: (0,2), = (0,1).
We obtain
E(7) = {A(L2n+1) (0,1) Y A(L2n+1) (1,0 Y A(L2n+1) (1,1)
(4.44) U A(L2n+1)(0,0) Y (A(L2n+1)(0,0)) "
(A(L2n+1)0,1) Y A(L2ns1) (1,00 Y A(L2n+1) (1,1)) " }-
It follows from (4.44) that
7 =0((Daps1)").

Subcase ¢: <0,1> N <0,2>,=@.
We obtain

E(7) = {A(L2n+1)(0,1) Y A(L2n+1) (1,00 Y A(L2n+1) (1,1)
(4.45) (A(L2n+1)(0,1) Y A(L2n+1)(1,0) Y A(L2n+1)(1,1))*,
A(L2n+1)(0,0) Y (A(L2n+1) (0,0)) " }-
It follows from (4.43), (4.44), and (4.45) that
7 =0(Dap+1) Ao ((Dans1)”) (see Remark 4.11 and Fact 4.14).
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CaAsE 2: (0,2) #(2,0),.
Since [0,1], # [0,2],, we have (0,1), = (2,0); and (1,0); = (0,2), or
<0,1>; n<0,2>,= . We distinguish the following two subcases.
Subcase a: (0,1); =(2,0); and (1,0), = (0,2).
We obtain

E(7) = {A(L2n+1)(0,1) Y A(L2n+1) (1,00 Y A(L2n+1)(1,1)
U (A(L2n+1)(0,0))"> (see Notation 4.16)
(4.46) (A(L2n+1)0,1) Y A(L2n+1) (1,0 Y A(L2n+1) (1,1))”
U A(L2n+1)(2,0))} (see Notation 1.2).
In fact, 7 is the 2-structure associated with a graph (see subsec-
tion 1.2). Given m > 2, we consider the tournament Us,,.1 obtained

from the linear order Lo,,.1 by reversing all the arcs between the even
integers (see Figure 4.5).

FIGURE 4.5. The tournament Usy,41.

It follows from (4.46) that

T= U(U2n+1)'

Subcase b: <0,1>, n<0,2>,=@.
We obtain

E(7) = {A(L2n+1)(0,1) Y A(L2n+1) (1,0) Y A(L2n+1) (1,1)5
(A(L2n+1)0,1) Y A(L2n+1) (1,0) Y (A(L2ns1) (1))
(4.47) A(L2n+1)(0,0)s
(A(L2n+1)(0,0))" }-
It follows from (4.45), (4.46), and (4.47) that
7 =0(Dans1) Ao ((D2p41)") Ao(Uzns1) (see Remark 4.11 and Fact 4.14).

We summarize the previous examination in the next theorem.
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Theorem 4.28 (Boudabbous and Ille*® [7]). Consider a 2-structure T de-
fined such that V(1) = {0,...,2n}, where n > 2. The following two state-
ments are equivalent

o 7 is critical, and P(7) = Papi1;
o 7 =0(Daps1), 0((D2n+1)*), 0(Dan+1) Ao((Dan+1)*), 0(Uzns1), or
0(Dap+1) Ao ((Dan+1)™) Ao (Uzpsr)-

The following result is an immediate consequence of Theorem 4.28.
Corollary 4.29. Consider a reversible 2-structure T defined such that

V() =A0,...,2n}, wheren > 2. The following two statements are equivalent

o 7 is critical, and P(7) = Popy1;
¢ T= U(U2n+1)a U(D2n+1) AU((D2n+1)*)7 or U(D2n+1) AU((D2n+1)*) A
o(Uzn+1).

The next remark completes the subsubsection.

Remark 4.30. Given n > 2, consider a critical 2-structure 7 defined on
V(1) =A0,...,2n}, and such that P(7) = Py,41. Set

E(7) = {A(L2n+1)0,1) Y A(L2n+1) (1,0) Y A(L2n+1) (1,1)
(A(Lan+1)(0,1) Y A(L2n+1) (1,0 Y A(L2n+1) (1,1))
A(L2n+1)(0,0)s A(L2n+1){0,0)}-
We obtain
(4.48) mon+1(e) = e” for each e € £(7)  (see Notation 4.21).
Consider e € E(7). By Proposition 4.27, there exists B, ¢ £(7) such that

e= U f.

feBe

Thus, we obtain

Ton+1(e) = |J mons1(f)

feBe
=/ (by (4.48))
feBe
=e".
Consequently, mon41 18 an isomorphism from 7 onto 7*. If 7 is reversible,
then 7 = 7*, and hence 79,41 is an automorphism of 7.

4.2.4. The type Cony1. Given m > 1, we consider the tournament Wop, 1
obtained from the tournament Us,,+1 by reversing all the arcs between the
odd integers (see Figure 4.6). The next remark is useful to establish Propo-
sition 4.36 below.

4-5Boudabbous and Ille [7] proved this theorem for digraphs.
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FIGURE 4.6. The tournament Wy, 1.

Remark 4.31. Let I' be a group of odd order with identity element e.
Consider @ ¢ I' \ {e} such that [Q2n {z,z7!}| = 1 for each z € I'\ {e}.
We associate with T' and  the Cayley tournament Cay(I",Q2) defined on
V(Cay(T,Q)) =T as follows. Given z,y €T, (z,y) € A(Cay(I',Q)) if yz~' €
Q. For each a € I', the permutation of I', defined by x ~ xa for every
x €I, is an automorphism of Cay(T",2). Consequently, Cay(T',2) is vertex-
transitive.

Let m > 1. We consider the cyclic group (Za2m+1,+). We consider also the
permutation

Yom+1: {0,...,2m} —> {0,...,2m}
P — (m+1)xp mod2m+1

of Zom+1. We denote by 19,11 (Wap1) the unique tournament defined on
Zam+1 such that 1o, is an isomorphism from Way,41 onto ¥om+1 (Wame1)-

Fact 4.32. For m > 1, we have
(Vam+1 (Wam+1))" = Cay(Zam+1,{1,...,m}).
For convenience, set
Caygsi = Cay(Zoms1,{1,...,m}).
Fact 4.33. Given m > 1, Caysy,, 1 s prime.

Proof. Let M be a module of Cay,,,,; such that |[M|>2. We have to show
that M = Zop+1. As previously noted, the permutation of Zg,,.1, defined
by p ~» (p+1) mod (2m + 1) for each p € Zgy+1, is an automorphism of
Caysy,,+1- Hence, we can assume that 0 € M. Moreover, the permutation of
Zom+1, defined by p —» —p mod (2m+1) for each p € Zap 41, is an isomorphism
from Cays,,.; onto (Caysg,,.1)*. Since Cays,,,; and (Cay,,,,;)* share the
same modules, we can assume that there exists ¢ € M n{1,...,m}. Since
Cayg.1[{0,...,m}] = Lins1, we obtain {0,...,¢} € M. Since (1,m+1), (m+
1,0) € A(Cayy,,.1), we have m+1 € M. Hence

(4.49) {0,....,gyu{m+1}c M.
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Now, we show that
(4.50) {0,...,m+1}c M.

Clearly, (4.50) follows from (4.49) when ¢ = m. Thus, suppose that ¢ < m-1.
Let pe {¢g+1,...,m}. Since (q,p),(p,m+1) € A(Cay,,,,1), we have pe M.
It follows that {¢+1,...,m} € M. Since {0,...,qfu{m+1} € M by (4.49),
we obtain {0,...,m + 1} ¢ M. Consequently, (4.50) holds. If m =1, then
M = Zom+1 by (4.50). Lastly, suppose that m > 2. Let pe {m+2,...,2m}.
Since (m + 1,p),(p,0) € A(Cay,,,,1), we have p € M. We obtain {m +
2,...,2m} ¢ M. Tt follows from (4.50) that M = Zgs;,+1. Consequently,
Cayg,,+1 is prime. O

Fact 4.34. Given m > 2, Cay,,,,1 s critical, and

P(Caygmi1) = Yom+1(Coms1),

where Yom+1(Cam+1) denotes the unique graph defined on Zom+1 such that
Yom+1 18 an isomorphism from Copmi1 0nto ¥om+1(Coms1).

Proof. We have Way,1 N {2m - 1,2m} = Wa,,,—1. By Fact 4.33, Cay,,,_; is
prime. Since (¢2m,-1(Wam-1))* = Cays,,,_; by Fact 4.32, Wa,,_1 is prime.
Hence Wop,i1 ~ {2m — 1,2m} is prime as well. Since (¢2141(Woms1))™ =
Cayy,,+1 by Fact 4.32, we obtain that Cayy,,,; \ Yom+1({2m — 1,2m}) =
Cayye1 N {m,2m} is prime. The permutation of Zoy,+1, defined by p —
(p—m) mod (2m + 1) for each p € Zop,41, is an automorphism of Cays,,,. -
Thus Cays,,,1~{0,m} is prime. The permutation of Zg,+1, defined by p — —p
mod (2m + 1) for each p € Zgy41, is an isomorphism from Cay,,,,; onto

(Cayg,,.q)”- Therefore, Cayy,,.q1 N Vam+1({0,-m}) = Cayg,,,q N Woms1({0,m
+1}) is prime. It follows that

m,m + le N]P)(Ca}’2m+1)(0)'

Clearly, {m,m + 1} is a module of Cay,,,,; —0. Thus 0 is a critical vertex
of Cayy,,.q. By Lemma 4.4, dp(cay,, ,,)(0) < 2. We obtain
NP(Cay2m+l)(O) = {m,m + 1}

Let q € Zom+1. Since the permutation of Zgy,.1, defined by p — (p + q)
mod (2m+1) for each p € Zop,+1, is an automorphism of Caysy,,,;, we obtain
that ¢ is a critical vertex of Cayy,,,1, and Np(cay,, .,)(q) = {g+m,q+m+1}.
Consequently, Cay,,,,; is critical, and P(Caysy,,.1) = Y2m+1(Come1)- O

The next fact is an immediate consequence of Facts 4.32 and 4.34.
Fact 4.35. Given m > 2, Wop,41 is critical, and P(Wap41) = Comet.

Proposition 4.36. Given n > 2, consider a 2-structure T defined on V(1) =
{0,...,2n}. The following two statements are equivalent

(1) 7 is critical, and P(7) = Cops1;
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(2) (0,1); #(1,0), and for p,q€{0,...,2n} such that p < q, we have

1,0, i 0
(4.51) [p,qls = {[ ,0]; if p and q have the same parity

[0,1] otherwise.

Proof. To begin, suppose that 7 is critical, and P(7) = Co,41. We verify
that (4.51) holds in the following manner. Since E(Pap+1) € E(Cons1),
(4.36) holds. It follows that (4.37) holds. We distinguish the following
cases, where p,q € {0,...,2n} such that p <q.
CASE 1: p and q are even.
By (4.37), [p,q]r = [0,2];. Since P(7) = Cons1, we have Np(;)(2n) =
{0,2n - 1}. By Lemma 4.4, {0,2n - 1} is a module of 7 — (2n). In
particular, we obtain [0, 2], = [2n-1,2],. By (4.37), [2n—-1,2]; = [1,0].
Thus

(4.52) [p.q]- = [1,0]-.

CASE 2: p and ¢ are odd.
By (4.37), [p,q]r =[1,2n—1];. Since {0,2n -1} is a module of 7 - (2n),
we have [1,2n - 1], =[1,0],. Hence

[p, Q]T = [1’0]7-

CASE 3: pis even and ¢ is odd.

By (4.37), [p,q] = [0,1].
CASE 4: pis odd and q is even.

By (4.37), [p,q]ls = [1,2]-. Since P(7) = Cans1, we have Np(;)(0) =
{1,2n}. By Lemma 4.4, {1,2n} is a module of 7 — 0. In particular,
we obtain [1,2], = [2n,2];. By (4.37), [2n,2]; = [2,0],. By (4.52),
[2,0]; =[0,1],. Therefore

[pa q]‘r = [07 1]7’-
It follows that (4.51) holds. Since 7 is prime, 7 is not constant. It follows
from (4.51) that (0,1), # (1,0),.
Conversely, suppose that (4.51) holds, and (0,1), # (1,0),. We obtain
T =0(Wam+1)-
By Fact 4.35, 7 is critical, and P(7) = Cop1. O

The next characterization is a simple consequence of Proposition 4.36 and
its proof.

Theorem 4.37 (Boudabbous and Ille? [7]). Consider a 2-structure T de-
fined on V(1) ={0,...,2n}, where n > 2. The following two statements are
equivalent

o 7 is critical, and P(7) = Copy1;
o 7=0(Wapns1) (see Figure 4.6).

4.6Boudabbous and Ille [7] proved this theorem for digraphs.
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In the next remark, we determine the automorphism group of o(Way,41)
when n > 2.

Remark 4.38. Let n > 2. By Fact 4.32, 19,41 is an isomorphism from Wo,, 1
onto (Cayy,,,;)*. To determine Aut(Caysy,,.,), we consider the permutation

92n+1: {0,,2n} i {O,,2n}
P — p+1 mod2n+1

of Zon+1. We prove that

(4.53) Aut(c(Wap+1)) = < Oaps1, Tons1 > -
To begin, we show that

(4.54) Aut(Cayg,,q) = < bops1 > .

Clearly, 62,41 € Aut(Caysy,,,1), and hence < fa,,+1 > € Aut(Cays,,,;). Con-
versely, consider ¢ € Aut(Caysy,, ;). Since < 8,41 > € Aut(Cayq,, 1),

(02n:1) ? 0 p € Aut(Cayy,,,1).
We have
((B2n41) 7@ 0)(0) = 0.
Since Cayop,1[Neay, ., (0)] and Cayy, 1 [NE,,,  (0)] are linear orders, we

obtain (62p41) % 0 = Idyg,.. ony- Therefore, ¢ € < 6,41 >. It follows that
(4.54) holds. Moreover, since 19,41 is an isomorphism from Wa,,1 onto
(Cayy,,.1)", we obtain

Aut(Wans1) = (2n41) 0 < O2ps1 > 0 Yot
We have (12,41) 7t 0 Bans1 0 Yoni1 = (B2n41)°. Furthermore, we have
((02041)%)™*" = Oap1.
It follows that
(4.55) Aut(Want1) = (2n+1) 1o < Bant1 > 0 Ponst =< Oapa1 > .
Now, we show that
(4.56) Iso(Caygy,,1, (Cayon,1)”) = < baps1 >0 Tops1.

Clearly, mon+1 € Iso(Cayy,,.1, (Cayg,.i)*). It follows from (4.54) that <
0241 > © Tons1 € Iso(Cayy,,, 1, (Cayy,.1) ™). Conversely, let ¢ be an isomor-
phism from Cays,,; onto (Cayy,,,;)*. Since 02,1 € Aut(Caysy,,,1) by (4.54),

(62n41)" % 0 € Iso(Cayay1, (Cayayir)*)- Set

¢’ = (02p01)" ™M 0 .
We have ¢'(n) = n. Thus, we obtain cp’[Naayzml(n)]
@' [Néay,, . (n)] = Nggy, . (n). Recall that

(n) and

- +
Ca‘YQ'rH—

CaY2n+1[N(_Jay2n+1(n)] =Ly, n-1) and Ca‘YQn+1|:Néay2n+l(n)] =Lins1,. 2n)-
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It follows that ¢’ = w41, SO @ = (02n+1)‘p(")_" o mon+1. Consequently, (4.56)
holds. Lastly, since 12,41 is an isomorphism from Ws,,,1 onto (Cayy,,.;)",
we obtain

Is0(Wons1, (Wone1)™) = ($2n41) 10 < Oapi1 >0 Topi1 0 Yonsi.
Since m2n41 0 Yons1 = (02n11)" © Y2ns1 0 Tons1,
Is0(Wans1, (Wone1)™) = (Y2n41) 0 < 01 >0 (B2041)" © Yope1 0 Tone1
= (Yan+1) "0 <O2n41 > 0 Yons1 © Topa
(4.57) = <Oyp+1 >0 mops1  (by (4.55)).

By Note 425, Aut(o(W2n+1)) = Aut(W2n+1) @] ISO(W2n+1,(WQn+1)*). It
follows from (4.55) and (4.57) that

Aut(o(Wans1)) = < bape1 > U(< O2ps1 > © Tops1).
Since mo,41 © (02n+1)k = (02n+1)_k o Ton+1, (4.53) holds.
4.3. Properties of critical 2-structures.

Lemma 4.39. Let 7 be a critical 2-structure, with v(7) > 7. If u,v,x,y are
distinct vertices of T such that {u,z},{x,y},{y,v} € E(P(7)), then 7—{x,y}
is critical, T and T —{x,y} share the same type, and

E®(r—{z,y})) = (EP(T)) ~ {{u, 2}, {z, 9}, {y, v}}) v {{u, v}}.
Proof. By Corollary 4.6, there exist n > 3 and a bijection f defined on V(1)
such that f(P(T)) =P, ® K{Qn}a Ps,i1,Co,41 or f(P(T)) = P,,, with n > 4.

To begin, suppose that

J(P(7)) = Cansr.
We can assume that f(u) =2n -2, f(z) =2n-1, f(y) =2n and f(v) = 0.
Since P(f(7)) = f(P(7)), we have

P(f(7)) = Cons1.-
By Proposition 4.36, (0,1) sy # (1,0) ¢(;), and f(7) satisfies (4.51). Clearly,
(07 1)f(‘r)—{2n—1,2n} # (170)f(7)—{2n—1,2n}> and f(T) - {27’L - 1,271} satisfies
(4.51). Since n > 3, we can apply Proposition 4.36 to f(7)-{2n-1,2n}. We
obtain that f(7)-{2n-1,2n} is critical, and P(f(7)-{2n-1,2n}) = Cop_1.
Since f is an isomorphism from P(7) onto Co,1, we obtain

E(®(7) ={{f 7)./ (p+1)}:0<p<m-1}
(4.58) u{{f71(2n), F7H(0)}}.
Clearly, fiv(r)«{a,y} is an isomorphism from 7—{x,y} onto f(7)-{2n-1,2n}.
Hence, fiv(r)«{z,y} 18 an isomorphism from P(7—{z,y}) onto P(f(7)-{2n-
1,2n}). Since P(f(7) - {2n—-1,2n}) = Ca,-1, we obtain
E®(r—{z,y})) ={/ (), [ (p+1)} :0<p<2n-3}

(4.59) U {f 7 (2n-2), F(0)}}.
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It follows from (4.58) and (4.59) that

E®(r - {z,y}) =
(E@(m) {7 @n-2), /7 @n- D) {7 (20-1), /71 (20)},
{771 @n), ) v {7 (2n-2), /7H(0)}}
= (E®(7) ~ {{u, 2}, {z,y}, {y,v}}) v {{u, v}}.

Now, suppose that f(P(7)) = Pan, Pan ® K{a,y, or Pani1. We proceed in
the same way for the three cases. For instance, assume that

f(B(7)) = Ponsa.
There exists p € {0,...,2n -3} such that f(u) =p, f(z)=p+1, f(y)=p+2
and f(v) =p+3. Since P(f(7)) = f(P(7)), we have

P(f(7)) = Pans1-
By Proposition 4.27, (0, 1)f(7.) ¥ (l,O)f(T), [O, l]f(T) * [O,Q]f(.,.), and f(’i')
satisfies (4.35). Consider the bijection

g: {0,....2n}~{p+1,p+2} — {0,...,2n-2}
q<p i q,
q=2p+3 — q-2.

For each ¢ € {0,...,2n -2}, we have ¢ = g"*(¢) mod 2. Moreover, for any
q,r €{0,...,2n -2}, g <r if and only if g~'(¢) < g~(r). Since (0, 1) p(r) #
(1,0) #¢r), [0, 1] ¢7) # [0,2](7), and f(7) satisfies (4.35), we obtain

(0, Dg(s(r)-tpripe2p) # (1, 0)g(p(r)—{p+1p42})5

[0, 1g(r(m)-tpr1pe2y) # [0, 2] g s () -(p+1.42})
and

g(f(r)—{p+1,p+2}) satisfies (4.35).

By Proposition 4.27 applied to g(f(7)-{p+1,p+2}), g(f(7)-{p+1,p+2})
is critical, and

P(g(f(7) - {p+1,p+2})) = Pap-1.
Since f is an isomorphism from P(7) onto Py,.1, we have
(4.60) E®(T) ={{f (), f ' (g+1)}:0<q<2n-1}.

Since P(g(f(7) —{p+1,p+2})) = Pon-1, 9o (f1v()"{z,}) is an isomorphism
from P(7 - {x,y}) onto Pay,_1. It follows that

E®(r—{z,y})) =
{{(Q © (frV(T)\{m,y}))il(qx (g ° (frV(T)\{:p,y}))il(q + 1)} :0<g<2n- 3}
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We obtain

EP(r—{z,y})) = {{f ' (»), ' (p+3)}}
(4.61)  u{{f (@), f(g+1)}:0<g<p-1} (whenp>1)
V{{f @), N(¢g+1)}:p+3<q<2n-1} (when p<2n-4).

It follows from (4.60) and (4.61) that

E(P(7 —{z,y}) =(E@E) N {7 0), f o+ DL A o+ 1), [ (0 +2)),
{2 e+l .+ 3)))
=(EP(m)~ {u, 2}, {z,y},{y,v}}) v {{u, v}}. O
Lemma 4.40. Let 7 be a critical 2-structure, with v(7) > 7. If u,z,y are

distinct vertices of T such that {u,z},{z,y} € E(P(7)), and dp()(y) = 1,
then T —{x,y} is critical, T and 7 - {x,y} share the same type, and

EP(r-A{z,y})) = E(®(7)) ~ {{u, 2}, {z,y}}.
Proof. By Corollary 4.6, there exist n > 3 and a bijection f defined on V(1)
such that f(]P)(T)) = Pgn @K{Qn},P2n+1, 02n+17 or f(]P)(T)) = PQn, with n > 4.
Since dp(+)(y) =1, f(P(7)) = Pan, Pon ® K{2,y, or Pany1. As in the proof of
Lemma 4.39, we treat only the case f(P(7)) = Pa,+1. We can assume that
fu)=2n-2, f(x)=2n-1 and f(y) =2n.
Since P(f(7)) = f(P(7)), we have

P(f(7)) = Pans1.
By Proposition 4.27, (0, 1)]0(7_) * (1,0)]0(7_), [0, 1]f(7_) * [0a2]f('r)7 and f(7)
satisfies (4.35). Therefore, we have

(0, 1) p(r)-f2n-12n} * (1,0) p(r)-{2n-1,2n}»
[0, 1] #(r)=12n-1,20} * [0, 2] #(r)—{2n-1,2n}»
and

f(r)={2n-1,2n} satisfies (4.35).

By Proposition 4.27 applied to f(7) —{2n - 1,2n}, f(7) - {2n-1,2n} is
critical, and

P(f(r)-{2n-1,2n}) = Pay1.
Since f is an isomorphism from P(7) onto Psy1, we have
(4.62) E(P(r) ={{f"(a), f(g+ 1)} :0<g<2n-1}.

Since P(f(7) = {2n - 1,2n}) = Pay-1, fiv(r)<{ayy) 15 an isomorphism from
P(7 - {x,y}) onto Psy,_1. we obtain

(4.63) EP(r—{z,y}) ={{f (@), f (¢+1)}:0<g<2n-3}.
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It follows from (4.62) and (4.63) that
E®(r-A{z,y}) = E(P(7))
U@ =2), 7 @ - DL 20 - 1), £ (20)))
=EP(7)) ~ {{u, 2}, {z,y}}. 0
The following corollary is an immediate consequence of Lemmas 4.39 and

4.40. It is useful in the next section when disjoint edges of the primality
graph of a critical 2-structure are considered.

Corollary 4.41. Given a critical 2-structure T, with v(7T) > 7, consider
distinct vertices x and y of T such that {x,y} € E(P(7)). The following two
statements hold.

(1) 7=A{x,y} is critical;

(2) 7 and T —{x,y} share the same type;

(3) For every ee E(P(1)), if en{x,y} =@, then e E(P(1 - {x,y}));

(4) For cvery e € E(B(r — {2,4})), if € (Ne(ry (@) U Np(ry (1)) = @, then

ee E(P(1)).
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5. NONCRITICAL UNORDERED PAIR THEOREMS

Given a prime 2-structure, a noncritical unordered pair theorem provides
distinct vertices v and w of ¢ such that o — {v,w} is prime as well.

We refine the notion of a support as follows. Given a 2-structure o, the
critical support of o is the set of the vertices v of o such that o —wv is critical.
It is denoted by .7.(0).

Remark 5.1. Let o be a prime 2-structure. Suppose that
L(o)N (o) + 2.

Let v € (o) \ (o). Since v € #(0), 0 —v is prime. Since v ¢ .7(0),
o — v is not critical. Hence, there exists w € V(o —v) such that (o —v) —w
is prime. Therefore, {v,w} is a noncritical unordered pair of o.

Remark 5.2. Let o be a prime 2-structure, with v(o) > 6. Suppose that
|Ze(0)| < 1.

It follows from Theorem 3.11 that there exists X ¢ V(o) such that 3 < | X| <5
and

(5.1) Fe(o) € X.

By Corollary 3.21, there exist v,w € V(o) \ X such that o — {v,w} is prime.
Clearly, if v # w, then {v,w} is a noncritical unordered pair of o. Hence,
suppose that v = w. We obtain v € (o). Since .7.(c) € X, we have
veS (o) S(0), and we conclude as in Remark 5.1.

5.1. The Schmerl-Trotter theorem.

Theorem 5.3 (Schmerl and Trotter [33]%1). Given a prime 2-structure o
such that v(o) > 7, there exist v,w € V(o) such that v+ w and o —{v,w} is
prime.

Theorem 5.3 is the second downward hereditary property of primality.
We use the properties of critical 2-structures presented in subsection 4.3 to
prove it. Our approach is based on Remark 5.1.

In this subsection, we provide a proof of Theorem 5.3 when v(o) > 9.
In section 6, we provide a proof of Theorem 5.3, when v(o) > 7, by using
Theorem 5.23. We begin with the following lemma.

Lemma 5.4. Let o be a prime 2-structure, with v(o) > 8, such that .7.(0) #
@. Consider x € /,(0). Let

ECE(P(c-x))
such that en f =@ for distinct e, f € £. If |E] > 4, then En E(P(0)) # @.

5-1Schmerl and Trotter [33] proved this theorem for binary relational structures. The

cases of partially ordered sets, graphs, and tournaments are specified.
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Proof. Suppose that £En E(P(0)) = @. We have to show that |€| < 3. Hence,
suppose that |€| > 3. We have to show that |£] = 3.
Given e € £, set
Xe=V (o)~ ({z}ue).
Since e € E(P(o —z)), o[X.] is prime. Since e ¢ E(P(0)), o[Xe U {z}] is
decomposable. By Lemma 3.13, z € (X.), or there exists u. € X, such that

x € (Xe)o(ue).
Given distinct e, f € £, set

Xiefy =XeN [

Since en f = @, it follows from Corollary 4.41 applied to o — z that f €
E(P(0[Xe])), that is,

(5.2) o[ X, p1] is prime.

For a contradiction, suppose that there is e € £ such that z € (X,),. For
each f e &~ {e}, we have

(53) X € <X{e,f}>0'

If there is f € £\ {e} such that x € (X),, then V(o) \ {2} is a module of
o, which contradicts the fact that ¢ is prime. Thus, suppose that for every
f e €~ {e}, there is uy € Xy such that x € (X¢)s(uyr). Let f e &\ {e}.
If uf ¢ e, then x € (X{evf})g(u]f). By (5.3), x € (X{edc})g(u]f) N (X{edc})g,
which contradicts Lemma 3.13. Therefore, for every f e &\ {e},

(5.4) uys €e.

Since |€] > 3, consider distinct f,g € &\ {e}. By (5.4), uy,uqg €e. If uy = uy,
then {z,uy} is a module of o, which contradicts the fact that o is prime.
Hence uy # ug. Recall that o[ Xy ] is prime by Corollary 4.41. We obtain
that z € (X{y,gy)o(ur) N (X gy )o(ug), which contradicts Lemma 3.13.

It follows that for each e € £, there is u. € X, such that x € (X,)y(ue).
Given distinct e, f € £, if u, = uy, then {x,uc} is a module of o, which
contradicts the fact that o is prime. Hence, for distinct e, f € £, we have

(5.5) Ue # U

Given distinct e, f € &, if ue ¢ f and uy ¢ e, then x € (X f3)o(ue) N
(Xte,f1)o(uy) which contradicts Lemma 3.13 because ue # uy by (5.5).
Thus, for distinct e, f € £, we have

(5.6) ue € f or uy €e.

Let e € £. Recall that the elements of £ are pairwise disjoint. Since |€| > 3,
there exists f € £\ {e} such that u. ¢ f. By (5.6), usce. Let ge £\ {e, f}.
By (5.6) applied to f and g, ug € f, because us ¢ g. By (5.6) applied to e
and g, ue € g because ugy ¢ e. Therefore, every element of £ \ {e, f} contains
ue. Consequently, |€] = 3. O

The next result follows from Corollary 4.6 and Lemma 5.4.
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Corollary 5.5. Given a prime 2-structure o, consider x € S¢(o). If v(o) >
9, then E(P(c —z))nE(P(0)) + @.

A first proof of Theorem 5.3 when v(o) > 9. If o is critical, then E(P(0)) #
@ by Corollary 4.6. Suppose that o is not critical, so .# (o) + @. If .7.(0) #

@, then we conclude by using Corollary 5.5. Lastly, if .7.(¢) = @, then we
conclude as in Remark 5.1. ([

Remark 5.6. By using Corollary 4.6, we can directly verify that Corol-
lary 5.5 holds when v(c) =7 or 8.

The next result improves the Schmerl-Trotter theorem when the critical
support is nonempty.

Proposition 5.7. Let o be a prime 2-structure such that v(c) > 9. If
F(0) # @, then |[E(P(a))| > [L2] - 4.
Proof. Consider x € .%.(c). Set

v(9)
ooy,
We have n > 5. We verify that Py,_2 embeds into P(o — ).
e Suppose that v(o) is even. We obtain v(c) = 2n, so v(oc - z) =
2n — 1. It follows from Corollary 4.6 that P(o — ) is isomorphic to
P, o @K{Qn_g}, Py, 1, or Cop_1. Thus, Ps,_s embeds into [P)(U—:E).
e Suppose that v(c) is odd. We obtain v(o) = 2n-1, so v(c—x) = 2n-2.
It follows from Corollary 4.6 that P(o — x) is isomorphic to Pay,_o.
Since P;,_2 embeds into P(o—x), there exists a function f : {0,...,2n-3} —
V(o — ) such that f is an isomorphism from Py, o onto P(o — z)[{f(p) :
0<p<2n-3}]. Set

F={{f2m),f(2m+1)}:0<m<n-2}.
Clearly, F ¢ E(P(c—x)). It follows from Lemma 5.4 that |F\ E(P(¢))| < 3.
We obtain
|E(®(0))] 2 F 0 E(B(0))] = |F] - |F ~ E(P(0))]
=(n-1) = |F~ E(P(0))|
>n—4. (]

5.2. Ille’s theorem. Ille [22] succeeded in providing conditions that ensure
the existence of a noncritical unordered pair outside a prime substructure
of a prime 2-structure.

Theorem 5.8 (Ille [22]). Given a prime 2-structure o, consider X < V(o)
such that o[ X] is prime. If [V (o)~ X| > 6, then there exist v,w e V(o) X
such that v +w and o - {v,w} is prime.

The first proof of Theorem 5.8 is technical and unclear. A new clearer
and shorter proof is provided in subsection 9.6 at the end of section 9.
Belkhechine et al. [3] improved Theorem 5.8 in particular cases as follows.
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Theorem 5.9 (Belkhechine et al. [3]). Given a prime 2-structure o, con-
sider X ¢ V(o) such that o[ X ] is prime. Suppose that at least one of the
following statements holds
(A1) there exists v € (X ), such that (v,X)s # (X,v), (see Notation 2.1);
(H) there exist y € X and v € X, (y) such that (v,y)e # (y,0)s-

Under these assumptions, if |V (o) N\ X| >4, then there exist v,w e V(o) X
such that v+ w and o — {v,w} is prime.

Sayar [32] proved Theorem 5.9 for tournaments. Obviously, statements
(1) and () above are satisfied by tournaments. We provide a proof of
Theorem 5.9 in subsection 9.6 as well.

5.3. The Boudabbous—Ille theorem. Boubabbous and Ille [7] succeeded
in finding a noncritical unordered pair which intersects the support. Note
that the proof of the next result uses Theorem 5.3.

Theorem 5.10 (Boubabbous and Ille [7]°2). Consider a prime 2-structure
o such that v(o) > 7. If |.#(0)| > 2, then there exists e € E(P(0)) such that
en. (o) +@. (In other words, if |7 (o)| > 2, then S (o)~ (o) +2.)

Proof. By Theorem 5.3, E(P(0)) # @. Hence, P(0) admits a component C
such that v(C) > 2. Since |.#(0)| > 2, it follows from Proposition 4.5 that
V(C)n.¥(0) + @. Since C is connected, there exist distinct v,w € V(C)
such that {v,w} € E(P(c)) and v € .# (o). Thus, v ¢ .%.(0). O

As shown by the next result, Theorem 5.10 does not hold when |.¥ ()| = 1.
For convenience, we use the following notation.

Notation 5.11. Given n > 3, set

Raon ={0(R2n),0((R2n)"), 0(R2n) Ao ((Ran)"),
0(Q2n) Ao (Ran),0(Qan Ao ((R2n)"),0((Q2n)") Ao (Ran),

o((Q2n)") Ao ((R2n)"),0(Q2n) Ao ((Q2n)") Ao (Ran)}
(see Figures 4.2 and 4.3).

Remark 5.12. Given n > 3, it follows from Theorem 4.19 that the elements
of Ry, are the critical 2-structures o defined on {0,...,2n — 1} such that
P(o) = Py, and (0,2), # (2,0),-.

Theorem 5.13 (Boubabbous and Ille [7)°3). Consider a prime 2-structure
o such that v(o) 2 6, and |.#(0)| = 1. The primality graph P(c) admits a
unique component C such that v(C) > 2. Moreover, if V(C)n .#(0) = @,
then v(o) = 2n+ 1, where n > 3, and there exists an isomorphism ¢ from

5-2Boubabbous and Ille [7] proved this theorem for digraphs.
5-3Boubabbous and Ille [7] proved this theorem for digraphs.
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o - (0) onto an element of Ra, satisfying®*

[#(0), 07 ({2020 € {0,....n=1}})]o = [¢71(0), 07" (2)]o,
(5.7) and
[ (0), 97 ({20 + 120 €{0,....n-1}})]o = [¢7(2), 971 (0)]o-

2n

o

S
|

o

/

JQn—l
2n -3

L

3
\1—J
FiGurke 5.1. The digraph Ro,+1
Proof. Denote by x the unique element of .¥(¢). By Theorem 3.11, there
exists X ¢ V(o) such that z € X, 3 <|X| <5, and o[X] is prime. It follows
from Corollary 3.21 that there exist v,w € V(o) \ X such that o — {v,w} is
prime. Since .# (o) € X, we have v # w. Denote by C the component of
P(o) containing v and w. For a contradiction, suppose that P(¢) admits a
component D such that v(D) >2 and D # C. Since V(C)nV (D) =@ and
|-#(0)] =1, we have V(C)n.#(0) =@ or V(D) n.(0) = @. For instance,
assume that V(C) n . (o) = @. Since V(C)nV (D) =@ and v(D) > 2, we
obtain |V (o) \ V(C)| > 2, which contradicts Proposition 4.5. Consequently,

C' is the unique component of P(¢) such that v(C) > 2.

54The digraph Ron+1 (see Figure 5.1) is the extension of Ry, (sse Figure 4.3) to
{0,...,2n} defined by
A(Ran+1) = A(R2n) U{(2n,2i):0<i<n-1}u{(2i+1,2n): 0<i<n—1}.

By using the fact that o(R2n+1) — (2n) is prime, it is not difficult to verify that o(Ran+1)
is prime. We have . (0 (R2n+1)) = {2n} and C = Pay, so V(C)n . (o) = @. Furthermore,
0(Rans1) satisfies (5.7) with ¢ =1Idyq,... 2n-13-
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Now, suppose that V(C)n.(0) =@, so z ¢ V(C). Since z ¢ V(C), we
have dp(,)(7) = 0. Therefore, o~z is critical. It follows from Proposition 4.5
that V(C) = V(o) ~ {z}, and C is isomorphic to Ps,, where n = (v(o) —
1)/2. Consider an isomorphism ¢ from C onto P»,. As in the proof of
Proposition 4.15, we verify that

< 10), 0 1 (1) >o %<0 1(0), 0 1(2) >, (see Notation 1.1),
and for any p,q € {0,...,2n -1} such that p < ¢, we have

[©71(0), 07 (1)], if p is even and ¢ is odd,

-1 -1 —
(5.8) [v (), (D)]o= {[901(0)7901(2)]0 otherwise.

Let i € {0,...,n—2}. Since ¢! is an isomorphism from Py, onto C, we have
Np(oy (971 (2i+1)) = {¢1(2i), o 1 (2i+2)}. By Lemma 4.4, {¢~(2i), o~ (2i+
2)} is a module of o — ¢~ (2 + 1). In particular, we obtain [z, p™1(2i)], =
[z,071(2i +2)],. It follows that

[z, ({2i:i€{0,....,n=1}}]s = [z,¢ ' (2n - 2)]o.
Since ¢! is an isomorphism from Py, onto C, we have NP(U)((,O_I(Q’)”L— 1)) =
{71 (2n-2)}. By Lemma 4.4, V (o)~ {p "1 (2n-2), p1(2n-1)} is a module of
o—¢ 1(2n-1). In particular, we obtain [z, "1 (2n-2)], = [0 1(0), o1 (2n~
2)]5. Moreover, we have [¢™'(0),¢ 7' (2n-2)]5 = [¢71(0), 97 (2)]5 by (5.8).
It follows that

[l’, 90_1({2i A {07 RREY [ 1}}]0 = [90_1(0)’ 90_1(2)]0'

Similarly, we show that
[, 07 ({20 + 120 € {0,...,n=1}}]5 = [97'(2), 7 (0) ]

Consequently, (5.7) holds. Since o is prime, V(o) \ {x} is not a module of
o. Tt follows that [¢™1(0), v 1(2)], # [¢71(2),¢1(0)]s. Therefore,

[0,2]; #[2,0],

where 7 is the unique 2-structure defined on {0,...,2n — 1} such that ¢ is
an isomorphism from o — z onto 7. Hence 7 is critical and P(7) = Py,. As
observed in Remark 5.12, we have 7 € Ry, because [0,2], # [2,0],. O

Since the elements of Ry, are not symmetric, the next result follows from
Theorems 5.10 and 5.13.

Corollary 5.14. Consider a symmetric 2-structure o such that v(c) > 7.
If o is prime and noncritical, then there exists v € V(o) such that o —v is
prime and noncritical, as well.

Proof. Suppose that o is prime and noncritical. Hence, . (o) # @. If
|7 (0)| > 2, then we conclude by using Theorems 5.10. Therefore, suppose
that .’(o) contains a unique element denoted by x. By Theorem 5.13, P(0)
admits a unique component C' such that v(C') > 2. Since o is symmetric,
o — x is not isomorphic to an element of Ra, by Remark 5.12. It follows



almost critical

68 PIERRE ILLE

from Theorem 5.13 that z € V(C). Since v(C) > 2, we have dp(,(z) # 0.
Thus, ¢ — z is prime and noncritical. O

Theorem 5.13 leads us to introduce the following definition. It is useful
to generalize the Chudnovsky—Seymour theorem (see Theorem 5.21).

Definition 5.15. Consider a prime 2-structure o such that v(c) > 5. Sup-
pose that .# (o) admits a unique element, denoted by z. We say that o is
almost critical if o — x is critical (that is, . (o) = S(0) = {z}).

Remark 5.16. Consider a prime 2-structure o such that v(c) > 6. Suppose
that .’(¢) admits a unique element denoted by x. By Theorem 5.13, P(0)
admits a unique component C' such that v(C) > 2. Suppose also that o is
almost critical, that is, o — x is critical. Since ¢ — x is critical, we have

N]P(o-) (.Z‘) =yd.
As seen in the proof of Theorem 5.13, it follows from Proposition 4.5 that
V(C) =V(o)~{z},

and there exists an isomorphism ¢ from C onto Ps,. Furthermore, ¢ is an
isomorphism from o — x onto a critical 2-structure 7 such that P(7) = Pa,,.
Thus, ¢ is an isomorphism from P(o — ) onto P,. It follows that

P(oc-z)=P(o)-x=C.
The next result is an easy consequence of Theorem 5.13.

Corollary 5.17. Given a 2-structure o such that v(o) > 7, the following
two statements are equivalent

(1) o is almost critical;

(2) v(o) =2n+1, where n >3, and there exist x € V(o) and an isomor-
phism ¢ from o—x onto an element of Ray, (see Notation 5.11) such
that (5.7) holds.

Proof. To begin, suppose that ¢ is almost critical. Hence, there exists x €
V(o) such that
S (0) = Fe(o) = {z}.

As seen in Remark 5.16, V(o) \ {z} is the unique component of P(c) con-
taining at least two elements. Clearly, (V (o)~ {z}) n (o) = @, and it
suffices to apply Theorem 5.13 to obtain the second statement above.

Conversely, suppose that v(o) = 2n + 1, where n > 3, and suppose that
there exist x € V(o) and an isomorphism ¢ from ¢ — x onto an element 7
of Ray, such that (5.7) holds. As observed in Remark 5.12, 7 is critical and
P(7) = Py,. Hence,

(5.9) o —x is critical.

Set
X =V(o)~{x}.
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We prove that o is prime. As observed in Remark 5.12, we have (0,2), #
(2,0),. It follows that (©1(0), ¥ 1(2))s % (v 1(2),071(0)),. Since (5.7)
holds, we have [z, 1({2i : i € {0,...,n-1}})]s = [ 1(0),¢7(2)], and
[z, 0 ({2i+1:i€{0,...,n -1} )]s = [¢1(2),071(0)]5. Tt follows that

z ¢ (X)o.
Now, consider y € X. Set
p=¢(y).
There exists g € {0,...,2n — 1} such that <p, ¢>,=<0,1>,. It follows that

<07 (), 97 (@) >o=<¢ 7 (0), 07 (1) >0 -
Moreover, by Proposition 4.15, <0, 1>,#<0,2>,. It follows that

<p71(0), 7 (1) >o#<p7(0), 971 (2) >0 -
Since (5.7) holds, we have

<2, (@) >e=<p 1 (0), 97 (2) > .

Therefore, we obtain

<, 07 (@) >o#<¢ 7 (1), 07 (0) >0 -
It follows that
By Lemma 3.13, x € Ext,(X), so o is prime. Since o —z is critical by (5.9),
we obtain

(5.10) x e Z(0).

Lastly, we show that (V (o) N\ {z})n.%(c) =@. Consider y € V(o) \ {z}.
We have to verify that ¢ —y is decomposable. Set

p=¢(y).
Suppose that p € {1,...,2n - 2}. Since P(7) = Py, we have Np()(p) =
{p-1,p+1}. By Lemma 4.4, {p—1,p+ 1} is a module of 7 — p. It follows
that {¢™*(p - 1), (p+ 1)} is a module of o — {z,¢0 *(p)}. Since (5.7)
holds, we have = «—, {¢ '(p 1), (p+1)}. It follows that {o~*(p -
1), Y (p+1)} is a module of o — ! (p). Hence, o — o~ !(p) is decompos-
able. Now, suppose that p = 0. Since P(7) = P, we have Np(,y(0) =
{1}. By Lemma 4.4, 7 - {0,1} is a module of 7 — 0. Precisely, since 7
is critical and P(7) = Pay,, we have [1,{2,...,2n - 1}]; = [0,2],. It fol-
lows that [ 1(1),972({2,...,2n = 1})]s = [¢71(0),971(2)],. Since (5.7)
holds, we have [ 1(1),z], = [ 1(0),9o1(2)]s. It follows that V(o) \
{p71(0),¢71(1)} is a module of o — p~1(0). Hence, o — ¢ 1(0) is decompos-
able. Similarly, o — p~1(2n - 1) is decomposable. Consequently, we obtain

(V(o)~{z})nF (o) = 2.
It follows from (5.10) that
Fe(o) =S (o) ={z}.
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Thus, o is almost critical. U

We complete the subsection with the following properties of almost critical
2-structures.

Fact 5.18. Consider an almost critical 2-structure o such that v(o) > 7.
The following two statements hold, where x denotes the unique element of
7 (0),
(1) given X c V(o —x), if o[ X] is prime, then o[ X u{x}] is prime;
(2) fore,fe E(P(c—x)) (or fore, feE(P(c))), we have 0 —e ~0c — f.

Proof. Consider an isomorphism ¢ from ¢ — z onto an element p of Ry,
where n > 3, satisfying (5.7).
For the first statement, consider X ¢ V(¢ —z) such that ¢[X] is prime.

Let y € X. We verify that x ¢ X,(y). Since (5.7) holds, we have

<, 27g=<¢" 1 (0),971(2) >0
for every z € X \ {y}. Since p € Ray, it follows from Proposition 4.15 that
there exists z € X \ {y} such that

<Y, Z>0':<S0_1(0)7 90_1(1) > -
Moreover, we have

<7H0), 971 (2)>0#< 7 (0), 07 (1) >0
by Proposition 4.15. It follows that
z ¢ Xo(y)-

Now, we verify that x ¢ (X),. Consider 7,5 € {0,...,n—1} such that ¢ < j. It
follows from Proposition 4.15 that [¢1(2i),¢71(25)]s = [¢1(0),¢71(2)],.
Therefore, o[ 1 ({2 :i¢€{0,...,n—1}}] is constant or linear. Since o[ X]
is prime, we obtain X \ o 1({2 : i € {0,...,n - 1}} # @. Thus, there
exits p € {0,...,n — 1} such that o '(2p + 1) € X. Similarly, there exists
q€{0,...,n -1} such that ¢™1(2¢) € X. Since (5.7) holds, we have

[z, 90_1 (29)]s = [@—1(0)’ 90_1(2)]0
and

[2,07'2p+ D))o = [¢7(2),¢7'(0)]o-
Since p € Roy, it follows from Remark 5.12 that

[071(0), 07 ()]0 # [ (2), 7 (0)].
Therefore, we have

z f (X))o
It follows from Lemma 3.13 that
x € Ext, (X),

that is, o[ X u {x}] is prime.
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For the second statement, consider e, f € E(P(c —x)). To begin, we make
the following observation. By Remark 5.16, P(c - z) = P(0) — x, and = is
isolated in P(o). It follows that

E(P(oc-x))=E(P(c) —x).
Consequently, we can consider e, f € E(P(c)) as well.

By Remark 5.16, ¢ is an isomorphism from P(o — x) onto Ps,. By ex-
changing e and f if necessary, we can suppose that e = {¢™1(i), o 1(i + 1)}
and f={o1(4), o 1(j+1)}, where 0 <i<j<2n-2.

Consider the bijection f from {0,...,2n -1}~ {i,i+1} onto {0,...,2n -
1}~ {j,j + 1} defined as follows. Given m € {0,...,2n—1} \ {i,i + 1},

mifi>land 0<m<i-1,
flm)={m-2ifi+2<m<j+1,
mif j<2n-3 and j+2<m<2n-1.
By Remark 5.12, P(p) = Py,. It follows from Proposition 4.15 that for
p,q€{0,...,2n— 1}, with p < ¢, we have

[0,1], if p is even and ¢ is odd,
[pa Q]p = .
[0,2], otherwise.

Since f is strictly increasing and preserves the parity, f is an isomorphism
from p—{i,i+ 1} onto p—-{j,7+1}. Now, consider the bijection 1 from
V(o) N e onto V(o) f defined by () = 2, and ¥(w) = (¢~ o f o p)(w)
for every w € V(o) N (eu {z}). Since ¢ satisfies (5.7) and f preserves the
parity, ¢ is an isomorphism from ¢ — e onto o — f. O

5.4. The Chudnovsky—Seymour theorem.

Theorem 5.19 (Chudnovsky and Seymour [10]°?). Let o be a symmetric
2-structure. If o is prime and noncritical, then for every prime 2-structure
T such that T embeds into o, with 5 < v(7) < v(0), there exists X ¢ V(o)
such that o[ X ] ~7 and Ext,(X) # @ (see Notation 3.12).

Proof. We consider a prime 2-structure 7, such that v(7) > 5, and we proceed
by induction on v(o) > v(7) + 1. The result is obvious when v(o) = v(7) + 1.
Hence, suppose that v(c) > v(7) + 2. We have v(o) > 7 because v(7) > 5.
By Corollary 5.14, we have
L(o)\ (o) + 2.
To begin, we prove that there exists X ¢ V(o) such that

o[X] =1
(5.11) and

(V(o)NX)n (o) + @.

5"r’Chudnovsky and Seymour [10] proved this theorem for graphs.
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Consider Y ¢ V(o) such that o[Y] ~ 7, and suppose that o —u is decompos-
able for every u € V(o) \Y. It follows from Corollary 3.21 that there exist
distinct v,w € V() \Y such that o — {v,w} is prime. Thus, 7 embeds into
o —{v,w}. Denote by C' the component of P(c) containing v and w. For
a contradiction, suppose that V(C) ¢ V(o) \ (o). By Proposition 4.5,
[V(e)\V(C)|<1,s0|~(c)] <1. Since o is not critical, we have |7 (o)| = 1.
By Theorem 5.13, C' is the unique component of P(¢) such that v(C) > 2.
Since V(C) n.#(0) = @, it follows from Theorem 5.13 that o is almost
critical, which contradicts the fact that o is symmetric (see Remark 5.12).
Consequently, we have V(C)n.# (o) # @. Since o — u is decomposable for
every u € V(o) \Y, we have {v,w} n.# (o) = @. Since C is connected, there
exist distinct vertices co,...,c, of C satisfying

o {co,c1} = {v,w};
e p>2 {cp,...,cp1} V(o) F(0), and ¢, € S (0);
o forie{0,...,p—1}, {ci,cis1} € E(P(0)).

Let i € {1,...,p-1}. We have c;_1,cis1 € Np)(ci). Since ¢; ¢ (o),
it follows from Lemma 4.4 that Np,)(ci) = {ci-1,¢iv1}, and {ci-1,¢i41} is
a module of o — ¢;. Thus, 0 - {¢;i-1,¢} ~ 0 = {¢i,civ1}. It follows that
o—{co,c1} 2 o—-{cp-1,¢p}, that is, o —{v,w} = 0 = {¢p-1,¢p}. Since 7 embeds
into o — {v,w}, T embeds into o — {¢)-1, ¢y} as well. Since ¢, € (o), (5.11)
holds.

Now, we consider X ¢ V(o) such that (5.11) holds. There exists

ve(V(o)\ X)n.(0).

If there exists w € (V(o) N X) n (L (o) ~ Fe(0)), then it suffices to apply
the induction hypothesis to o —w. Hence, suppose that

(Vo) X)n(F(o)\ F(0)) =2.
In particular, o — v is critical. Since . (0) \ Zc(0) # @, there exists
reXn(FL(o)\ F(0)).

Since o—wv is a critical symmetric 2-structure, it follows from Corollary 4.6
and Propositions 4.15, 4.23, 4.27, and 4.36 that P(0 —v) = Py, where n > 3.
Consequently, there exists y € (V (o) -v)\{z} such that {z,y} € E(P(c-v)).
Since v(o) —v(7) > 2, we have X ¢ V(o -v). Since o —w is critical, it follows
from Corollary 3.21 that there exist distinct w,w’ € V(o - v) N~ X such
that {w,w'} € E(P(c —v)). Thus, 7 embeds into (o - v) — {w,w’'}. Since
{z,y},{w,w'} € E(P(c —v)), it follows from Corollary 4.8 that (o —v) —
{z,y} ~ (0 —v) = {w,w'}. Therefore, 7 embeds into (o —v) - {z,y} as well.
To conclude, it suffices to apply the induction hypothesis to o — x. O
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Remark 5.20. Theorem 5.19 does not hold for almost critical 2-structures.
Indeed, given n > 3, consider the 2-structure pay+1 defined on {0,...,2n} by

pon+1 — (2n) = 0(Ray,) (see Figure 4.3)

[2n,{2i:i€{0,...,n- 1}}]02“+1 =0, 2]p2n+1,
and

[2?2, {Qi +1:ie {07 R (e 1}}]p2n+1 = [21 O]P2n+1'

By Corollary 5.17, pan+1 is almost critical. As observed in Remark 5.16, we
have

(5.12)

P(p2n+1 = (2n)) = P(p2n+1) = (2n) = Pay.
Therefore, pon+1 — {2n—2,2n -1} is prime. Set

T = pon+1 — {2n—2,2n - 1}.

Consider X ¢ {0,...,2n} such that 7 is isomorphic to pan+1[X]. Since 7 is
prime, pon+1[X] is prime. It follows that

V(p2n+1) N X € E(P(p2n+1))-
As observed in Remark 5.16, we have
P(pan+1) = Pon @ Koy
It follows that there exists p € {0,...,2n — 2} such that
X =V (p2n+1) N {p,p + 1}

Finally, to establish that Theorem 5.19 does not hold for po,1, we verify
that

p,p+1¢Ext,,,  (X).
Since P(pon+1) = Pon @ Ko, we have
{p,p+2}ifp<2n-3
NP(p2n+1)(p + 1) = yor
{p}ifp=2n-2.
It follows from Lemma 4.4 that
p € <X>P2n+1 U Xp2n+1 (p + 2)
In the same way, we verify that
p+ le X02n+1 (p - 1)

We generalize Theorem 5.19 as follows.

Theorem 5.21 (Liu [27]>%). Let o be a prime 2-structure o. Suppose that
o 1s neither critical nor almost critical. For each prime 2-structure T such
that 7 embeds into o, with 5 <v(7) <wv(0), there exists X € V(o) satisfying
X +#V (o), o[X] =7, and Ext,(X) + @.

56Liu [27] proved this theorem for tournaments.
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Theorem 5.21 is proved in appendix A. The next result is obtained by
applying Theorem 5.21 several times.

Theorem 5.22. Let o be a prime 2-structure. Suppose that o is neither
critical nor almost critical. Consider a prime 2-structure T such that T
embeds into o, with 5 <v(7) <v(o). Under these assumptions, there exists
X ¢ V(o) such that o[ X] ~ 7, and the elements of V(o) \ X can be indexed
as 21, .-, 2n in such a way that o[ X u{z1,...,2;}] is prime forie {1,...,n}.

5.5. The critical support. The purpose of this subsection is to demon-
strate the next theorem.

Theorem 5.23 (Sayar®’[31] ). For every prime 2-structure o, with v(co) >
7, we have |.Z¢(0)| < 2.

Theorem 5.23 is an immediate consequence of Corollary 4.6 and of Propo-
sitions 5.26, 5.27, 5.28, and 5.29 below. The proofs of Propositions 5.26, 5.27,
5.28, and 5.29 share the same approach and have similar arguments. More-
over, they are technical and the proofs of the last three ones are long. In
order to keep this subsection at a satisfactory length, we provide the proofs
of Propositions 5.27, 5.28, and 5.29 in appendix B.

We begin with the following lemma (compare with Corollary 4.10).

Lemma 5.24. Let o be a prime 2-structure with v(o) > 6. Consider X,Y <
V(o) such that o[ X] and o[Y'] are critical. Suppose that | X| < |Y|. If there
exists Z € X nY such that o[Z] is prime and |Z| > 5, then o[X] embeds
into o[Y].

Proof. We can suppose that |Z] = 5 or 6. Indeed, suppose that |Z| > 7. By
Theorem 3.10, there exists Z’ € Z such that o[Z'] is prime and |Z'| = 3 or
4. By Theorem 3.19, there exists Z” ¢ Z such that Z' ¢ 2" |Z"| = |Z'| + 2,
and o[Z"] is prime. Consequently, suppose that |Z| =5 or 6. Furthermore,
o[Z] is critical by Corollary 4.7.

To begin, suppose that |Z| = 5. It follows from Corollary 4.7 that there
exist 2 < m < n such that |[X| = 2m + 1 and |[Y| = 2n + 1. Moreover, it
follows from Corollary 4.41 that o[X], o[Y], and o[Z] share the same
type. By Corollary 4.6, P(o[X]) is isomorphic to Comi1, Pom & K{omy or
Pyyi1- Suppose that P(o[X]) ~ Coppe1. Hence P(o[Y]) = Copyp. It follows
from Theorem 4.37 that o[X] embeds into o[Y]. Similarly, if P(c[X]) ~
Poy ® Koy, then it follows from Theorem 4.24 that o[X] embeds into
o[Y]. Therefore, suppose that P(c[X]) ~ Pams1. Thus, P(o[Y]) = Pops1.
Consider an isomorphism ¢x from P(c[X]) onto Py,,41. Denote by 7x the
unique 2-structure defined on {0,...,2m} such that ¢ x is an isomorphism
from o[ X ] onto 7x. We obtain that 7x is critical and P(7x) = Paps1- It
follows from Proposition 4.27 that (0,1), # (1,0)r, [0,1]-, #[0,2];,, and

57Sayar [31] proved this theorem for digraphs.
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for any p,q € {0,...,2m} such that p < ¢, we have

(5.13) [P, qlrx = {

There exist xq,...,z4 € {0,...,2m} such that z¢ < --- < x4 and

(px(Z) = {l’o, e ,.%'4}.
Since o[ Z] is isomorphic to 7x [px (Z)], Tx[px(Z)] is prime too. By (5.13),
if xg is odd, then ¢ x (Z)~{xo} is a module of 7x[¢x(Z)]. Thus, ¢ is even.
Given ¢ € {0,...,3}, if z; = z;41 mod 2, then it follows from (5.13) that
{zi,x;11} is a module of 7x[px(Z)]. Therefore, x; # z;,17 mod 2. It follows
that

[0,2] if p and ¢ are even
[0,1];, otherwise.

T(, T2, T4 Are even
(5.14) and
x1,x3 are odd.

Let fx : ox(Z) < {0,...,4} defined by fx(z;) =i for i € {0,...,4}.
Clearly, fx is strictly increasing. By (5.14), fx preserves the parity. It
follows that fx is an isomorphism from 7x[¢x(Z)] onto 7x[{0,...,4}].
Therefore, o[ Z] is isomorphic to 7x[{0,...,4}]. Since (5.13) holds, we have

[Oa2]7'x = [074]7')( = [274]7')(

and

[Oa 1]7'X = [073]7')( = [172]7')( = [173]7')( = [174]7')( = [273]7')( = [3’4]7')('
Since (0,1)r, # (1,0)r, and [0,1],, # [0,2];,, it follows from Proposi-
tion 4.27 applied with 7x[{0,...,4}] that 7x[{0, ...,4}] is critical and
P(7x[{0,...,4}]) = Ps. Similarly, let ¢y be an isomorphism from P(c[Y])
onto Pyy,41. Denote by 7y the unique 2-structure defined on {0, ...,2n} such
that ¢y is an isomorphism from ¢[Y] onto 7y. We obtain that 7y is critical
and P(7x) = Pay11. It follows from Proposition 4.27 that (0,1),, # (1,0)r,,
[0,1] #[0,2],,, and for any p,q € {0,...,2n} such that p < ¢, we have

_ | [0,2];, if p and ¢ are even
(5.15) [P a)ry = { [0,1],, otherwise.
Moreover, o[Z] is isomorphic to 7y [{0,...,4}]. Consequently, there ex-

ists an isomorphism 1 from 7x[{0,...,4}] onto 7v[{0,...,4}]. We ob-
tain also that 7v[{0,...,4}] is critical and P(7y[{0,...,4}]) = Ps. Since
P(rx[{0,...,4}]) = Ps and P(7v[{0,...,4}]) = Ps, v is an automorphism of
Ps5. Therefore, we have

Y =1Idyso,. 4y or 5 (see Notation 4.21).

To conclude, we distinguish the following two cases.
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CASE 1: 11} = Id{07.”74}.
We obtain 7x[{0,...,4}] = 7v[{0,..., 4}]. It follows from (5.13) and
(5.15) that

x =1v[{0,...,2m}].

Since o[ X ] ~7x and o[Y] ~ 7y, o[ X ] embeds into o[Y].

CASE 2: ¢ = 5.
By Remark 4.30, ¢ is an isomorphism from 7x[{0, ...,4}] onto (7x[{0,
...,4}])*. Since ® is also an isomorphism from 7x[{0,...,4}] onto
7v[{0,...,4}], we obtain

(7x)*[{0,...,4}] = v [{0, ..., 4}].

Clearly, (7x)* is critical and P((7x)*) = Pam+1. It follows from Propo-
sition 4.27 that for p,q € {0,...,2m} such that p < ¢, we have

(2 q)(rx)* = {

Since (7x)*[{0,...,4}] =7y [{0,...,4}], it follows from (5.15) that
(tx)" =7v[{0,...,2m}].

By Remark 4.30, 7,41 is an isomorphism from 7x onto (7x)*. Thus,
Tx embeds into 7y. Therefore, o[ X | embeds into o[Y].

Now, suppose that |Z| = 6. It follows from Corollary 4.7 that there ex-
ist 3 < m < n such that |[X| = 2m and |Y| = 2n. If m = 3, then X = Z,
and hence o[ X ] embeds into o[Y]. Thus, suppose that m > 4. By Corol-
lary 4.6, P(o[X]) ~ Py, and P(o[Y]) ~ Py,. We proceed as previously, using
Proposition 4.15 instead of Proposition 4.27. We obtain a prime 2-structure
w=1x[{0,...,5}] such that

[0,2](ry)+ if p and g are even
[0,1](4)+ otherwise.

<0,1>,#<0,2>,

[07 1]M = [073]M = [075]M = [273]M = [27 S]M = [475]/“
[072]# = [074]# = [172]M = [173]# = [17

and

[072]H = [3’4]M = [375]M'

It follows from Proposition 4.15 that P(u) = Ps. We obtain also a prime
2-structure v = 7y [{0,...,5}] such that

<0,1>,#<0,2>,

[07 1]1/ = [073]1/ = [Oa 5]1/ = [2,3],/ = [2a ]
[0,2], =[0,4], =[1,2], =[1,3], = [1,
and

[072]11 = [374]11 = [3a 5]1/»

It follows from Proposition 4.15 that P(v) = Ps. Furthermore, there exists an
isomorphism v from g onto v. Thus, ¢ is an automorphism of P;. We obtain
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Y =1dyg,.. 53 or m. As previously, we deduce that 7v[{0,...,2m - 1}]=7x
or (7x)*. Since 7y, is an isomorphism from 7x onto (7x)*, 7x embeds into
Ty. Thus, o[ X ] embeds into o[Y]. O

The next result follows from Lemma 5.24.

Corollary 5.25. Let o be a prime 2-structure with v(o) > 7. Consider
distinct s, t € /(o). We have

NIP(O'—S) (t) = NIP(O'—t)(S)7 and NIP(O'—S) (t) * Q.
Moreover, if v(c) > 8, then 0 —s~ o —t.

Proof. We have Np(,_s)(t) = {z € V(0 —5s)\{t} : (6 —s)~{t,x} is prime}.
Similarly, Np(,—¢)(s) = {z € V(0 —t)~{s}: (0 ~t) - {s,x} is prime}. Thus,
N]P’(U—s) (t) = N]P’(J—t)(s)'

For a contradiction, suppose that Np(,_(t) = @. It follows from Corol-
lary 4.6 that there exists an isomorphism ¢, from P(o —s) onto Py, ® K (2n}s
where v(0) = 2n + 2. Furthermore, since Np(y_4)(t) = &, ¢s(t) = 2n. De-
note by 75 the unique 2-structure defined on {0,...,2n} such that ¢s is
an isomorphism from o — s onto 75. We obtain that 7, is critical and
P(7s) = Pon ® K{9py. By Theorem 4.24, 75 = 0(Th,41). Similarly, there
exists an isomorphism ¢; from o —t onto o(T5,+1) such that ¢:(s) = 2n.
Since () = 2n and ©i(s) = 21, (03)1v (o) fs} © (PO (o) fs2y) " Is an
automorphism of o(7o,+1) — (2n). Furthermore, since To,11 — (2n) = Loy,
0(Ton+1) — (2n) is linear, and hence o(To,4+1) — (2n) is rigid. Therefore,
() v(o)sty = (P (o) fsty- 1t follows that {s,t} is a module of o,
which contradicts the fact that o is prime. Consequently, Np(,_4)(t) # @.

Lastly, suppose that v(o) > 8. Since Np(,_g)(t) # @ and Np(,_g)(t) =
Np(s—)(8), there exists v € Np(y_s)(t) N Np(s—)(s). We have o - {s,t,v} is
prime. Since v(o — {s,t,v}) > 5, it follows from Lemma 5.24 that o — s ~
o-t. U

Proposition 5.26. Let o be a prime 2-structure with v(o) > 7. If there
exists s € Se(0) such that P(o - s) ~ Copy1, then So(o) = {s}.

Proof. Let s € .#.(0) be such that P(o - s) ~ Coy,41, where n > 3. Up to
isomorphism, we can assume that

V(c)=A{0,...,2n+ 1},

s=2n+1,

and

P(oc-(2n+1)) = Copy1.

For a contradiction, suppose that

(5.16) [Ze(o)] 22,
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and consider ¢t € .Z.(0) \ {2n + 1}. Since 02,41, Ton+1 € Aut(Cap41) by Re-
mark 4.38, we can assume that

t=2n.

Hence, NP(U—(2TL+1))(2”) = {0, 271—1}. By Corollary 5.25, NP(O._(Qn))(QTL'F].) =
{0,2n — 1}. Moreover, since v(o) > 8, it follows from Corollary 5.25 that
oc—-(2n) ~ o -(2n+1). Therefore, P(c — (2n)) ~ Cop+1. Consider an
isomorphism ¢ from P(o—(2n)) onto Cays1. Since O2y,11, mon+1 € Aut(Copnt1),
we can assume that

©(2n+1) =2n,
0)=0
(5.17) #(0) =0,
and

p(2n-1)=2n-1.

Since o — (2n + 1) is critical and P(o — (2n + 1)) = Capy1, it follows from
Proposition 4.36 that

(5.18) (0,1)6 # (1,0),,

and for p,q €{0,...,2n} such that p < ¢, we have
[0,1], if p# ¢ mod 2

5.19 4o = .

(5.19) [p.q] {[1,0]0 otherwise.

et
i E={{2n-2,2n-1},{2n-1,2n},{2n,0}}.
Since E ¢ E(P(c - (2n+1))), it follows from Lemma 4.39 that (¢ — (2n +
1)) —{2n-1,2n} is critical, and
E(P((c-(2n+1))-{2n-1,2n}))
=(E(P(c-(2n+1))NE)u{{2n-2,0}}.
We obtain
(5.20) Plo-{2n-1,2n,2n+1}) = Cyyp_1.
Similarly, we obtain (¢71(0),¢7%(1))s # (¢ 1(1),971(0))s, and for p,q €
{0,...,2n} such that p < g, we have
[¢7(0),07 (1)]s if p# ¢ mod 2

(5.21) [e™ (). (D)o = {[801(1)7@1(0)]0 otherwise.

Furthermore, ¢y (5—(2n))~{¢-1 (2n-1),4-1(2n)}) 1S an isomorphism from P((o -
(2n) - {¢7'(2n - 1),¢7'(2n)}) onto Con-1. By (5.17), @10, 2n-2} is an
isomorphism from P(o — {2n — 1,2n,2n + 1}) onto Cy,-1. It follows from
(5.20) that ¢, on-2y € Aut(C2n-1). Since p(0) = 0, we obtain
©10,....2n-2} = Idfo, . 2n-91 OF Ta,-1 (see Notation 4.21).

We distinguish the following two cases. In each of them, we obtain a con-
tradiction.
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(1) Suppose that ¢, on-2y = Idgo,. 2n-2y- Hence, ¢(i) =i for i €
{0,...,2n—-2}. Since p(2n—-1) =2n -1 by (5.17), we obtain

(5.22) (i) =i for i €{0,...,2n—1}.
Consider k € {0,...,2n-1}. For instance, assume that & is even. We
obtain
[k,2n], =[1,0]s by (5.19

[1 (5.19)

(7' (1,7 (D))o by (5.22)

[¢7 (k). ¢~ (2m)]s by (5.21)

[k, 07 (20)], by (5.22)

[k,2n +1], by (5.17).

The same holds when k is odd. It follows that {2n,2n + 1} is a
module of o, which contradicts the fact that o is prime.

(2) Suppose that ¢)¢g, . 2n-2} = T2n-1. Therefore, for each i € {0,...,2n~
2}, we have

(5.23) o (i) =2n-2-1.
It follows that
[0,1], = [0,2n - 1], by (5.19)
= [0 (0), ) 20 - 1), by (5.17)
= [0 (0), 97 (V)]s by (5.21)
=[2n-2,2n-3], by (5.23)
=[1,0], by (5.19),
which contradicts (5.18).
Consequently, (5.16) does not hold, and hence .7.(c) = {s}. O

Proposition 5.27. Let 7 be a prime 2-structure with v(T) > 7. If there
exists s € S(T) such that P(T - s) = Py, & K{o,y, then (7) = {s}.

Proposition 5.28. Let o be a prime 2-structure with v(c) > 7. Suppose that
there exists s € Sp(0) such that P(o — s) ~ Popy1. Also, suppose that there

exists t € S.(o) N {s}. Under these assumptions, the following statements
hold

b dIP(O'*S) (t) =2;
e by denoting by x and y the elements of Np(,_4)(t), the function

V(o) ~{s} — V(o) {t}
t —> S,

y > :L‘,
v € V(U) N {S7t7 :B7y} — U’

18 an isomorphism from o —s onto o —t;
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e note that (z,y)s = (Y, 2)s;
o (o) ={s,t}.

Proposition 5.29. Let o be a prime 2-structure with v(c) > 7. Suppose
that there exists s € ¢(0) such that P(c—s) ~ Pa,. Also, suppose that there
exists t € e(0) N {s}. We can suppose that

V(o) =A0,...,2n},
s=2n,
(5.25) te{n,...,2n-1},
and
P(o - (2n)) = Poy.
Under these assumptions, one of the following two cases holds.
(1) Suppose that dp(,—(2n))(t) =1. We obtaint =2n-1, (0,2), = (2,0),,
and the function
{0,....,2n-1} — {0,...,2n-2}u{2n}
0 — 2n,

1 — 2n -2,
2<k<2n-1 — k-2,

(5.26)

is an isomorphism from o — (2n) onto o —t.
(2) Suppose that dp(s_(on))(t) = 2. We obtain n <t < 2n -2 and the

function
{0,...,2n -1} — {0,...,2n} ~ {¢}
t —  2n,
(5.27) t-1 — t+1,
t+1 — t-1,

veV(o)\{t-1,t,t+1,2n} — v,
is an isomorphism from o — (2n) onto o —t. In particular, we have
(t-1Lt+1)e=(t+1,t-1),.
In both cases above, we have .7.(o) = {t,2n}.
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6. MINIMAL PRIME 2-STRUCTURES

Definition 6.1. Let o be a prime 2-structure. Consider a vertex subset
W of 0. We say that o is minimal for W if for each W' ¢ V(o) such that
W c W' and |W'| > 3, we have o[W'] is decomposable.

Cournier and Ille [12] characterized the prime digraphs that are minimal
for a vertex subset of size 1 or 2. The purpose of this section is to extend their
characterization to prime 2-structures. The next question follows naturally.

Question 6.2. Given k > 3, characterize the prime 2-structures that are
minimal for a vertex subset of size k%!.

6.1. Minimal and prime 2-structures for a singleton. Consider a
prime 2-structure o. Given v € V (o), suppose that ¢ is minimal for {v}. It
follows from Theorem 3.11 that

veAs(o)uZs(o)uZs(o) (see Notation 3.1).

Hence, there exists X € V(o) such that 3 < |X| <5, v e X, and o[ X] is
prime. Since o is minimal for {v}, we obtain X = V(o). Therefore, we have

3<wv(o) <5,

We examine only the minimal and prime 2-structures for one vertex that are
defined on five vertices. For instance, it follows from Claims 3.4 and 3.5 that
Bs is prime and minimal for {4}. We use the following set of 2-structures.

Notation 6.3. We denote by M the set of the 2-structures o defined on
V(o) ={0,...,4} and satisfying the following assertions
(1) <0,1>,%<0,2>, (see the second statement of Proposition 4.15);
(2) [0,1]5 =[0,3]s = [2,3], and [0,2], = [1,2], = [1,3], (see (4.4) in
the second statement of Proposition 4.15 %2 );
(3) [0,4], =[4,3], =[0,3], and [1,4], = [4,2]5 = [1,2]s-

Remark 6.4. It is easy to verify that the elements of M; are prime and
minimal for {4}.

Theorem 6.5 (Cournier and Ille%? [12]). Consider a 2-structure o such
that v(o) =5. Let ve V(o). The following two assertions are equivalent

e 0 is prime and minimal for {v};

e there exists an isomorphism f from o onto an element of My such

that f(v) =4.

6-1A1z0hairi and Boudabbous [1] characterized the minimal prime graphs for a vertex
subset of size 3 that do not contain Ky 12y as an induced subgraph.

6‘2By the first two assertions, o — 4 satisfies the second statement of Proposition 4.15.
Proposition 4.15 does not hold for 2-structures of size 4 because the primality graph of a
prime 2-structure of size 4 is empty. Nevertheless, we can directly verify that a 2-structure
of size 4, which satisfies the second statement of Proposition 4.15, is critical. Therefore,
we can deduce here that o —4 is critical.

6-3Cournier and Ille [12] proved this theorem for digraphs.

minimal
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The proof of Theorem 6.5 is a long sequence of easy verifications. We
omit it, but we provide the following hint.

Hint for a proof of Theorem 6.5. To begin, suppose that there exists an iso-
morphism from ¢ onto 7 € M1 such that f(v) =4. By Remark 6.4, 7 is prime
and minimal for {4}. Thus, o is prime and minimal for {v}.

Conversely, suppose that o is prime and minimal for {v}. Up to iso-
morphy, we can assume that V(o) = {0,...,4} and v = 4. We prove that
o€ Ml-

Since o is minimal for {4}, we have
(6.1) 4 ¢ Hs(0)uZy(0).
We show that
(6.2) Ps(o)u Py(o) = {{0,...,3}}.

By Theorem 3.10, there exists X € 3(0) U P4(c). By (6.1), v¢ X. Asin
the proof of Theorem 3.11, we obtain that o[ X u {4}] is prime. Since o is
minimal for {4}, we have V(o) = X u {4}, so X ={0,...,3}. Consequently,
(6.2) holds.

It follows from (6.2) that o[{0,...,3}] is critical. Up to isomorphy, we
can assume that

e {2,3} is a module of o[{0, 0
e {0,2} is a module of ¢[{0,... 1
e {1,3} is a module of ¢[{0,...,3}]-2;
e {0,1} is a module of ¢[{0, 3
It follows that [0,1], =[0,3], = [2,3], and [0,2], = [1,2], = [1,3]s. There-
fore, we obtain <0, 1>,#<0,2>,.
We prove that

(6.3) <i,4>,=<0,1>, or <0,2>,

for i € {0,...,3}. By using Proposition 3.8 and (6.2), we show that (6.3)
holds for ¢ = 0 or 1. Since the permutation (03)(12) is an isomorphism from
o —4 onto (o —4)*, we obtain that (6.3) holds for i = 2 or 3.

Finally, by using Proposition 3.8 and (6.2), we verify that [0,4], = [4, 3], =
[0,3], and [1,4]s = [4,2]s = [1,2]s. Therefore, o € M;. O

6.2. Minimal and prime 2-structures for an unordered pair. Given
n >4, it is easy to verify that o(P,) (see Figure 1.1) is prime and minimal
for {0,n - 1}. Furthermore, for n > 3, M, is the tournament defined on
V(M,)={0,...,n—1} as follows. Given i,j € {0,...,n—1}, (3,5) € A(M,)
ifj=i+1orj<i-1 (see Figure 6.1). Given n > 5, it is easy to verify that
o(M,,) is prime and minimal for {0,n —1}.
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FIGURE 6.1. The tournament M,,.

We generalize o(P,,) and o(M,,) as follows.

Notation 6.6. We denote by My the set of the 2-structures o defined on
V(o) ={0,...,n—1}, where n > 3, and satisfying the following assertions

forie{0,...,n-3}and je{i+2,...,n-1}, [4,j]o =[0,n - 1],
(6.4) {and
forie{0,...,n -2}, [i,i+1], #[0,n—1],.

We use the next result to verify that the elements of My are prime.

Lemma 6.7. Consider a 2-structure o € Mso. If M is a nontrivial module
of o, then M ={0,n—1}.

Proof. Consider i,j € M such that i < j and {me M :i <m < j} = {i,j}.
Suppose that i > 1. Since [i—1,i]s # [0,n— 1], and [i - 1,j], = [0,n - 1],,
we have i — 1 € M. By proceeding by induction, we obtain {0,...,i} € M.
Similarly, we have {j,...,n—1} ¢ M. Therefore, we have M = {0,...,i} U
{j,--.,m—1}.

Since M # {0,...,n—1}, we have j >i+2. If i > 1, then [i - 1,i+ 1], =
[0,n - 1], and [i,7 + 1], # [0,n - 1],, which contradicts the fact that M
is a module of o because i —1,i € M and i+ 1 ¢ M. It follows that ¢ = 0.
Similarly, we have j =n — 1. Consequently, we obtain M = {0,n —1}. O

Lemma 6.8. Given o € My, if v(o) > 5, then o is prime and minimal for
{0,n-1}.

Proof. Let 0 € Ms. We have V(o) = {0,...,n -1}, where n > 5. First,
we verify that ¢ is prime. For a contradiction, suppose that ¢ admits a
nontrivial module M. By Lemma 6.7, M = {0,n —1}. We have [0,2], =
[0,n—-1], and [n—1,2], = [n—1,0],. It follows that

[0,n-1], =[n-1,0],.
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We obtain [0,1], # [0,n—1], and [n-1,1], = [n—-1,0], = [0,n-1],, which
contradicts the fact that {0,n — 1} is a module of o. Consequently, o is
prime.

Second, we verify that o is minimal for {0,n —1}. Let W ¢ V(o) such
that 0,n—1€ W and |W|>3. Since W # V(0), there exists i € {1,...,n—2}
such that i ¢ W. Set

W'=Wn{0,...,i-1}.

For j e W and k € W~ W', we have k > j + 2, and hence [j,k], = [0,n —
1],. It follows that W’ and W ~ W’ are modules of o[W]. Thus, o[W] is
decomposable. O

Given n > 6, the graph @, is defined on V(@,,) = {0,...,n — 1} in the
following way (see Figure 6.2)

(1) Qn-{n-2,n-1} = P,_o (see Figure 1.1);
(2) for i€ {0,...,n—4}, {i,n-2} € E(Qy);
(3) {n-2,n-1} € E(Qy).

n-—2 n-1

0 1  n-4 n-3
FIGURE 6.2. The graph @,

Furthermore, for n > 6, O,, is the tournament defined on V(0O,,) = {0,...,
n—1} in the following way (see Figure 6.3)

(1) Op—{n-2,n-1} = My,_o;

(2) for i €{0,...,n -4}, (i,n—-2) € A(Oy);
(3) for i €{0,...,n -3}, (i,n—1) € A(Oy);
(4) (n-2,n-3),(n-1,n-2) e A(O,).
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FIGURE 6.3. The tournament O,,

Given n > 6, it is not difficult to verify that o(Q,) and ¢(0O,,) are prime
and minimal for {0,n — 1}. We generalize 0(Q,,) and o(0O,,) as follows.

Notation 6.9. We denote by N> the set of the 2-structures o defined on
V(o) ={0,...,n—1}, where n > 5, and satisfying the following assertions

(6.5)

o—-{n—-2,n -1} satisfies (6.4),

forie{0,...,n-4}, [n-2,i]p, = [n-2,n-1],,

for i € {0,...,n -3}, [n—-1,i]s = [0,n - 3],,

and

[n-2,n-1],#[n-2,n-3], and [n-2,n-1], # [n-3,0],.

Lemma 6.10. The elements of N2 are prime and minimal for {0,n - 1}.

Proof. Let 0 € No. We have V(o) = {0,...,n -1}, where n > 5. First, we
verify that o is prime. We distinguish the following two cases.
CASE 1: ne{5,6}.
Using assertion (M2) of Proposition 2.5 and Lemma 6.7 applied to o[{0,
...,n—3}] € Mo, it is not difficult to verify that o is prime.
CASE 2: n>7.
Since 0—{n—-2,n—1} € Mo, it follows from Lemma 6.8 that c—{n—2,n—1}
is prime. Set

X ={0,...,n-3}.

It is not difficult to verify that n —2 € Ext,(X) and n—1 € (X),. Since
[n-2,n-1], # [n-3,0], and [n—-1,n-3], = [0,n - 3],, we have
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[n-1,n-2], # [n—1,n-3],. Thus, X u{n -2} is not a module of
o[Xu{n-2,n-1}]. It follows from assertion (P2) of Lemma 3.17 that
o[X u{n-2,n-1}], that is o, is prime.

Second, we verify that ¢ is minimal for {0,n —1}. Consider W ¢ V(o)
such that O,n—1 € W and [W| > 3. Ilf n—2 ¢ W, then W~ {n -1} is a
nontrivial module of o[W]. Hence, suppose that {0,n -2,n -1} ¢ W. If
n—-3¢ W, then W\ {n -2} is a nontrivial module of o[W]. Thus, suppose
that {O,n-3,n-2,n -1} c W. If 1 ¢ W, then {0,n - 1} is a nontrivial
module of o[W]. Therefore, suppose that {0,1,n-3,n-2,n-1} ¢ W.
Since W #{0,...,n— 1}, there exists i € {2,...,n -4} ~ WW. We obtain that
W n{0,...,i—1} is a nontrivial module of o[W]. O

Proposition 6.11. Consider a prime 2-structure o such that v(o) > 6. Let
v and w be distinct vertices of o. Suppose that for every W €V (o), we have

(6.6) if 3<|W|<5 and v,weW, then o[W] is decomposable.

Under these assumptions, there exists an isomorphism @ from an element
of My UN;y onto o[ X], where X € V(0), such that v,w € X and |X| > 6,
satisfying
©({0,n-1}) = {v, w}.
Proof. Set
e=(v,w)y and f = (w,v),-.
Consider
Z={zeV(o)\{v,w}: 2z «>, {v,w}}~ N (v)
(see Notation 2.1 and Notation 3.7).

Denote by C(v) (respectively, C'(w)) the {e, f}-component of o — Z (see
Definition 2.2) containing v (respectively, w).
To begin, suppose that

C(v) = C(w).

Let n be the least integer m > 3 such that there exists a sequence vy, . .., V-1
of vertices of o — Z satisfying

e vg=v and vy, 1 = w;

o for 0<i<m=—2, [vi,vis1]o * (e, f).
It follows from the minimality of n that for ¢ € {0,...,n -3} and j € {i +
2,...,n—1}, we have

[Uiavj]a = (eaf)‘

We consider the bijection ¢ : {0,...,n -1} — {wg,...,v,-1} defined by
(i) = v; for i € {0,...,n—1}. Moreover, we denote by 7 the unique 2-

structure defined on V(7) = {0,...,n — 1} such that ¢ is an isomorphism
from 7 onto o[{vg,...,vn-1}]. For g € E(c[{vg,...,vn-1}]), set

¢ (9) ={(¢ " (2), 07 () : (z,y) € g}.
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We obtain
E(m)={¢"(9): g € E(o[{vo,...,vn-1}])}.
In particular, we have [0,n - 1]; = (¢ (e), ¢ 1 (f)). Let i € {0,...,n—1}.
Since [v;, vi+1]o # (e, f), we have [i,i+1]; # [0,n—1],. Furthermore, consider
i€{0,...,n-3} and j e {i+2,...,n—1}. Since [v;,v;]s = (e, f), we have
[7,7]r =[0,n —1];. It follows that 7 satisfies (6.4). Hence, 7 € My. Finally,
we prove that 7 is prime. For a contradiction, suppose that 7 admits a
nontrivial module M. By Lemma 6.7, M = {0,n - 1}. Hence, {vo,vn-1},
that is {v,w}, is a module of o[{vg,...,vn-1}]. We obtain vy <—, {v,w}
and [v,v1], # (e, f). Thus, v; € Z, which contradicts the fact that C'(v)
V(o) ~ Z. Consequently, 7 is prime. Thus, o[{vo,...,vn-1}] is prime too.
It follows from (6.6) that n > 6.
Now, suppose that

C(v) + C(w).

It follows from Lemma 2.4 that Cy, ¢y (0~ Z) (see Definition 2.2) is a modular
partition of o — Z. In particular, for ¢ € C(v) and d € C(w), we have
[Ca d]o‘ = [Ua w]a-

First, suppose that there exists z € Z such that <v, z>,#<v,w>,, we have

(6.7) z o C(v).

We conclude in the following way. Since C(v) is {e, f}-connected, there
exist v, ...,vp_1 € C(v), where k > 2, such that

o[{vo,...,vE-1}] satisfies (6.4);

vg = v;

if k=2, then [vg,vg_1]o # (f,€);

if k>3, then [vg,vg_1]o = (f,€);

[2,v0]0 # [2,Vk-1]05

for i € {0,...,k -2}, [z,v0]0 = [2,0i]0-

If k£ = 2, then it is not difficult to verify directly that o[{vo, ..., vg_1 }U{z, w}]
is prime, which contradicts (6.6). Therefore, we have k > 3. Consider the
bijection

- {077k+1} - {an"'avk—l}u{sz}
0<i<k-1 +— vy
k — 2z,
k+1 —  w.

Denote by 7 the unique 2-structure defined on V(7) = {0,...,k + 1} such
that ¢ is an isomorphism from 7 onto o[{vg,...,vk-1} U {z,w}]. We have
7 € Ma. By Lemma 6.10, 7 is prime. Hence, o[{vo,...,vp-1} U {z,w}] is
prime too. It follows from (6.6) that k >4, so |{vo,...,vk-1} U{z,w}| > 6.
Second, suppose that for every for z € Z such that < v,z >,#<v,w >4,
(6.7) does not hold, that is, z «—, C(v). Similarly, for z € Z such that
<V, 2 >5#< 0, W >,, We can suppose that z «—, C(w). Since z «—, {v,w}
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for every z € Z, we obtain
(6.8) z<«—, C(v)uC(w) for every z € Z such that <v, z>,#<v,w>,.

For a contradiction, suppose that e = f. Since C{e}(a - Z) is a modular
partition of o - Z, C(v) and C(w) are modules of 0 — Z. By Proposition 2.8,
(0-2)[Ciey(0 = Z) is constant. Thus, C(v) uC(w) is a module of o~ Z as
well. Tt follows from (6.8) that C'(v), C'(w), and C(v) u C(w) are modules
of o, which contradicts the fact that ¢ is prime. Consequently, we have

e+ f.

To continue, suppose that there exists z € Z such that z </, C(w). By
(6.8), <v, z>5=<v,W>,. Since z ¢ Née’f)(v), we obtain [z,v], = (e, f). Set

C={ceC(w)~{w}:z b, {c,w}}.

If there exists ¢ € C such that < ¢,w >,#< v,w >,, then o[{c,v,w,z}] is
prime, which contradicts (6.6). Furthermore, if there exists ¢,d € C such
that [c,w], = (e, f) and [d,w], = (f,e), then o[{c,d,v,w,z}] is prime,
which contradicts (6.6). Hence, suppose that [w,C], = (e, f) or (f,e). We
distinguish the following two cases.
CAsE 1: [w,C], = (e, f).
Since C'(w) is {e, f}-connected, there exist wy,...,wx_1 € C(w), where
k > 3, such that
o[{wo,...,wk-1}] satisfies (6.4);
wp =w and [wo, wi_1]s = (€, f);
[z, w0lo # [2, Wk-1]0;
for i € {0,...,k -2}, [z,wi]s = (e, f).

Consider the bijection

e: {0,...,k+1} — Awo,..., w1} U{z,v}
0<i<k-1 r— wj,
k — Zz,
k+1 — 0.

Denote by 7 the unique 2-structure defined on V(1) = {0,...,k+1} such

that ¢ is an isomorphism from 7 onto o[{wy, ..., wk-1 }U{z,v}]. We have

7 € Na. By Lemma 6.10, 7 is prime. Hence, o[{wp,...,wk_1}U{z,v}] is

prime too. It follows from (6.6) that k > 4, so |[{wo, ..., wg_1}U{z,v}| > 6.
CAsE 2: [w,C], = (f,e).

Since C'(w) is {e, f}-connected, there exist wy,...,wx_1 € C(w), where

k > 3, such that

o[{wo,...,wk-1}] satisfies (6.4);
Wwo =w and [w[)awk‘—l]d = (fa 6)7

[2,wolo # [2, wk-1]o3
for i€ {0,...,k -2}, [z,wi]o = (e, f).
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Consider the bijection

e: {0,...,k+1} — A{wo,..., w1} U{z,v}
0<i<k-1 +— wj,
k — Zz,
k+1 — 0.

Denote by 7 the unique 2-structure defined on V(1) ={0,...,k+1} such
that ¢ is an isomorphism from 7 onto o[{wy, ..., w,_1 }U{z,v}]. We have
T € Ma. It follows from Lemma 6.8 that 7 and hence o[{wp, ..., wg_1}U
{z,v}] are prime. By (6.6), [{wo,...,wr-1}U{z,v}| >6.
Consequently, we can suppose that z «—, C'(w) for every z € Z. Since
C'(w) is a module of o — Z, C'(w) is a module of ¢ as well. Since o is prime,
we obtain

C(w) = {w}.
By Proposition 2.8, (0 = Z)/Cy sy (0 = Z) is linear. Set

Iywy ={ue V(o) (ZuC(v)u{w}): [v,u]s = [u,w]s, [v,uls = (e, f)}.
Given z € Z, we verify that
(6.9) if <v,2>5#<0,W>4, then z <=, (C(v) U I, 3 U {w}).

By (6.8), we have z «—, (C(v) u{w}). For a contradiction, suppose that
there exists u € Iy, ,y such that [z,v]s # [2,u]s. It is easy to verify that
o[{z,u,v,w}] is prime, which contradicts (6.6). It follows that (6.9) holds.
Since o is prime and w «—, (C(v)Uly, 1), we have (C(v)Uly, ,yU{w}) #
V(o). Hence, C(v) u I,y U{w} is not a module of 0. Furthermore, since
(0= 2Z)[Cie,p (0 = Z) is linear, C(v) U Iy, ) U{w} is a module of o - Z.
Thus, there exists 2z € Z such that z <>, (C'(v) U I,y U {w}). By (6.9),
<V, Z2>;=<V,W>4, SO [2,V]s = (e, f). We define by induction a sequence of
pairwise disjoint subsets (Zp)ps0 of {z € Z:[z,v], = (e, )} as follows. Set

Zo={zeZ:[z,v]s = (e, [), 2 o (C(v) ULy v {w})}
Note that Zy + @. Given Zy, ..., Z;, where i > 0, set
Zis1={zeZ~(Zpu--UZ;):[z,v]s = (e, f),
z <o (C(v)u Ity U {w}u(Zpu--uZ))}.

Denote by p the least integer ¢ such that Z; = @. As previously noted,
Zy # @, 80 p>1. We have [w,C(v)Ulp, U (ZoUUZp1)]s = (f,e). Since
o is prime, we have C'(v) U I,y U{w}u(Zou U Z, 1) # V(o). Therefore,
there exists x € V(o) N (C(v) U Ify n U{w} U (Zo U+ U Z, 1)) such that

T o (Co) Ul viwlu(Zou-uZ,1)).
Set
Z'={ZeZ~(Zou-UZyq): [ \v]s = (e, [)}
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For each 2 € Z', we have 2" <=, (C(v) U I{, ) U{w} u(Zou U Zp1)).

Thus, x ¢ Z'. Tt follows that either x € Née’f)(v) N Née’f)(w) or x € Z and
<V, T>,#<V,Ww>,. In both cases, we obtain

[z,v]6 # (e, f)-

If v € Z and <v,2>5#<0,W>,, then ¥ «—5 (C(v) U I, U{w}) by (6.9).
Furthermore, since (0 - Z)/Cy. ry(0 = Z) is linear by Proposition 2.8, we
have [C(v) U I{y ) U {w},Nc(,e’f)(v) N NC(,e’f)(w)]U = (e, f). Therefore, in
both cases, we have

T <o (C(v) U gy Uiwd).
Consequently, there exists i € {0,...,p~1} such that x />, (C(v) Ul 43 U
{w}u(Zyu--uZ;). Set
j=min({i € {0,...,p-1} 12 <5 (C(v) Ul U{w})u(Zou--u Z;)}).
We show that there exists a sequence (v, ...,vk_1) of elements of C'(v)u
Ity wys where k > 3, such that

o[{vo,...,vE-1}] satisfies (6.4),
[v0, vk-1]o = (f,€);
Vo = U,
T <5 {V0,...,Vgp-2}
and
xr <—/—>J {vo,vk_l}.
By minimality of j, we have 2 «—, (C(v) U I{, ,y U{w})u(Zou--U Zj 1)),
when j > 1, and z </, (C(v) U I, ) U{w}) U Z;). There exists a sequence
(20, ...,2;) satisfying
for i €{0,...,5}, zi € Zy;
£ o (C(0) U Ty U {w}) U {2}
if j > 1, then 2 «—4, (C(v) U I, 4y U{w}) U{z0,. .., 2j-1});
if 7> 1, then [z, zi+1]0 # (f,e) for i €{0,...,5 - 1}.
Lastly, since zg € Zy, we have zg € Z, [20,v], = (e, f), and zg <> (C(v) U
Ity U {w}). Therefore, there exists u € (C(v) ~ {v}) U Iy, ) such that
[20,u]s # (e, ). To conclude, we distinguish the following two cases.
CASE 1: we g, .
Set k=j+3 and

(6.10)

Vo =V,
V1 = U,
and

forle{2,...,k—1}, v = Z1-2-
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CASE 2: u e C(v) ~ {v}.
Since C(v) is {e, f}-connected, there exist ug,...,umn-1 € C(w), where
m > 2, such that
® Up =17;
o for 1 €{0,...,m -2}, [uj,ws1]e # (f,€);
e if m >3, then for € {0,....,m—-3}and ' e {l+2,....,m—1}, we
have [u,uy]s = (f,€);
o for 1 €{0,...,m-2}, [u;,20]s = (f,e);

* [um—h ZO]O’ * (f7 6).
Set k=m+j+1 and
for 1€{0,....,m—-1}, v; = uy,
and
forle{m,....k—1}, vy = zi_.
In both cases, we obtain k > 3 and (v, ..., vg_1) satisfies (6.10). Consider
the bijection

e: {0,...,k+1} — {vg,..., 061} U{z,w}
0<i<k-1 +—

k — I,

k+1 — w.
Denote by 7 the unique 2-structure defined on V(1) = {0, ..., k+1} such that
 is an isomorphism from 7 onto o[{vg,...,vk_1}U{z,w}]. We have 7 € Ns.
It follows from Lemma 6.10 that 7 and hence o[{vo,...,vk-1} U {z,w}] are
prime. By (6.6), |[{vo,...,vk-1}U{z,w}| > 6. O

The next characterization of prime 2-structures that are minimal for an
unordered pair follows from Lemma 6.8, Lemma 6.10, and Proposition 6.11.

Theorem 6.12 (Cournier and Ille%* [12]). Consider a 2-structure o such
that v(o) > 6. Let v,w be distinct vertices of o. The following two assertions
are equivalent

e o is prime and minimal for {v,w};
o there exists an isomorphism ¢ from o onto an element of Mo U N>

defined on {0,...,n—1} such that
p({v,w}) = {0,n -1}

Remark 6.13. The elements of Ms U N5 of size 5 are not the only prime
2-structures that are minimal for an unordered pair. For instance, consider
the reversible 2-structure o defined on {0,...,4} by

E(o) = {{(0,1),(2,0),(3,0),(4,0),(4,1),(4,2),(3,4)},
{(1,0),(0,2),(0,3),(0,4),(1,4),(2,4),(4,3)},
{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)} }.

6-4Cournier and Ille [12] proved this theorem for digraphs.
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It is not difficult to verify that o is prime and minimal for {0,4}. Netherthe-
less, o is not isomorphic to an element of My U Ns.

6.3. Proof of Theorem 5.3.
A second proof of Theorem 5.3 when v(o) > 7.

Consider a prime 2-structure o such that v(o) > 7. By Theorem 5.23,
|-7.(c)| < 2. Therefore, there exist distinct v,w € V(o) such that

Fe(o) € {v,w}.

First, suppose that o is minimal for {v,w}. By Theorem 6.12, there exists
an isomorphism ¢ from o onto 7 € MyUN, defined on V() ={0,...,n—1}
such that p({v,w}) = {0,n - 1}. Clearly, we have 7 - {0,1} € My U Nb.
It follows from Lemmas 6.8 and 6.10 that 7 — {0,1} is prime. Hence, o —
{071(0),71(1)} is prime as well.

Second, suppose that o is not minimal for {v,w}. There exists X ¢ V(o)
such that o[ X] is prime and v,w € X. We obtain

S(o)c X and X ¢ V(o).
We conclude as in Remark 5.2 from (5.1) by using Corollary 3.21. O
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7. INFINITE PRIME 2-STRUCTURES

The purpose of this section is to prove the next theorem.

Theorem 7.1 (Ille™[21, 24] ). Given an infinite 2-structure o, the following
two assertions are equivalent
e 0 1S prime;
e for each finite F c V (o), there exists F' € V(o) such that

F' is finite,

FcF,
(7.1)
and

o[ F'] is prime.
We use the following definition.

Definition 7.2. Let S be a set. A family F of subsets of S is up-directed if up-directed
for any X,Y € F, there exists Z € F such that X uY c Z.

Lemma 7.3. Given a 2-structure o, consider an up-directed family F of
subsets of V(o). If o[ X] is prime for each X € F, then
ol U X] is prime.
XeF
Proof. Let M be a module of o[Uxcr X] such that [M| > 2. We have to
show that
M= X.
XeF

Since |M| > 2, consider distinct z,y € M. Let v € Uxer X. Since F is
up-directed, there exists X € F such that x,y,v € X. By assertion (M2) of
Proposition 2.5, M n X is a module of o[ X]. Since 2,y € M n X, we have
|M n X| > 2. Since o[ X] is prime, we obtain M n X = X. Hence v e M. It
follows that M =Uxer X. O

Lemma 7.3 allows to prove one direction of the equivalence in Theo-
rem 7.1. The use of the next result is decisive in the proof of the other
direction. Furthermore, it is also significant in the study of infinite and
prime 2-structures.

Theorem 7.4. Given a prime 2-structure o, consider X € V(o) such that
o[ X] is prime. Suppose that V(o) \ X is infinite. For each veV(c)\ X,
there exists a finite F € V(o) N X such that ve F and o[ X U F] is prime.

Proof. Consider the set W of v € V(o) \ X such that for every finite F'
V(o) N\ X, we have o[ X U F'] is decomposable whenever v € W. We have to
show that W = @.

Recall that

P(ox) = {Exto (X),(X)o} U{Xs(y) 1y € X} (see Notation 3.12).

711e [21, 24] proved this theorem for digraphs.
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By Lemma 3.13, p(,,x) is a partition of V(o) ~ X. Consequently, to prove
that W = @, it suffices to show that

(7.2) W nExt,(X) =g,

(7.3) Wn(X), =9,

and

(7.4) WnX,(y) =2 for each y € X.

First, for v € Ext,(X), we have o[ X u{v}] is prime. Thus v ¢ W. Therefore,
(7.2) holds.

Second, we verify that V(o) ~ (W n(X),) is a module of o. Consider
we W n(X),. Since w € (X),, we have w <—, X (see Notation 2.1).
Consequently, to prove that w «—, (V(o) ~ (W n(X),)), it suffices to
verify that

(7.5) w «—, X U{v} for every ve (V(o) N X) N (Wn(X),).

Given v e (V(o) N X) N (W n(X),), we distinguish the following two cases
CASE 1: v ¢(X),.
Since w € W, o[X U {v,w}] is decomposable. It follows from assertions
(P1) and (P2) of Lemma 3.17 that X u{v} is a module of o[ X U{v,w}].
Hence, we obtain w «—, X u {v}.
CASE 2: ve(X),.
Since v € (V(o) N X) N (W n(X),), v ¢ W. Thus, there exists a finite
FcV(o)~ X such that v € F and o[ X U F] is prime. Set

Y=XUF.

Since w € W, w ¢ Y. Moreover, since w € W, we have o[Y u {w}] is
decomposable. Thus, w ¢ Ext,(Y). For a contradiction, suppose that
w € Yy(2), where z € Y. If z € X, then w € X,(z), which contradicts
w € (X), because p(,, x) is a partition of V(o) \ X by Lemma 3.13. Now,
suppose that z €Y \ X, that is, z € F.. Set

F'= (P~ {2}) U {w).

Since w € Y, (z), we have {z,w} is a module of o[ (XUF)u{w}]. It follows
that o[ X u F] and ¢[X U F'] are isomorphic. Therefore, o[ X U F'] is
prime too, which contradicts w € W. Consequently, we obtain w € (Y'),.
In particular, we have w «—, X u{v}.

It follows from both cases above that (7.5) holds. Consequently, V(o) \
(W n(X)s) is a module of . Since o[X] is prime, we have |X| > 3. Since
Xc(V(o)s(Wn(X),)), we obtain V(o) N (W n(X),)) =V(0), that is,
(7.3) holds.

Third, we verify that (7.4) holds. Given y € X, we show that {y} u (W n
X,(y)) is a module of 0. Let we W n X,(y). We have to verify that

(7.6) v <4 {y,w} for every v e V(o) N ({y} u (W n X,(y))).
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Since w € X, (y), we have v «—, {y,w} for v e X \{y}. To continue, suppose
that

ve(V(e)N X))~ (WnXs(y)).

We distinguish the following two cases.

CASE 1: v ¢ X, (y).
Since w € W, o[ X u {v,w}] is decomposable. It follows from assertions
(P1), (P3), and (P4) of Lemma 3.17 that {y,w} is a module of o[X U
{v,w}]. In particular, we have v «—, {y, w}.

CASE 2: ve X,(y).
Since v ¢ W n X,(y), we have v ¢ W. Thus, there exists a finite F' C
V(o) N\ X such that v e F and o[ X U F] is prime. Set

Y=XUF.

Since w e W, w ¢ Y. Since w € W, we have o[Y U {w}] is decomposable.
Thus, w ¢ Exts(Y). Furthermore, if w € (Y),, then w € (X),, which
contradicts w € X,(y) because p(, x) is a partition of V(o) \ X by
Lemma 3.13. Tt follows that w € Y, (z), where z € Y. For a contradiction,
suppose that z € Y \ X, that is, z € F'. Set

F' = (F~{z}) u{w}.

Since w € Y;(z), we have {z,w} is a module of o[ (XUF)u{w}]. It follows
that o[ XUF] and o[ XUF'] are isomorphic. Therefore, o[ XUF'] is prime
too, which contradicts w € W. Therefore, z € X. We obtain w € X,(2)
because w € Y, (z). It follows from Lemma 3.13 that z = y. Hence, {y, w}
is a module of o[Y U {w}]. In particular, we have v «—, {y, w}.
Consequently, {y} u (W n X,(y)) is a module of o. Since (X \ {y})n
H{ytuv(WnX,(y))) =@, we have {y} u (W n X,(y)) ¢ V(o). Since o is
prime, we obtain [{y} u (W n X,(y))| < 1, that is, W n X,(y) = @. Hence,
(7.4) holds. O

Finally, we prove Theorem 7.1 as follows.

Proof of Theorem 7.1. To begin, suppose that o is prime. Consider a finite

F ¢ V(o). By Theorem 3.107%, there exists X ¢ V(o) such that |X| = 3

or 4, and o[X] is prime. By applying Theorem 7.4 several times from X

together with the elements of F'\ X, we obtain F’ ¢ V(o) satisfying (7.1).
Conversely, suppose that

(7.7)  for every finite F' ¢ V (o), there exists F' ¢ V(o) satisfying (7.1).

721t is not difficult to verify that Proposition 3.8, Corollary 3.9, and hence Theo-
rem 3.10 hold for infinite prime 2-structures as well.
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Consider the family F of finite X ¢ V(o) such that o[X] is prime. Since
(7.7) holds, we have

U X =V(o)

XeF
and

F is up-directed.
It follows from Lemma 7.3 that ¢ is prime. O
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8. CRITICAL AND NONFINITELY CRITICAL 2-STRUCTURES

The path Py is defined on Z as follows. Given v,w € Z, with v # w,
{v,w} e E(Z) if [v —w| = 1. In the sequel, Pz[N] is denoted by Py .

For each finite subset F' of Z, there exist m,n € Z such that n—m > 4 and
Fc{m,...,n}. Since Pz[{m,...,n}] ~ Py, it follows from Fact 2.6 that
Pz[{m,...,n}] is prime. Hence, o(Pz)[{m,...,n}] is prime too. Therefore,
it follows from Theorem 7.1 that o(Pz) is prime. Furthermore, for each
finite and nonempty subset F' of Z, Z — F' is disconnected. Therefore, Z — F’
and hence o(Pyz) — F' are decomposable. The properties of o(Pz) lead us to
introduce the following definition.

Definition 8.1. An infinite prime 2-structure o is finitely critical if for each
finite and nonempty subset F' of V' (o), o — F' is decomposable.

The next result is a direct consequence of Corollary 3.21.

Corollary 8.2. Given an infinite prime 2-structure o, o is critical and
nonfinitely critical if and only if the following two assertions hold

e for each veV (o), o —v is decomposable (i.e. o is critical);
o there exist x,y € V(o) such that x + y and o — {z,y} is prime (i.e.
P(o) is nonempty).

The next result provides a characterization of the nontrivial components
of the primality graph of an infinite critical 2-structure. It is an easy conse-
quence of Lemma 4.4 and Proposition 4.5.

Corollary 8.3. Given an infinite critical 2-structure o, each nontrivial com-
ponent of P(o) is isomorphic to Py or Py.

Proof. Let C be a component of P(o) such that v(C') > 2. By Lemma 4.4,
C'is a cycle or an infinite or finite path. It follows from Proposition 4.5 that
C is infinite. Therefore, C is isomorphic to Py or Py. U

8.1. The families .77 and Zy.

Observation 8.4. Let o be an infinite critical 2-structure. We denote by
@ the partition of V(o) constituted by the vertex sets of the components
of P(¢). Using the axiom of choice, it follows from Corollary 8.3 that there
exists a function ¢ : V(o) — Z satisfying
e for each Y € @ such that |Y| > 1, ¢y is an isomorphism from the
component P(o)[Y'] of P(c0) onto Py or Py.

Denote by p the unique 2-structure defined on N or Z such that ¢}y is an
isomorphism from o[Y] onto p.

First, consider a nontrivial component C' of P(¢) such that ¢(V(C)) = Z.
Let n € Z. It follows from Lemma 4.4 that {n-1,n+1} is a module of p—n.

Second, consider a nontrivial component C' of P(¢) such that o(V(C)) =
N. By Lemma 4.4, {2,3,...} is a module of p — 0. Furthermore, by Lem-
ma 4.4, {n—1,n+ 1} is a module of p — n for every n > 1.

finitely critical
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Observation 8.4 leads us to introduce the following two families of 2-
structures.

Notation 8.5. First, we denote by %7 the family of the 2-structures 7
defined on V(7) = Z and satisfying

e for every ne€Z, {n-1,n+1} is a module of 7 — n and not of 7.

For instance, the usual linear order Ly defined on Z belongs to %7.
Second, we denote by %y the family of the 2-structures 7 defined on
V(1) = N and satisfying
e {2.3,...} is a module of 7 - 0;
e {0}uU{2,3,...} is not a module of 7;
e for every n>1, {n—1,n+ 1} is a module of 7 —n and not of 7.

For instance, the usual linear order Ly defined on N belongs to Fy.
In the next four lemmas, we examine the elements of Fy U Z7,.

Lemma 8.6. Given a 2-structure T such that V(1) =Z, 7 € 7 if and only
if the following two assertions hold
e [1,0]; #[1,2];;
e for m,n € Z such that m <n, we have [2m,2n]; = [0,2];, [2m,2n -
1], =[0,1]7, [2m +1,2n]; = [1,2],, and [2m + 1,2n + 1], = [1,3],.

Proof. To begin, suppose that 7 € %#z. In particular, {0,2} is a module of
7—1 and not of 7. It follows that [1,0]; #[1,2],. For the second assertion,
consider m,n € Z such that m < n. Since {n,n+2} is a module of 7—(n+1),
we have

[m,n], = [m,n+2],.
Furthermore, since {m,m + 2} is a module of 7 — (m + 1), we have
[m,n+2],=[m+2,n+2],.
Therefore, we obtain
[m,n]; =[m+2,n+2],.

By proceeding by induction, we obtain that the second assertion holds.

Conversely, suppose that both assertions above hold. Since the second
assertion holds, we obtain the following. Given m,n,p,q € Z such that
m<n and p<q,

if m=p mod 2 and n = ¢ mod 2, then [m,n]; =[p,q]-.

It follows that for every n € Z, {n—1,n+1} is a module of 7—n. To conclude,
we have to verify that [n,n—1]; # [n,n+ 1], for every n € Z. Let n € Z. For
instance, suppose that n is even. We obtain

[n,n+1]; =[0,1],.
Moreover, we have [n—1,n]; = [1,2],, so

[n,n-1]; =[2,1],.
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Since [1,0]; # [1,2],, we obtain [n,n — 1], # [n,n + 1];. The case n odd is
handled similarly. O

Lemma 8.7. Given a 2-structure T such that V(1) =N, 7 € Zy if and only
if the following three assertions hold
o [1,0], # [1,2],;
e for m,n € N such that m < n, we have [2m,2n],; = [0,2],, [2m,2n -
1], =1[0,1]7, [2m+ 1,2n]; = [1,2]., and [2m + 1,2n + 1], = [1,3]+;
® [172]7 = [173]7-

Proof. To begin, suppose that 7 € %n. As in the proof of Lemma 8.6, we
obtain that the first two assertions hold. Since 7 € %y, {2,3,...} is a module
of 7 - 0. Hence, [1,2]; =[1,3],.

Conversely, suppose that the three assertions above hold. Let n > 1. As
in the proof of Lemma 8.6, we obtain that {n—1,n+1} is a module of 7—n
and not of 7. Moreover, it follows from the last two assertions that {2,3,...}
is a module of 7 - 0. Lastly, {0} u {2,3,...} is not a module of T because
[1,0], #[1,2],. 0

Lemma 8.8. Given T € Fy, the following four assertions hold

o for eachmeZ, {n,n+1,...} is a module of T if and only if [0,1], =
[0,2]; and [1,2]; =[1,3]+;
o for eachmneZ, {...,n—1,n} is a module of 7 if and only if [1,2]; =
[0,2]; and [0,1]; =[1,3].;
o cvery module of T is a module of Ly;
e if T is decomposable and T # o(Ly), then one of the following two
situations holds
» for each nontrivial module M of T, there exists n > 1 such that
M={nn+1,...};
» for each nontrivial module M of T, there exists n € Z such that
M={...,n-1,n}.

Proof. The first two assertions follow from the second assertion of Lem-
ma 8.6.

For the third assertion, consider a module M of 7. Consider p,q € M such
that p+2 < ¢q. We verify that

(8.1) if p=q mod 2, then {p,...,q} € M.

For instance, suppose that p and ¢ are even. To begin, consider r be an odd
integer such that p < r < ¢q. By the second assertion of Lemma 8.6, [r,p], =
[1,0]; and [r,q]; = [1,2],. Since [1,0]; # [1,2]; by the first assertion of
Lemma 8.6, we obtain r € M. Now, let » be an even integer such that
p<r<gq Wehaver-1,7+1¢e M. Moreover, by the second assertion
of Lemma 8.6, we have [r,r - 1], = [2,1]; and [r,r + 1]; = [0,1],. Since
[0,1]; # [2,1]; by the first assertion of Lemma 8.6, we obtain r € M. The
case p and ¢ both odd follows similarly. Thus, (8.1) holds.
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Now, suppose that p # ¢ mod 2. For instance, suppose that p is even and
q is odd. For a contradiction, suppose that ¢—1¢ M and ¢+ 1¢ M. By the
second assertion of Lemma 8.6, [¢ — 1,p], = [2,0]; and [¢-1,q] = [0,1];.
Since ¢ -1 ¢ M, we obtain [2,0], = [0,1];. Furthermore, by the second
assertion of Lemma 8.6, [¢ + 1,p], = [2,0]; and [¢ + 1,¢], = [2,1];. Since
q+1¢ M, we obtain [2,0]; = [2,1];. Therefore, we have [0,1]; = [2,1],
which contradicts the first assertion of Lemma 8.6. Consequently, ¢ —1¢e€ M
or ¢g+1e M, and we conclude by using (8.1).

For the fourth assertion, suppose that there exist p, q € Z, with p < g, such
that {p,...,q} is a module of 7. We have to show that 7 = 0(Lz). It follows
from the second assertion of Lemma 8.6 that

(8.2) [0,1], =[0,2], =[1,2], = [1,3].
By the first assertion of Lemma 8.6, we have [1,0], # [1,2];. By (8.2),
[0,1] #[1,0],. Therefore, 7 = o(Lgz). O

Example 8.9. We consider the tournament Uy, obtained from the linear or-
der Ly by reversing all the arcs between the even integers. By Lemma 8.6,
o(Uz) € Fz. It follows from Lemma 8.8 that o(Uz) is prime. We can
also see that o(Uz) is prime by using Theorem 7.1 as follows. Let F' be a
finite subset of Z. There exists n € Z such that F ¢ {-n,...,n}. By The-
orem 4.28, 0(Uszp+1) is prime (see Figure 4.5). Since (o(Uz))[{-n,...,n}]
and o(Usp+1) are isomorphic, (o(Uz))[{-n,...,n}] is prime too. It follows
from Theorem 7.1 that o(Uz) is prime.

Now, we consider the tournament Wy obtained from the linear order Ly
by reversing all the arcs between the even integers and all the arcs between
the odd integers. As previously for o(Uy), it is not difficult to verify that
o(Wy) is a prime element of .%7.

Finally, we consider the bipartite graph Hy defined on Z in the following
way. For p,qeZ, with p # q, {p,q} € E(Hy) if there exist i,j € Z, with i < j,
such that {p,q} = {2¢,25+1}. Once again, o(Hyz) is a prime element of .%y.

Lemma 8.10. Given 7 € %y, the following four assertions hold
e for eachmn>1, {n,n+1,...} is a module of T if and only if [0,1], =
[07 2]7;
e cvery module of T is a module of Ly;
o if T is decomposable and T + o(Ly), then for each nontrivial module
M of T, there exists n > 1 such that M ={n,n+1,...}.

Proof. The first assertion follows from the last two assertions of Lemma 8.7.
We show the second assertion as in the proof of Lemma 8.8.

For the third assertion, suppose that there exist p > 0 and ¢ > p such that
{p,...,q} is amodule of 7. We have to show that 7 = ¢(Ly). It follows from
the second assertion of Lemma 8.7 that [1,2]; =[0,2],; and [0,1]; = [1, 3].
By the third assertion of Lemma 8.7, we have [1,2], = [1,3].. It follows that
(8.2) holds. By the first assertion of Lemma 8.7, we have [1,0]; # [1,2],.
By (8.2), [0,1]; #[1,0];. Therefore, 7 = o(Ly). O
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Example 8.11. Set
Un = Uz[N], Wy = Wgz[N], and Hy = Hz[N].

As in Example 8.9, we verify easily that o(Uy) and o(Hy) are prime
elements of Zy. Similarly, o(Wy) is prime, but o(Wy) ¢ Fn because
[L 2]U(WN) # [17 3]0‘(WN)'

In fact, o(Wy) is also interesting because it shows that the analogue of
Theorem 7.1, when the primality is replaced by the criticality, does not
hold. Indeed, o(Wy) satisfies the second assertion of the analogue. Pre-
cisely, for each finite F' ¢ N, there exists n > 2 such that F ¢ {0,...,2n}.
Clearly, o(Wn)[{0,...,2n}] = 0(Wap+1) (see Figure 4.6). By Theorem 4.37,
o(Wapn41) is critical. But, o(Wy) does not satisfy the first assertion of the
analogue. Clearly, the function N — N\ {0,1}, defined by n — n + 2
for each n € N, is an isomorphism from o(Wy) onto o(Wy) — {0,1}. Thus,
o(Wy) —{0,1} is prime. Set

X =N~ {0,1}.
Since (3,1),(1,2) € A(Wy), we have

LE(X ) o (wr)-
Let n > 1. Since Wn[{1,2n,2n + 1}] is a 3-cycle, we have

1 # (Xomy) (2n) U Xy (2n +1)).
By Lemma 3.13,
le EXtJ(WN)(X).

Hence, o (Wy)[X u{1}], which is o(Wy) -0, is prime. It follows that o(Wy)
is not critical, so it does not satisfy the first assertion of the analogue. For
the opposite direction, we consider o(Pz). As seen at the beginning of
this section, o(Py) is critical. Hence, it satisfies the first assertion of the
analogue. Nevertheless, consider {0,4} for the finite subset F' of Z. Let F’
be any subset Z containing {0,4} and such that o(Pz)[F"] is prime. Since
o(Pg)[F'] is prime, Pz[F'] is connected. Thus, there exists n > 4 such that

F'={0,...,n}.
Clearly, o(Pz)[F'] is not critical because o(Pz)[F'] - n is prime. Conse-
quently, o(Pz) does not satisfy the second assertion of the analogue.

Observation 8.4 leads us to introduce the following definition.

Definition 8.12. An infinite 2-structure o is locally critical if there exist a
partition @ of V(o) and a function ¢ : V(o) — Z satistying the following
two assertions
(I1) for every Y € @ such that [Y|> 1, ¢y is an isomorphism from o[Y]
onto an element of FyuU .%y;
(I2) there exists Y € @ such that |Y] > 1.

Note that we do not require a locally critical 2-structure to be prime.

locally critical
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Lemma 8.13. Given an infinite 2-structure o, if o is critical and nonfinitely
critical, then o is locally critical *. Precisely, assertions (I1) and (I2) hold
for the partition Q of V(o) and a function ¢ : V(o) — Z defined as in
Observation 8.4.

Proof. Let @) be the partition of V(o) constituted by the vertex sets of the
components of P(c). Using the axiom of choice, consider also a function
¢ : V(o) — Z defined as in Observation 8.4.

Consider Y € @ such that |Y| > 1. There exists a nontrivial component C'
of P(¢) such that Y = V(C'). Denote by p the unique 2-structure defined on
Z or N such that ¢y is an isomorphism from ¢[Y] onto p. To verify that
assertion (I1) holds, we distinguish the following two cases.

CASE 1: ¢y is an isomorphism from C' onto Py..
We have to verify that p € #y. For each n € Z, we have

Np(oy((ory) 1 (n) = {(e1y) " (n=1), (pry) (R + 1)}

It follows from Lemma 4.4 that {(¢o;y)  (n - 1),(¢ry) H(n+1)} is a
module of o - (¢yy)"1(n). Thus, {n—1,n+1} is a module of p—n. Since
o is prime, {(¢y) 1 (n-1),(¢1y) " (n+1)} is not a module of o. Hence,
we have

(ery) 1 (n) o {(ory) (= 1), () (n+ 1)}

It follows that n </, {n —1,n+1}. Therefore, {n -1,n+1} is not a
module of p. Consequently, p € %,

CASE 2: ¢y is an isomorphism from C' onto Py.
We have to verify that p € %y. Let m > 1. As seen in the first case,
{n-1,n+1} is a module of p —n, but not of p. Furthermore, we have

Nio) ((p1y)7H(0)) = {(opy) T (1)}

It follows from Lemma 4.4 that V(o) \ {(¢1y) 1(0), (¢1y) 1 (1)} is a
module of o — (¢y)1(0). Thus, {2,3,...} is a module of p— 0. Since &
is prime, V(o) ~ {(¢1y)"1(1)} is not a module of . Hence, we have

(o)™ (1) o {(on)TH0). (1v) T (2)}-

It follows that 1 </>, {0,2}. Therefore, {0} u{2,3,...} is not a module

of p. Consequently, p € Fy.

It follows that assertion (I1) holds.

By the second assertion of Corollary 8.2, P(¢) is nonempty. Thus, P(o)
admits a nontrivial component C. We obtain that V(C) € Q and |V (C)| > 1.
It follows that assertion (I2) holds. O

Notation 8.14. Let o be a locally critical 2-structure. Consider a partition
Q of V(o) and a function ¢ : V(o) — Z satisfying assertions (I1) and (I12).

Let Y € @ such that [Y] > 1. Since assertion (I1) holds, ¢y is an isomor-
phism from o[Y'] onto an element of .FyuU.Zz. We denote ¢y by py. Also,

8-1\We use the axiom of choice to prove Lemma 8.13.
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we denote by 7y the unique 2-structure defined on Z or N such that ¢y is
an isomorphism from o[Y'] onto 7y. Moreover, we denote by Cy the unique
component of P(¢) such that Y =V (Cy).

Lastly, set

Vorn(0) = {0 € V() : () = 0 mod 2}
and
Vodad(o) ={veV(o):¢(v) =1 mod 2}.

We consider also the partition

P={YeQ:[Y[=1}u( U {Y1Vee(0),Y nVoaa(o)})
veQlv 1)

of V(o).
8.2. A generalized quotient.

Observation 8.15. Let ¢ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition @) of V(¢) and a function ¢ : V(c) — Z
defined as in Observation 8.4.

Let Y € @ such that |Y| > 1. For instance, suppose that 1y € %#z. Recall
that yy is an isomorphism from Cy onto Pz. Therefore, for each n € Z, we
have

Np(oy((py) " (2n+1)) = {(¢y) 7 (2n), (¢y) ' (2n +2)}.

By Lemma 4.4, {(¢oy) 1 (2n), (¢y)1(2n+2)} is a module of o (¢y) 1 (2n+
1). In particular, for each v € V(o) \Y, we have [v,(¢oy)1(2n)], =
[v, (¢y) 1 (2n+2)]s. Tt follows that Y NViyen (o) is a module of o[V (o)~ (Y N
Voad(0))]. Similarly, Y nV,qq(0) is a module of o[V (c) N (Y N Veyen(0))].
The same holds when 7y € %y.

Observation 8.15 leads us to introduce the following definition.

Definition 8.16. Let ¢ be a 2-structure. Consider partitions P and ) of
V(o) such that P is finer than @. Hence, for each X € P, there exists
Y (X) € @ such that X c Y(X).
We say that P is a modular partition of o according to Q [6] if for any modular partition
X, X"e P such that Y(X) # Y(X'), X and X' are modules of o[ X UX'].  qgccording to
The generalized quotient is defined in the following manner. Consider
partitions P and @ of V(o) such that P is a modular partition of o according
to Q. The generalized quotient o/gP of o by P according to @ is defined on generalized  quo-
V(o/qP) = P as follows. Given Xy, X1, X2, X3 € V(0/gP), with Xo # X1 tient
and X3 # X3,

(Xo,Xl) E(O’/QP) (XQ,Xg) if
(83) Y(Xo) = Y(X1) and Y (Xa) = Y (X3)

or
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Y(X(]) F Y(Xl), Y(XQ) * Y(Xg)
and
(w0, 71) =5 (22,23), where x; € X; for i € {0,1,2,3}.

A priori, (8.3) might appear arbitrary. In fact, it ensures the following
property (see the second assertion of Lemma 8.17). Let R be a module of
o/gP such that [{Y € Q : Y n(UR) # @}| > 2. For each Y € @) such that
Y n(UR) # @, we have Y ¢ (UR).

Two results on the generalized quotient follow.

Lemma 8.17. Let o be a 2-structure. Consider two partitions P and @ of
V(o) such that P is a modular partition of o according to Q.

e For eachY €Q, Y is a module of o if and only if {X e P: X cY}
is a module of o/qP.

e For every R ¢ P such that {Y € Q : Y n(UR) # @}| >2, Ris a
module of o/qP if and only if (W{Y € Q : Y n(UR) # @}) = (UR)
and UR is a module of o (see Notation 2.9).

Proof. The first assertion follows from the definition of the generalized quo-
tient. For the second assertion, consider R ¢ P such that [{Y € Q@ : Yn(UR) #
@}| > 2. To begin, suppose that (U{Y € Q:Y n(UR) + @}) = (UR) and UR
is a module of o. It follows from the definition of the generalized quotient
that R is a module of o/gP. Conversely, suppose that R is a module of
o/qoP. Clearly, (UR) ¢ (W{Y € Q : Y n(UR) # @}). For a contradiction,
suppose that
(UR) ¢ (U{Y €Q:Y n(UR) # @}).

Let v e (U({Y € @Q:Y n(UR) + @}) \ (UR). There exist Xy € P\ R and
Yy € @ such that v e Xg, Xo € Yy, and Yy n (UR) # @. Since Yy n (UR) + @,
there exists X7 € R such that X; € Yj. Since {Y € Q:Y n(UR) # @}| > 2,
there exist X9 € R and Y7 € @ \ {Yy} such that X, ¢ Y;. Since Xou X; ¢ Yy,
XscY; and Y} # Y7, we have

(X07X1) _F/-(O'/QP) (XO)X2)7

which contradicts the fact that R is a module of o/gP. Consequently, we
have

(UR) = (U{Y €Q:Y n(UR) # &}).
It follows from the definition of the generalized quotient that UR is a module
of o. (]

The next result follows easily from Lemma 8.17.

Corollary 8.18. Let o be a prime 2-structure. Consider two partitions P
and Q of V(o) such that P is a modular partition of o according to Q. For
every nontrivial module R of o/qP, there exists Y € Q) such that (UR) ¢ Y
and there exists veY \ (UR) such that v <f>, (UR).
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8.3. The main theorem: Theorem 8.26. In the next lemmas, we con-
tinue the study of infinite, critical, and nonfinitely critical 2-structures.

Lemma 8.19. Let o be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V(o) and a function ¢ : V(o) — 7Z
defined as in Observation 8.4. The following two assertions hold

(I3) P (see Notation 8.14) is a modular partition of o according to Q;
(I4) for each'Y € Q such that V(1y) =N (see Notation 8.14),

(ov) (1) <=0 {(py) (2} u (V(0) ).

Proof. 1t follows from Observation 8.15 that assertion (I3) holds. For asser-
tion (I4), consider Y € @ such that [Y] > 1 and 7y € %y. Since gy is an
isomorphism from Cy onto Py, we have

Npo) ((py)7H0)) = {(y) (1)}

By Lemma 4.4, V(o) ~{(¢y)71(0), (py)"1(1)} is a module of o (¢y)~1(0).
In particular, we have (py ) 1(1) <=5 ({(py) 1 (2)} u(V(c) \Y)). There-
fore, assertion (I4) holds. O

Lemma 8.20. Let o be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V(o) and a function ¢ : V(o) — 7Z
defined as in Observation 8.4. The following assertion holds

(I5) the generalized quotient o/gP is prime.

Proof. Since o is prime, assertion (I5) follows easily from Corollary 8.18
because for every Y e Q, {X e P: X cY}|=1or 2. O

In the next two facts, we consider locally critical 2-structures.

Fact 8.21. Let o be a locally critical 2-structure. Consider a partition Q)
of V(o) and a function ¢ : V(o) — 7Z satisfying assertions (I1) and (12).
Suppose also that assertions (13) and (14) hold.

Let Q' ¢ Q such that

(YeQ :|V]>1} #@.

Set
P ={XeP:Xc(uQ")}

Suppose that o[uQ'] admits a nontrivial module M. The following state-
ments hold.

o If M/Q'" possesses a unique element Y, then {Y N Viyen(c),Y N
Voad(0)} is a module of (o/qP)[P'].

o Suppose that |M[Q’'| > 2. Given'Y € (M/Q"), if |Y|> 1, then (Y n
M)Veyen(0) # @ and (Y NnM)nVyqq(o) # @. It follows that M| P’ is
a module of (c/gP)[P']. Moreover, if M|P' = P’, then there exists
Y e (M/Q"), with [Y|> 1, such that P' ~{Y nVeyen(0),Y NnVoqa(o)}
is a module of (c/qP)[P'].
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Proof. To begin, suppose that M/Q’ possesses a unique element Y. Hence,
M cY. By assertion (M2) of Proposition 2.5, M is a module of ¢[Y']. Thus,
vy (M) is a module of 7y. By assertion (I1), 7y € Fyu.Zyz. It follows from
Lemmas 8.8 and 8.10 that ¢y (M) is a module of Ly or Lz. Therefore,
vy (M) contains even and odd integers. It follows that M N Veyen(o) + @
and M nVyqq(0) # @. Since P is a modular partition of o according to @
by assertion (I3), {Y N Veyen(0),Y N Voaa(o)} is a module of (o/qP)[P'].

Now, suppose that |[M/Q'| > 2. For a contradiction, suppose that there
exists Y € M/Q" such that [Y| > 1 and |Y n M| =1. We have ¢y : Y —
Nor ¢y : Y — Z. Thus, there exists an integer n such that Y n M =
{(¢y)™1(n)}. We distinguish the following two cases. In each of them, we
obtain a contradiction.
CAsE 1: py:Y —Zor py:Y — Nand n>1.

Since |M| > 2, there exists 2z € M \Y. Since assertion (I3) holds, P is a

modular partition of ¢ according to (). Therefore, we have

o {(py) " (n-1),(py) (n+ 1)},
Since M is a module of o[uQ’] such that {(py) ' (n),2} € M and M n
{(py) 1 (n-1),(¢y) 1 (n+1)} =@, we obtain
(pv)7H(n) =0 {(py) " (n=1), (o) (n+ 1)}
Since ¢y is an isomorphism from o[Y] onto 7y, we obtain
n<«—,, {n-1,n+1},
which contradicts 7y € %y U Fy.

CASE 2: py:Y — Nand n=0.
By considering x € M \Y, we obtain

(ov) (1) =0 {(y) 7 (0), 2}
Since assertion (I4) holds, we have
(ov) (1) =0 {(oy) 7' (2), 2}
Hence,
(pv) (1) =0 ({(ey) 71 (0), (pv) (2}
Since ¢y is an isomorphism from o[Y '] onto 7y, we obtain
1« {0,2},

which contradicts 1y € .
Consequently, for each Y € (M/Q"), we have

(8.4) if [Y]> 1, then [Y A M]| > 2.
As above, when |M/Q’| = 1, we obtain (Y N M)NVeyen(0) # @ and (Y NnM)n
Voaa(o) # 2.

Let Y € (M/Q") such that Y| > 2, we have [Y n M| > 2. We obtain
(Y nM)nVeen(o) # @ and (Y N M) nVyq(o) # @. Tt follows that M /P’
is the family of X € P’ such that there exists Y € (M/Q’) satisfying Y 2 X.
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Since P is a modular partition of o according to @ by assertion (I3), M /P’
is a module of (¢/gP)[P'].

Lastly, suppose that M /P’ = P’. Since M is a nontrivial module of
o[uQ'], there exists Y € (M/Q") such that Y ~ M # @. Moreover, since
M/P" = P’, we have [Y|> 1. We have gy : Y — Nor ¢y : Y — Z. For
convenience, set

R=P ~{Y nVien(0),Y nVoqq(0)}.
Let y e Y N\ M. We obtain

Yy <5 M.

Since P is a modular partition of ¢ according to @ and M /P’ =
obtain
(8.5) {zeY 1oy (2) = 9y (y) mod 2} <=5/, p) P B
Therefore, if (Y N\ M) N Viyen(0) # @ and (Y N\ M) nVyqq(o) # @, then R is
a module of (o/qP)[P’]. Thus, suppose that
(8.6) (YNM)nVeyen(o) =@ or (Y NM)nVygq(o) =@.

By assertion (M2) of Proposition 2.5, M nY is a module of ¢[Y']. By (8.4),
IM nY|>2 Since Y\M # @, MnY is a nontrivial module of o[Y].
Thus, ¢y (M nY') is a nontrivial module of 7. Since assertion (I1) holds,
Ty € FnU Fy. It follows from Lemmas 8.8 and 8.10 that oy (M nY) is
a nontrivial module of Ly or Lz. It follows from (8.6) that 7y € %y and
MnY =Y ~{(py)1(0)}. Since assertion (I4) holds, we have

(pv) (1) <=0 {(ev) ' (2)} U (V(0) N Y)).
Since P is a modular partition of o according ), we obtain
(Y nVoaa(0)) <= (/o p) P B-
Furthermore, since (¢y)~1(0) € Y \ M, it follows from (8.5) that
(Y n Véven(O')) <—>(O./Qp)[P/] R.
Therefore, R is a module of (o/qoP)[P']. O

The next fact follows easily from Fact 8.21.

Fact 8.22. Let o be a locally critical 2-structure. Consider a partition Q)
of V(o) and a function ¢ : V(o) — 7Z satisfying assertions (I1) and (12).
Suppose also that assertions (13) and (14) hold.
Let Q' be a nonempty subset of Q such that

{YeQ :|Y|>1}2@.

Set
P ={XeP:Xc(uQ)}.

Suppose that
(8.7) HY e@Q":|Y]>1}>2 or|Q'| > 3.



108 PIERRE ILLE

If o[uQ'] is decomposable, then (o/qP)[P'] is as well.

We go back to the study of infinite, critical, and nonfinitely critical 2-
structures. The next lemma follows easily from Fact 8.22.

Lemma 8.23. Let o be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V(o) and a function ¢ :V (o) — Z
defined as in Observation 8.4. The following assertion holds

(16) If
(8.8) HY €eQ:[Y|>1} 22 or|Q| >4,

then
{veV(o):{v}eQ}c (P~ (c/gP)).

Proof. Consider v € V(o) such that {v} € . Furthermore, suppose that
(8.8) holds. Set

Q" =Q~{{v}}.
Since assertion (I2) holds, {Y € @ : [Y| > 1} # @. Furthermore, it follows
from (8.8) that (8.7) holds. By Lemma 8.19, assertions (I3) and (I4) hold.
To conclude, it suffices to apply Fact 8.22. U

Proposition 8.24. Let o be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V(o) and a function ¢ : V(o) — Z
defined as in Observation 8.4.
Suppose that P(o) admits a unique nontrivial component C and finitely

many trivial components. If |V (o) NV (C)| > 2, then

o V(o) N V(O)[=2;

o there exists a unique v € V(o) N\ V(C) such that v «f>, V(C);

e o[V(C)] is decomposable.

Proof. To use Notation 8.14, set Y = V(C'). Obviously, Y € Q. To begin,
we show that for each W ¢ V(o) N\ V(C), we have

(8.9) oY uW] is decomposable.

Otherwise, consider W ¢ V(o) \Y such that o[Y u W] is prime. Since
V(o) N (Y uW) is finite, it follows from Corollary 3.21 that there exist
v,we V(o) N (YuW) such that o — {v,w} is prime. We cannot have v = w
because o is critical. Moreover, we cannot have v # w because v and w are
isolated in P(o). It follows that (8.9) holds.
Set
SY)={veV(o)\Y:v<«, Y}

We prove that either for every v e S(Y), we have

[0, (ey) 71 (0)]6 = [(£v) 71 (0), (o) (2)]5
(8.10) and

[0, (py) 1 (Do = [(ov) (D), (pv) ()]0,
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or for every v e S(Y), we have

[0, (oy)7H(0)]o = [(oy) 1 (2), (0v) 1 (0)]o
(8.11) and

[0, (ey) " (D)o = [(ev) 71 (3), (ov) T (D)]o-
Indeed, let v € S(Y'). By (8.9), o[Yu{v}] admits a nontrivial module M. By
Lemma 8.19, assertions (I3) and (I4) hold. We use Fact 8.21 in the following
manner. For Q' consider {Y,{v}}. We obtain P' = {Y N Veyen(0),Y N
Voaa(o),{v}}. For a contradiction, suppose that [M/Q'| = 1. We obtain
M/Q" ={Y}. Tt follows from Fact 8.21 that {Y N Viven(0),Y N Voaqa(o)} is
a module of (¢/gP)[P’], which contradicts v € S(Y'). Therefore, [M/Q’| >
2. Hence, we have v € M. Furthermore, it follows from Fact 8.21 that
(YNM)NVeyen(0) #+ @ and (YN M)nVygq(o) # @. Thus, there exist p,q € Z
such that

(ov)7H(2p). (oy) T (2q +1) € Y 0 M.
In particular, we have |M nY| > 2. By assertion (M2) of Proposition 2.5,
M nY is a module of ¢[Y]. Since v € M and M ¢ (Y u{v}), we have
(M nY)+Y. Moreover, since M nY|>2, MnY is a nontrivial module of
o[Y]. Tt follows that ¢y (Y nM) is a nontrivial module of 7y. We distinguish
the following two cases.
CASE 1: There exists n € Z such that

(8.12) ey(YnM)c{...,n-1,n}.
There exists m > 0 such that (¢y)~1(2m), (py) 1 (2m +1) € (Y ~ M).
Since (¢y)1(2p), (¢y) 1 (2¢+1) e Y n M and v € M, we obtain

[v, (py) " (2m)]o = [(0y) " (2p), (¢y) ' (2m)]o,
and hence

[0, (ey) " (2m)]o = [(2y) 1 (0), (y) ()]
Since P is a modular partition of o according to @ by assertion (I3) (see
Lemma 8.19), we have v «—, Y N Voyen(o). It follows that

[0, (y) ™ (0)]o = [() 1 (0), (oy) ' (2) ]

Similarly, we obtain

[0, (ev) " (D)o = [(ov) (1), (2v) ' (3)]o-
Therefore, v satisfies (8.10). Consequently, if M satisfies (8.12), then v

satisfies (8.10).
CASE 2: There exists n € Z such that

(8.13) {n,n+1,...} coy (Y nM).

By assertion (I1), 7y € #nU.%z. Since gy (Y N M) is a nontrivial module
of 7y, it follows from Lemmas 8.8 and 8.10 that there exists n’ € Z such
that

oy(YnM)={n",n"+1,...}.
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We verify that v satisfies (8.11). We distinguish the following two sub-
cases.
Subcase a: Ty € Fz or Ty € Py and n’ > 2.
There exists m > 0 such that (y)1(2m), (oy) 1 (2m+1) € (Y N M).
Since (py )1 (2p) € Y n M and v € M, we obtain

[v, (py) ' (2m)]6 = [(oy) ' (2p), (0y) ' (2m)]s,

and hence

[0 (py) 71 (2m)]o = [(y) T (2) (2v) 7 (0)]s-

Since P is a modular partition of o according to @ by assertion (I13),
we obtain v «—5 Y N Voyen(0). It follows that

[0, (o) (0)]o = [(ov) 71 (2), () T (0)]o-

Similarly, we obtain

[0, (y) " (Do = [(ey) 7 (3), (o) (D)]o

Therefore, v satisfies (8.11).
Subcase b: Ty € Fn and n' = 1..
We have ¢y (Y n M) ={1,2,...}. Since v € M, we obtain

[v, (v) " (0)]o = [(ey) 7' (2), (2y) 7 (0)]or

Since Ty € Fy, @y is an isomorphism from C' onto Py. Hence, we
have

Npo) ((py)7(0)) = {(y) (1)}
By Lemma 4.4, V(o) ~ {(¢y)71(0), (¢y) 1(1)} is a module of o -
(py)71(0). Tt follows that
[0 (py) ™ (D)o = [(ey) ' (3), (o) (D]

Thus, v satisfies (8.11).
Consequently, if M satisfies (8.13), then v satisfies (8.11).
It follows that for each v € S(Y'), v satisfies (8.10) or (8.11). Let v e S(Y).
Since v <>, Y, we obtain

[0, (py)7H(0)]o # [v, (o) (D]
It follows from (8.10) or (8.11) that

[(2y)7(0), (o) "' ()]s # [(0v) (1), () ' ()]

Therefore, [0,2]-, # [1,3]+, so v # 0(L(N) and v # o(L(Z). It follows
from Lemmas 8.8 and 8.10 that either (8.12) holds or (8.13) holds. Con-
sequently, either (8.10) holds for every v € S(Y) or (8.11) holds for every
v € S(Y). In particular, we obtain that

(8.14) S(Y) is a module of o[Y U S(Y)].
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We conclude in the following manner. For a contradiction, suppose that
V(o) N\ Y] >3. We show that

(8.15) Y uS(Y) is a module of o.

Let v e S(Y) and we (V(o)\NY) N S(Y). We must verify that Y u {v} is
a module of o[Y U {v,w}]. Since [V (¢)\Y] >3, it follows from (8.9) that
oY u{v,w}] admits a nontrivial module M. We use Fact 8.21 as follows.
Consider
Q" ={Y, {v} {w}}.

We obtain

P'= {Y N V:even(a)a Yn V:)dd(o—)a {U}7 {w}}
By Fact 8.21, if [M/Q’| = 1, then {Y N Veyen(0),Y nVoqq(0)} is a module
of (¢/gP)[P'], which contradicts v € S(Y'). Therefore, |[M/Q'| > 2. By
Fact 8.21, (YNM)NVeyen(0o) # @ and (Y NM)nV,yqq(o) # @. It follows that
M/P" is a module of (o/qP)[P’]. Furthermore, we have v € M because
v € S(Y). For a contradiction, suppose that M/P" = P’. Tt follows from
Fact 8.21 that {{v},{w}} is a module of (¢/gP)[P']. Thus, {v,w} is a
module of o[Y u{v,w}], which contradicts v € S(Y) and we (V(o)\Y)~
S(Y). Consequently, M/P’" ¢ P'. Since v € M, we obtain

M/P' = {Y 0 Vayen(0),Y 0 Voga(o), {v}}.

By the second assertion of Lemma 8.17 applied to o[Y u{v,w}] with Q" and
P’ Yu{v} is amodule of o[Yu{v,w}]. It follows that (8.15) holds. Finally,
it follows from (8.14) and (8.15) that Y u S(Y) is a nontrivial module of o
or S(Y) is a nontrivial module of o, which contradicts the fact that o is
prime. It ensues that
[V(o)\Y]|=2.

Since Y is not a module of o, we have S(Y) # @. It follows from (8.14) that
|S(Y)| = 1. Moreover, since both elements of V(o) \Y are isolated in P(o),
we obtain o[Y'] is decomposable. O

The next lemma follows from Proposition 8.24.

Lemma 8.25. Let o be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V(o) and a function ¢ :V (o) — Z
defined as in Observation 8.4. The following assertion holds

(I7) Suppose that |Q| < 3 and there exists a unique Y € Q such that |Y| > 1
(i.e. (8.8) does not hold):
e if V(o) =Y, then ¢y is an isomorphism from o[Y] onto a
prime element of FnU Fy;
o if [V(o)\Y]|=1, then (V(o)\Y) <5 Y and o1y is an iso-
morphism from o[Y'] onto a decomposable element of FnU Fy;
o if V(o) \NY|=2, then there exists a unique v e V(o) \NY such
that v <>, Y, and @y is an isomorphism from o[Y] onto a
decomposable element of FnuU Fy.



112 PIERRE ILLE

Proof. Suppose that there exists a unique Y € @ such that [Y|> 1. If V(o) =
Y, then ¢y is an isomorphism from ¢[Y] onto a prime element of .ZyuU.%y
because o is prime. Suppose that V(o) \Y contains a unique element v.
Since o is prime, Y is not a module of o, and hence v </>, Y. Moreover,
since o is critical, o —v is decomposable. Thus, ¢}y is an isomorphism from
o[Y] onto a decomposable element of Fyu.Zy. Finally, when |V (o)\Y]| > 2,
we utilize Proposition 8.24. U

The main theorem follows. It puts together Lemmas 8.13, 8.19, 8.20, 8.23,
and 8.25.

Theorem 8.26 (Boubabbous and Ille [6]%2). Consider an infinite, criti-
cal, and nonfinitely critical 2-structure o. Let @ be the partition of V(o)
constituted by the vertex sets of the components of P(c). Using the axiom
of choice, consider also a function ¢ : V(o) — Z defined as in Observa-

tion 8.4. Then, assertions (I11),...,(I7) hold.

8.4. Locally critical 2-structures. The purpose of this subsection is to
establish the following theorem.

Theorem 8.27 (Boubabbous and Tlle [6]%3). Let o be a locally critical 2-
structure. Consider a partition @ of V(o) and a function ¢ : V(o) — Z
satisfying assertions (I11) and (12). Suppose also that assertions (13),. .. ,(16)
hold. If (8.8) holds, then o is critical and nonfinitely critical.

Before proving Theorem 8.27, we establish the following three results.

Lemma 8.28. Let o be a locally critical 2-structure. Consider a partition Q
of V(o) and a function ¢ : V(o) — 7Z satisfying assertions (I11) and (I2).
Suppose also that assertions (13), (I14), and (I5) hold. If

(8.16) HY eQ:|Y|>1}>2 or|Q| >3,
then o is prime.

Proof. We consider the partition P of V(o) defined as in Notation 8.14.
Suppose that (8.16) holds. We have to show that o is prime. We utilize
Fact 8.22 as follows. Set Q' = Q. We obtain P’ = P. Since assertion (12)
holds, {Y € Q : |Y| > 1} # @. Since (8.16) holds, (8.7) holds too. Since
assertion (I5) holds, o/gP is prime. It follows from Fact 8.22 that o is
prime. U

Lemma 8.29. Let o be a locally critical 2-structure. Consider a partition @
of V(o) and a function ¢ : V(o) — 7Z satisfying assertions (11) and (12).
Suppose also that assertions (13) and (14) hold. Consider Y € Q) such that
[Y|>1. For everyveY, o—wv is decomposable.

8-2Boubabbous and Ille [6] proved this theorem (see [6, Theorem 12]) for digraphs.
8-3Boubabbous and Ille [6] proved this theorem (see [6, Theorem 13]) for digraphs.
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Proof. Let veY. Set

n = ey (v).
Since assertions (I1) and (I2) hold, we consider the partition P of V(o)
defined as in Notation 8.14.

First, suppose that v € 7 or 7v € Py and n > 1. We obtain that
{n-1,n+1} is a module of 7y —n. Since py is an isomorphism from o[Y]
onto 1y, {(vy)t(n-1),(¢y) Y (n+1)} is a module of ¢[Y] - v. Since
assertion (I3) holds, P is a modular partition of o according to . We
obtain

{(ev) " (n=1),(oy) ' (n+ 1)} <= V(o) VY.
It follows that {(py)~1(n-1),(py) *(n+1)} is a module of & - v.

Second, suppose that 1y € Fy and n = 0. We obtain that {2,3,...}
is a module of 7y — 0. Since @y is an isomorphism from o[Y] onto 1y,
Y ~{(py)1(0), (py) 1 (1)} is a module of ¢[Y ]~ (¢y)"1(0). Since assertion
(I4) holds, we have

(oy) (1) <=0 ({(py) (2} U (V(0) N Y)).
It follows that V(o) \ {(¢y)71(0), (¢y) (1)} is a module of & - v. O

Proposition 8.30. Let o be a locally critical 2-structure. Consider a par-
tition Q of V(o) and a function ¢ : V(o) — Z satisfying assertions (I1)
and (I2). Suppose also that assertions (13), (14), and (I5) hold. For every
Y €@ such that |Y|> 1, the following two assertions hold
(J1) for each n eV (1y) (see Notation 8.14), o — {(py)~1(n), (¢y) 1 (n+
1)} is isomorphic to o;
(J2) there exists a nontrivial component C' of P(o) such that' Y =V (C),
and @y is an isomorphism from C onto Py or Py.

Proof. Let Y € @ such that |Y| > 1. Since assertion (I1) holds, ¢y is an
isomorphism from o[Y] onto 7y € %y U .%z. Furthermore, since assertions
(I3), (I4), and (I5) hold, it follows from Lemma 8.28 that ¢ is prime. We
prove that

(8.17) for each n € V(1y), {(oy) 1 (n), (py) H(n+1)} € E(P(c)).

More strongly, we establish that
(8.18)
for each n e V(ry), o - {(¢y) ' (n), (¢y) ' (n+1)} is isomorphic to o,

that is, assertion (J1) holds. Let n € V(7y). Consider the function

[+ Viry) — Viy)~{nn+1}
(8.19) p<n-1 — p,
p>n — p+2.

Clearly, f is strictly increasing and preserves the parity. Since 1y € FyU.%7,
it follows from Lemmas 8.6 and 8.7 that f is an isomorphism from 7y onto
Ty —{n,n+1}. Since assertion (I1) holds, ¢y is an isomorphism from o[Y]
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onto 7y. Thus, ((py)™1) W (ry )~ {n,n+1} © f 0y is an isomorphism from o[Y']
onto o[Y] - {(vy)1(n), (py) t(n+1)}. For convenience, set

¥ = ((0y) ) Wirp)fnnsy © f ooy

Consider the extension 1 uld(y (,).y) of ¥ by the identity function on V (o)~
Y defined by

V(o) — V(o) {(py) " (n), (py) N (n+ 1)}
(8.20) weyY — Y(w),
we(V(o)\Y) — w.

Since assertion (I3) holds, P is a modular partition of o according to Q. It
follows that ¢ U Id(y/(5)\y) is an isomorphism from o onto o — {(py)~(n),
(¢y)Y(n+1)}. Consequently, (8.18) holds, so assertion (J1) holds. More-
over, (8.17) holds because o is prime.

To prove that assertion (J2) holds, we distinguish the following two cases.
CASE 1: py : Y — Z.

Let n e Z. Since (8.17) holds,

{(ey) M (n=1),(¢y) " (n+1)} € Npoy ((0y) ' (n)).

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that
o - (py) 1 (n) is decomposable. By Lemma 4.4,

Ne(o) (o)~ (0)) = {(py) T (n = 1), (py) " (n+ 1)}

It follows that P(¢)[Y] is a component of P(o), and ¢y is an isomor-
phism from P(o)[Y] onto Py.

CASE 2: py: Y — N.
As previously, we have

Ne(o)((py)7H(n)) = {(py) T (n=1), (oy) " (n+1)}

for each n > 1. Furthermore, since (8.17) holds, we have

(8.21) (ov) (1) € Np(oy ((v) 7 (0)).
Since assertion (I4) holds, we have
(8.22) (pv) (1) =0 {(ey) (2} U (V(0) N Y)).

Moreover, since assertion (I1) holds, 7y € Zy. It follows from Lemma 8.7
that

Le—r, (V(ry) ~{0,1}).

Since @y is an isomorphism from o[Y] onto 7y, we obtain

(8.23) (ev) 1 (1) <=0 (Y~ {(o)7H(0), (ov) (D))
It follows from (8.22) and (8.23) that

(ov) 71 (1) <=0 (V(0) > {(ey) 7 (0), (o) (1))
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Thus, for every v e V(o) ~ {(¢y)™1(0), (¢y) (1)}, we have
v ¢ ]ZP(U)((WY)_l(O))- Since (py) (1) € Np(»)((2y)71(0)) by (8.21),
we obtain

Npoy ((2y) 71 (0)) = {(y) (1)}

Consequently, P(c)[Y] is a component of P(c0), and ¢y is an isomor-
phism from P(o)[Y] onto Py. O

Proof of Theorem 8.27. Since (8.8) holds, (8.16) holds as well. Since asser-
tions (I3), (I4), and (I5) hold, it follows from Lemma 8.28 that o is prime.

To continue, we prove that ¢ is critical. Let v € V(o). We must verify
that o —v is decomposable. Denote by Y the unique element of () containing
v. To begin, suppose that |Y] > 1. Since assertions (I3) and (I4) hold, it
follows from Lemma 8.29 that ¢ — v is decomposable. Now, suppose that
Y = {v}. Since assertion (I6) and (8.8) hold, (¢/gP) —{v} is decomposable.
Let R be a nontrivial module of (¢/gP) —{v}. Set

Q'=Q~ {{v}} and P'= P {{v})}.

Clearly, P’ is a modular partition of ¢ — v according to Q'. Moreover, we
have
(0/qP) —{v}=(0-v)/(pHQ"
We apply Lemma 8.17 to o —v together with partitons P’ and Q' as follows.
We distinguish the following two cases.
Case 1: |(UR)/Q'| = 1.
Denote by Z the unique element of (UR)/Q’. Since |R| > 2 and {X «
P':XcZ} <2 wehave R={X € P': X c Z}. Tt follows from the first
assertion of Lemma 8.17 that Z is a module of o — v.
CaAsE 2: |(UR)/Q'| > 2.
It follows from the second assertion of Lemma 8.17 that (U{Y € Q" :
Y n(UR) #@}) = (UR) and (UR) is a module of o —v. Since (U{Y € Q" :
Y n(uR) # @}) = (UR) and R is a nontrivial module of (o —v)/pH@Q',
(UR) is a nontrivial module of o — v.

Consequently, ¢ is critical.

Finally, we verify that o is not finitely critical. Since assertion (12) holds,
there exists Y € @ such that |Y| > 1. Moreover, since assertions (I13), (I14),
and (I5) hold, it follows from assertion (J2) of Proposition 8.30 that there
exists a nontrivial component C' of P(o) such that Y = V(C'). Hence, there
exist distinct v,w € Y such that o — {v,w} is prime. O

Remark 8.31. Consider the tournament 7" defined on V(T') = Z x {0,1}
which satisfies
e for i =0 or 1, the function t; : Z — Z x {i}, defined by n — (n,1)
for every n € Z, is an isomorphism from Uz onto T[Z x {i}];
e for p,q € Z, we have ((2p,0),(2¢,1)) € A(T), ((2p+1,0),(2g+1,1)) €
A(T), ((2p+1,1),(2¢,0)) € A(T), and ((2p,1),(2¢+1,0)) € A(T).
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First, consider the partition

Q={Zx{0},Zx{1}}
of V(o(T)) and the function ¢ : V(o(T)) — Z defined by ¢zxoy) =
(10)~! and Orzx{1}) = (11)~1. We obtain
P ={(2Z2) x {0},(2Z + 1) x {0}, (2Z) x {1}, (2Z + 1) x {1}}.

It is not difficult to verify that o(7") satisfies assertions (I1),...,(I6) with
Q@ and ¢. Furthermore, since {Y € @ : |Y]| > 1}| = 2, (8.8) holds. By
Theorem 8.27, o(T') is critical but not finitely critical. Moreover, it follows
from assertion (J2) of Proposition 8.30 that Z x {0} and Z x {1} are the

vertex sets of the components of P(a(T)).
Second, consider the partition

Q=AZ>x{0}tu{{(n, 1)} : neZ}
of V(o(T)) and the same function ¢ as before. We obtain
P={(2Z)x{0},(2Z+1) x {0} }u{{(n,1)} :neZ}.

Once again, o(T") satisfies assertions (I1),...,(I6) with @ and ¢. Further-
more, since ) is infinite, (8.8) holds. Nevertheless, it follows only from
Proposition 8.30 that Z x {0} is the vertex set of a component of P(c(T)).

Consequently, it is not possible to determine the primality graph from
assertions (I1),...,(I6) only.

The next result follows from Theorems 8.26 and 8.27.

Corollary 8.32 (Boubabbous and Ille [6]%4). Given an infinite 2-structure
o, if o is critical and nonfinitely critical, then the following two assertions
hold
e for any distinct v,w € V (o), o —{v,w} is prime if and only if o —
{v,w} is isomorphic to o;
e there exist distinct v,w € V(o) such that o — {v,w} is isomorphic to
.

Proof. Suppose that o is an infinite, critical, and nonfinitely critical 2-
structure. By the second assertion of Corollary 8.2, there exist distinct
v,w e V(o) such that o — {v,w} is prime.

Now, consider any distinct v,w € V(o) such that o — {v,w} is prime. We
have to verify that o — {v,w} is isomorphic to o. Consider the partition @
of V(o) and a function ¢ : V(0) — Z defined as in Observation 8.4. There
exists Y € @ such that v,w €Y. We have {v,w} € E(P(c)). Since @y is an
isomorphism from P(o)[Y] onto Py or Py, there exists n € Z such that

{v,w} = {(py) " (), (py) " (n + 1)},
Since assertions (I3), (I4), and (I5) hold, it follows from assertion (J1) of
Proposition 8.30 that o —{(¢y)™*(n), (¢y ) (n+1)} is isomorphic to o. [

8-4Boubabbous and Ille [6] proved this theorem for digraphs.
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The next result follows from Corollary 8.32 and Theorem 5.8. It is the
analogue of Theorem 5.3 in the infinite case.

Corollary 8.33. Given an infinite and prime 2-structure o, if there exists
a finite subset F' of V(o) such that |F| > 2 and o — F is prime, then there
exist distinct v,w € V(o) such that o — {v,w} is prime.

Proof. Tt follows from Corollary 3.20 that there exists F’ € F such that
|F'| =2 or 3 and o — F’ is prime. The conclusion is obvious when |F'| = 2.
Hence, suppose that |F’| = 3. By Corollary 3.20 again, there exists = € F’
such that ¢ — x is prime. Set

T=0—-X.

Clearly, if 7 is not critical, then we conclude directly. Thus, suppose that 7
is critical. By denoting by y and z the two elements of F’ \ {x}, we obtain
7 —{y, 2z} is prime. Therefore, 7 is not finitely critical. By applying three
times the second assertion of Corollary 8.32 from 7, we obtain F" ¢ V(1)
such that |F"| = 6 and 7—F" is isomorphic to 7. Since 7-F" = o—({z}uF"),
we obtain that o — ({x} U F") is prime. It follows from Theorem 5.8 applied
to o—({z}uUF"") that there exist distinct v, w € ({x}uF"") such that o—{v, w}
is prime. [l

Remark 8.34. Observe that Corollary 8.32 does not hold if we only suppose
that o is prime but not finitely critical. Similarly, Corollary 8.33 does not
hold if we only suppose that the finite subset F' of V' (¢) is nonempty. Indeed,
consider the graph G defined on V(G) =Zu{oo} by

G[Z] = Pz and E(G) = E(Pz) u {{0,00}}.
As observed at the beginning of this section, G — oo = Py is prime. Hence,
0(G) — oo is prime as well. Set
X = V(G)~ {oo}.
Since {0,000} € E(G) and {1,00} ¢ E(G), we have
0 ¢ (X)y()-
Furthermore, since dg(c0) =1 and d(g_«)(n) = 2 for every n € Z, we obtain
0 ¢ Xy(y(n) for each n € Z.

It follows from Lemma 3.13 that oo € Ext, ) (X), so o(G) is prime too.
However, for each finite subset F' of Z, with |F| > 2, G — F is disconnected.

It follows that o(G) — F is decomposable for each finite subset F' of Z such
that |F| > 2.

We complete this subsection with the following example which is con-
structed from the graph Hy, (see Example 8.9) and the graph G defined on
V(G) =Zu {oo} in Remark 8.34. It shows that Proposition 8.24 does not
hold if we do not suppose that the primality graph admits finitely many
trivial components.
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Example 8.35. Consider the graph H defined on V(H) =ZuU{o0,, : n € Z}
and saisfying
e H[Z]= Hy;
e the bijection Z — {00, : n € Z}, defined by n — oo, for each n € Z,
is an isomorphism from Pz onto H[{oco, :n € Z}];
e for every peZ, {2p, 000} € E(H).

We prove that o(H) is prime, critical, but not finitely critical. Precisely,
we show that P(o(H))[Z] = Pz, P(c(H))|[Z] is a component of P(c(H)),
and oo,, is isolated in P(o(H)) for each n € Z.

Set

R={{o0n}:neZ}.
Consider the partition
Q={Z}uR
of V(o(H)) and the function ¢ : V(o(H)) — Z defined by
@1z =1dz and (oo, ) =0 for every n € Z.

We verify that o(H) satisfies assertions (I1),...,(I6) with @ and ¢. As
seen at the end of Example 8.9, o(Hy) € %y. Hence, assertion (I1) holds.
Assertion (I2) holds because Z € Q). For assertion (I3), we obtain

P={27,27Z+1} uR.

It follows from the definition of H that for each n € Z, we have oo, «—, ()
(2Z) and oo, «—,gy (2Z +1). Thus, assertion (I3) holds. Obviously,
assertion (I4) holds. Clearly, (c(H)/qP)[R] ~ o(H)[{oon : n € Z}]. Since
H[{ooy :n €Z}]~ Pz, we obtain that (6(H)/qoP)[R] is prime. Clearly,

2Z +1 € (R)(o(m)/,p) (see Notation 3.12).

Furthermore, the function
Zu{oo} — {0}u{oo,:neZ}
00 — 0,

neZ +—— ooy,

is an isomorphism from the graph G defined in Remark 8.34 onto H[{0} U
{00, : m € Z}]. Since P is a modular partition of o(H) according to Q,
we have (0(H)/qP)[Ru {2Z}] ~ o(H)[{0} U {o0, : n € Z}]. As seen in
Remark 8.34, 0(G) is prime. It follows that (6(H)/qP)[RU{2Z}] is prime,
S0

27 € EXt(G(H)/Qp)(R).

It follows from the definition of the generalized quotient (see Definition 8.16)
that

[2Z + 1,{o00}(o(t1) /o P) # [2Z + 1,2Z]) (5(11)) o P)-

Hence, RU{2Z} is not a module of o (H)/qP. It follows from assertion (P2)
of Lemma 3.17 that o(H)/gP is prime. Therefore, assertion (I5) holds. For
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assertion (I6), consider n € Z. We must show that (o(H)/qP) — {ooy} is
decomposable. Suppose that n > 0. We obtain that

(8.24) {c0n+1, 00042, ...} is a component of H — (c0y,).

It follows that {{c0n+1}, {ocops2}, ...} is a nontrivial module of (o(H)/qP)—
{c0,,}. Suppose that n < 0. We obtain that

(8.25) {...,00p_92,00,_1} is a component of H - (oc0,,).

It follows that {...,{ocon-2},{00on_1}} is a nontrivial module of (o (H)/qP)—
{o0p,}. Thus, assertion (I6) holds. Consequently, assertions (I1),...,(I6)
hold.

Since @ is infinite, (8.8) holds. It follows from Theorem 8.27 that o is
critical and nonfinitely critical. Precisely, it follows from assertion (J2) of
Proposition 8.30 that P(o(H))[Z] = Pz and P(c(H))[Z] is a component of
P(c(H)). Finally, we verify that for each n € Z, oo, is isolated in P(c(H)).
It follows from (8.24) and (8.25) that H — (o0, ) admits a module M such that
M and (V(o(H)) \ {00y }) N~ M are infinite. It follows that (H - (o0,)) —v
is decomposable for every v e (V(o(H)) \ {oo,,}). Hence, oo, is isolated in
P(o(H)).

Consequently, P(c(H)) admits a unique nontrivial component and infin-
itely many trivial components.

8.5. Epilogue on assertion (I7). In the next four facts, we complete the
study begun in assertion (I7) of Theorem 8.26, and in Theorem 8.27 when
(8.8) does not hold. Precisely, we are interested in the infinite, critical, and
nonfinitely critical 2-structures the primality graph of which admits one
nontrivial component and one or two trivial ones.

Fact 8.36. Given a 2-structure o defined on V(o) = ZU {0}, o is criti-
cal, P(0)[Z] = Py, and oo is isolated in P(o) if and only if the following
assertions hold

® g — 00 € ﬁz;

e 00 <, (27), 00 <4 (2Z + 1), and [0,00], # [1,00],;
e at least one of the following two cases occurs:

[O> 1]0 = [072]0> [1>2:|U = [173]0>

(8.26) and

[0,1]5 # [0,00]5 or [1,2]5 # [1,00],,

or
[172]0 = [072]07 [Ov 1]0 = [173]07
(8.27) and

[0,2], # [00,2]s or [0,1]5 # [0, 1],.

Proof. To begin, suppose that o is critical, P(¢)[Z] = Pz, and oo is isolated
in P(o). First, we verify that o — 0o € #5. Let n € Z. Since P(0)[Z] = Pz
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and oo is isolated in P(0), we have
Np(a)(n) = {n - l,n + 1}.

Since o is critical, it follows from Lemma 4.4 that {n-1,n+ 1} is a module
of o —n. By assertion (M2) of Proposition 2.5, {n —1,n + 1} is a module
of (0 —o0) —n. Since o is prime, {n - 1,n+ 1} is not a module of ¢. Since
{n-1,n+1} is a module of o —n, we obtain n «f>, {n—-1,n+1}. It follows
that {n —1,n+ 1} is not a module of o — co. Consequently, o — oo € .%7.

Second, we show that co «—, (2Z), o0 «—, (2Z + 1), and [0,00], #
[1,00],. Let neZ. As seen above, {2n,2n + 2} is a module of o — (2n + 1).
Hence, oo «—, {2n,2n + 2}. It follows that oo «—, (2Z). Similarly, we
have oo «—, (2Z + 1). Since ¢ is prime, Z is not a module of o. Since
00 <, (27Z) and oo «—, (2Z + 1), we obtain [0, 0], # [1, 00],.

Third, we prove that (8.26) or (8.27) hold. Since o is critical, o — oo
is decomposable. Let M be a nontrivial module of ¢ — co. By the third
assertion of Lemma 8.8, M is a nontrivial module of Ly. Thus, M admits
a least or a greatest element. In the first instance, there exists n € Z such
that n,n+1 e M and M < {n,n+1,...}. We obtain [0,1], = [0,2], and
[1,2], = [1,3]s as in the first assertion of Lemma 8.8. Furthermore, since
Mu{oo} is not a module of o, we obtain [0, 1], # [0, 0], or [1,2], # [1, c0],.
Therefore, (8.26) holds. Similarly, when M admits a greatest element, (8.27)
holds.

Conversely, suppose that the three assertions above hold. To begin, we
verify that assertions (I1),...,(I5) hold. Set

Q ={Z,{oo}}
and consider the function ¢ : V(o) — Z defined by
1z =1dz and p(o0) = 0.

We obtain

P={22,2Z+1,{c0}}.
Since 0 — o0 € Fy, o satisfies assertion (I1) with @ and ¢. Since Z € Q,
assertion (I2) holds. It follows that o is locally critical. Furthermore, since
00 «—, (27Z) and oo «—, (2Z + 1), P is a modular partition of o according
to Q. Hence, assertion (I3) holds. Since [0, 0], # [1,00],, we have

[22, {OO}](U/QP) * [QZ + 1, {OO}](U/QP).

It follows from the definition of the generalized quotient (see Definition 8.16)
that o/gP is prime. Thus, assertion (I5) holds. Obviously, assertion (I4)
holds.

For a contradiction, suppose that ¢ admits a nontrivial module M. We
utilize Fact 8.21 with Q' = Q as follows. Since [0, 0], # [1, 00],, {27Z,2Z+1}
is not a module of o/gP. It follows from Fact 8.21 that M n (2Z) # @,
Mn(2Z+1) # @, and oo € M. Thus, M \ {oo} is a nontrivial module of
o —oo. For instance, assume that M \ {oo} admits a least element n. Hence,
n,n+leM~x{oo} and M~{oo} S {n,n+1,...}. Since o — o0 € %z, we obtain
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that {n,n+1,...} is a module of o —co. By the first assertion of Lemma 8.8,
we have [0,1], = [0,2], and [1,2], =[1,3],. Since M is a module of o, we
obtain [0,1], = [0,00], and [1,2], = [1, 00],. Hence,

(8.26) does not hold.

o], # [1,00],, we have [0,1], # [1,2],. Since [0,1], = [0,2],, we
2], % [1,2],. Thus,

(8.27) does not hold.

Since [0,
obtain [0

It follows that o is prime.

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n
is decomposable for each n € Z. Since (8.26) or (8.27) hold, {0,1,...} is
a module of o — oo or {...,0,1} is a module of o — co. Hence, o — oo is
decomposable. Consequently, o is critical.

Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(c)[Z] is a component of P(¢) and P(¢)[Z] =
Py. Since P(0)[Z] is a component of P(0), oo is isolated in P(o). O

Example 8.37. We consider the tournament 77, defined on V(7%) = Zu{oo}
and satisfying

e Ty —oco0=Ly;

e for each n€Z, (00,2n) € A(Tyz) and (2n+1,00) € A(T7).
It follows from Fact 8.36 that o(71%) is critical, P(¢0(1%))[Z] = Pz, and oo
is isolated in P(o(7z)). Observe that for n € Z and p > 1, Tyz[{2n,...,2n +
2p -1} u{oco}] is isomorphic to Th,.1 (see Figure 1.2).
Fact 8.38. Given a 2-structure o defined on V(o) = Nu{oo}, o is criti-
cal, P(0)[N] = Py, and oo is isolated in P(c) if and only if the following
assertions hold
g — 00 € ﬁN;
[1,2], = [1,00]4;
00 <45 (2N), 00 «—, (2N +1), and [0,00], # [1,00]5;
at least one of the following two cases occurs:
(8.28) [0,1], =[0,2], and [0,1], # [0, c0],,

or

[172]0 = [072]07 [071]0 = [173]07
(8.29) and
[0,2]5 # [00,2]5 or [0,1]4 # [00,1],.

Although the proof of Fact 8.38 is close to that of Fact 8.36, we provide
it because some differences deserve to be pointed out.

Proof of Fact 8.38. To begin, suppose that o is critical, P(¢)[N] = Py, and
oo is isolated in P(o). First, we verify that o — co € #n. Let n > 1. As seen
in the proof of Fact 8.36, {n—1,n+ 1} is a module of (¢ — c0) —n, but not
of o — co. Now, we have to show that N\ {0,1} is a module of (0 — o0) -0,
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but N\ {1} is not a module of o — co. Since P(0)[N] = Py and oo is isolated
in P(0), we have

Np)(0) = {1}.
Since o is critical, it follows from Lemma 4.4 that V (o)~ {0,1} is a module
of o — 0. In particular, we have

[1,2], =1, 00],.

Moreover, by assertion (M2) of Proposition 2.5, N\ {0,1} is a module of
(0—00)=0. Since o is prime, V (¢)~{1} is not a module of o. Hence, [1,2], #
[1,0]s. Therefore, {0} U{2,3,...} is not a module of o — co. Consequently,
0O — o € ﬂ‘N.

Second, we show that oo «—, (2N), oo «—, (2N + 1), and [0,00], #
[1,00],. Let n > 0. As seen above, {2n,2n + 2} is a module of o — (2n + 1).
Hence, co «—, {2n,2n + 2}. It follows that co «—, (2N). Similarly, we
have oo «—, (2N + 1). Since o is prime, N is not a module of o. Since
00 <4 (2N) and oo «—, (2N + 1), we obtain [0, 0], # [1, 00],.

Third, we prove that (8.28) or (8.29) hold. Since o is critical, o — oo
admits a nontrivial module M. By the second assertion of Lemma 8.10, M
is a module of Ly. Since |[M| > 2, M contains even and odd integers. We
distinguish the following two cases.

CASE 1: 0¢ M.
Since M contains even and odd integers, we obtain

[0,1], =[0,2],.
Since o is prime, V(o) ~ {0} is not a module of o. Thus,
[07 ]‘]0' :# [O? oo]o'

It follows that (8.28) holds.
CASE 2: 0e M.
Since M is a nontrivial module of Ly, there exists n > 1 such that

M =H0,...,n}.

We obtain that (8.29) holds.
Conversely, suppose that the four assertions above hold. To begin, we
verify that assertions (I1),...,(I5) hold. Set

Q ={N, {oo}}
and consider the function ¢ : V(o) — Z defined by
@y = Idy and (o) = 0.
We obtain
P={2N,2N+1,{o0}}.

Since 0 — 00 € Fy, o satisfies assertion (I1) with @ and ¢. Since N € @Q,
assertion (I2) holds. It follows that o is locally critical. Furthermore, since
00 <, (2N) and oo «—, (2N+1), P is a modular partition of o according to
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Q. Hence, assertion (I3) holds. Moreover, since [1,2], = [1, o], assertion
(I4) holds. Lastly, since [0, 00], # [1,00],, we have

[2N,{o0o}](o/op) # [2N+1,{00}](5/oP)-

It follows from the definition of the generalized quotient (see Definition 8.16)
that o/gP is prime. Thus, assertion (I5) holds.

For a contradiction, suppose that ¢ admits a nontrivial module M. We
utilize Fact 8.21 with Q' = @Q as follows. Since [0, 0], # [1,00],, {2N,2N+1}
is not a module of o/gP. It follows from Fact 8.21 that M n (2Z) # @,
Mn(2Z+1) # @, and oo € M. Thus, M \ {oo} is a nontrivial module of
o —o00. Since g — o0 € Fy, M \ {00} is a nontrivial module of Ly by the
second assertion of Lemma 8.10. In particular, M \ {oo} contains even and
odd integers. We distinguish the following two cases. In each of them, we
obtain a contradiction.

CASE 1: 0¢ M.
Since M contains even and odd integers, we obtain

[0,1]5 = [0, 2],
Furthermore, since oo € M, we obtain

[0,1]5 = [0, 00]s,
which contradicts the fact that (8.28) holds.

CASE 2: 0e M.
Since M is a nontrivial module of Ly, there exists n > 1 such that
M ={0,...,n}.
We obtain
[0,2]5 = [1,2]5 = [00,2],
and

[0,1], = [1,3]5 = [o0,1]5,
which contradicts the fact that that (8.29) holds.

Consequently, o is prime.

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n
is decomposable for every n € N. Moreover, since (8.28) or (8.29) hold,
{1,2,...} is a module of 0 — 0o or {0,1} is a module of o — co. Hence, o — oo
is decomposable. Consequently, o is critical.

Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(o)[N] is a component of P(c) and P(o)[N] =
Py. Since P(0)[N] is a component of P(¢), oo is isolated in P(o). O

Example 8.39. We consider the tournament Ty = Tz[N]. It follows from
Fact 8.38 that o(Ty) is critical, P(c(1y))[N] = Py, and oo is isolated in
P(o(Tn))-

Fact 8.40. Given a 2-structure o defined on V(o) = Z U {o0,00'}, o is
critical, P(0)[Z] = Pz, and oo and oo’ are isolated in P(c) if and only if, by
exchanging oo and oo’ if necessary, we have
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o —{o0,00"} € Fy;

00 <, (27), 00 <>, (2Z + 1), and [0,00], # [1,00]s;
0o’ «—, Z and [0,00"]5 # [00, 00", ;

at least one of the following two cases occurs:

[Oa 1]0 = [Oa 2](7’ [1a 2]0 = [153](7’

(8.30) and

[O’ 1]0 = [07 00]07 [172]0 = [1, 00]07

or

[1,2]0 = [072]% [O, 1]0 = [173]0'7
(8.31) and
[0a2]0 = [00,2]0, [0’1]0 = [0071]0'

Proof. To begin, suppose that o is critical, P(¢)[Z] = Pz, and oo and oo’
are isolated in P(o). By Proposition 8.24,

o€ {o0,00} 10 afoy Z} = 1.
By exchanging oo and oo’ if necessary, we can assume that oo </>, Z and
oo’ «—, Z. Since o is prime, Z U {co} is not a module of o. Thus, we have
[0, 0] # [00, 00 ]
First, we verify that o — {c0, 00’} € .Z;. Let n € Z. Since P(0)[Z] = Py
and oo and oo’ are isolated in P(c), we have

Npy(n) ={n-1,n+1}.

Since o is critical, it follows from Lemma 4.4 that {n—-1,n+1} is a module
of o —n. By assertion (M2) of Proposition 2.5, {n —1,n+ 1} is a module
of (0= {o0,00'}) —n. Since o is prime, {n - 1,7+ 1} is not a module of o.
Hence, n <f>, {n—1,n+1}. It follows that {n—1,n+1} is not a module of
o — {00, 00"}. Consequently, o — {o0, 00’} € F7.

Second, we verify that co «<—, (2Z) and oo «—, (2Z +1). Let n € Z. As
seen above, {2n,2n+2} is a module of 0—(2n+1). Hence, co <, {2n,2n+2}.
It follows that oo «<—, (2Z). Similarly, we have oo «—, (2Z + 1). Since
0o «f>, Z, we obtain [0, 00], # [1,00],-.

Third, we prove that (8.30) or (8.31) hold. Since o is critical, o — oo’ is
decomposable. Consider a nontrivial module M of o — oo’. Since [0, 00], #
[1,00],, we have co € M. By assertion (M2) of Proposition 2.5, M nZ is a
module of o—{o0, 00’}. For a contradiction, suppose that [MnZ| = 1. Denote
by n the unique element of M NZ. Since co «—, (2Z) and oo «—, (2Z+1),
we obtain n <—, {n —1,n + 1}, which contradicts o — {c0, 00’} € Fz. It
follows that |M nZ| > 2. Hence, M nZ is a nontrivial module of o — {00, c0’}.
For instance, suppose that M NnZ admits a least element. Since oo € M, we
obtain that (8.30) holds.

Conversely, suppose that the four assertions above hold. To begin, we
verify that assertions (I1),...,(I5) hold. Set

Q ={Z,{oo},{o}}
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and consider the function ¢ : V(o) — Z defined by
¢1z = 1dz, p(c0) =0, and p(co’) = 0.

We obtain
P={27,27+1,{co},{c0"}}.

Since o — {00, 00"} € Fy, o satisfies assertion (I1) with @ and ¢. Since Z € @Q,
assertion (I2) holds. It follows that o is locally critical. Furthermore, since
00’ <, Z, 00 <>, (27Z), and o0 «—, (2Z + 1), P is a modular partition
of o according to ). Hence, assertion (I3) holds. Since [0,00], # [1, 0],
{2Z,27Z+1} and {27Z,2Z+1, {0’} } are not modules of o/gP. Moreover, since
[0, 00"]5 # [00, 0" ], {27,2Z+1,{0c0}} is not a module of o/ P. Lastly, since
[0,00], # [1,00], and oo’ «—4 Z, {{o0}, {c0'}} is not a module of o/gP. It
follows from the definition of the generalized quotient (see Definition 8.16)
that o/gP is prime. Thus, assertion (I5) holds. Obviously, assertion (I4)
holds.

To verify that o is prime, we utilize Fact 8.22 with Q' = @ as follows.
Clearly, (8.7) holds. Moreover, we have P’ = P. As previously observed,
o/qP is prime. Since assertions (I3) and (I4) hold, it follows from Fact 8.22
that o is prime.

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n
is decomposable for each n € Z. Since (8.30) or (8.31) hold, {0,1,...} u{co}
is a module of ¢ — o0 or {...,0,1} U {oo} is a module of o — co’. Hence,
o — oo’ is decomposable. Lastly, since oo’ «—, Z, 0 — oo is decomposable.
Consequently, o is critical.

Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(c)[Z] is a component of P(c) and P(0)[Z] =
Py. Lastly, it follows from Corollary 8.3 that co and oo’ are isolated in
P(o). O

Fact 8.41. Given a 2-structure o defined on V(o) = NuU {o0,00'}, o is
critical, P(0)[N] = Py, and oo and oo’ are isolated in P(o) if and only if, by
exchanging oo and oo’ if necessary, we have

e 0—{o0,00'} € Fy;
e 00«4, (2N), 00 «—, (2N +1), and [0,00], # [1,00]4;
e 0o’ «—, N and [0,00"], # [00,00]4;
e [1,2], =[1,00], and [1,2], =[1,00]4;
e at least one of the following two cases occurs:
(8'32) [07 1]0 = [072]0‘ and [07 1]0 = [07 00]0‘7
or

[1,2](; = [0,2]0, [O, 1]0 = [173]0'7
(8.33) and

[0a2]0 = [00,2]0, [0’ 1]0 = [007 1]0'
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Proof. To begin, suppose that o is critical, P(c)[N] = Py, and co and oo’
are isolated in P(0). By Proposition 8.24,

{ve oo, 00"} 10 o N} = 1.
By exchanging oo and oo’ if necessary, we can assume that co </, N and
oo’ «—, N. Since o is prime, NU {oo} is not a module of o. Thus, we have
[0, 00" # [00, 00"] .

First, we verify that o — {o0, 00’} € . Let n > 1. As seen in the proof
of Fact 8.40, {n—1,n+ 1} is a module of (o — {00, 00'}) = n, but not of
o —{o0,00"}. Since P(¢)[N] = Py and oo and oo’ are isolated in P(c), we
have

NP(O’)(O) = {1}
Since o is critical, it follows from Lemma 4.4 that V (o)~ {0,1} is a module
of o — 0. In particular, we obtain

(8.34) [1,2], = [1, 0], and [1,2], = [1, 00'],.

Furthermore, by assertion (M2) of Proposition 2.5, V(o) {0,1} is a module
of (0 —{oo0,00"}) = 0. Since o is prime, V(o) \ {1} is not a module of o.
Hence, 1 </, (V(o) ~ {1}). Tt follows that N\ {1} is not a module of
o — {00, 00’'}. Consequently, o — {oo, 00’} € Fy.

Second, we verify that oo «—, (2N) and oo «—, (2N +1). Let n e N. As
seen above, {2n,2n+2} is a module of o—(2n+1). Hence oo «—, {2n,2n+2}.
It follows that oo «—, (2N). Similarly, we have oo «—, (2N + 1). Since
00 «f>, Z, we obtain [0, 00], # [1,00],-.

Third, we prove that (8.32) or (8.33) hold. Since o is critical, o — oo’
admits a nontrivial module M. Since oo «—, (2N), co «—, (2N + 1), and
[0,00]s # [1,00],, we have oo € M. By assertion (M2) of Proposition 2.5,
M nN is a module of 0 —{o00,00"}. For a contradiction, suppose that |MNN| =
1. Denote by n the unique element of M N N. We distinguish the following
two cases. In each of them, we obtain a contradiction.

CASE 1: n>1.
Since oo «—, (2N) and oo «—, (2N +1), we obtain n «—, {n-1,n+1},
which contradicts o — {c0, 00’} € Fy.
CASE 2: n=0.
We have
[13 0]0 = [1> Oo]a'
=[1,00],. It follows that
[17 O]U = [17 2]07
which contradicts o — {c0, 00’} € Fy.

It follows that |[M nN| > 2. Hence, M nN is a nontrivial module of

o — {00, 00"}. By the second assertion of Lemma 8.10, M nN is a nontrivial

module of Ly. Since |[M nN| > 2, M contains even and odd integers. We
distinguish the following two cases.

By (8.34), we have [1,2],
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CASE 1: 0¢ M nN.
Since M NN contains even and odd integers, we obtain

[0,1], =[0,2],.
Moreover, since oo € M, we obtain

[0,1], = [0, c0],-.
It follows that (8.32) holds.

CASE 2: 0e M.
Since M NN is a nontrivial module of Ly, there exists n > 1 such that

MnN={0,...,n}.
Since oo € M, we obtain
M ={0,...,n}u{oco}.

We obtain that (8.33) holds.
Conversely, suppose that the five assertions above hold. To begin, we
verify that assertions (I1),...,(I5) hold. Set

Q ={N,{oo}, {0}
and consider the function ¢ : V(o) — Z defined by
¢ = 1dy, p(00) =0 and p(co”) = 0.

We obtain
P={2N,2N +1,{oo},{o0"}}.

Since o — {00, 00"} € Fy, o satisfies assertion (I1) with @ and ¢. Since N € Q,
assertion (I2) holds. It follows that o is locally critical. Furthermore, since
00 <>, (2N), 00 «—4 (2N + 1), and oo’ «—, N, P is a modular partition
of o according to ). Hence, assertion (I3) holds. Since [0,00], # [1, 0],
{2N,2N+1} and {2N,2N+1, {c0’}} are not modules of /g P. Moreover, since
[0,00"]5 # [00, 0" ], {2N,2N+1, {oo}} is not a module of o/ P. Lastly, since
[0,00]5 # [1,00], and oo’ «—4 N, {{co},{o0"}} is not a module of o/gP. It
follows from the definition of the generalized quotient (see Definition 8.16)
that o/gP is prime. Thus, assertion (I5) holds. To verify that assertion (I4)
holds, recall that [1,2], =[1, 0], and [1,2], =[1,00’],. We obtain

1«4 {2, 00, Oo,}.

It follows that assertions (I4) holds.

To verify that o is prime, we utilize Fact 8.22 with Q' = @ as follows.
Clearly, (8.7) holds. Moreover, we have P’ = P. As previously observed,
o/qP is prime. Since assertions (I3) and (I4) hold, it follows from Fact 8.22
that o is prime.

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that o —n
is decomposable for each n € N. Since (8.32) or (8.33) hold, {1,2,...} u
{0} is @ module of o — o0 or {0,1} U {0} is a module of o — co. Hence,
o — oo’ is decomposable. Lastly, since oo’ «<—, N, 0 — oo is decomposable.
Consequently, o is critical.
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Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(o)[N] is a component of P(c) and P(0)[N] =
Py. Lastly, it follows from Corollary 8.3 that oo and oo’ are isolated in
P(o). O
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9. PARTIALLY CRITICAL 2-STRUCTURES

We consider the following weakening of the notion of a critical structure
(see Definition 4.1).

Definition 9.1. Let o be a prime 2-structure. Given W ¢ V (o), o is W-
critical if all the elements of W are critical vertices of o.
A prime 2-structure o is partially critical if there exists a proper subset

X of V(o) such that o[ X] is prime and o is (V (o) \ X)-critical.

Finite partially critical graphs were characterized by Breiner et al. [5].
Furthermore, finite partially critical tournaments were characterized by Sa-
yar [32] who adapted the examination of partial criticality presented in [5] to
tournaments. A nice presentation of finite and partially critical tournaments
is provided in [2] (see [2, Theorem 2 and Corollary 1] ). Lastly, Belkhechine
et al. [3] characterized the finite or infinite partially critical 2-structures. In
the finite case, they followed the same approach as that of [5].

Theorem 3.19 leads us to introduce the outside graph as follows. The out-
side graph is the main tool to characterize the partially critical 2-structures.
It is frequently used in the study of prime digraphs [22, 25]. We need the
next notation.

Notation 9.2. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. The set of the nonempty subsets Y of V(o) \ X, such that o[ X UY]
is prime, is denoted by #, x) (compare with Notation 3.1). Hence, we have

Exto(X)={veV (o) X:{v} e Z, x)} (see Notation 3.12).

Furthermore, suppose that [V (o) \ X| > 2. By Theorem 3.19, &, x con-
tains an unordered pair.

Definition 9.3. Given a 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. The outside graph I, x) is defined on V(I'(, x)) =V (o) \ X by

E(Tx)) ={Y € P, x): [Y]=2}.

By Theorem 3.19, the outside graph I'(, x) is nonempty when o is prime
and [V (o) N X| > 2.

Remark 9.4. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is

prime. Given k € {1,...,|V (o)~ X|-1}, we consider the following statement
(Sk) YeP,x): Y=k} =2
Clearly, Ext,(X) = @ means that statement (S1) holds.

First, we make the following observation. Consider k € {1,...,[V (o) ~

X|-1} and me {1,...,k -2} such that k—m =0 mod 2. If statement (Sk)
holds, then it follows from Corollary 3.20 that statement (Sm) holds.
Second, suppose that o is (V (o) \ X)-critical and

V(o) \ X is finite.

W -critical
partially critical

outside graph
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We verify that statement (Sk) holds for each k€ {1,...,|V (o)~ X|-1} such
that k is odd.
To begin, we verify that

(9.1) [V (o) N X] is even.

Otherwise, it follows from Corollary 3.20 that o admits a noncritical vertex
v such that v € V(o) ~ X, which contradicts the fact that o is (V (o) \ X)-
critical.

Now, consider Y € &, xy such that Y # V(o) \ X. Since o is (V(o) ~
X)-critical, o is (V (o) ~ (X uY))-critical as well. It follows from (9.1)
that [V (o) N (X UY)| is even. Since |V (o) \ X] is even, |Y]| is even too.
Consequently, statement (Sk) holds for each k€ {1,...,|V (o)~ X|-1} such
that £ is odd.

9.1. Main results. We begin with a hereditary property of primality
through the components of the outside graph.

Theorem 9.5 (Belkhechine et al. [3]). Given a 2-structure o, consider X ¢
V(o) such that o[X] is prime. Suppose that statement (S3) holds. The
following three assertions are equivalent
(1) o is prime;
(2) for each component C of I'(, xy, o[ X uV(C)] is prime;
(3) for each component C of I'(, xy, v(C) =2 or v(C) 2 4 and C is
prime.

Theorem 9.5 allows us to provide a simple and short proof of Theorem 5.8
(see subsection 9.6). Furthermore, Theorem 9.5 is proved for finite graphs
in [25] (see [25, Theorem 17] and [25, Corollary 18]). We pursue with a
hereditary property of partial criticality through the components of the out-
side graph. The next theorem also provides a characterization of partially
critical 2-structures in terms of criticality of the components of their outside
graph.

Theorem 9.6 (Belkhechine et al. [3]). Given a 2-structure o, consider X &
V(o) such that o[ X] is prime. Suppose that statement (S5) holds. The
following three assertions are equivalent
(1) o is (V(o) \ X)-critical;
(2) for each component C of T' (4 x), o[ X vV (C)] is V(C)-critical;
(3) for each component C of ', xy, v(C) =2 or v(C) > 4 and C is
critical.

Remark 9.7. As seen at the beginning of section 8, o(Py) is finitely critical.
Set

X={z€Z:2<0}.
As for o(Py), it follows from Theorem 7.1 that o(Pz)[ X ] is prime. Similarly,
o(Pz)[Xu{l,...,k}] is prime for every k > 1. Consequently, for each k > 1,
statement (Sk) does not hold. Moreover, {1,2} is the only edge of I'(,(p,), x)-



PRIME 2-STRUCTURES 131

Hence, for every z > 3, z is an isolated vertex of I'(;(p,) x). It follows that
Theorem 9.5 does not hold when statement (S3) is not satisfied. Similarly,
Theorem 9.6 does not hold when statement (S5) is not satisfied.

We introduce a weakening of the partial criticality in the following way.
We obtain the next result by using Theorem 7.4 several times.

Corollary 9.8. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. The following two assertions are equivalent
(1) o is prime;
(2) for each finite subset ' of V(o) ~ X, there exists F' € 2, xy such
that F' is finite and F ¢ F".

Corollary 9.8 and the fact that statement (S5) is supposed to be satisfied
in Theorem 9.6 lead us to introduce the next definition. The next definition
is a weakening of partial criticality (see Theorem 9.10).

Definition 9.9. Given a 2-structure o, consider X ¢ V(o) such that o[ X |
is prime. We say that o is finitely (V (o)~ X)-critical if for each finite subset
F of V(o) \ X, there exists [ € &, x) such that F' is finite, F' ¢ F’, and
o[X U F'] is (F')-critical.

Theorem 9.10. Given a 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. The following two assertions are equivalent

(1) Statement (S5) holds and o is prime;
(2) o is finitely (V (o) \ X)-critical.

Theorem 9.10 is discussed in Remark 9.57. Precisely, in Remark 9.57,
we provide a prime 2-structure showing that we do not have a compact-
ness theorem with partial criticality. We prove Theorem 9.10 at the end
of subsection 9.5. The last main result ends this subsection. It shows that
Theorem 5.8 is satisfied in the infinite case when the 2-structure o is also
supposed to be (V' (o) \ X)-critical.

Theorem 9.11. Given a 2-structure o, consider X ¢ V(o) such that o[ X |
is prime. Suppose that statement (S5) holds. Suppose also that o is (V (o)~
X)-critical. For each v e V(o) N X, there exists we (V(o) N X) N {v} such
that o — {v,w} is (V (o)~ {v,w}) ~ X)-critical. In particular, we obtain

for each v e V(o) N X, Npoy(v) n(V(0) N X) # @ (see Definition 4.3).
We prove Theorem 9.11 at the end of subsection 9.5.

Remark 9.12. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that statement (S5) holds. Suppose also that o is (V (o) ~
X)-critical. Lastly, suppose that V(o) \ X is infinite. Consider a finite and
nonempty subset F' of V(o) N\ X. By applying several times Theorem 9.11,
we obtain a finite subset F’ of V(o) \ X such that F ¢ F' and o — F’ is
((V(o) N~ F') N X)-critical. Furthermore, it follows from Corollary 3.20 that
|F’| is even.
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9.2. Modules of the outside graph. We begin with two preliminary re-
sults on the isolated vertices of an outside graph. We utilize the following
remark.

Remark 9.13. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. It follows from Remark 3.15 that for each B € p(, x) ~ {Exts(X)},
L5, x)[B] is empty. In other words, if Ext,(X) = @, then I', x) is multi-
partite with partition p(, x (see Lemma 3.13).

Lemma 9.14 (Breiner et al.™![5]). Given a 2-structure o, consider X ¢
V(o) such that o[X] is prime.
(1) If M is a module of o such that X ¢ M, then the elements of V(o) \
M are isolated vertices of T, xy.
(2) Givenye X, if M is a module of o such that M nX = {y}, then the
elements of M~ {y} are isolated vertices of I' (5 xy-

Proof. For the first assertion, consider a module M of ¢ such that X ¢ M.
Let v € V(o) N~ M. Moreover, consider w € (V(o) ~ X) \ {v}. We have to
verify that
o[X u{v,w}] is decomposable.

By Remark 3.16, (V (o) ~ M) < (X),. It follows from Remark 9.13 that
o[X u{v,w}] is decomposable when w ¢ M. Now, suppose that w e M \ X.
By assertion (M2) of Proposition 2.5, M n (X u{v,w}), which is X u {w},
is a module of o[ X U {v,w}]. Thus, o[ X U {v,w}] is decomposable.

For the second assertion, consider y € X and a module M of ¢ such that
MnX ={y}. Let ve M\ {y}. Moreover, consider w € (V (o)~ X) \ {v}.
We have to verify that

o[X u{v,w}] is decomposable.

By Remark 3.16, M ~ {y} ¢ X,(y). It follows from Remark 9.13 that o[ X U
{v,w}] is decomposable when w € M. Now, suppose that w ¢ M. By
assertion (M2) of Proposition 2.5, M n (X u {v,w}), which is {y,v}, is a
module of o[ X U {v,w}]. Thus, o[ X u{v,w}] is decomposable. O

The next result is an immediate consequence of Remark 3.16 and Lemma
9.14.

Corollary 9.15. Given a 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. If o admits a nontrivial module M such that M n X + &, then
I'(5,x) possesses isolated vertices.

Now, we study the modules of the outside graph. We need the following
refinement of the outside partition (see Notation 3.12).

Notation 9.16. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. We consider the following subsets of V(o) \ X

9-1Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 2.7]).
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o fore, feE(o),

<X>c(re’f) =(X)sn N(Se’f)(y) (see Notation 3.7),

where y € X;
e fore, feE(o) and ye X,

XD (y) = X, (y) n N (y) (see Notation 3.7).

The set {Exto (X)}o{(X) e, f e E(o)}u{XD () re, f e E(o),ye X}
is denoted by q(, x)-

Lemma 9.17. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. Suppose that statement (S1) holds. Given M ¢ (V(o)\ X), if M
is a module of o, then M is a module of I' (5 x), and there exist By € p(,, x)
and By € q(x) such that M € B, € By, and M is a module of o[ B,].

Proof. Consider a module M of ¢ such that M n X = @. Let v e M. Denote
by B, the unique block of ¢, x) containing v. Consider w € M {v}. Since
M is a module of o such that M n X = @, we have y «—, {v,w} for every
y € X. It follows that w € B,. Consequently, M ¢ B,;. Denote by B, the
unique block of p(,, x) containing B;. We obtain

M < B, < B,.

Since M is a module of o, M is a module of o[B,] by assertion (M2) of
Proposition 2.5.

Lastly, we prove that M is a module of T'¢, x). Let we (V(o) ~ X)\ M.
Recall that Ext,(X) = & because statement (S1) holds. If w € B), then it
follows from Remark 9.13 that {v,w} ¢ E(I'(, x)) for every v € M. Hence,
suppose that w e (V (o) N\ X) \ B,. Since Ext,(X) = &, we distinguish the
following two cases.

CasE 1: By, =(X),.

Consider y € X and u € M.

First, suppose that u «—, {y,w}. Let v € M. Since M is a module of
o, we obtain v «—, {y,w}. Since v «—, X, we obtain v «—, X u{w}.
Hence, X u{w} is a module of o[X U {v,w}]. Tt follows that {v,w} ¢
E(F(U,X))'

Second, suppose that u «f>, {y,w}. Let ve M. Since M is a module of
o, we have v <f>, {y,w}. Thus, X u{v} is not a module of o[ X u{y,v}].

It follows from assertion (Q1) of Corollary 3.18 that {v,w} € E(T'(, x))-
CASE 2: By, = X,(y), where y € X.

Consider u € M.

First, suppose that w «<—, {y,u}. Let v e M. Since M is a module of o,

we obtain w <—, {y,v}. Since {y,v} is a module of o[ X u{v}], {y,v} is

a module of o[ X u {v,w}]. It follows that {v,w} ¢ E(I'(, x)) for every

velM.
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Second, suppose that w </, {y,u}. Let v € M. Since M is a module
of o, we obtain w </, {y,v}. Therefore, {y,v} is not a module of
o[X u{v,w}]. It follows from assertion (Q2) of Corollary 3.18 that
{v,w} € E(F(U,X))- U

The opposite direction in Lemma 9.17 is false. Nevertheless, it is true for
(finite) graphs (see the second assertion of [5, Lemma 2.6]). Moreover, the
opposite direction in Lemma 9.17 is true if we require that statement (S3)
holds (see Corollary 9.19 below). We need the following fact.

Fact 9.18 (Breiner et al.”%[5]). Given a 2-structure o, consider X ¢ V(o)
such that o[ X ] is prime. Suppose that statement (S3) holds. Given distinct
elements u,v,w of V(o) N X, if {u,v}, {u,w} € E(T'(, x)), then {v,w} is
a module of o[ X v {u,v,w}], and hence there exists By € q(o,x) such that
v,w € By.

Proof. Since {u,v} € E(T'(, x)), o[ X u{u,v}] is prime. Set
Y = X u{u,v}.

Since statement (S3) holds,
w ¢ Exty (V).

For a contradiction, suppose that w € (Y),. We obtain that X u {u,v} is
a module of o[ X U {u,v,w}]. By assertion (M2) of Proposition 2.5, X U
{u} is a module of o[X U {u,w}], which contradicts {u,w} € E(I'¢, x)).
Consequently,

w¢(Y),.

It follows from Lemma 3.13 that there exists z € Y such that
w e Yy(2).

Hence, {z,w} is a module of o[ X U {u,v,w}]. By assertion (M2) of Propo-
sition 2.5, (X u{u,w})n{z,w} is a module of o[ X u{u,w}]. Since {u,w} €
E(T(4xy), (X u{u,w})n{z,w} is a trivial module of o[ X u {u,w}]. Since
w e (X u{u,w})n{z,w}, we obtain z ¢ X u{u}. It follows that z = v.
Therefore, w € Y,(v), that is, {v,w} is a module of o[ X U {u,v,w}]. By
Lemma 9.17, there exists By € q(,,x) such that v, w € By. O

The next result follows from Fact 9.18.

Corollary 9.19. Given a 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. Suppose that statement (S3) holds. Consider M < (V (o) \ X)
such that there exist By € p(, x) and By € q(, x) with M € By € By,. Suppose
that M is a module of o[Bp]. If M is a module of I'(, xy, then M is a
module of .

9-2Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 4.3]).
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Proof. Suppose that M is a module of I'(, x). Consider u,v € M and w €
V(o) N~ M. It suffices to verify that
(9.2) w «—, {u,v}.
Since M is a module of o[ B)], (9.2) holds when w € B,\ M. Furthermore, by
Remark 9.4, statement (S1) holds because statement (S3) holds. It follows
that

Ext,(X) = @.
Since u and v belong to the same block of q(4 x), (9.2) holds when w € X.
Now, suppose that

weV(o)N (XuUB,y).

Since M is a module of I, x, we have

{u7 w}7 {1)7 ’LU} € E(P(G,X))
(9.3) or
{uvw}7 {v7w} ¢ E(F(O',X))‘
Suppose that {u,w}, {v,w} € E(T'(, x)). By Fact 9.18, {u,v} is a module
of o[ X u{u,v,w}], so (9.2) holds.
Lastly, suppose that {u,w}, {v,w} ¢ E(I'(, x)). Since Ext,(X) = &, we
distinguish the following two cases.
CASE 1: By, = (X),.
Since {u,w}, {v,w} ¢ E(T'(4 x)), it follows from assertion (Q1) of Corol-
lary 3.18 that X u {w} is a module of o[ X U {u,w}] and o[ X U {v,w}].
Given y € X, we obtain u «—, {y,w} and v «<—, {y,w}. Since u,v € B,
and B, € (X)s, ¥y <= {u,v}. It follows that (9.2) holds.
CASE 2: B, = X,(y), where y e X.
Since {u,w}, {v,w} ¢ E(T'(4 x)), it follows from assertion (Q2) of Corol-
lary 3.18 that {y,u} is a module of o[ X U{u,w}], and {y,v} is a module
of o[ X u{v,w}]. Therefore, we have w «—, {y,u} and w «—, {y,w}.
It follows that (9.2) holds. O

The next fact follows from Lemma 9.17.

Fact 9.20 (Breiner et al.?3[5]). Given a 2-structure o, consider X ¢ V(o)
such that o[ X] is prime. Suppose that statement (S3) holds. Given By, Dy, €
P(o0,x), consider u € B, and v,w € Dy, such that {u,v} € E(I'(, x)) and
{u,w} ¢ E(T5x))-

(1) If Dp = (X)o, then X u{u,v} is a module of o[ X U {u,v, w}].

(2) If Dy = X,(y), where y € X, then {y,w} is a module of o[X U

{u, v, w}].

Proof. To begin, we establish two preliminary statements (see (9.4) and
(9.5)). Since {u,v} € E(T(4,x)), o[X u{u,v}] is prime. Set

Y = X u{u,v}.

9-3Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 4.4]).
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Since statement (S3) holds,

w ¢ Exty (V).
Since {u,v} € E(T'(, x)), we have
(9.4) B, +D,

by Remark 9.13. For a contradiction, suppose that w € Y, (u). Hence, {u,w}
is a module of o[ X U{u,v,w}]. By Remark 9.4, statement (S1) holds because
statement (S3) holds. It follows from Lemma 9.17 applied to o[ X u{u, v, w}]
that B, = D, which contradicts (9.4). Thus,

w ¢ Yy(u).

Now, suppose for a contradiction that w € Y, (v). Hence, {v,w} is a module
of o[ X u{u,v,w}]. Tt follows from Lemma 9.17 applied to o[ X U {u,v, w}]
that {v,w} is a module of I'(, x), which is impossible because {u,v} €
E(T(4xy) and {u,w} ¢ E(T'(, x)). Therefore,

w ¢ Yy (v).
Since w ¢ (Y5 (u) uY,(v)), it follows from Lemma 3.13 applied to o[Y'] that
(9.5) w e (Y), or weY,(y), where y € X.

First, suppose that D), = (X),. If w € Y, (y), where y € X, then w € X, (y),
and hence w € Y, (y) n(X),, which contradicts Lemma 3.13. It follows from
(9.5) that w € (Y),, that is, X u{u,v} is a module of o[ X U {u,v,w}].

Second suppose that D, = X,(y), where y € X. If w € (Y),, then w ¢
(X)s, and hence w € X,(y)n(X),, which contradicts Lemma 3.13. It follows
from (9.5) that w € Y,(z), where z € X. Hence, we have w € X,(z). We
obtain w € X,(y) N X,(z). By Lemma 3.13, we have y = z. Consequently,
w € Yy (y), that is, {y,w} is a module of o[ X U {u,v,w}]. O

The next two results follow from Fact 9.20.

Corollary 9.21. Given a 2-structure o, consider X ¢ V(o) such that
o[X] is prime. Suppose that statement (S3) holds. Let By € q(o,xy. For
each v € (V(o) N X)\ By, {u € By : {u,v} € E(T(,x))} and {u € By :
{u,v} ¢ E(T(5,x))} are modules of o[By]. Precisely, if {u € By : {u,v} €
E(Cex))} # @ and {u € By : {u,v} ¢ E(T'(, x))} # @, then the following
two assertions hold.

(1) If By = (X)) where e, f € E(o), then

[{ueBy:{u,v} ¢ E(T(5.x))}, {ue By {u,v} € E(T (5. x))} o = (f€)
(see Notation 2.1).

(2) If By = X597 (a), where a € X and e, f € E(0), then

[{ueBy:{u,v} § E(T(sx))}, {ue By: {u,v} € E(T(6.x))}Ho = (e, f)-
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Proof. Let v e (V(o)\X)\ By. Suppose that {u € By : {u,v} € E(T'; x))} #
@ and {u € By : {u,v} ¢ E(I'(;x))} # @. Consider u",u” € B, such that
{u",v} € E(T(4xy) and {u",v} ¢ E(['(4x)). We distinguish the following
two cases.
CasE 1: By = (X)f,e’f), where e, f € E(0).
By the first assertion of Fact 9.20 applied to u*,u™,v, X u{u*,v} is a
module of o[ X u{u*,u",v}]. Since u~ € (X)Ef’f), we obtain [u”,u*], =
(f.e)-
CASE 2: B, = XC(,e’f)(y), where y € X and e, f € E(0).
By the second assertion of Fact 9.20 applied to v*,u”,v, {y,u"} is a
module of o[ X u {u*,u",v}]. Hence, [u",u"], = [y,u"],. Since u* €
x50 (y), we obtain [y, u*]s = (e, f), 50 [u,u*]o = (e, f): =

The proof of the next corollary follows from Corollary 3.18 and Fact 9.20.

Corollary 9.22 (Breiner et al.>4[5]). Given a 2-structure o, consider X ¢
V(o) such that o[ X] is prime. Suppose that statement (S3) holds. If o is
prime, then I x) has no isolated vertices.

Proof. We denote by Z the set of the isolated vertices of I'; x). By Re-
mark 9.4, statement (S1) holds because statement (S3) holds. Therefore, we
have Ext,(X) = @. By Lemma 3.13, to show that Z = &, it suffices to verify
that

(9.6) In(X), =9
and
(9.7) InX,(y)=0

for each y € X.

To verify that (9.6) holds, we show that V (o)~ (Zn(X),) is a module of
o. Consider u e Zn(X), and v e V(o) (Zn(X),). We verify that X u{v}
is a module of o[X U {u,v}]. This is clear when v € X because u € (X),.
Hence, suppose that v ¢ X. We distinguish the following two cases.

CASE 1: v ¢ (X),.
Since u € Z, we have {u,v} ¢ E(T'(, x)). It follows from assertion (Q1)
of Corollary 3.18 that X u{v} is a module of o[ X U {u,v}].

CASE 2: ve(X),.
Since v € V(o) N (Zn(X),), we have v ¢ Z. Since v ¢ Z, there exists
w € V(o) \ X such that {v,w} € E(I'(, x)). Since u € Z, we have {u,w} ¢
E(T(4.xy)- By the first assertion of Fact 9.20, X u {v,w} is a module
of o[X U {u,v,w}]. By assertion (M2) of Proposition 2.5, X u {v} is a
module of o[ X U {u,v}].

In both cases above, X u{v} is a module of o[ X u{u,v}]. It follows that
V(o) N (Zn(X)s) is a module of o. Since o is prime, V(o) N (Zn (X)) is

94Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Corollary 4.5]).
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a trivial module of o. Thus, we obtain V(o) N\ (Zn(X),) = V(o). Hence,
(9.6) holds.

To verify that (9.7) holds, consider y € X. We show that {y}u(ZnX,(y))
is a module of 0. Consider u e Zn X, (y) and v e V(o) {y}u(ZnX,(y))).
We verify that {y,u} is a module of o[X U {u,v}]. This is clear when
ve X N {y} because u € X,(y). Hence, suppose that v ¢ X. We distinguish
the following two cases.

CASE 1: v ¢ X, (y).
Since u € Z, we have {u,v} ¢ E(I'(, x)). It follows from assertion (Q2)
of Corollary 3.18 that {y,u} is a module of o[ X U {u,v}].

CASE 2: ve X, (y).
Since v € V(o) N~ ({y}u(Zn X,(y))), we have v ¢ Z. Since v ¢ Z, there
exists w € V(o) N X such that {v,w} € E(I'(, x)). Since u € Z, we have
{u,w} ¢ E(I(4,x)). By the second assertion of Fact 9.20, {y,u} is a
module of o[ X U {u,v,w}]. By assertion (M2) of Proposition 2.5, {y,u}
is a module of o[ X U {u,v}].

In both cases above, {y,u} is a module of o[ X u {u,v}]. It follows that
{y}u(ZnX,(y)) is a module of . Since o is prime, {y} U(ZnX,(y)) is a
trivial module of 0. Thus, we obtain Zn X, (y) = @. Hence, (9.7) holds. O

9.3. Blocks of the outside partition and of its refinement.

Lemma 9.23. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that statement (S3) holds. Consider e, f € E(c), andye X.
If T, x) does not have isolated vertices, then the following two assertions
hold
(1) if (X)((,e’f) + &, then (X)((,e”f,) =@ for any €', f' € E(o) such that
{e/, [y #{e, [}
(2) if Xge’f)(y) + @, then X(Se”f/)(y) =@ for any €', f' € E(o) such that
{e', [} #{e, [}
Proof. Consider e, f,e’, f' € E(o). For the first assertion, suppose that there
exist v € (X)((f’f) and v’ € (X)((f,’f,). We have to prove that

(9-8) {e.fy=A{e" "}

Since v,v" € (X)y, we have {v,v'} ¢ E(I'(,x)) by Remark 9.13. Fur-
thermore, since I'(, x) does not have isolated vertices, there exist w,w’ €
(V(o) ~ X) ~ {v,v"} such that {v,w},{v',w'} € E(T(, x)). Suppose that
w = w'. We obtain {w,v},{w,v'} € E(I'(, x)). It follows from Fact 9.18
that (e, f) = (¢', f'), so (9.8) holds. We obtain the same conclusion when
{v,w'} € E(T(4,x)) or {v',w} € E(T'(4,x)). Thus, suppose that w # w', and
{v,w'}, {v',w} ¢ E(T'(4x)). It follows from the first assertion of Fact 9.20
applied to v,v",w’ that X u {v’,w'} is a module of o[ X U {v,v',w’}]. Since
Ve (X)((,e’f), we obtain [v,v"], = (f,e). Similarly, it follows from the first
assertion of Fact 9.20 applied to v,v’,w that [v',v], = (f',€"). Therefore,
we have e = f’ and e’ = f. Consequently, (9.8) holds.
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For the second assertion, suppose that there exist v € Xée’f )(y) and v’ €
Xge,’f/)(y), where y € X. We have to prove that (9.8) holds. Since v,v" €
X, (y), we have {v,v'} ¢ E(I'(, x)) by Remark 9.13. Furthermore, since
I'(5,x) does not have isolated vertices, there exist w,w’ € (V (o)~ X)\{v,v"}
such that {v,w},{v',w'} € E(I'(, x)). Suppose that w = w’. We obtain
{w,v},{w,v"} € E(T' (4 x)). By Fact 9.18, (e, f) = (¢, f'), so (9.8) holds. We
obtain the same conclusion when {v,w'} € E(I'(, xy) or {v',w} € E(T'(; x))-
Now, suppose that w # w’, and {v,w'}, {v',w} ¢ E(T'(, x)). It follows from
the second assertion of Fact 9.20 applied to v,v’, w’ that {y,v} is a module
of o[ X U {v,v",w'}]. We obtain [v',y]s = [v',v],. Since v € X(ge,’f’)(y),
we have [y,v']s = (¢/, f'). Therefore, we obtain [v',v], = (f',€’). Similarly,
it follows from the second assertion of Fact 9.20 applied to v,v’,w that
[v,9']5 = (f,e). Thus, we have e = f" and ¢’ = f. Consequently, (9.8)
holds. O

Lemma 9.24. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that statement (S3) holds. Consider e, f e E(o) andye X.
Suppose that

(9.9) e+ f.

If T4, x) does not have isolated vertices, then the following two assertions

hold
1) if (X)) 1 @ and (X)) + @, then (X)) (X)), = (f,¢);
@) if X3P () = @ and X8 (y) 2 @, then (X5 (), X ()], =
(f.e).

Proof. For the first assertion, consider v € (X)((,e’f) and v’ € (X)gf’e). Since
v,v" € (X)g, we have {v,v'} ¢ E(T(,x)) by Remark 9.13. Furthermore,
since ', y) does not have isolated vertices, there exists w’ e (V (o)~ X) \
{v,v"} such that {v",w'} € E(T'(,x)). Suppose for a contradiction that
{v,w'} € E(T(5x)). We obtain {v,w'},{v',w'} € E(T'¢, x)). It follows
from Fact 9.18 that e = f, which contradicts (9.9). Therefore, we have
{v,w'} ¢ E(T'(5x))- It follows from the first assertion of Fact 9.20 applied to
v, v, w’ that X u{v’,w'} is a module of o[ X U{v,v’,w'}]. Since v € (X)((,e’f),
we obtain [v',v]s = (e, ).

For the second assertion, consider v € Xge’f)(y) and v’ € Xéf’e)(y). Since
v,v" € Xo(y), we have {v,v'} ¢ E(I'(, x)) by Remark 9.13. Furthermore,
since T'(,, x) does not have isolated vertices, there exists w’ € (V(o) ~ X) \
{v,v"} such that {v',w'} € E(T'(, x)). Suppose for a contradiction that
{v,w'} € B(T'(,x)). We obtain {v,w'},{v",w'} € E(T', x)). It follows
from Fact 9.18 that e = f, which contradicts (9.9). Therefore, we have
{v,w'} ¢ E(T'(5.x))- It follows from the second assertion of Fact 9.20 applied
to v,v",w’" that {y,v} is a module of o[X U {v,v',w’'}]. Thus, we obtain
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[v,v']5 = [y,v"]5. Since v’ € ng’e)(y), we have [y,v"]s = (f,e€), so [v,0'], =
(f,e)- 0

To state the next result, we use the following notation and definition.
Notation 9.25. Let o be a 2-structure. For e € E(c) and W € V (o), set
e[W]=en (W xW).

Given e € E(o) and W € V(0), we do not have e € E(c[W]), but we have
e[W]e E(c[W]) when e[W] # @.

Lemma 9.26. Given a 2-structure o, consider X ¢ V(o) such that o[ X] is
prime. Suppose that statement (S3) holds. If o is prime, then the next two
assertions hold.

(1) Letee E(o). If |<X)((,e’e)| >2, then o[(X),] is constant and
E(o[{X)s]) = {e[{X)s]}.

Similarly, given y € X, if |X§e’€)(y)| > 2, then o[ X, (y)] is constant
and E(o[Xq(y)]) = {e[Xo(y)]}-

(2) Consider distincte, f € E(o). If|(X>((,e’f)| >2, then o[(X)s] is linear
and

E(o[{X)o]) = {e[{X)o], F[(X)o]}-

Similarly, given y € X, if |X§e’f)(y)| > 2, then o[X,(y)] is linear
and E(o[Xs(y)]) = {e[Xo (1)), F[Xo(y)]}-

Proof. Consider By € q(,, x), With |By| > 2. There exist e, f € E(o) such that

B, = (X),(,e’f) or Xge’f)(y), where y € X. Consider C € C. p(0[By]) (see
Definition 2.2). We prove that C'is a module of o. We utilize Corollary 9.19
in the following manner. Since By € q(, x), there exists B, € p(, x) such that
B, € By,. By Lemma 2.4, C is a module of o[By].

Now, we show that C' is a module of o[ By]. Suppose that e = f. It follows
from Lemma 9.23 that B, = B,. Hence, C' is a module of ¢[B,]. Suppose
that e # f. If B, = B, then we proceed as previously. Hence, suppose that
By # By. Tt follows from Lemma 9.23 that B), \ By € q(, x) and

(X)§7 if B, = (X))
B,~B;= jor
X9 () it B, = X5 ().

It follows from Lemma 9.24 that B, is a module of ¢[B,]. Since C is a
module of o[ By], it follows from assertion (M3) of Proposition 2.5 that C' is
a module of o[ Bp].

Lastly, we prove that C' is a module of I'¢; x). Since C' € By, we have
{c,v} ¢ E(T'(4,x)) for ce C and v € B, ~ C by Remark 9.13. Therefore, we
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have to verify that C' is a module of I'(, x)[C U {v}] for each v € (V(o) \
X)NBy. Let ve (V(o) N X) N\ B,. Set

C"=CnNr,,(v) and C” =C~ Nr,  (v).

For a contradiction, suppose that C~ +# @ and C* # @. It follows from
Corollary 9.21 that [C7,C"], = (e, f) or (f,e), which contradicts C €
Cie,r3(0[By]). Therefore, C~ = @ or C* = @, that is, C is a module of
L' x)[Cu{v}] for each v e (V(o)\ X)\ By. Thus, C is a module of ', y).
Consequently, C' is a module of o[B,] and C is a module of I', x). It
follows from Corollary 9.19 that C' is a module of ¢. Since ¢ is prime, C' is
trivial. Hence, we obtain |C| = 1 because C # @ and Cn X = @. We conclude
as follows by distinguishing the following two cases.
CASE 1: e = f.
Recall that B, = B, by Lemma 9.23. Hence, all the {e, f}-components
of o[B,] are reduced to singletons. It follows from Proposition 2.8 that
o[B,] is constant. Precisely, it follows from Lemma 2.4 that (v,w), =€
for distinct v, w € Bp. In other words, o[B,] is constant and E(o[B,]) =
{e[Bpl}-
CASE 2: e+ f.
For instance, suppose that B, = (X)C(,e’f). All the {e, f}-components
of o[(X )((fe’f )] are reduced to singletons. It follows from Proposition 2.8
that o[ B,] is linear. Precisely, it follows from Lemma 2.4 that (v, w), =€

or f for distinct v,w € B,. In other words, a[(X)ge’f)] is linear and
E(o[(X)5°7]) = {e[ (X)), 10513,

Lastly, suppose that B, ¢ B),. It follows from Lemma 9.23 that B, \ B, =
(X)((Tf’e). Similarly, we have a[(X)C(,f’e)] is linear and E(a[(X)f,f’e)]) =
{e[(X)gf’e)], f[(X)((Tf’e)]}. Moreover, we have

(0D (X)F o = (fe)

by the first assertion of Lemma 9.24. Consequently, o[(X),] is linear
and E(o[(X)s]) = {e[(X)o], F[{X)o]}- 0

We complete subsection 9.3 with a result on the components of the outside
graph, which follows from Fact 9.18 and the following easy consequence of
Fact 9.20. We use the following notation.

Notation 9.27. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. First, the set {(X)((,e’e) tee€ E(U)}U{Xée’e)(oz) tee E(o),ae X}is
denoted by qf, y. Second, the set q(5 x) N (¢(, x) Y {Exty(X)}) is denoted
by 4(; xy-

Fact 9.28. Given a 2-structure o, consider X & V(o) such that o[X] is
prime. Suppose that statement (S3) holds. Consider distinct v,v',w,w' €
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V(o) N~ X such that

{v,w}, {v, 0"} € E(T (4 x))
and

{v, '} {v", w} ¢ BT, x))-
If there exists By € q(5,x) such that w,w’ € By, then By € qfa X)*

Proof. Since w and w' belong to the same block of p(, xy, we have {w,w'} ¢
E(T(4.xy) by Remark 9.13. Besides, there exist e, f € E(o) such that B, =
(X)((,e’f) or By = Xée’f)(y), where y € X.

First, suppose that B, = (X)((Te’f). By the first assertion of Fact 9.20
applied to v,w,w’, X u {v,w} is a module of o[X U {v,w,w'}]. Since
w' € (X)C(,e’f), we have [w', X], = (f,e). It follows that [w',w], = (f,e).
Similarly, it follows from the first assertion of Fact 9.20 applied to v, w,w’
that [w’,w]s = (e, f). Thus, we obtain e = f, and hence By € qfo x)-

Second, suppose that B, = Xée’f)(y), where y € X. By the second asser-
tion of Fact 9.20 applied to v, w,w’, {y,w'} is a module of o[ X U{v,w,w'}].
Thus, we have [w,w'], = [w,y],. Since w € Xée’f)(y), we have [w,y], =
(f,e). We obtain [w,w'], = (f,e). Similarly, it follows from the second
assertion of Fact 9.20 applied to v',w,w’ that [w’',w], = (f,e). Therefore
e=f, so quqfa,x)' O

Proposition 9.29. Given a 2-structure o, consider X ¢ V(o) such that
o[X] is prime. Suppose that statement (S3) holds. If L'(,x) does not have
isolated vertices, then the following two assertions hold.

(1) For each component C of ', x, there exist distinct By, D) € p(4, x)
and By, Dq € q(4,x) such that B, € By, D, € Dy, and C is bipartite
with bipartition {V(C)n By, V(C) nDy}.

(2) For a component C of I'(, xy and for By € q?mX), if V(C)nBy+ @,
then By c V(CO).

Proof. For the first assertion, consider a component C of I, x. Since I, x)
does not have isolated vertices, v(C) > 2. Hence, there exist distinct ¢, d €
V(C) such that {c,d} € E(I'(, x)). Furthermore, there exist By, D), € p(,. x)
and By, Dy € q(5,x) such that c e By, d € Dy, B, € By, and D, € D). Since
{e,d} € E(T'(4 x)), we have B), # D), by Remark 9.13. Let v e V(C) \ {c,d}.
Since C'is a component of ', yx, there exists a sequence vy, . .. , v, of vertices
of C satisfying

o vy € {c,d};

o v, =v; {vg,...,von}n{c,d} ={vo};

o fori,je{0,...,n}, {vi,v;} € E(I'(, x)) if and only if |i - j| = 1.
Since vy € {c,d} and v, € V(C) \ {¢,d}, we have n > 1. We distinguish the
following two cases.

CASE 1: n is even.
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It follows from Fact 9.18 that vg,vs,...,v, belong to the same block of
(o,x)- Since vg € {c,d} and v, = v, we obtain v € By U D,.
CASE 2: n is odd.

Set
dif vg=c
v_1 = sand
c if Vo = d.

We have v_1 € B,uD,. By considering the sequence v_1vy ... vy, it follows
from Fact 9.18 that v and v_; belong to the same block of g, x). Hence,
v e ByuD,.
Therefore, we obtain V/(C') \ {¢,d} ¢ B;u D, and hence V(C) ¢ B,u D,.
By Remark 9.13, C' is bipartite with bipartition {V(C) n B, V(C) n D,}.
For the second assertion, consider a component C' of I, x) and an element
By of q(, x such that V(C)n B, #+ @. Consider v € V(C)n B,. For a

contradiction, suppose that
B, NV (C) # 2,

and consider v’ € By N\ V(C). Since I'(5,x) does not have isolated vertices,
there exist u € (V (o) N~ X) N {v} and v/ € (V(o) ~ X) ~ {v'} such that
{u,v},{v/,v"} € E(T (4 x)). Furthermore, since C' is a component of T'(, x,
withv e V(C) and v’ ¢ V(C'), we obtain u € V(C) and v’ ¢ V(C). Therefore,
u # v, and {u,v"}, {v',v} ¢ E(T(, x)). Tt follows from Fact 9.28 that B, €
qu X)» which contradicts By € qzla, X): Consequently, we have B, c V(C). O

9.4. Proofs of Theorems 9.5 and 9.6. We use the following notation.

Notation 9.30. Given a graph I', C(I") denotes the set of the components
of T.

Proof of Theorem 9.5. To begin, suppose that ¢ is not prime. We prove that
there exists C' € C(I'(,,x)) such that o[ XuV (C')] is not prime. First, suppose
that ', x) admits isolated vertices. Hence, consider v € V(o) \ X such that
{v} € C(T(4,x))- Since statement (S3) holds, Ext,(X) = & by Remark 9.4.
Thus o[ X u {v}] is not prime. Second, suppose that I'(, x) does not have
isolated vertices. Since o is not prime, o admits a nontrivial module M. It
follows from Corollary 9.15 that M n X = @. By Lemma 9.17, there exists
By € ps,x) such that M € B, and M is a module of ', x). Let u € M.
Since I, x) does not have isolated vertices, there exists v € (V (o)~ X)\{u}
such that {u,v} € E(T'(, x)). Since M ¢ B),, we have v ¢ M by Remark 9.13.
Denote by C' the component of I, x) containing u. We obtain v € V(')
because {u,v} € E(I'(;x)). Since M is a module of I'¢, x), we obtain
{u',v} € E(T(5x)) for every u' € M. Therefore, we have M ¢ V(C). Tt
follows that M is a nontrivial module of o[ X uV(C)].

Now, we suppose that there exists C' € C(T'(,,x)) such that o[ X uV(C)]
is not prime. Since o[X uV(C)] is not prime, we have v(C) # 2. Assume
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that v(C') > 4. We have to prove that C is not prime. Consider a nontrivial
module M of o[ X uV(C)]. Clearly, o[ X uV(C)] satisfies statement (S3).
Moreover,

Lorxuvenviey = ¢
Since v(C') >4, it follows from Corollary 9.15 applied to o[ X uV(C)] that
M cV(C). By Lemma 9.17 applied to o[ X uV(C)], there exists

By € pio[xuv(e)],v(c))

such that M ¢ B, and M is a module of C. We have to verify that M #
V(C). Let uwe M. Since v(C) > 4, there exists v € V(C) ~ {u} such that
{u,v} € E(C). In particular, we have v € V(C). Since u € By, we have
v ¢ B, by Remark 9.13 applied to o[ X uV(C)]. Since M ¢ B, we obtain
veV(C)\ M.

Lastly, we suppose that there exists C' € C(I'(, x)) such that v(C) = 1
or v(C) > 3 and C is not prime. We have to prove that ¢ is not prime.
Therefore, by Corollary 9.22, we can suppose that

(9.10) I'(5,x) does not have isolated vertices.

In particular, we obtain v(C) > 3. Consider a nontrivial module M of
C. Clearly, M is a module of I',; xy because C' is a component of I'(, x).
Since I'(, x) does not have isolated vertices by (9.10), it follows from the
first assertion of Proposition 9.29 that there exist distinct By, D), € p(q x)
and By, Dy € q(o,x) such that By € By, Dy € Dy, and C is bipartite with
bipartition {V(C) n By, V(C) n Dy}. Since C is connected, we have M ¢
V(C)n By or M cV(C)n D,. For instance, assume that M c V(C) n B,,.
To conclude, we distinguish the following two cases.

CasE 1: By e quX).

There exists e € E(o) such that B, = (X),(f’e) or Xée’e)(y), where y €
X. If o[Bp] is not constant, then it follows from the first assertion of
Lemma 9.26 that o is not prime. Thus, suppose that o[B,] is constant.
It follows that any subset of B, is a module of o[B,]. In particular, M
is a module of ¢[B,]. Since M is a module of I'¢, x, it follows from
Corollary 9.19 that M is a module of o.
CASE 2: B¢ q?U’X).
Since I' (4, xy does not have isolated vertices by (9.10), it follows from the
second assertion of Proposition 9.29 that

B, cV(C).

In general, M is not a module of ¢[B,], and hence M is not a module of
o[Bp]. Therefore, we cannot apply Corollary 9.19 to M. Nevertheless,
we construct a superset of M, which is a module of I, x) and a module
of o[B,]. Consider the set M of the nontrivial modules M’ of C' such
that M c M'. Set

M =M.
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Clearly, M ¢ M. Since M # @ and all the elements of M contain M,
it follows from assertion (M5) of Proposition 2.5 that M is a module
of C. Since C' is a component of I, x, M is a module of Lio,x). As
previously seen for M, M ¢ V(C)nB, or M ¢ V(C)nD,. Since M ¢ M
and M ¢ V(C) n By, we have M ¢ V(C) n B,. Therefore, M ¢ B,. Set

N={veBy\M:v<f>, M}.

We verify that M u N is a module of C. Tt suffices to show that for any
weV(C)nDy, ue M and v € N, we have {u,w}, {v,w} € E(T(4.xy)
or {u,w},{v,w} ¢ E(T(sx)). Since v € N, there exist u',u" € M
such that v <, {u/,u”}. Furthermore, since M is a module of C,
we have {u,w}, {u',w},{u",w} € E(T(,x)) or {u,w}, {u',w},{u",w} ¢
E(T(5.x))- For instance, suppose that {u,w},{v w},{v" w}
€ E(T'4,x)). By Corollary 9.21, {z € By : {z,v} € E(',x))} is a
module of o[B,]. Since u,u’,u" € {z € By : {z,v} € E(T(,x))} and
v <>, {2',2"}, we obtain v € {z € By : {z,v} € E(T'(,x))}. Hence,
we have {u,w}, {u',w}, {u", w},{v,w} € E(T'(, x)). Similarly, if {u,w},
{u,wh, {u",w} ¢ E(T (4 x)), then if follows from Corollary 9.21 that
{u,w}, {v', w}, {u", w},{v,w} ¢ E(T'(;x)). Consequently, MUuUN is a
module of C. It follows from the definition of M that N ¢ M. There-
fore, we have N = @, and hence, M is a module of o[By]. Since T'(, x)
does not have isolated vertices by (9.10), it follows from Lemmas 9.23
and 9.24 that M is a module of o[Bp]. Lastly, since M is a module of
I'(6,x), it follows from Corollary 9.19 that M is a module of . O

The next result is an easy consequence of Theorem 9.5.

Corollary 9.31. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. If statement (S5) holds, then T, x) does not embed Ps (see Fig-
ure 1.1).

Proof. For a contradiction, suppose that there exists Y < (V (o) \ X) such
that I'(, x)[Y'] = P5. Since Ps is connected, there exists a component C' of
['(4,x) such that Y ¢ V(C'). We have

Lorxuv]x) = Do) Y]

Since T'(5, x)[Y] = C[Y], T'(5xuy],x) is prime. It follows from Theorem 9.5
applied to o[ X uY] that o[ X uY'] is prime, which contradicts the fact that
statement (S5) holds. O

Since the proof of the next observation is obvious, we omit it.

Observation 9.32. Given a connected and bipartite graph I', I' embeds
Ks @ K5 if and only if I' embeds Ps.
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Proof of Theorem 9.6. We make a preliminary observation. Since statement
(S5) holds, it follows from Remark 9.4 that statement (S3) holds as well.

To begin, suppose that the first assertion holds, that is, o is (V (o) \ X)-
critical. We have to prove that the second assertion holds. Consider C' ¢
C(T'(s,x))- By Theorem 9.5 applied to o, o[X uV(C)] is prime. We have
to show that o[X u V(C)] is V(C)-critical. Let ¢ € V(C). Since o is
(V (o) \ X)-critical, o — ¢ is not prime. We have

F(U—C,X) = F(J,X) - C

Therefore, we obtain

(9.11) C(Tr-c,x)) = (C(T (4 x)) N{CHUC(C = 0).

Since ¢ — ¢ is not prime, it follows from Theorem 9.5 applied to o — ¢ that
there exists C' € C(I'(5—¢,x<{c})) such that ¢[X uV(C’)] is not prime. By
(9.11), C" € (C(T'(4,x)) N {C}) UC(C - ¢). By Theorem 9.5 applied to o,
o[X uV(D)] is prime for every D € (C(T'(5,x)) ~ {C}). Thus, we obtain
C" € C(C - ¢). Finally, since

Loxovoy-evene) =C —¢
it follows from Theorem 9.5 applied to o[ X UV (C)]-c that o[ XUV (C)]-¢
is not prime. Consequently, o[ X uV(C)] is V(C')-critical.

To continue, suppose that the second assertion holds. We have to prove
that the third assertion holds. Consider C' € C(I'(, x)). By Theorem 9.5
applied to o, v(C) =2 or v(C) >4 and C is prime. Suppose that v(C) >4
and C' is prime. We have to show that C is critical. Let c € V(C). We have
to show that C' — ¢ is not prime. If C - ¢ is disconnected, then C - ¢ is not
prime. Thus, suppose that C — ¢ is connected. It follows that

Lioxuven-evonge =C - ¢
Since the second assertion holds, o[ X uV(C)] - ¢ is not prime. It follows
from Theorem 9.5 applied to o[ X UV (C)] - ¢ that C - ¢ is not prime.
Lastly, suppose that the third assertion holds. Hence, for every C' ¢
C(T(5,x)), we have

(9.12) v(C) =2 or v(C) >4 and C is critical.

We have to prove that o is (V (o) \ X)-critical. By Theorem 9.5 applied to
o, o is prime. Let v € V(o) N\ X. We have to prove that ¢ — v is not prime.
Denote by C' the component of I'(, xy containing v. Since o is prime, it
follows from Corollary 9.22 that I, x) has no isolated vertices. By the first
assertion of Proposition 9.29, C' is bipartite. Moreover, C does not embed
Ps by Corollary 9.31. It follows from Observation 9.32 that C' does not
embed Ky & K5. Therefore,

(9.13) C - v does not embed K5 & K.
As seen in (9.11),
(9.14) C(C - U) c C(P(a—v,X))-
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Suppose that C' - v admits isolated vertices. By (9.14), I'(,_, x) admits
isolated vertices as well. It follows from Corollary 9.22 that ¢ — v is not
prime. Finally, suppose that C'—v does not admit isolated vertices. Hence,
v(C") > 2 for each C' € C(C - v). In particular, we do not have v(C) = 2. Tt
follows from (9.12) that

(9.15) v(C) >4 and C is critical.

Since v(C") > 2 for each C' € C(C - v), it follows from (9.13) that C' —v
is connected. By (9.14), C' - v € C(T'(4_5 x)). Furthermore, it follows from
(9.15) that v(C' -v) >3 and C' - v is not prime. By Theorem 9.5 applied to
o —v, 0—v is not prime. [l

9.5. Outside graph and half-graph. Given a 2-structure o, consider X ¢
V(o) such that o[ X] is prime. Suppose that statement (S5) holds. Suppose
also that o is (V' (o) \ X)-critical. Consider a component C' of I'(, xy such
that v(C') > 4. By Remark 9.4, statement (S3) holds because statement (S5)
holds. It follows from Proposition 9.29 that C is bipartite. It follows from
Theorem 9.6 that C' is critical. Moreover, since statement (S5) holds, C' does
not embed P5; by Corollary 9.31. In Theorem 9.38 below, we characterize
the bipartite graphs I' such that I" does not embed Ps and T is critical. We
need the following three definitions (see Definitions 9.33, 9.35, and 9.36).

Definition 9.33. We extend to the infinite case the definition of the half-
graph Ha,, (see Figure 4.1). Given a bipartite graph I, with bipartition
{X,Y}, T is a half-graph [15] if there exist a linear order L defined on X,
and a bijection ¢ from X onto Y such that

(9.16) E) ={{z,po(z")}: 2 < 2'}.

Clearly, a finite half-graph is isomorphic to the graph Hs,,, where m > 1
(see Figure 4.1).

Remark 9.34. Given a bipartite graph I", with bipartition {X,Y}. Suppose
that I" is a half-graph. There exist a linear order L defined on X, and a
bijection ¢ from X onto Y such that (9.16) holds. Given x,y € X, we obtain
that

x <p y if and only if Np(x) 2 Np(y).

Therefore, the linear order L is unique.
Furthermore, denote by ¢(L) the unique linear order defined on Y such
that ¢ is an isomorphism from L onto ¢(L). We obtain

EM@) ={y, o (W)} 1y <oy ¥’}

Consequently, T is also a half-graph by considering the linear order ¢(L)*
defined on Y (see subsection 1.3), and the bijection p™!:Y — X.

Definition 9.35. A linear order L is discrete [30] if the following two con-
ditions are satisfied
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(1) for every v e V(L), if v is not the least element of L, then v admits
an immediate predecessor;

(2) for every v € V(L), if v is not the greatest element of L, then v
admits an immediate successor.

Definition 9.36. A half-graph is discrete if the linear order L in Defini-
tion 9.33 is discrete.

In the next observation, we explain how to decompose suitably a discrete
linear order (see Definition 9.35).

Observation 9.37. Given an infinite linear order A, A is discrete if and
only if A admits a modular partition P satisfying the following conditions.
(1) If |P| =1, then A~ Ly or (Ly)* or L.
(2) For each M € P, if M is neither the least nor the greatest element
of the quotient \/P % | then A[M] =~ Ly.
(3) If |P| > 2 and A\/P admits a least element denoted by Min, then
A[Min] ~ Ly or L.
(4) If |P| > 2 and A\/P admits a greatest element denoted by Max, then
A[Max] ~ (Ly)* or Lgz.

Idea of proof. For a linear order, both notions of an interval and a module
coincide. Consider an infinite discrete linear order A\. We define on V()
the binary relation ~ as follows. Given v,w € V(A), v ~ w if the smallest
module of A containing v and w is finite. Clearly, ~ is an equivalence relation.
Furthermore, the equivalence classes of ~ are modules of A\. Thus, the set
P of the equivalence classes of ~ is a modular partition of A. Since A is
discrete, it is is easy to verify that for each M € P, A[M] is isomorphic to
LN, (LN)*, or Lz. O

Theorem 9.38 (Belkhechine et al. [3]). Given a bipartite graph I', with
v(T') >4, the following assertions are equivalent

(1) T is a discrete half-graph;

(2) T does not embed Ps and I' is critical.

Now, we examine Theorem 9.38 in the finite case (see Proposition 9.41).
We need the following result which follows from the characterization of finite
critical 2-structures done in subsection 4.2.

Corollary 9.39. Given a finite and symmetric 2-structure T, with v(T) > 5,
T is critical if and only if T is isomorphic to o(Hay,), where n > 3.

Proof. To begin, suppose that 7 is isomorphic to o(Hz,), where n > 3. By
Corollary 4.20, 7 is critical.

Conversely, suppose that 7 is critical. By Corollary 4.6, there exists n > 3
such that P(7) is isomorphic to P, or there exists n > 3 such that P(7)
is isomorphic to P, & Kiony, Pan+1, or Cont1. Since T is symmetric, it

9-51¢ is easy to verify that a quotient of a linear order is a linear order as well.
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follows from Propositions 4.23, 4.27, and 4.36 that P(7) is not isomorphic
to Pon ® Koy}, Pan+1, or Capi1. Consequently, P(7) is isomorphic to Py, It
follows from Corollary 4.20 that 7 is isomorphic to o(Hay,), where n > 3. O

The next result is an immediate consequence of Corollary 9.39.

Corollary 9.40. Given a finite and bipartite graph I, with v(T') > 5, T is
critical if and only if I' is a half-graph.

Proof. To begin, suppose that T' is critical. We obtain that o(T") is sym-
metric and critical. By Corollary 9.39 that o(T") is isomorphic to o(Hay,),
where n > 3. We obtain that I' is isomorphic to Hs, or its complement Hy,.
Since n > 3, Hy, embeds the complete graph K3. Since I is bipartite, we
obtain that I' is isomorphic to Hs,. As seen at the end of Definition 9.33,
Hy, is a half-graph.

Conversely, suppose that I' is a half-graph. As seen at the end of Defini-
tion 9.33, I" is isomorphic to Hy,, where n > 3. By Corollary 9.39, o(Hay,)
is critical. Hence, Ho, is critical too. Therefore, I' is critical. O

Proposition 9.41. For a finite and bipartite graph T, with v(T') > 4, the
following assertions are equivalent

(1) T does not embed Ps and T is prime;
(2) T is critical;
(3) T is a half-graph.

Proof. First, suppose that v(I') = 4. We have T is prime if and only if T" is
isomorphic to Py, which is isomorphic to the half-graph Hy. Therefore, the
three assertions above are equivalent when v(I") = 4.

Second, suppose that v(I") =5. The first assertion does not hold because
(9.17)

a prime and bipartite graph defined on 5 vertices”

is isomorphic to Ps.

Furthermore, by Corollary 9.40, the last two assertions do not hold because
v(T") is odd. Thus, the three assertions above are equivalent when v(T") = 5.

Now, suppose that v(I") > 6. By Corollary 9.40, the last two assertions
are equivalent. To begin, suppose that the first assertion holds. By (9.17),

(9.18) I' does not embed a prime graph of size 5.

It follows from Theorem 5.3 that v(T") is even. If v(T") = 6, then T is critical
by (9.18). Hence, suppose that v(I") > 7. Since v(I") is even, it follows from
Theorem 5.3 and (9.18) that I' is critical. Consequently, the first assertion
implies the second one.

Lastly, suppose that T is both critical and a half-graph. If v(T") = 6, then
I' does not embed Ps. Suppose that v(I") > 7. Since T is a half-graph, v(T")
is even. Since I is critical, it follows from Corollary 3.20 that I does not
embed Ps. O

The next result is a consequence of Proposition 9.41 and Theorem 7.1.
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Corollary 9.42. A half-graph T, with v(T') >4, is prime.

Proof. There exists a bipartition {X,Y} of V(T"), a linear order L defined on
X, and a bijection ¢ from X onto Y such that E(T') = {{z,p(2')} : x <p 2'}.
By Proposition 9.41, we can suppose that I' is infinite. Consider a finite
subset F' of V(T'). Let X’ be a finite subset of X such that Fn X ¢ X',
¢ H(FnY)c X' and |X'| > 2. Set

F'=X"up(X).

Clearly, we have F' ¢ F’. By considering Y’ = ¢(X’), the linear order
L' = L[X'], and the bijection ¢;x/ : X’ — Y, we obtain that I'[F'] is a
half-graph. By Proposition 9.41, T'[F'] is prime. To conclude, it suffices to
use Theorem 7.1. O

Now, we are ready to demonstrate Theorem 9.38.

Proof of Theorem 9.38. By Proposition 9.41, we can suppose that I" is infi-
nite.

To begin, suppose that I' is a discrete half-graph. There exists a biparti-
tion {X,Y} of V(T'), a discrete linear order L defined on X, and a bijection
¢ from X onto Y such that E(T") = {{z, p(z")} : x <1, 2'}. By Corollary 9.42,
I" is prime. Hence, I' is connected. Since I is a half-graph, I does not embed
Ky @ Ky. It follows from Observation 9.32 that I' does not embed Ps5. Now,
we have to verify that

(9.19) for every x € X, I' —  is not prime.

First, suppose that x is not the least element of L. Since L is discrete, x
admits an immediate predecessor x™. It is easy to verify that {¢(z7), ¢(z)}
is a module of I' — z. Second, suppose that x is the least element of L.
Clearly, ¢(x) is an isolated vertex of I' — z, so I' — z is not prime. Thus
(9.19) holds. Similarly, it follows from Remark 9.34 that I' — y is not prime
for each y € Y. Consequently, I' is critical.

Conversely, suppose that I" does not embed P5 and T is critical. Since I
is bipartite, there exists a bipartition {X,Y} of V(T') such that X and Y
are stable sets of I'. To complete the proof, we establish the next claims.
To begin, we define a linear order L on X as follows.

Definition 9.43. Since I' is prime, we have Np(z) # Nrp(2') for distinct
x,2’ € X. Moreover, since I' does not embed Ps, I does not embed Ko @ K>
by Observation 9.32. It follows that for distinct x,2’ € X, we have Np(z) ¢
Nr(z") or Np(z") € Np(z). Therefore, we can define on X a linear order L
as follows. Given distinct z, 2" € X,

x <y o' if Np(x) 2 Np(z').
We show that I' is the half-graph defined from the linear order L (see

Claim 9.51). We have also to define a suitable bijection from X onto Y (see
Definition 9.47). We use the fact that I is critical.
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Claim 9.44. Given x € X, if I' — x is disconnected, then the following
assertions hold

(1) I' =z admits a unique isolated vertex i, and i, €Y;
(2) Nr(z) =Y, so x is the least element of L;
(3) iy is the unique element of V(') N{x} such that T —{x,i,} is prime.

Proof. Since I' is connected, the set of the isolated vertices of I' — x is a
module of I". Thus, we have

HCeC(T-z):v(C)=1}<1.

Furthermore, since I' does not embed Ky & Ko, I' — x admits at most one
nontrivial component. Therefore, we have also

HCeC(T-z):v(C)>2} < 1.

Since I' — z is disconnected, |C(I" — x)| > 2. It follows that I' — x admits a
unique isolated vertex i, and I' = {x, i, } is connected. Since i, is an isolated
vertex of I' — z, {x,i,} € E(I") because I' is connected. Hence, i, €Y.

Now, we verify that Np(z) =Y. Let y € Y \ {ip}. Since I' - {z,i,}
is connected, there exits ' € X \ {z} such that {z',y} € E(T'). Since
I[{z,2',y,is}] # Ko & Ko, we obtain {z,y} € E(T') or {2/,iz} ¢ E(T).
Since i, is isolated in I' — x, we have {z',iy} ¢ E(T"). Therefore, we ob-
tain {z,y} € E(T). It follows that Np(z) =Y. Hence, z is the least element
of L.

Lastly, we verify that I' — {x,i;} is prime. Otherwise, I' = {z,i,} admits
a nontrivial module M. Since I — {z,i,} is connected and bipartite with
bipartition {X \{z},Y \{iz}}, we have M ¢ X ~{x} or M <Y \{i,}. Since
Nr(z) =Y and Nr(i;) = {z}, M is a module of T', which contradicts the
fact that T" is prime. Consequently, I" - {z,4,} is prime. Moreover, consider
veV(I')~{x,iy}. Since iy is isolated in I'—z, it is also isolated in I'—{z, v}.
Therefore I - {x, v} is not prime. It follows that i, is the unique element of
V(L) ~ {x} such that T — {x,i,} is prime. O

Claim 9.45. Let x € X such that I' — x is connected. For any nontrivial
module M of T' - x, there exist ~,x" € Y such that M = {x~, 2"}, {x,27} ¢
E(T), and {z,z"} ¢ E(T).

Proof. Let M be a nontrivial module of I' — z. Since I' — x is connected,
we have M ¢ X ~ {z} or M €Y. In the first instance, M is a module of
I'. Therefore, we have M ¢ Y. Set M~ = {y € M : {z,y} ¢ E(T')} and
M* ={ye M :{x,y} € E(')}. Clearly, M~ and M* are modules of T.
Since I' is prime and |[M]| > 2, we obtain |[M~| =1 and [M*| = 1. Denote
by 2~ the unique element of M~ and denote by x* the unique element of
M™*. We obtain M = {z~,z"}. Furthermore, we have {z,z"} ¢ E(I") and
{z,z*} e E(]). O

Claim 9.46. Given x € X, if I' — x is connected, then there exist v, 27 €Y
satisfying the following assertions
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(1) {x~,x"} is the only nontrivial module of T' — x;

(2) {27} ¢ E(T) and {x,2"} ¢ E(T);

(3) for every ue X, if u<g x, then {u,z”} € E(T");

(4) for every uwe X, if v <p u, then {u,z*} ¢ E(T");

(5) I'={x,z"} and I' - {z, "} are prime;

(6) x* is the unique element of V(I')~{z} such that {z,x*} € E(T") and
I'—{xz,x™} is prime.

Proof. Since I is critical, I'-x admits a nontrivial module M. By Claim 9.45,
there exist 27, z" € Y such that M = {z7, 2%}, {z,27} ¢ E(T'), and {x,2*} €
E(T). Hence, {x~,2*} is a nontrivial module of " - x.

For a contradiction, suppose that M is not the only nontrivial module of
I' — z. Thus, there exists a nontrivial module N of I' — x such that N # M.
By Claim 9.45, there exist 27,2 € Y such that N = {27, 2%}, {z, 27} ¢ E(T),
and {z,2z*} e E(T'). If M n N # @, then M U N is a nontrivial module of
I' — = of size 3, which contradicts Claim 9.45. Hence, we have M n N = @&.
We show that M u N is a module of I' = z. Let u € (X \ {z}). It suffices
to verify that M U N is a module of I'[M u N u{u}]. Suppose that there
exists v € M U N such that {u,v} € E(T"). For instance, suppose that v € M.
Since M is a module of T' — x, we have {u,z”},{u,z*} € E(T'). We obtain
{u,z"} e E(T"), {x,2"} ¢ E(T), and {x, 2"} € E(T). Since I" does not embed
Ky ® Ky, we obtain {u,z*} € E(I"). Since {z7,2"} is a module of T - z,
we have {u,z"} € E(I'). Therefore, {u,w} ¢ E(I") for every w € M U N.
It follows that M u N is a module of I" — z, which contradicts Claim 9.45
because |[M U N| = 4. Consequently, {x~, 2"} is the only nontrivial module
of I' - z. It follows that I' - {, 2~} and I - {z, 2"} are prime.

Let u € X such that u <z x. Since u < x, we have Nr(u) 2 Np(x).
Hence, we have {u,z"} € E(T") because {x,z*} € E(T"). Since {z~,z"} is a
module of I' — z, we obtain {u,z~} ¢ E(T).

Let u € X such that z <z u. Since z < u, we have Np(z) 2 Np(u).
Hence, we have {u,z”} ¢ E(I') because {z,z"} ¢ E(I'). Since {z7,z2"} is a
module of I' — z, we obtain {u,z*} ¢ E(T).

As previously seen, I' — {z, 2"} and T - {x, 2"} are prime. Now, consider
veV(I)N{z,z7,2"}. Clearly, {7, 2"} is a nontrivial module of I' - {z, v},
so I'={z,v} is not prime. Since {z,z"} ¢ E(T"), z* is the unique element of
V(T') ~ {z} such that {z,2*} € E(T') and I — {2, 2%} is prime. O

Definition 9.47. We define a function ¢ : X — Y as follows. Given x € X,

iz if I' — x is disconnected (see Claim 9.44),
p(x) = qor
x* if T'— z is connected (see Claim 9.46).

The next claim follows easily from Claims 9.44 and 9.46.

Claim 9.48. For every x € X, p(z) is the unique element of V(I') \ {z}
such that {x,p(z)} € E(T) and T - {x,p(x)} is prime.
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In the next two claims, we verify that ¢ is bijective.
Claim 9.49. ¢ is injective.

Proof. Consider distinct u,v € X. For instance, suppose that u <z v. In
particular, v is not the least element of L. It follows from Claim 9.44 that
I' - v is connected. By Claim 9.46, there exist v™,v" € Y such that {v,v7} ¢
E(T), {v,v*} € E(T'), and {v™,v*} is the only nontrivial module of T — v.
We have ¢(v) =v*.

First, suppose that I' — u is disconnected. We have ¢(u) = i,, where i,
is the unique isolated vertex of I' — u by Claim 9.44. We obtain {v,p(u)} ¢
E(T). Thus, we have ¢p(u) # ¢(v) because {v, p(v)} € E(T) (see Claim 9.48).

Second, suppose that I' — u is connected. By Claim 9.46, there exist
u”,u* €Y such that {u,u"} ¢ E(T), {u,u*} € E(T), and {u",u*} is the
only nontrivial module of T' = u. We have ¢(u) = u*. Since u <y, v, it follows
from the fourth assertion of Claim 9.46 applied to u that {v,p(u)} ¢ E(T).
Since {v, p(v)} € E(T") (see Claim 9.48), p(u) # ¢(v). O

Claim 9.50. ¢ is surjective.

Proof. Let veY. Since I is critical, I' — v is not prime. First, suppose that
I' — v is disconnected. As in Claim 9.44, we obtain that I" — v admits an
isolated vertex i,. Thus, we have Nr(i,) = {v}. Since {iy, p(iy)} € E(T'),
we obtain ¢(i,) = (i,)" = v.

Second, suppose that I' — v is connected. As in Claim 9.46, there exist
v™,v" € X such that {v™,v"} is the only nontrivial module of I'—v, {v,v™} ¢
E(T), and {v,v"} € E(T'). Furthermore, I' — {v,v”} and T - {v,v*} are
prime. Thus, we obtain I' - {v,v*} is prime and {v,v*} € E(T). It follows
from Claim 9.48 that v = ¢(v™"). O

It follows from Claims 9.49 and 9.50 that ¢ is bijective.

Claim 9.51. T is the half-graph defined from the linear order L, and the
bijection .

Proof. Consider distinct u,x € X. We have to verify that
{u,p(z)} € E(T) if and only if u <y, .

Suppose that u <y x. We obtain Np(z) ¢ Np(u). By Claim 9.48, we have
©(x) € Np(z). Hence, we obtain ¢(x) € Np(u). Conversely, suppose that
x <7, u. In particular, u is not the least element of L. It follows from
Claim 9.44 that I" — u is connected. By the fourth assertion of Claim 9.46
applied to z, {u,x*} ¢ E(T'), that is, {u,p(x)} ¢ E(T). O

Claim 9.52. Given x € X, if x is not the least element of L, then © admits
an immediate predecessor in L.

Proof. Let x € X. Suppose that z is not the least element of L. It follows
from Claim 9.44 that I'-z is connected. By Claim 9.46, there exist z7, 2" € Y
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such that {x~,z"} is the only nontrivial module of I' - z, {z,2~} ¢ E(T),
and {z,z*} € E(I"). Furthermore, for every u € X, we have

(9.20) if u<y x, then {u,2”} € E(T),
by the third assertion of Claim 9.46 applied to x. Set
t=p 1 (z).

By Claim 9.48, {t,¢(t)} € E(T'), that is, {t,2"} ¢ E(I'). We obtain x~ €
Nr(t) ~ Nr(x). Hence, we have Nr(t) 2 Nr(x), so t <z, . We prove that ¢
is the immediate predecessor of z. We must verify that

{ueX:t<pu<pz}=a.

First, suppose that I'—t is disconnected. By Claim 9.44, there exists iz € Y’
such that #; is an isolated vertex of I'—¢. Since p(t) = i, iy = x~. We obtain
that {u,z”} ¢ E(T") for every uw e V(T') ~ {t,z"}. Tt follows from (9.20) that
{ueX:t<Lu<Lx}=®.

Second, suppose that I'—t is connected. By Claim 9.46, there exist t~,¢" €
Y such that {¢t7,¢*} is the only nontrivial module of I' - ¢, {t,t"} ¢ E(T),
and {t,t*} € E(I"). Furthermore, for every u € X such that ¢t <z, u, we have
{u,t*} ¢ E(T') by the fourth assertion of Claim 9.46 applied to ¢t. Recall
that t* = (t). Since t = ¢ 1(27), we obtain ¢* = 2. Therefore, for every
u € X such that t < u, we have {u,x”} ¢ E(T"). It follows from (9.20) that
{ueX:t<pu<pzh=a. O

By Remark 9.34, T" is also the half-graph defined from the linear order
©(L)* defined on Y, and the bijection ¢! : Y — X. The analogue of
Claim 9.52 for ¢(L)* follows.

Claim 9.53. Given y € Y, if y is not the least element of ¢(L)*, then y
admits an immediate predecessor in p(L)*.

The next claim is an immediate consequence of Claims 9.53.

Claim 9.54. Given x € X, if © is not the greatest element of L, then x
admits an tmmediate successor in L.

It follows from Claims 9.52 and 9.54 that L is discrete, which completes
the proof of Theorem 9.38. ([

The next theorem follows from Theorems 9.6 and 9.38.

Theorem 9.55. Given a 2-structure o, consider X ¢ V(o) such that o[ X ]
is prime. Suppose that statement (S5) holds. Suppose also that o is (V (o)~

X)-critical. For each component C of I, xy, with v(C) >3, C is a discrete
half-graph.

Proof. Let C be a component of I' , xy such that v(C) > 3. By Theorem 9.6,
v(C) >4 and C is critical. Furthermore, since statement (S5) holds, C' does
not embed P5; by Corollary 9.31. Finally, to use Theorem 9.38, we must
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verify that C' is bipartite. Indeed, since o is prime, it follows from Corol-
lary 9.22 that T'(, x) has no isolated vertices. Furthermore, since state-
ment (S5) holds, statement (S3) holds too by Remark 9.4. Therefore, it
follows from Proposition 9.29 that there exist distinct By, D), € p(, x) and
By, Dy € q(5,x) such that By € By, Dy € Dy, and C is bipartite with biparti-
tion {V(C)n By, V(C)nDy}. Therefore, it follows from Theorem 9.38 that
C is a discrete half-graph. O

The next result follows from Theorems 9.5 and 9.6, Proposition 9.41, and
Corollary 9.31. It is the finite version of Theorem 9.10. Moreover, we use it
in the proof of Theorem 9.10.

Corollary 9.56. Given a 2-structure o, consider X ¢ V(o) such that o[ X]
is prime. Suppose that

V(o) N X is finite.
The following two assertions are equivalent

(1) Statement (S5) holds and o is prime;
(2) o is (V(o) \ X)-critical.

Proof. To begin, suppose that o is (V (o) \ X)-critical. In particular, o is
prime. Furthermore, by Remark 9.4, statement (S5) holds.

Conversely, suppose that statement (S5) holds and o is prime. Since
statement (S5) holds, we can use Theorem 9.6 to prove that o is (V (o)~ X)-
critical. Consider a component C' of I'(, x such that v(C') > 3. We have to
show that C'is critical. Since o is prime, it follows from Theorem 9.5 that
v(C) > 4 and C is prime. Moreover, since statement (S5) holds, it follows
from Corollary 9.31 that C does not embed Ps;. By Proposition 9.41, I' is
critical. It follows from Theorem 9.6 that o is (V (o) \ X)-critical. O

Proof of Theorem 9.10. To begin, suppose that o is finitely (V (o) \ X)-
critical. Let v € V(o) N~ X. Since o is finitely (V (o) \ X)-critical, there
exists a finite subset F' of V(o) \x X such that o[X u F'] is F-critical. It
follows from Corollary 9.56 that statement (S5) holds and o is prime.
Conversely, suppose that statement (S5) holds and o is prime. We prove
that o is finitely (V' (o) \ X)-critical. Let F' be a finite subset of V(o) \ X.
We have to find a finite subset F’ of V (o)~ X such that F' ¢ F' and o[ X UF”]
is (F')-critical. We distinguish the following two cases.
CAsE 1: V(o) \ X is finite.
It follows from Corollary 9.56 that ¢ is (V (o) \ X)-critical. Hence, we
can consider V(o) \ X for F'.
CASE 2: V(o) ~ X is infinite.
By Corollary 9.8, there exists a finite subset F' of V(o) \ X such that
F c F'and o[ XUF"] is prime. Since statement (S5) holds, it follows from
Corollary 9.56 applied to o[ X U F'] that o[ X U F'] is (F')-critical. O

As announced in subsection 9.1, we discuss Theorem 9.10 in the next
remark by using Theorems 9.6 and 9.38.
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Remark 9.57. We denote by Lg the usual linear order on the set of rational
numbers. Obviously, Lg is not discrete. We consider the graph G' defined
on {0,1,2,3} U ({0,1} x Q) by
E(G) = {{0,1},{1,2},{2,3}} u{{1,(1,¢) } : ¢ € Q}
u (U{(0,9),(1,m)}:r 2 q}).
q€Q

Set X ={0,1,2,3}, Y = {0} xQ and Z = {1} xQ. We have G[X] is prime be-
cause G[ X | = Py (see Fact 2.6). We consider the 2-structure o(G) associated
with G. Since G[X] is prime, o(G)[X] is prime too. We have

Y = <X)U(G)7 Z = XO'(G') (0)7 and Po(G),x) = {Y7 Z}
Furthermore, it follows from Corollary 3.18 that
(921) F(U(G),X) = G[YUZ]

We verify that o(G) is finitely (V' (o) \ X)-critical (see Definition 9.9) with-
out being (V' (o) \ X)-critical.

First, we show that statement (Sk) holds for every odd integer k > 1.
Let W be a finite and nonempty subset of Y U Z such that W e &, x,
(see Notation 9.2). We have to show that W is even. If W nY = &, then
{0} uW is a module of o(G)[X uW] because Z = X,,(0). Hence, we have
W nY #@. We denote the elements of W nY by (0,q0),--.,(0,¢n), where
m >0, in such a way that ¢g < -+ < ¢, when m > 1. Set

Z = {j<a:(1,5) e W},

Since Z = X,()(0), {0} u ({1} x Z7) is a module of o(G)[X uW]. Hence,
we have Z~ = @. Set

Z" = {] >qm:(1,5) € W}
We obtain that {1} x Z* is a module of o(G)[X u W]. Hence, we have
|Z*| < 1. If Z* = @, then (X uW) \ {(0,¢y,)} is a module of o(G)[X u W]

because (0,¢m) € (X)) Thus, we obtain |Z*| = 1. Therefore, [W| = 2 if
m = 0. Now, suppose that m > 1. Set
Zi={qi<j<qi:(1,j) e W}

for i =0,...,m—-1. Given i =0,...,m -1, we have {1} x Z; is a module
of o(G)[X uW]. Hence, we have |Z;] < 1. Moreover, {(0,q;),(0,qi+1)}
is a module of o(G)[X u W] if Z; = @. Therefore, we obtain |Z;| = 1.
Consequently, Z~ = @, |Z*| =1, and |Z;] = 1 for i = 0,...,m — 1. Thus,
W nZ|=m+1, and hence |W|=2m +2.

Second, we prove that o¢ is finitely (V (o) \ X)-critical. Let F' be a finite
subset of Y U Z. There exists a finite subset F’ of Q such that |F'| > 2 and
Fc({0,1}xF"). We have G[{0,1} x F'] = Hy, 5| (see Figure 4.1). Tt follows
from Proposition 9.41 that G[{0,1} x F'] is critical. Set F = {0,1} x F’. We
obtain that

(9.22) F ¢ F and G[F] is critical.
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It follows from (9.21) and (9.22) that L o(e)xur), 7 1s critical. Since state-

ment (S5) holds, it follows from Theorem 9.6 that o(G)[X UF] is F-critical.
Consequently, o(G) is finitely (V (o) \ X)-critical.

Third, we verify that o(G) is not (V(¢(G)) ~ X)-critical. To begin,
we verify that G[Y u Z] is a nondiscrete half-graph. Clearly, G[Y u Z] is
bipartite with bipartition {Y, Z}. Consider the bijection ¢ : Y — Z, which
maps (0,q) to (1,q) for each g € Q. Moreover, consider the linear order Ly
defined on Y as follows. Given distinct ¢,7 € Q, (0,q) <r, (0,7) if g <, 7.
Clearly, G[Y u Z] is the half-graph defined from Ly and ¢. Recall that the
linear order Ly is unique by Remark 9.34. Since Ly ~ Lg, G[Y u Z] is not
discrete.

Since statement (S5) holds, T'(,(g),x) does mot embed P5 by
Corollary 9.31. Since G[Y u Z] is a nondiscrete half-graph, T'(,(), x) is
a nondiscrete half-graph by (9.21). It follows from Theorem 9.38 that
I'(5(G),x) is not critical. Clearly, G[YuZ] is connected. Therefore, I' (), x)
is connected by (9.21). Since statement (S5) holds, it follows from Theo-
rem 9.6 that o(G) is not (V(o) N~ X)-critical. Since o(G) is finitely
(V(o(@)) ~ X)-critical, it follows from Theorem 9.10 that o(G) is prime.
Consequently, there exists v € V(o(G)) ~ X such that ¢(G) — v is prime. In
fact, we have o(G) — w is prime for every w e V(o(G)) \ X.

Proof of Theorem 9.11. Since statement (S5) holds, we can use Theorem 9.6
as follows. Let v € V(o) \ X. Denote by C' the component of I'(, xy such
that v € V(C). By Theorem 9.6 applied to o, v(C) =2 or v(C) >4 and C
is critical.

First, suppose that v(C') = 2. We have

Loovic),x) = Tox) = V(C).

Therefore, the components of I' ;_y (¢, x) are the components of I, ) that
are distinct from C'. Let D be a component of I'(, x) such that D # C. By
Theorem 9.6 applied to o, v(D) =2 or v(D) >4 and D is critical. It follows
from Theorem 9.6 applied to c—V (C) that -V (C) is (V (o)X )\V(C))-
critical. Hence, we consider for w the unique element of V(C) \ {v}.
Second, suppose that v(C') >4 and C is critical. By Theorem 9.55, C'is a
discrete half-graph. As seen in the proof of Theorem 9.55, there exist distinct
By, Dy € q(4,x) such that C is bipartite with bipartition {V (C)n B,, V(C)n
D,}. For instance, assume that v € V(C) n By. Since C is a discrete half-
graph, there exists a discrete linear order L defined on V(C) n B, and a
bijection ¢ : V(C') n B; — V(C) n D, such that C is defined from L and
¢ (see Definition 9.33). By Claim 9.48, C — {v,p(v)} is prime. Hence,
C —{v,p(v)} is connected. Consequently, the components of I' (54 o (v)1,x)
are the components of T'(, x) that are distinct from C and C'—{v,p(v)}. Let
D be a component of I, x) such that D # C. By Theorem 9.6 applied to o,
v(D)=2orv(D) >4 and D is critical. If v(C) =4, then v(C-{v,p(v)}) =2
and it follows from Theorem 9.6 applied to o —{v,¢(v)} that o—{v, p(v)} is
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((V(o) N X) N A{v, p(v)})-critical. Lastly, suppose that v(C) > 5. To apply
Theorem 9.6 to o — {v, p(v)}, we must verify that v(C - {v,¢(v)}) > 4 and
C - {v,p(v)} is critical. Since C is a half-graph with v(C') > 5, we have
v(C) 2 6, and hence v(C - {v,¢(v)}) > 4. Clearly, L — v is a discrete linear
order. Moreover, C - {v,¢(v)} is the half-graph defined from L -z and
the bijection PHV(C)nBy) {v} : (V(C) n Bq) N\ {U} — (V(C) N Dq) N\ {QD(’U)}
Therefore, C' - {v,p(v)} is a discrete half-graph. By Theorem 9.38, C -
{v,(v)} is critical. Consequently, it follows from Theorem 9.6 applied to

o —{v,p(v)} that o — {v,@(v)} is (V(0) N X) ~ {v,¢(v)})-critical. O
9.6. Proofs of Theorems 5.8 and 5.9.

Proof of Theorem 5.8. Let o be a prime 2-structure. Consider X ¢ V(o)
such that o[ X] is prime. Suppose that V(o) X is finite and |V (o) \ X| > 6.

For a contradiction, suppose that for each proper subset Y of V(o) \ X,
we have

(9.23) if o[ X uY] is prime, then |V (o) \ (X uY)| is odd.

For Y = @ in (9.23), we obtain |V (o)~ X| is odd. Hence, we have |V (o)~ X| >
7. For Y ¢ (V(o) N\ X), with Y| =5, it follows from (9.23) that o[ X U Y]
is not prime. Consequently, statement (S5) holds. Since |V (o) \ X]| is odd,
there exists a component C' of ', x) such that v(C') is odd. Since statement
(S5) holds, statement (S3) holds too by Remark 9.4. Since o is prime, it
follows from Theorem 9.5 that o[ X uV(C)] is prime. We have

V(ie)\X=V(C)u V(o) (XuV(C))).

Since |V (o) N~ X| and v(C') are odd, we obtain that |V (o) \ (X u V(C))|
is even. It follows from (9.23) that V(C) = V(o) ~ X. Thus, ['¢, x) is
connected. Since o is prime, it follows from Theorem 9.5 that I';; ) is
prime. Furthermore, since ¢ is prime, it follows from Corollary 9.22 that
I'(4,x) has no isolated vertices. Since statement (S3) holds, it follows from
Proposition 9.29 that C' is bipartite. Finally, since statement (S5) holds,
I'(5,x) does not embed P by Corollary 9.31. It follows from Proposition 9.41
that I'(, xy is a half-graph, which is impossible because v(I'(, x)) = [V (o) ~
X| and |V (o) ~ X| is odd.

Consequently (9.23) does not hold. Therefore, there exists Y ¢ (V (o)~ X)
such that o[ XUY ] is prime and |V ()N (X UY')| is even. Recall that V(o)X
is finite, so V(o) N (X UY) is as well. It follows from Corollary 3.20 applied
to o[ X UY] that there exist distinct v, w € V(o) (XUY') such that o—{v,w}
is prime. [l

Proof of Theorem 5.9. Since statement . or statement .%% hold, we have

By Theorem 5.8, we can assume that [V (o)~ X|=4or 5. If [V(o)\ X| =4,
then it suffices to apply Theorem 3.19. Hence, suppose that |V (o)~ X| = 5.
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For a contradiction, suppose that statement (S3) holds. It follows from
Theorem 9.5 that for each component C' of I'(, x), we have v(C) = 2 or
v(C) > 4 and C is prime. Since [V (o) \ X| = 5, we obtain that I'¢, x,
is connected. Thus, I'(, x) is prime. Since o is prime, it follows from
Corollary 9.22 that I'(, x) has no isolated vertices. Since statement (S3)
holds, it follows from the first assertion of Proposition 9.29 that p(, x) =
4(0,x), and g x) has two elements, denoted by B, and D,. Moreover,
[, x) is bipartite, with bipartition {Bg, Dy}. Since I'(, x) is prime and
bipartite, we have I'(, x) ~ P5. Hence, I, x) embeds K3 ® K. Thus, there
exists distinct v,v" € B, and distinct w,w’ € Dy such that {v,w}, {v',w'} €
E(T(5.xy) and {v,w'}, {v',w} ¢ E(T'(, x)). It follows from Fact 9.28 that
By, Dy € q{, ), which contradicts (9.24).

Consequently, statement (S3) does not hold. Therefore, there exists Y ¢
(V(o) N~ X) such that Y] =3 and o[ X uY] is prime, which completes the
proof because | X| = 5. O
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10. THE RIGOLLET-THOMASSE THEOREM

The aim of this section is to demonstrate the following theorem.

Theorem 10.1 (Rigollet and Thomassé'®! [29]). Given an infinite prime
2-structure o, there exists X € V(o) such that 102

X #V (o),
(RT) X is equipotent to V (o),
and

o[ X] is prime.

Observation 10.2. Let o be an infinite prime 2-structure. Suppose that o
is not finitely critical (see Definition 8.1). Hence, there exists a finite and
nonempty subset F' of V(o) such that o — F' is prime. Clearly, V(o) \ F is
a proper subset of V(o) and V(o) \ F is equipotent to V(o). Therefore,
Theorem 10.1 holds for infinite prime 2-structure that are not finitely critical.

Rigollet and Thomassé [29] associated the following digraph with a critical
2-structure.

Definition 10.3. Consider an infinite prime 2-structure o. The criticality
digraph C(o) of o is defined on V(C(0)) = V(o) as follows. Given distinct
v,weV(o), (w,v) € A(C(0)) if 0 —v admits a nontrivial module containing
w.

10.1. Modular decomposition in the infinite case.

Notation 10.4. We associate with each 2-structure o the set Y (o) of the
modules of o that are maximal under inclusion among the proper modules
of . (Note that T (o) can be empty when o is infinite.)

Proposition 10.5. Let o be a connected 2-structure. If Y(o) # &, then
Y (o) is a modular partition of o and o/ (o) is prime.

Proof. Since o is connected, it follows from Proposition 2.12 that ¢ is un-
cuttable.
First, we prove that

(10.1) UT(o) =V(o).

Consider M € Y(o). Let v € V(o) x M. Consider the family N, of the
proper modules of o containing v. Set

N =N,

1O'lRigollet and Thomassé [29] proved this theorem for infinite digraphs.

102\ yse the axiom of choice to prove Theorem 10.1. We also use the axiom of choice
to prove some of the preliminary results that follow, and we mention its use in their proofs
only.
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It is easy to verify that N is a proper module of o. Indeed, consider z,y € N
and w e V(o) ~ N. We have to verify that

W <4 {'T,y}

Since z,y € N, there exist N, N’ € N, such that z € N and y € N’. Since
N,N" € N,, we have v € N n N'. By assertion (M5) of Proposition 2.5,
N uN'is a module of o. Since w ¢ N, we have w ¢ N uN'. Tt follows that
w <>, N uUN'. In particular, we have w «<—, {x,y}. Therefore, N is a
module of . For a contradiction, suppose that N' = V(o). Hence, there
exists N € NV, such that N n M # @. By assertion (M5) of Proposition 2.5,
N uM is a module of o. Since v e N N\ M, we have M ¢ N u M. It follows
from the maximality of M that NuM =V (o). Since N\ M # @, it follows
from assertion (M6) of Proposition 2.5 that M \ N is a module of o. Since
NuM =V (o), we have M\ N =V (o)~ N. Consequently, N is a modular
cut of 0. Since v € N and N # V (o), N is a nontrivial modular cut of o,
which contradicts the fact that ¢ is uncuttable. It follows that

N =V (o).

Hence, (10.1) holds.

Second, we show that Y (o) is a modular partition of o. Since (10.1) holds,
it suffices to verify that the elements of T (o) are pairwise disjoint. Consider
M, N € T(0) such that M NN % @. By assertion (M5) of Proposition 2.5,
MuUN is a module of o. For a contradiction, suppose that MUN =V (o).
Since N # V (o), we have M NN # @. By assertion (M6) of Proposition 2.5,
NN~ M is amodule of o. Since MUN =V (o), we have N\ M =V (o) M.
Thus, M is a nontrivial modular cut of ¢, which contradicts the fact that
o is uncuttable. It follows that

MUN =V (o).

It follows from the maximality of M and N that M = MUN and N' = MUN.
Consequently, we have M = N. Tt follows that T (o) is a modular partition
of 0.

Third, we prove that ¢/Y (o) is prime. Since o is uncuttable, we have
|Y(0)| > 3. Let ¥ be a module of /Y (o) such that |¥| > 2. We must verify
that U = T (o). By the second assertion of Lemma 2.10, U ¥ is a module
of 0. Let M e U. Since |¥| > 2, we have M ¢ JW¥. It follows from the
maximality of M that U¥ =V (o). Hence, we obtain ¥ = Y(o). O

The following fact is useful to utilize Proposition 10.5.

Fact 10.6. Let o be a 2-structure. Consider X ¢ V(o) such that o[ X] is
prime. Let M be a module of 0. If X € M, then

(V(o)N(X)s) S M (see Notation 3.12).

Consequently, o — (X), is connected.
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Proof. To begin, consider a module M of o such that X ¢ M. Let v €
(V(o) N (X)s). By Lemma 3.13, v € Ext,(X) or v e X,(y), where y € X.
First, suppose that v € Ext,(X). Set

Y =Xu{v}.

Since v € Ext,(X), o[Y] is prime. By assertion (M2) of Proposition 2.5,
M nY is a module of o[Y]. Since X ¢ (M nY), we obtain M nY =Y.
Thus, v e M. Second, suppose that v € X,(y), where y € X. Set

Y= (X~ {yp)u{v}.
Since v € X, (y), {y,v} is a module of o[ X U {v}]. Tt follows that o[Y] is
isomorphic to o[ X]. Hence, o[Y] is prime. By assertion (M2) of Proposi-
tion 2.5, M nY is a module of o[Y']. Since (X ~{y}) € (M nY'), we obtain
MY =Y. Therefore, v € M. Consequently, (V (o)~ (X),) € M.

Now, we prove that o — (X), is uncuttable. Consider a modular cut C
of 0 — (X),. By exchanging C' and (V (o) \ (X),) \ C if necessary, we can
assume that |CnX| > 2. Since CnX is a module of o[ X | by assertion (M2) of
Proposition 2.5, we obtain X ¢ C. It follows from the first assertion above
that (V(o) N\ (X),) € C. Hence, C is a trivial modular cut of o — (X),.
It follows that o — (X), is uncuttable. By Proposition 2.12, o - (X), is
connected. (]

10.2. Extreme vertices. Rigollet and Thomassé [29] introduced the fol-
lowing definition.

Definition 10.7. Consider a critical 2-structure o. A vertex v of o is
extreme if there exists w € V(o) \ {v} such that V(o) \ {v,w} is a module
of o —v. The set of the extreme vertices of o is denoted by & (o).

For instance, as seen in Example 8.11, o(Hy) is a prime element of Zy.
Hence, o(Hy) is critical. Furthermore, {2,3,...} is a module of o(Hy) - 0.
Therefore, 0 is an extreme vertex of o(Hy).

We use the next notation to prove Proposition 10.9.

Notation 10.8. Consider an infinite critical 2-structure o. By using the
axiom of choice, we obtain a function

Fegy: 8(0) — V(o)
satisfying for each v € &(0), v # Fy(5)(v) and
Fg()(v) <=0 V(o) N {v, Fe(s)(v)} (see Notation 2.1),
that is, V(o) \ {v, Fig(5)(v) } is a module of o - v.
Lastly, observe that Fg(,) is injective. Indeed, consider distinct v,v' €

E(0). If Fe(y(v) = Feo)(v'), then V(o) N {Fg(5)(v)} is a module of o,
which contradicts the fact that o is prime. Consequently, Fig(,) is injective.

Proposition 10.9. Given an infinite critical 2-structure o, V(o) and
V(o) N &(0) are equipotent.
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Proof. Clearly, if &(o) is finite, then V(o) and V(o) \ &(0) are equipotent
because V(o) is infinite. Thus, suppose that &(o) is infinite.

To begin, we show that Fg(,) does not contain cycles. Otherwise, there
exists extreme vertices vg,...,v, of o, where n > 1, such that Fg(o.)(v()) =
V1, Foo)(Un-1) = vn, and Fg,y(vn) = vo. We obtain that V(o) \
{Fs(oy(vi) + i € {0,...,n}} is a module of o, which contradicts the fact
that o is prime. Consequently, Fie(,) does not contain cycles.

Now, given v € &(c), we prove that
(10.2)

if Py (1) € £(0) and (Fg(p)2(0) € E(0), then (Fy()*(v)  £(0r).

For a contradiction, suppose that there exists v € &(o) such that

Fe()(v), (Fr(0))* (), (Fg(0))* (v) € £(0).
Set
v = (Fg(o))(v) and Fi()(v) = (Fg(q)) ' (v)
Since Fe(,) does not contain cycles, (Fg(a))o(v), (Fg(g))l(v), (Fg(a))Q(v),
(Fg(a))g(’l)), and (Fg(a))4(1)) are pairwise distinct. For i = 0,1,2,3, there
exist €41, fi+1 € E(o) such that
(10.3) [(Fe(o)) ™ (0), V(0) MA{(Fo(0) ' (0)s (Fago) ™ (0)} o = (eist, fis1)-

Moreover, for i =0,1,2,3, we have
(10.4) (eir1, fir1) # [(Fo(0)" (v), (Fi(0))'(v)]o

because V(o) \ {(Fe(,))"" (v)} is not a module of ¢. Using (10.3) and
(10.4), we obtain

[(Fg(a))l(v)v (Féa(a))?)(v)]c = (617 fl)’
[(Fe(0))? (), (Fie(0)) (0)]o = (€2, f2),
[(Fe(0))? (), (Fg(o)) ' (v)]o = (€3, f3),
and

[(Fe(0))?(v), (Fe(o))*(v)]o # (e3, f3).

Therefore, we have

(10.5) (e1, f1) # (€2, f2)-

Using (10.3), we obtain

[(Fe(o))' (v), (Fe(o))* ()]s = (€1, f1),
[(F(a@(cr))2(v)v (Féa(o))4(v)]0 = (627 f2)’
[(Fe(o)) ' (v), (Fg(o)) ' (v)]o = (€4, f1),

and
[(Fe(o))'(v), (Fe(0))*(v)]o = (ea, f1).

It follows that
(e1, f1) = (e2, f2),
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which contradicts (10.5). Consequently, (10.2) holds.
To conclude, set

&%(0) ={ved(0): Fo(py(v) § E(0)},
&1 (0) ={ve&(0) N E%(0) : (Fie(e))*(v) £ E(0)},
and
&% (0) = {ve (o) (6%(0) uEN(0)) : (Fe(r))’(v) £ E(0)}.
By (10.2), {6°(0),&(0),&%(0)} is a partition of &(c). Since &(o) is
infinite, we obtain
(10.6) |6 (0)] = max(|6°(a)], 6" ()], 16 ().
We obtain
Fg0)(6°(0)) € V(o) (o),
Fe()(&(0)) € &%0),
and
Fg(5)(6%(0)) € 6*(0).
Since Fg(,) is injective, we obtain

6%(a) < |6 (o) <16° (o) < [V (0) N E(0)].

It follows from (10.6) that |&(o)| < |[V(o) \ &(0)|. Therefore, we have
V(o) = V(o) N &(a)l. O

The next result follows from Proposition 10.5.

Corollary 10.10. Let o be an infinite critical 2-structure. Consider distinct
vaweV (o). Ifv¢ &(o) and (w,v) ¢ A(C(0)), then {w} € T(o-v), T(o-v)
is a modular partition of o —v, and (o —v)/Y (o —v) is prime.

Proof. Since (w,v) ¢ A(C(0)), we have {w} € T(o—-v). For a contradiction,
suppose that o — v is not connected. There exist e, f € E(o —v) such that
o —v is not {e, f}-connected. Consider X € Cy. s)(0 —v) (see Definition 2.2)
such that w € X. It follows from Lemma 2.4 that X is a module of o — v.
Since (w,v) ¢ A(C(0)), we have

X ={w}.

Using Proposition 2.8, we distinguish the following two cases. In each of

them, we obtain a contradiction.

CASE 1: e=f.
By Proposition 2.8, (0-v)/Cycy(0-v) is constant. Since {w} € Cey(0-v),
we obtain Cry (0 —v) N {{w}} is a module of (o ~v)/C(.y (0 —v). By the
second assertion of Lemma 2.10, (V (o)~ {v}) ~\{w} is a module of o —v,
which contradicts v ¢ &(0).
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CASE 2: e # f.
By Proposition 2.8, (0 - v)/Cyc ry(0 —v) is linear. Given ¢ € E((0 -
v)[Cie,pr (0 =v)), (6-v)[Cye 3 (0 —v) is the 2-structure associated to the
linear order (Cy. 3(0 —v),€) (see Remark 1.3). Set

X = {YEC{EJ}(O'—U) . (KX) 66}.

Clearly, X~ u {{w}} is a module of (o —v)/C¢ y(c —v). By the second
assertion of Lemma 2.10, U(X~ u {{w}}) is a module of o —v. Since
(w,v) ¢ A(C(0)), we obtain

U@ u{{w}}) ={w} or UX" 0 {{w}}) = V(o) {v}.
We obtain that {w} is the least vertex or the greatest vertex of the
linear order (Cy, s,(0 —v),€). In both cases, it follows from the second
assertion of Lemma 2.10 that (V (o) \ {v}) ~ {w} is a module of o - v,
which contradicts v ¢ &(0).
Consequently, o — v is connected. It follows from Proposition 10.5 that
Y (o —v) is a modular partition of o —v and (o0 —v)/Y (o —v) is prime. O

Corollary 10.10 leads us to introduce the following notation.

Notation 10.11. Consider an infinite critical 2-structure o. Set
W(c)=V(o)\&(0).

We consider the following subsets of W (o). First, we denote by Wix(o) the
set of v € W (o) such that T(oc—-v) = @. Second, we denote by Ws(o) the set
of v € W(o) such that o — v is not connected. Third, we denote by Wy (o)
the set of v € W (o) such that T(o —v) is a modular partition of o — v and
(0 —v)/Y (0o —v) is prime.

Let v € Ws(o). Since o — v is not connected, there exist e,, f, € E(o —v)
such that o —v is not {e,, f, }-connected. Hence, there exist e, f € E(o) such
that e, =en(V(oc-v)x V(o -wv))and f, = fn(V(c-v)xV(c-v)). We
denote {e, f} by A(v).

Observation 10.12. Consider an infinite critical 2-structure o. It follows
from Proposition 10.5 that
W(o)=Wgz(o)uWs(o)uWr(o).
Furthermore, we have
(Wg(o) uWs(o))nWr(o) = 2.

Clearly, we have Wy (o) n W, (o) = @. To verify that Wy(o) n W, (o) = @,
it suffices to show that if v € Wy(o) and Y (o — v) is a modular partition
of o — v, then |Y(o —v)| = 2. Indeed, consider v € Ws(o) and YT (o - v) is
a modular partition of o —v. Since v € Ws(o), o — v is not connected. It
follows from Proposition 2.12 that o — v admits a nontrivial modular cut C.
Set

P={MeY(c-v): MnC +a}.
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Since C' is a nontrivial modular cut, C' # @, and hence, P # @. By the first
assertion of Lemma 2.10, P is a module of (¢ —v)/Y (o —v). By the second
assertion of Lemma 2.10, UP is a module of (o —v). It follows from the
maximality of the elements of Y(o —v) that |[P|=1or P="7"(0c-v). For a
contradiction, suppose that P = Y (o —v). Since C is a nontrivial modular
cut of o — v, there exists M € T(o —v) such that M ~ C # @. Consider
N eX(oc—-v)~{M}. Since P=Y(o-v), NnC # @. By assertion (M5) of
Proposition 2.5, C U N is a module of o —v. Since P =Y (o -v), M nC # @.
Thus, we have N ¢ C'u N. Furthermore, since M \ C # &, we obtain

Ng(CuN)gV(c-v),

which contradicts the maximality of N. It follows that |P| = 1. Therefore,
there exists M € YT (o —v) such that C' ¢ M. Similarly, there exists N €
Y (o -v) such that (V(c-v)~C) < N. Since T(o-v) is a modular partition
of 0 — v, we obtain Y (o —v) = {M,N}.

Lastly, note that we can have

Wy(o) nWs(o) + @.

Consider the 2-structure o(77) introduced in Example 8.37. We have
o(Ty)—o0=0(Lyg).

Consequently, we have oo € Wi (o(17)) n Ws(o(17)).

10.3. The criticality digraph.

Fact 10.13. Let o be an infinite prime 2-structure. Consider distinct v, w €
V(o). Suppose that o —v admits a nontrivial module M, and o —w admits
a nontrivial module M,,. If w ¢ M, and v ¢ M,,, then |M, n M,]| < 1.

Proof. Suppose that w ¢ M, and v ¢ M,,. We obtain that M, n M, is a
module of . Since o is prime, we have |M, n M,| < 1. O

Fact 10.14. Let o be an infinite prime 2-structure. Consider distinct v, w €
V(o). Suppose that o —v admits a nontrivial module M, and o —w admits
a nontrivial module M,,. If we M, and v ¢ M,,, then M, n M, + @.

Proof. For a contradiction, suppose that M, n M,, = @. We verify that M,
is a module of ¢. Since M,, is a module of ¢ —w, we have only to verify
that w «—, M, (see Notation 2.1). Thus, consider z,y € M,,. Since M, is
a nontrivial module of o — v, |M,| > 2, and hence there exists w’ € M, \ {w}.
Since M, is a module of o — v, we have [w,z], = [w', 2], and [w,y], =
[w',y],. Furthermore, we have [w’,z], = [w,y], because M, is a module
of o —w. Therefore, we obtain [w,z], = [w,y],. It follows that M, is
a module of o, which contradicts the fact that o is prime. Consequently,
My,n M, 2. O
Fact 10.15. Let o be an infinite prime 2-structure. Consider distinct u,v,
w e V(o). Suppose that u,v e W(o) and (v,u) € A(C(c)). If o —v admits
a nontrivial module M, such that w € M, and u ¢ M,, then o —u admits a
nontrivial module containing v and w.



PRIME 2-STRUCTURES 167

Proof. Since (v,u) € A(C(0)), 0 — u admits a nontrivial module M, con-
taining v. We can conclude if w € M,,. Hence, suppose that w ¢ M,. Thus,
we have w € M, \ M,,. By Fact 10.14, M,, n M,, + @. Since u ¢ (M, u M,),
we obtain that M, u M, is a module of ¢ —u. We distinguish the following
two cases to verify that M, u M, is a nontrivial module of o — u.
CASE 1: |My ~ M,| > 2.
We show that M, \ M, is a module of o. Clearly, for every z € V(o) \
(M, u {v}), we have x «—, M, ~ M, (see Notation 2.1). Consider
x e (MynM,)u{v}. Since |M, \ M,| > 2, there exists ' € (M, M,) \v.
Let y, z € M,~M,. Since M, is a module of c—u, we have [z,y], = [2/,y]s
and [z, z], = [2/, z],. Furthermore, since M, is a module of o—v, we have
[2",y]s = [2', 2] Tt follows that [z,y], = [z, z],. Thus, x <, M, M,
for every x € (M, n M,) u {v}. Consequently, M, \ M, is a module
of o. Since o is prime, M, \ M, is a trivial module of ¢. Hence, we
obtain M, ~ M,, = {w}. If M, u M, is a trivial module of o — u, then
M, uM, =V(c)~{u}, and hence M, =V (o)~ {u,w}, which contradicts
u ¢ &(0). Therefore, M,, u M, is a nontrivial module of o — u.
CASE 2: |M, \~ M,| < 1.
Since v € M, \ M,, we obtain M, ~ M, = {v}. If M, u M, is a trivial
module of o—u, then M,uM, =V (o) {u}, and hence M,, =V (o)~{u,v},
which contradicts v ¢ &(o). Therefore, M, U M, is a nontrivial module
of o —u.
Consequently, M, u M, is a nontrivial module of ¢ — u containing v and
w. (I

The next result follows from Fact 10.15.

Corollary 10.16. Let o be an infinite prime 2-structure. Consider distinct
u,v,w € V(o). Suppose that u,v € W(o). If (v,u),(w,v) € A(C(c)) and

(u,v) ¢ A(C(0)), then o —u admits a nontrivial module containing v and w.
The next result follows from Corollary 10.16.

Corollary 10.17. Let o be an infinite prime 2-structure. Consider dis-
tinct u,v,w € W(o) (see Notation 10.11). If (v,u),(w,v) € A(C(0)) and
(u,v), (v,w) ¢ A(C(0)), then (w,u) € A(C(0)) and (u,w) ¢ A(C(c)).
Proof. Suppose that (v,u), (w,v) € A(C(c)) and
(10.7) (u,v), (v,w) ¢ A(C(0)).
Since (v,u),(w,v) € A(C(o)) and (u,v) ¢ A(C(c)), we obtain (w,u) €
A(C(0)) by Corollary 10.16.

For a contradiction, suppose that (u,w) € A(C(c)). Since (w,v) €
A(C(0)) and (v,w) ¢ A(C(0)), it follows from Corollary 10.16 that (u,v) €

A(C(0)), which contradicts (10.7). Consequently, we have (u,w) ¢ A(C(0)).
U

The next result is an immediate consequence of Corollary 10.10 and No-
tation 10.11.
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Corollary 10.18. Let o be an infinite critical 2-structure. Consider v €
W(o). If ve Wy(o) uWs(o), then (w,v) € A(C(o)) for every we V(o) ~
{v}.

Corollary 10.18 leads us to introduce the following notation.

Notation 10.19. Let ¢ be an infinite critical 2-structure. Given v,w €
W(o), v ~y w means v = w or v # w and (v,w), (w,v) € A(C(c)). Clearly,
~, is a symmetric and reflexive binary relation defined on V(o) \ &(0). It
follows from Corollary 10.18 that v ~, w for any v,w € Wy(o) u Ws(0o).

In the next lemmas, we examine the binary relation ~.

Lemma 10.20. Let o be an infinite critical 2-structure. Consider distinct
viweW (o). If v~y w and v e Wr(o), then we Wr(o).

Proof. Since (w,v) € A(C(0)) and v € Wr(0o), there exists M, € T(o —v)
such that w € M, and |M,| > 2. Consider the set X of X ¢ (V (o) \ {v,w})
such that | X n M| =1 for each M € Y (o —v). Using the axiom of choice, we
obtain
X +@.
Since v € Wi(0), (6 —v)/Y (0 —v) is prime. It follows that o[X] is prime
for each X e X.
Let X € X. We show that
(10.8) (V(o)N (Xu{v})) e |J X5(2) (see Notation 3.12).
zeX
Let u e (V(o)~ (X u{v})). Since u # v, there exists N, € T(o - v) such
that v € N,. By denoting by z the unique element of N, n X, we obtain
u € X5(z). Hence, (10.8) holds.
Consider a nontrivial module M, of ¢ —w containing v. For each X € X,
we show that

(10.9) My X| < 1.

As seen in Remark 3.16, we have [M,, n X| <1 or X ¢ M,,. It follows from
Fact 10.6 and (10.8) that |M,, n X| < 1. Hence, (10.9) holds.
Given X € X, we show that there exists y € X such that

(10.10) veXo(y)

Since (v,w) € A(C(0)), o0 — w admits a nontrivial module M, containing
v. By (10.9), My n X| < 1. Clearly, if [M,, n X| = 1, then (10.10) holds
by denoting the unique element of M, N X by y. Hence, suppose that
MynX =@. Let uwe My~ {v}. Since u # v and u # w, it follows from (10.8)
that u € X,(y), where y € X. We verify that v € X,(y) too. Let z € X \ {y}.
Since u € X,(y), we have z <, {y,u} (see Notation 2.1). Furthermore,
since M,, n X = &, we have z ¢ M,,. It follows that z «<—, {u,v}. Therefore,
we obtain z «—, {y,v}. Consequently, {y,v} is a module of o[X u {v}].
Hence, v € X, (y), so (10.10) holds.
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Now, we show that Y(o — w) # @. Consider any nontrivial module M,
of o —w containing v. By (10.9), we have |[M,, n X| < 1. By (10.10), there
exists y € X such that v € X,(y). It follows from Remark 3.16 that M, <
({y}uXs(y)). Consequently, there exists M,, € T (o—w) such that v € M,,.

Lastly, we prove that w € W (o). Consider again M, € T (o —v) such that
w € M, and |M,| > 2. There exists X € X such that w ¢ X n M,. It follows
from (10.8) and (10.10) that

(V(e)~X) ¢ L;(Xg(z).

Therefore, it follows from Fact 10.6 that o—w is connected. Since T (o—w) #
@, it follows from Proposition 10.5 that w € W (o). O

The next result follows from Lemma 10.20.

Corollary 10.21. Let o be an infinite critical 2-structure. Given distinct
v,we Wr(o), if v ~; w, then there exists X < (V (o)~ {v,w}) satisfying

o[ X] is prime;

there exist distinct y,z € X such that ve X,(y) and w e X,(z);
T(o-v) = {({y}vXo(y)) v}, {z}u X, (2)) Ju{{u} s ue X {y,z}};
T(o-w) = {{y}uXs(y)), ({z}uXs(2)){wiu{{u} :uwe X\ {y, z}};
Plo,x) = {XO'(y)7XU(Z)} and E(F(O',X)) = {{’U,U)}}

Proof. As in the proof of Lemma 10.20, consider the set X of X ¢ V(o)
{v,w} such that |X n M,| =1 for each M, € T(o - v). Using the axiom of
choice, we obtain X # @. Since v € W;(¢), Y(o - v) is a modular partition
of c—v and (0-v)/Y (0 -v) is prime. It follows that o[ X] is prime for each
Xek.

Let X e X. It follows from (10.8) and (10.10) (see the proof of Lemma
10.20) that

(10.11) (V(e)NX) < | X,(y) (see Notation 3.12).
yeX

In particular, there exist y,z € X such that v € X,;(y) and w € X,(z). For
each t € X \ {y}, we have

(10.12) ({t} U X, (1) € Y (o - v).

Indeed, consider u € X,(t). Since t # y, we have u # v. Thus, there exists
M} € Y(o —v) such that u € M. Since X € X, there exists ¢’ € X such
that M n X = {t'}. We obtain u € X,(t'). It follows from Lemma 3.13 that
t" = t. Therefore, t € M} for each u € X,(t). Since M} is a module of o —v
for each u € X, (¢), it is not difficult to verify that

U My

ueXs(t)
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is amodule of c—v. Let u € X, (t). Since t € M}, it follows from Remark 3.16
that (M~ {t}) ¢ X,(t). We obtain

U M:f = {t} u X, (1).
ueXs(t)
It follows from the maximality of the elements of Y (o-v) that ({t}uX,(t)) €
T (o —v). Hence, (10.12) holds. Similarly, we have

(10.13) (({y} v Xo(y)) ~{v}) € T(o -v).

By Lemma 10.20, we have w € W (o). Hence, T(o — w) is a modular
partition of 0 —w and (0 — w)/Y (o —w) is prime. Now, we establish the
analogues of (10.12) and (10.13) for Y(o — w). We verify that for each
My, € Y(0—w), we have

(10.14) IMy,nX|<1 (see (10.9) in the proof of Lemma 10.20).

We can assume that |M,,| > 2, so M,, is a nontrivial module of o —w. As
seen in Remark 3.16, we have |M,,n X| <1 or X ¢ M,,. For a contradiction,
suppose that X ¢ M,,. Let u € V(o —w) ~ M,. Since X ¢ M,,, we have
u € (X)y (see Notation 3.12). By (10.11), u € X, (¢), where t € X. We obtain
u € X (t)n(X)s, which contradicts Lemma 3.13. It follows that [M,nX| < 1.
Hence, (10.14) holds. Consequently, there exists Y ¢ V(o) \ {w} such that
for each My, € T (o —w), the following three assertions hold

o Y nMy,l=1;

o if [M,nX|=1, then M, nY = M, n X;

e if v € My, then |M,| > 2 because (v,w) € A(C(0)), so that we can

require that |Y n (M, \ {v})| = 1.
It follows that
XcYc(V(ie)~{v,w}).

Since (0 —w)/Y (0 —w) is prime, o[Y] is prime. We show that
(10.15) X=Y.

For a contradiction, suppose that there exists u € Y \ X. There exists
M} € Y(o —w) such that uw € M. Since M nY = {u} and u ¢ X, we
have M n X = @. It follows from (10.11) that M, ¢ X,(¢), where t € X.
Moreover, it follows from (10.12) and (10.13) that ({t} U X,(¢)) \ {v} is a
module of c—v. By assertion (M2) of Proposition 2.5, (({t}uX,(t))\{v})nY
is a module of o[Y]. Since X ¢ Y ¢ (V(o) \ {v,w}) and M ¢ X,(t), we
obtain (({t}uX,(t))~{v})nY = {t}uX,(t))nY and u,t € ({t}uX,(t))nY.
Furthermore, given ¢ € (X \ {t}), we have t' € Y \ ({t} U X,(t)). Therefore,
({t} uX,(t))nY is a nontrivial module of ¢[Y], which contradicts the fact
that o[Y] is prime. Consequently, (10.15) holds. The analogues of (10.12)
and (10.13) for T (o —w) follow. They are proved as previously. For each
t e X N {z}, we have

(10.16) ({t} UX, (1)) € T(o - w).
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Similarly, we have

(10.17) (({z}uXs(2)) N{w}) e T(o —w).
It follows that for every t € X \ {y, z}, we have
(10.18) X,(t) = @.

Indeed, let t € X \{y, z}. It follows from (10.12) that {¢t} uX,(¢) is a module
of o —v. Moreover, {t} U X,(t) is a module of ¢ —w by (10.16). Therefore,
{t} uX,(t) is a module of . Since o is prime, we have X,(t) = @. Hence,
(10.18) holds. It follows from (10.12) and (10.13) that

T(o-v) ={({y} v Xo(¥)) ~ {v}, {z} v X6 (2)) U {{u} s ue X N {y, 2} }.

Similarly, we have

T(o-w) = {{y} v Xe(y)), ({2} v Xo(2)) N {w}} v {{u} :ue X \{y, z}}.
It follows from (10.11) that

Po,x) = {Xo(y), Xo(2)}-

Suppose for a contradiction that y = z. Since {y}uUX,(y) is a module of c—w
by (10.16) and {z}uX,(2) is a module of o—v by (10.12), {y}uX,(y)uX,(2)
is a module of ¢, which contradicts the fact that o is prime. It follows that

Y * 2.

Since {y} u X, (y) is a module of ¢ —w, we obtain {u,u’} ¢ E(T(, x)) (see
Definition 9.3) for any u € X,(y) and v’ € X,(2) ~ {w}. Similarly, since
{z} U Xy(2) is a module of o — v, we obtain {u,u'} ¢ E(T'(, x)) for any
u € Xo(y) N {v} and v’ € X,(z). By Theorem 3.19, I'(, x) is nonempty.
Therefore, we have

BN o) = ({0, 0} 0

Lemma 10.22. Let o be an infinite critical 2-structure. Consider distinct
vyweW (o). If v~y w and v e Ws(o), then w e Ws(o) and A(v) = AM(w).

Proof. Suppose that v ~, w and v € Ws(o). Since v € Ws(o), there exist a
nontrivial modular cut C,, of o —v and e, f € E(o) such that [C,,V (o -v)\
Cyls = (e, f), where A(v) = {e, f}. For instance, assume that w € C,,. Since
v ¢ & (o), we have |Cy| 22 and [V (o —-v) N Cy| > 2.

First, we prove that w € Ws(o). Since (Wy(o)uWs(o))nWi (o) = & (see
Observation 10.12), it follows from Lemma 10.20 that w ¢ W, (o). Suppose
that w € Wg(o). We must show that w € Ws(o). Since w € Wy(o), 0 —w
admits a proper module M,, such that v € M,,, M,,nC, # @, and M,,n(V (o-
v) N Cy) # @. For a contradiction, suppose that (V (o —v) \ Cy) \ M, # @.
Since M, n Cy # @, we obtain [M,, (V (o -v) N\ Cy) N My]s = (e, f). Since
[Cy, V(o -v)NCyls = (e, f), we obtain [ My, uCy, (V (o —v) N Cy)\ My o =
(e, f). Since v,w € M, uC,, M, uC, is a nontrivial module of o, which
contradicts the fact that o is prime. Consequently, we have (V(o-v)\C,) €
M,,. Since M,, is a proper module of o — w, we have (C, \ {w}) \ M, + @.
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Since (V (o -v) N Cy) € My, and [C,, V(0 —v) N Cyls = (e, f), we obtain
[(Cy N {w}) N My, My]o = (e, f). Tt follows that w e Ws(o).

Second, suppose for a contradiction that A(v) # A(w). There exist a
nontrivial modular cut Cy, of o —w and €', f’ € E(o) such that [C\,, V(o -
w)NCylo = (€, f7), where A(w) ={e,” f’}. Since w ¢ &(0), we have |Cy| > 2
and [V (o — w) \ Cy| > 2. For instance, assume that C, n Cy, # @. Let
u € CynCy. Since [u, V(e —w)\Cyls = (e, f), [u, V(e —-v)NCy]s = (e, f),
and {e, f} # {e) f'}, we obtain (V(oc —w)\ Cy)n (V(c-v)~Cy) = @.
Therefore, we have (V (o) (Cpu{w})) € (Cyu{v}). Since w € C,, we obtain
(V(o) N Cy) € (Cyu{v}). Hence, we have also (V (o —v) \C,) € Cy. Let
u' e (V(o-v)\Cy). Since [u',Cyls = (f,€) and [v/, V (0-w)~Cyls = (¢, ),
we obtain C, N (V (o —w)~ Cy) = @. We obtain C, ¢ (Cy, u{w}). It follows
that V(o —v) € (Cyp U {w}). Thus, we have (V (o —w) \ Cy) € {v}, which
contradicts the fact that w ¢ &(o). It follows that A(v) = A(w). O

Lemma 10.23. Given an infinite critical 2-structure o, we have |Wg(o) ~
Ws(o)| < 1. Moreover, if [Wy(o)\Ws(o)| =1, then|Wg(o)| =1 and Ws(o) =
.

Proof. To begin, suppose that there exist distinct v,w € Wg(o) ~ Ws(o).
Let x € V(o) ~ {v,w}. Since T (o —v) = @, there exists a proper module M,
of o — v such that x,w € M,. Similarly, there exists a proper module M, of
o —w such that x,v € M,,. It is easy to verify that M, u M,, is a module of
0. Since o is prime, we obtain

(10.19) M, UM, =V (o).

We show that M, is a nontrivial modular cut of o —v. Recall that M, is a
proper module of o —v. By (10.19),

(10.20) V(o —v)N My, =(My~{v}) N M,.

By assertion (M2) of Proposition 2.5, M, \ {v} and M, \ {w} are modules
of 0 — {v,w}. Since w ¢ &(0), it follows from (10.19) that [M, \ M| > 2.
Hence, we have (M, \ {w}) \ M,,, which is (M, ~ {w}) ~ (M ~ {v}), is
nonempty. It follows from assertion (M6) of Proposition 2.5 that (M, ~
{v}) ~ (M, ~{w}), which is (M \ {v}) \ M,, is a module of ¢ — {v,w}. To
prove that (My ~ {v}) \ M, is a module of o — v, it remains to verify that
w «—4 ((My ~{v}) N M,) (see Notation 2.1). Let y, z € ((My ~ {v}) N M,).
Since M, is a module of 0 —v and y # v, we have [w,y], = [z,y],. Similarly,
we have [w, z], = [, z]5. Since (M ~{v})\ M, is a module of o —{v,w}, we
have [z,y], = [z, 2]s. It follows that [w,y]s = [w, 2]s. Thus, (My,~{v})\M,
is a module of o —v. It follows from (10.20) that M, is a modular cut of
o —v. Since M, is a proper module of ¢ — v containing x and w, M, is a
nontrivial modular cut of o —v. Therefore, v € Ws(o). It follows that

(We (o)~ Ws(a)| < 1.
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Now, suppose that there exists v € Wy(o) N\ Ws(o). Suppose for a con-
tradiction that Ws(o) # @, and consider w € Ws(o). It follows from Corol-
lary 10.18 that v ~, w, which contradicts Lemma 10.22. Consequently, we
have

Ws(o) = 2,
and hence
We(o) = {v}.
O

10.4. Proof of Theorem 10.1. The next result follows from Corollary
10.10 and Fact 10.13.

Proposition 10.24. Given an infinite critical 2-structure o, consider dis-
tinct v,w e W(o). If (w,v),(v,w) ¢ A(C(0)), then (RT) holds (see Theo-
rem 10.1).

Proof. Suppose that (w,v),(v,w) ¢ A(C(0)). It follows from
Corollary 10.10 that {w} € YT(o —v) and (0 - v)/Y(c —v) is prime. Us-
ing the axiom of choice, consider X ¢ V(o) \ {v} such that | X n M| =1 for
each M € T(o-v). We have o[ X] ~ (0-v)/Y(0—-v). Hence, o[ X] is prime.
Consequently, (RT) holds when X is equipotent to V(o).

Now, suppose that X is strictly subpotent to V(o). We have

(10.21) [V (0)| =sup{|IM|: M eT(c-v)}.
We show that
(10.22) T (0 - w)| > M|

for every M € Y(o —wv)}. This is obvious when |M| = 1. Hence, consider
M e Y (o —v)} such that |[M]| > 2. Since (v,w) ¢ A(C(0)), it follows from
Corollary 10.10 that {v} € T(o0 —w) and (0 —w)/Y (0 — w) is prime. Let
N € T(o —w) such that M NN # @. Since {v} € T(oc—w) and v ¢ M, we
have v ¢ N. It follows from Fact 10.13 that |[M n N| = 1. Therefore, we
obtain
Y (o —w)| > | M|,

so (10.22) holds. It follows from (10.21) that |Y (o — w)| > |V (o0)|. Using
the axiom of choice, consider Y ¢ V(o) \ {w} such that [Y nO| =1 for each
O € Y(o —w). We obtain that [Y] = |T(o —w)| and o[Y] is prime. Since
T (0 —w)|>|V(c)|, we have |Y] = |V (c)|. Consequently, (RT) holds. O

The next result follows from Corollary 10.16. We use the following nota-
tion.

Notationi0.25. Recall that Ly denotes the usual linear ggier on N. We
denote by Ly the linear order defined on Nu{co} such that Ly[N] = Ly and
(n,00) € A(Ly) for every n € N.

Lemma 10.26. Given an infinite critical 2-structure o, C(c)—& (o) embeds
neither Ly nor its dual (Ly)*.
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Proof. First, suppose for a contradiction that there exist a sequence (vy,)ns0
of elements of V(o) \ &(0) and ve € V(o) \ &(0) such that the bijection

Nu{eo} — {vp:n20}U{ve}
n2>0 —  Upn,

(o) —> Vo

is an isomorphism from Ly onto C(o)[{v, : n > 0} U {ve}]. Let n > 2.
We have (v, Vo0 ), (v0,v5,) € A(C(0)), and (veo,vn) ¢ A(C(0)). By Corol-
lary 10.16, o — v,, admits a nontrivial module M, containing vg and v,_1.
Note that ve, ¢ M,, because (Voo,vy) ¢ A(C(0)). Set

M= M,.
n>2
Since
Vo € m Mn
n>2

and {v, : n > 2} ¢ M, it is not difficult to verify that M is a module of
0. Since v ¢ M, for every n > 2, we have M # V(o). Moreover, since
My ¢ M, we have [M| > 2. It follows that M is a nontrivial module of o,
which contradicts the fact that o is prime. Consequently, C(¢) - & (o) does
not embed Ly.

Second, suppose for a contradiction that there exist a sequence (vy,)ns0
of elements of V(o) \ &(0) and ve € V(o) \ &(o) such that the bijection

Nu{oc} — {v,:n>0}U{ve}
n>0 —  Un,

(@] > Voo

is an isomorphism from (Ly)* onto C(o)[{vy : n > 0} U {ve}]. Since o is
critical, 0 — Vo admits a nontrivial module M.,. Let w € M. We have
(w,v00) € A(C(0)). Moreover, for each n > 0, we have (Voo,vy,) € A(C(0))
and (v, v00) ¢ A(C(0)). By Corollary 10.16, o — v, admits a nontrivial
module M, containing v and w. Set

M = M,.
n>2
It is not difficult to verify that M is a module of o. Since vy ¢ My, we have
vo ¢ M, so M # V(o). Moreover, since w,vs € M, we have |M| > 2. It
follows that M is a nontrivial module of o, which contradicts the fact that
o is prime. Consequently, C(c) — & (o) does not embed (Ly)*. O

Remark 10.27. Let L be an infinite linear order. Suppose that L embeds
neither Ly nor its dual (I//K])*. We show that L is isomorphic to Ly, (Ly)*,
or Ly. Indeed, using the axiom of countable choice, we obtain a countable
subset W of V(L). It follows from the infinite Ramsey’s theorem that L[V ]
embeds Ly or (Ly)*. By exchanging L and L* if necessary, we can assume
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that L embeds Ly. Hence, there exists a sequence (vy,)ns0 of vertices of L

N — {v,:n>0}
n>0 — v,

is an isomorphism from Ly onto L[{v, :n >0}]. Set
Vi={veV(s)~{v,:n>0}:v<vy mod L}
and for each n > 0, set
Vo={veV(c)~{vy,:n>0}:v, <v<vpy mod L}.

Let v e V(o) N {v, :n > 0}. Since L does not embed Ly, there exists n > 0
such that v < v,mod L. Therefore, we have
(V(e)~{vp:n>0}) =V u(l Vo).
n>0

For a contradiction, suppose that there exists n > 0 such that V,, is infinite.
As previously, L[V,,] embeds Ly or (Ly)*, which contradicts the fact that
L embeds neither Ly nor its dual (Ly)*. Therefore, V,, is finite for every
n > 0. Set

V' ={v,:n>0}u (V).

n>0
It follows that
(10.23) L[V*] ~ Ly.
Moreover, we have
(10.24) V(L)=V uV".

If V™ is finite, then L ~ Ly too. Hence, suppose that V™ is in/ﬁllite. As
previously, L[V ] embeds Ly or (Ly)*. Since L does not embed Ly, L[V ]
embeds (Ly)*. Therefore, there exists a sequence (wy, )nx0 of element of V'~

N — {v,:n>0}

n>0 — w,
is an isomorphism from (Ly)* onto L[{wy, :n >0}]. Set
Wo={veV :wy<v mod L}

and for each n > 1, set

Wy ={veV™ :w, <v<w,-1 mod L}.
Since L does not embed neither Ly nor its dual (Ly)*, we have

V=W,
n>0

and W, is finite for each n > 0. Consequently, L[V~] ~ (Ly)*. It follows
from (10.23) and (10.24) that L ~ Ly.

The next result follows from Corollary 10.21.

Proposition 10.28. Let o be an infinite critical 2-structure. Given distinct
v,we Wr(o), if v ~; w, then (RT) holds (see Theorem 10.1).
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Proof. Tt follows from Corollary 10.21 that there exists X ¢ V(o) \ {v,w}
satisfying

o[X] is prime;

there exist distinct y, z € X such that v € X,(y) and w € X,(2);
T(o-v) = {({ytuXo(y)) {v}, {z}uXe(2)) bu{{u} s ue X {y,z}};
T(o-w) = {{y}uXs(y)), {2}uXe(2))N{whtu{{u} :ue X {y,z}};
P(o,x) = {Xo(y), Xo(2)} and E(L' (5 x)) = {{v,w}}.

We verify that

{ytuXe(y)) «—o ({2} U X,(2)) N {w}) (see Notation 2.1)
(10.25) < and

(({y} v Xo(¥)) N {v}) =0 ({2} U Xo(2)).

Indeed, consider u € X,(y) and v’ € X,(z). Suppose that u # v or v’ #
w. Since E(T'(5xy) = {{v,w}}, we have {u,u'} ¢ E(I'(,x)). It follows
from assertion (P3) of Lemma 3.17 that {y,u} and {z,4'} are modules of
o[X u{u,u'}]. Therefore, we obtain [u,u'], = [y,z],. Moreover, since
u € X,(y), we have [u,z], = [y,2]s. Similarly, we have [y,u'], = [y,2]s
because u’ € X,(z). It follows that (10.25) holds. Moreover, consider W <
({y} u Xs(y)) and W’ ¢ ({z} U Xys(2)) such that v € W and w ¢ W'. If
|[W|>2 or |W'|>2, then

(10.26) W fory W,

Indeed, it follows from (10.25) that (W \ {v}) «—, W/ and W «—, (W'~
{w}). Precisely, since W ¢ ({y} u X,(y)) and W' c ({z} u X,(2)), we
have [W ~ {v}),W'], = [y,2]s and [W, W'~ {w}], = [y, 2]s. Since {v,w} €
E(T(4,x)), it follows from assertion (P3) of Lemma 3.17 that {y,v} is not
a module of o[ X U {v,w}] or {z,w} is not a module of o[ X U {v,w}]. Fur-
thermore, {y,v} is a module of o[X U {v,w}] if and only if {z,w} is a
module of o[ X u {v,w}]. For instance, assume that {y,v} is not a module
of o[ X u{v,w}]. We obtain [y,w], # [v,w]s. Since w € X,(z), we have
[y,w]o = [y,2]s. Therefore, we obtain [v,w], # [y,2],. It follows that
(10.26) holds.

Clearly, if X is equipotent to V (o), then (RT) holds. Hence, suppose that
X is strictly subpotent to V(o). Consequently, {y} U X,(y) or {z} U X,(2)
are equipotent to V(o). For instance, assume that {y}uX,(y) is equipotent
to V(o).

We prove that

(10.27) 1X,(2)] > 2.
Otherwise, suppose that X,(z) = {w}. We verify that z ¢ &(c). Set
Y = (X ~{z})u{w}.
Since w € X,(z), o[Y] is isomorphic to o[ X], so o[Y] is prime. Let u’ €

(Xo(y) \ {v}). Since E(I'(,x)) = {{v,w}}, we have {w,u'} ¢ E(T'(;x)).
It follows from assertion (P3) of Lemma 3.17 that {y,u’} is a module of
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o[X u{u',w}]. By assertion (M2) of Proposition 2.5, {y,u} is a module of
o[Y u{u'}]. Therefore, u’ € Y,(y). It follows that

(Xo(y) ~ {v}) € Yo (y)-
Since {v,w} € E(T (4 x)), we obtain [v,w], # [y,w],. Thus, v ¢ Y5(y). It
follows that
Yo (y) = Xo(y) ~ {v}
(10.28) and

Plo-2Y) = {Xo'(y) N {’U}, {U}}
Given a nontrivial module M, of ¢ — 2z, we verify that

M < (({y} v Xo(y)) N {v})
(10.29) or
there exists t € (Y ~ {y,w}) such that M, = {t,v}.

Let M, be a nontrivial module of 0 — z. As seen in Remark 3.16, we have
IM,nY|<1orY c M,. Suppose that |[M,nY]|<1. It follows from (10.28)
that M, < (({y} u X,(y)) ~ {v}) or there exists ¢t € (Y ~ {y}) such that
M, = {t,v}. If t =w, then {y,w} is a module of o[Y'], which contradicts the
fact that o[Y] is prime. Thus, ¢t € (Y ~ {y,w}). Consequently, (10.29) holds
when |[M, nY| < 1. In the other case, we have a nontrivial module M, of
o — z such that Y ¢ M,. By Fact 10.6, we have Y,(y) € M., and hence

v <o (V(o) N {z,w}).
In particular, we have

v ({y} v Xe(y)) ~ {v}).
Clearly, we have

t o ({ytuXs(y)) ~{v})

for every t € X \ {y, z}. Moreover, by (10.25), we have

w5 (({y} v Xo(y)) \ {v}).

It follows that ({y}uX,(y))~{v} is a module of o, which contradicts the fact
that o is prime. Therefore, (10.29) holds. It follows that o — z is uncuttable.
In particular, we have z ¢ & (o).

To obtain a contradiction when X, (z) = {w}, we distinguish the following
two cases.
CAsE 1: (v,2) ¢ A(C(0)).

Consider a nontrivial module M, of o — z. Since (v,z) ¢ A(C(0)), it

follows from (10.29) that M, ¢ ({y}u (X,(y) ~{v})). Since M, < ({y}u

X,(y)), we have z «—, M,. Tt follows that M, is a nontrivial module

of o, which contradicts the fact that o is prime.
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CASE 2: (v,2) € A(C(0)).
Since (z,v) € A(C(0)), we have v ~, z. By Lemma 10.20, z € W (o).
Furthermore, by Corollary 10.21, there exists Z ¢ (V (o) \ {v,2}) satis-
fying

o[Z] is prime;
there exist distinct y', 2’ € Z such that v € Z,(y') and z € Z,(2);
T(o-v) = {({y'} v Z:(y) N {v}, {z'} v Zo (")} v {{u} : u €
Z~A{y' 2"
T(o-2) = {{ytvZ:(y)), {Z} v Z()) N {z} v {{u} s u e
Z~{y' 2"

* D(0,2) ={Zo(y'), Z5(2")} and E(L(5,2)) = {{v,2}}.
Recall that

T(o-v) ={({y} v Xo(¥)) N {v} {2} v X6 (2)) U {{u} s ue X~ {y, 2} }.
Since X,(z) = {w}, we have {z,w} € T(o —v). Since {y} U X,(y) is

equipotent to V (o), ({y}uX,(y))~{v} is an infinite element of YT (o—v).
It follows that

{2y U Z,(2") = {z,w}.
Moreover, since ({y} U X,(y)) \ {v} is an infinite element of Y (o —v) \
{{z"}uZ,(7") = {z,w}}, we have

({y} v Xo()) ~{o} = {y' v Zo(y) N {0}

Therefore, we obtain

y e (({y} v Xo(y)) ~{v}),
veZy(y'),

and

w e 7,

which contradicts (10.26) with W = {y’,v} and W' = {w}.
Consequently, (10.27) holds. Consider u' € X,(z) \ {w}. We show that
u' € Wr(o) and

(10.30) Hu}:ue{yuX,(y)} cY(o-u),

which allows us to conclude because {y} U X,(y) is equipotent to V(o).
Let M, be a nontrivial module of ¢ —u’. For a contradiction, suppose
that X ¢ M,. Since M, is a nontrivial module of o — u’, there exists
u € (V(U) N {ul}) N M. Since Po,x) = {Xcr(y)yXa(z)}7 we get u € Xo(t)a
where t =y or z. Set
Y = (X~ {t})u{u}.

Since {t,u} is a module of o[X u {u}], o[Y] is isomorphic to o[X]. It
follows that o[Y'] is prime. By assertion (M2) of Proposition (2.5), M,y nY
is a module of o[Y]. We have (X \{t}) € (My nY), so [MynY]| > 2.
Furthermore, we have u € (Y N\ (M, nY')). Therefore, M,,nY is a nontrivial
module of o[Y], which contradicts the fact that o[Y] is prime. It follows
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that X \ M, # @. It follows from Remark 3.16 that we obtain |M,, n X| < 1.
Since p,,x) = {Xo(y), Xo(2)}, we obtain

My € ({y} v Xo(y)) or My € ({2} U X5(2)).

It follows that u’ ¢ &(0) and o — v’ is uncuttable. By Proposition 2.12,
o —u' is connected. Moreover, for t € X \ {y, 2}, we obtain {t} € T(o - u').
It follows from Proposition 10.5 that u' € Wi(o). Finally, we establish
(10.30). For a contradiction, suppose that there exists M, € YT(o — u')
such that M, ¢ ({y} u X,(y)) and |My| > 2. Since w ¢ M,s, we have
w «—4 My. Since | M| > 2, it follows from (10.26) that v ¢ M,s. Therefore,
we obtain v’ «—, M, by (10.25). Hence, M,  is a module of o, which
contradicts the fact that o is prime. It follows that (10.30) holds. Since
{y} uX,(y) is equipotent to V (o), T(o —u') is equipotent to V(o) as well.
Since v’ € Wi (o), (6 —u’)/Y (o —-u") is prime. Consequently, (RT) holds. O

The next result follows from Corollary 10.16, Remark 10.27, and Propo-
sition 10.28.

Proposition 10.29. Let o be an infinite critical 2-structure. If W (o) # @,
then (RT) holds.

Proof. Suppose that Wi (o) # @. To begin, we show that (RT) holds when
Wy (o) is finite. Indeed, suppose that Wy (o) is finite. By Proposition 10.9,
W (o) is equipotent to V(o). Thus, W (o) \ Wr(o) is equipotent to V(o).
Let v € Wr(0). Since (o —v)/Y (0 —v) is prime, it suffices to verify that
Y (o —wv) is equipotent to W (o) N\ Wr(c). Consider we W (o) \ Wr(c). By
Corollary 10.18, we have (v,w) € A(C(0)). It follows from Lemma 10.20
that (w,v) ¢ A(C(0)). Hence, {w} € Y (o —v). Therefore, we have

{w}:weW(o)\ Wr(0)} € Y(o -0).

It follows that Y (o — v) is equipotent to W (o) ~ Wr(o), so T(o - v) is
equipotent to V(o). Consequently, (RT) holds.

In the sequel, we suppose that W (o) is infinite. By Corollary 10.17
and Propositions 10.24 and 10.28, we can assume that C(o)[W;(0)] is a
linear order. Furthermore, by Lemma 10.26, C(¢)[W(o)] embeds neither
Ly nor its dual (Ly)*. It follows from Remark 10.27 that C(o)[Wy(0)] is
isomorphic to Ly, (Ly)*, or L.

First, suppose that C(o)[Wx ()] is isomorphic to Ly or Lz. In particular,
observe that W (o) is countable. There exists a sequence (vy, )n>0 of elements
of W (o) such that the function

N — {v,:n>0}

n>0 — v,

is an isomorphism from Ly onto C(o)[{v, : n > 0}]. For a contradiction,
suppose that Wy (o) uWs(o) # @. Consider w € Wy (o) u Ws(o). Let n > 0.
By Corollary 10.18, we have (v, w) € A(C(o)). It follows from Lemma 10.20
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that (w,v,) ¢ A(C(0)). Consequently, we obtain C(o)[{v,:n>0}u{w}]=~
Ly, which contradicts Lemma 10.26. It follows that

Wy (o) uWs(o) =2,

W(o)=Wxz(o).

It follows from Proposition 10.9 that V(o) is countable. Since vy € Wy (o),
Y (o —vp) is a modular partition of o — vy and (o —vg)/Y (o —vp) is prime.
Let n > 1. Since (vp,vg) ¢ A(C(0)), we have {v,} € Y(o —vg). Consider
X € V(o —wvg) such that | X n M| =1 for every M € T(o —vp). We obtain
that X is a countable proper subset of V(o) such that o[ X] is prime. Thus,
(RT) holds.

Second, suppose that C(o)[W;(o)] is isomorphic to (Ly)*. There exists
a sequence (vy,)nso of elements of W, (o) such that

We(o) ={v,:n>0}

and the function
N — {v,:n>0}

n>0 — v,

is an isomorphism from (Ly)* onto C(o)[Wx(0)].

Let w € Wg(o) u Ws(o). As seen previously, we obtain that {w} €
Y (o —wvp). Thus, Wy(o) uWs(o) is subpotent to Y (o —vp). Suppose that
Wg(o) uWs(o) is infinite. Since Wi (o) is countable, we obtain that W (o)
is equipotent to Wy (o) uWs(o). It follows from Proposition 10.9 that V(o)
is equipotent to Wy(o) u Ws(o). Since Wy(o) u Ws(o) is subpotent to
Y (o - vp), it follows from Bernstein-Schroder theorem that Y (o — vg) is
equipotent to V(o). Consider X ¢ V(o -wp) such that |[X n M| =1 for every
M e Y (o —vp). We obtain that X is proper subset of V(o) such that X
is equipotent to V(o) and o[X] is prime. Therefore, (RT) holds. In the
sequel of the proof, we suppose that Wy (o) u Ws(o) is finite. Since Wy (o)
is countable, W (o) is countable as well. It follows from Proposition 10.9
that V(o) is countable.

To continue, we show that for each p > 0,

(10.31) {vm :m > p} is a module of o[Wr(0)] - vp.

Indeed, consider p > 0. Let g > p+2. We have (vp+1,vp), (vq,vp) € A(C(0))
and (vp,vp+1) ¢ A(C(0)). By Corollary 10.16, o — v, admits a nontrivial
module M,! containing vy.1 and v,. Since v, € Wr(0), Y(o-v,) is a modular
partition of o —v, and (6 -v,)/Y (0 —v,) is prime. Denote by M, the unique
element of Y(o —vy,) containing vp+1. It follows from the maximality of
M, that M} c M,. By assertion (M2) of Proposition 2.5, M, n ({v, : n >
0}~ {vp}) is a module of o[{v, : n > 0}] - v,. We obtain

{vm :m>p}c (Mpyn({vn:n>0}N{vp})).
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Let m < p. Since (vp,vp) ¢ A(C(0)), we have {vp,} € T(o—vp), S0 vy, ¢ M,
Hence, when p > 1, we have

(1032) {’U(],...,Up,l}ﬂMp =0J.
It follows that
(10.33) (Mpn (Wr(o) N {vp})) = {vm : m > p}.

Hence, (10.31) holds. Consider X? ¢ V(o - v,) such that | X? n Np| =1 for
every N, € Y(o-vp,). We have o[ X?] is prime. Since M), € Y (o -wv,), denote
by y, the unique element of X” n M,. We obtain

(10.34) (M~ {yp}) € (XP)s(yp) (see Notation 3.12).
Since {v, } € T(o —vp) for each m < p, we obtain

(10.35) {vm :m < p}c XP.

As previously seen, it follows from Lemma 10.20 that
(10.36) (Wg(o)uWs(o)) c XP.

Let w € V(o —vp) ~ XP. There exists N, € T(o —vp) such that w € N,,.
We obtain w € (X?),(z), where z denotes the unique element of X? n N,,.
It follows from Lemma 3.13 that V(o - v,) n (X?), = @. For a contradic-
tion, suppose that there exists N, € (Y(o —vp) \ {M,}) such that |[Ny| >
2. Let w e N~ XP. It follows from (10.33), (10.35), and (10.36) that
w ¢ W(o), that is, w € &(0). Hence, V(o) \ {w, Fg(o)(w)} is a mod-
ule of ¢ — w (see Notation 10.8). We have |XP?| > 3 because o[ XP] is
prime. Thus, [(V (o) \ {w, Fg(s)(w)}) n XP| > 2. Since o[X?] is prime,
we obtain X? ¢ (V (o) \ {w, Fg(y(w)}). It follows from Fact 10.6 that
(V(o) N A{vp,w}) € (V(0) N A{w, Fgoy(w)}). We obtain v, = Fg(py(w). In
particular, we obtain v, <—, M, (see Notation 2.1). Hence, M), is a nontriv-
ial module of o, which contradicts the fact that ¢ is prime. Consequently,
we have

(10.37) (V(e —wvp) N M,) c XP.
Finally, we show that for each p>1,
(10.38) Up <o {Up+1,Ups2} (see Notation 2.1).

Otherwise, there exists p > 1 such that v, <=4 {vp+1,vps2}. Recall that
M,, denotes the unique element of Y(o - v,) containing vpy,;. By (10.31),
{vm :m >p+1} is a module of o[Wr(0)] - vpe1. We obtain v, «—4 {vy, :
m > p+ 1}, Since v, «—4 {Up+1,Vps2}, we have v, <=, {vy, @ m > p}.
It follows from (10.33) that v, <—, (M, n (Wx(o) ~ {v,})). Since o is
prime, M, is not a module of o. Therefore, v, <f>, M,. Thus, there exists
w € M, such that v, </, {vps1,w}. Since v, <=, {vy, : m > p}, we have
w ¢ {vym : m > p}. It follows from (10.35) that w ¢ {v, : m < p}. We
obtain w ¢ Wi (o). Furthermore, it follows from (10.36) that w ¢ Wy(o) U
Ws(o). We obtain w € &(0). Hence, V(o) \ {w, Fg(,y(w)} is a module
of o —w (see Notation 10.8). As previously, it follows from Fact 10.6 that
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(V(o) N {vp,w}) € (V(o) N {w, Fg(py(w)}) and we obtain v, = Fe,)(w).
By (10.33), we have vy, v,41 € Mp. Recall that X is a subset of V(o - vp)
such that | X% n No| = 1 for every Ny € Y(o —vg). Furthermore, gy denotes
the unique element of X 0N My. Hence, we can assume that Yo = Up+1 SO
that yo # v, and yo # w. It follows from (10.34) that v, € (X°)(vps1).
Since (vp,v0), (w,vp) € A(C(0)) and (vo,vp) ¢ A(C(0)), it follows from
Corollary 10.16 that o — vy admits a nontrivial module Ny containing v,
and w. It follows from the maximality of My that Ng € My. In particular,
we have w € My. Since V(o) \ {w,vp} is a module of o — w, we obtain
vp € (X°),. Therefore, we have v, € (X9)(vp11) N (X°)y, which contradicts
Lemma 3.13. Consequently, (10.38) holds.

To conclude, we verify that o[W, (o)~ {vg}] is prime. Let M be a module
of o[Wr(o)~{vg}] such that |M| > 2. We have to show that M = {v, :n > 1}.
Given m < n, we prove that

(10.39) if vy, vy € M and vy4q ¢ M, then vy0 € M.

Suppose that v, v, € M and v,41 ¢ M. Tt follows from (10.31) and (10.38)
that vy, <=5 {Un+1,Uns2} and v, <5 {Vn+1, Vps2}. Since vy, v, € M and
Un+1 ¢ M, we obtain v,.9 € M. Hence, (10.39) holds. Given m < n, we verify
that

(10.40) if vy, vy € M, then v,41 € M.

Suppose that vy, v, € M. For a contradiction, suppose that v,.1 ¢ M. By
(10.39)’ UTL+2 € M. Let T Z n + 3. By (10.38), /UTL+1 (_'L)O' {’Un+2,vn+3}. By
(10.31), {vy : m > n+2} is a module of o[Wyr(0)] = vp42. Thus, we have
Un+1 <0 {Un+3, 0, }. It follows that vy.1 <5 {vn42, v, }. Therefore, v, ¢ M
for every r > n + 3, which contradicts (10.39). It follows that v, € M.
Hence, (10.40) holds.
Consider
p=min({n>1:v, € M}),
and
g=min({n>1:v, € (M~ vp}}).

For a contradiction, suppose that p > 2. It follows from (10.31) and (10.38)
that v,1 </, {vp,vy}. Thus, we have p = 1. Proceeding by induc-
tion, it follows from (10.40) that v, € M for every r > ¢ + 1. By (10.38),
Vg-1 2o {Vg,Vgs1}. Since vg,v4+1 € M, we have vg_1 € M. It follows from
the minimality of ¢ that ¢ —1 = 1. Therefore, we obtain M = {v, : n > 1}.
It follows that o[Wr(o) ~ {vg}] is prime. Since V(o) is countable, (RT)
holds. O

We use the following definition and remark in the proof of the next propo-
sition.

Definition 10.30. A 2-structure o is a directed path on Z if V(¢) = Z and
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there exist distinct e, f € E(o) satisfying

for any ne€Z and p > 2, [n,n+pl, = (e, f)
(10.41) and

for every neZ, [n,n+1], # (e, f).
Remark 10.31. Let o be a directed path on Z. There exist distinct e, f €
E(0) satisfying (10.41). Let M be a module of Lz such that |M| > 5. We
verify that o[M] is prime. Indeed, let N be a module of o[M] such that
|N| > 2. We must show that N = M. Consider m,n € N such that m < n
and Nn{peZ:m<p<n}={m,n}. Suppose that m —1 € M. Since
[m-1,m], # (e,f) and [m - 1,n], = (e, f), we obtain m -1 € N. By
proceeding by induction, we obtain

(Mn{...,m-1,m})c N.
Similarly, we obtain
(Mn{n,n+1,...})c N.

Since Nn{peZ:m<p<n}={m,n}, we have

N=Mn{....m-1,m}u{n,n+1,...}).
For a contradiction, suppose that n > m + 1. Since [m,m + 1], # (e, f)
and [m - 1,m + 1], = (e, f), we obtain m -1 ¢ M. Similarly, we have
n+1¢ M. It follows that M = {peZ:m <p<n} and N = {m,n}. Since
M| > 5, we have n > m + 4. Since [m,m +2], = (e, f), [n,m+2]s = (f,€),
and e # f, we obtain [m,m + 2], # [n,m + 2],, which contradicts the fact

that N is a module of o[M]. Consequently, we have n = m + 1. Since
N=Mn{...,m-1,m}u{n,n+1,...}), we have N = M.

Proposition 10.32. Let o be an infinite critical 2-structure. If there exists
v e Ws(o) such that |A\(v)| =2 (see Notation 10.11), then (RT) holds.

Proof. Suppose that there exists u € Ws(o) such that |A\(u)| = 2. Hence,
there exist distinct e, f € E(o) such that A(u) = {e, f}. By Corollary 10.18
and Lemma 10.22, we have
W(o) =Ws(o)
(10.42) and
for every v e Ws(o), A(v) ={e, f}.
Let v € Ws(0). There exist e, f, € E(0 —v) such that o — v is not {e,, fy}-
connected. Moreover, we have
ev=en(V(c-v)xV(c-v))
and
fo=fn(V(ec-v)xV(c-v)).
We show that
(10.43) |C{6va}(a—v)| =2.
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Otherwise, suppose that [Cy., r1(0 —v)|[ > 3 (see Definition 2.2). It follows
from Proposition 2.8 there exist a modular partition {X,,Y,,Z,} of 0 —v
such that [X,,Y, U Z,]s = (e, f) and [Y,, Zy]s = (e, f). Since o is prime,
o is {e, f}-connected. Thus, there exists x, € X, and z, € Z, such that
[2y,v]s # (e, f) and [v, zy]s # (€, f). Therefore, for every w € Y, o —w is
{e, f}-connected. It follows from (10.42) that Y, ¢ &(c). Consider w € Y,,.
Since w € &(o), there exists Fie(,)(w) € V(o) \ {w} (see Notation 10.8) such
that
Feoy(w) <=5 V(o) N {w, Fgr)(w)} (see Notation 2.1).

Suppose that |Y,| > 2. Let w € Y,. Since [X,,Y, ~ {w}], = (e, f) and
[Yos{w}, Zu]o = (e, f), we have Fi(,)(w) ¢ Y,. For a contradiction, suppose
that Fg(o)(w) € Z,. Since [Xy,Zy]s = (e, f) and [w,Zy]s = (e, f), we
obtain that V(o) \ {Fg(s)(w)} is a module of o, which contradicts the
fact that o is prime. It follows that Fg(,)(w) ¢ Z,. Similarly, we have
Fg(o)(w) ¢ Xy. Therefore, we obtain Fg(,)(w) =v. Since Fy(,) is injective
(see Notation 10.8), we have |Y,| = 1. Denote by w the unique element of
Y,. We have Fg () (w) = v. Since [v,2,], # (f,e) and [v, z,]5 # (e, f), there
exist €', f’ € E(o) such that [v,V(o)~{v,w}], = (¢, f) and {€', f'} # {e, f}.
It follows that o —u is {e, f}-connected for every u € X, u Z,. By (10.42),
u ¢ W(o) for every u € X, uZ,. Since Y, ¢ &(0), we obtain W (o) = {v},
which contradicts Proposition 10.9. Consequently, (10.43) holds for each
veWs(o).

Let v e Ws(o). By (10.43), there exists a unique nontrivial modular cut
C, of o0 — v such that

[Cy, V(e —v)NCyly = (e, f).

We define a digraph Ls(o) on V(Ls(0)) = Ws(o) as follows. Given dis-
tinet v, w € Ws(o),

(v,w) € A(Ls(0)) if (C,u{v}) < Cy.

We verify that Ls(o) is a linear order. Clearly, Ls(o) is a partial order.
Consider distinct v, w € Ws(o). We prove that

w € Cy if and only if (w,v) € A(Ls(0))
(10.44) and
ve(V(o-w)NCy) if and only if (w,v) € A(Ls(0)).

Clearly, if (w,v) € A(Ls(0)), then (Cy u{w}) € C,, so w € C,,. Conversely,
suppose that w € C,. Since o is prime, o is {e, f}-connected. Thus, there
exists =, € Cy, and y, € V(0 —v)\ C, such that [z,,v]s # (e, f) and [v,yy]s #
(e, f). We distinguish the following two cases.
CASE 1: There exists t, € Cy, \ {w} such that [t,,v], # (e, f).
[tv,v]o # (e,f). We obtain that (V(oc —v) N Cy,) u{v,t,} is {e, f}-
connected. Therefore, we have (V (o -v)\ Cy)) u{v,t,} € D, where
Dy =Cyor V(oc—w)\Cy. Let ue (V(oc—w)~D,y). Since [u, V(o —-v)~
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Cyls = (e, f), we obtain D,, = V(o —w) \ Cy, and hence (V (o) \ C,) ¢
(V(o—w) N Cy). It follows that (w,v) € A(Ls(0)).
CASE 2: w =z, and [Cy, N {w},v], = (e, f).

Since w ¢ &(0), there exists z, € (V (o) N\ Cy) such that [z,,v]s # (e, f).
Since [v,yy]s # (e, f), we obtain that (V(o —v) \ C,) u{v}, which is
V(o) N\ Cy, is {e, f}-connected. Therefore, we have (V (o) \ Cy) S Dy,
where D, = Cy, or V(o —w) N Cy. Let u € V(o —w)~ D,. Since
[u, V(o —=v) N Cyls = (e, f), we obtain D, = V(o —w) \ Cy. Thus, we
have (Cy, u{w}) € Cy, so (w,v) € A(Ls(0)).

It follows that w € C,, if and only if (w,v) € A(Ls(c)). We show similarly
that v € (V(o —w) N\ Cy) if and only if (w,v) € A(Ls(c)). Hence, (10.44)
holds. It follows that (w,v) € A(Ls(o)) or (v,w) € A(Ls(c)). Consequently,
Ls(o) is a linear order.

Now, we prove that Ls(o) does not embed Ly. Otherwise, there exist a
sequence (vp, )nz0 of elements of W (o) and ve € W (o) such that the bijection

Nu{eo} — {vp:n20}U{ve}
n>0 > Up,

(o) > Voo

is an isomorphism from Ly onto Ls(a)[{vn 7 >0} U{ve}]. For each n >0,
we have

(Cy, U{v,})cC,
(10.45) and
(Copiy U{vns1}) € Co,.

n+1

Set
Cc=U0C,,.

n>0
It follows from (10.45) that C'is a nontrivial module of o, which contradicts
the fact that o is prime. Consequently, L;(c) does not embed Ly.

To pursue, we prove that Ls(c) does not embed (Ly)*. Otherwise, there
exist a sequence (vp)n>0 of elements of W (o) and ve € W (o) such that the
bijection

Nu{oc} — {v,:n20}U{ve}
n>0 +— o,

[e9) > VUoo

is an isomorphism from (Ly)* onto Ls(c)[{vy : n > 0} U {ves}]. For each
n >0, we have
(Copy U {tna1}) € Co,
(10.46) and
(Coo U{Vs}) € Cy,.
Set
C=)Cy,.

n>0
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It follows from (10.46) that C is a nontrivial module of o, which contradicts
the fact that o is prime. Consequently, Ls(c) does not embed (Ly)*.

It follows that Ls(c) embeds neither Ly nor its dual (Ly)*. By (10.42),
we have W (o) = Ws(o). It follows from Proposition 10.9 that Ls(o) is an
infinite linear order. By Remark 10.27, Ls(o) is isomorphic to Ly, (Ly)™,
or Lz. Given v,w € Ws(o) such that v <p(,)w, we prove that

047 o = (e, f) if and only if there exists u € Ws(o) such that
1047 U <Ls() % <Ls(o) W

Consider v,w € Ws(o) such that v <z, w. To begin, suppose that there
exists u € Ws(0) such that v <p () u <p,(o)w. By (10.44), we have v € Cy
and w € (V(o-u)\C,). Hence, we have [v,w], = (e, f). Conversely, suppose
that [v,w]s = (e, f). By (10.44), we have w € (V (0-v)\C}). Hence, we have
[w,Cy]s = (f,e). Since [w,v], = (f,e), we obtain [w,C, U{v}]s = (f,e).
Since (v,w) € A(Ls(c)), we have C, u{v} ¢ Cy. Since w ¢ &(c), Cy
is a nontrivial module of o — w. Since C,, is not a nontrivial module of
o, there exists u € (Cy N (Cy U {v})) such that [w,u], # (f,e). Since
u € (Cy N (Cpu{v})), it follows from (10.44) that v <p, (o) u <p;()w-

For a contradiction, suppose that &(o) # @. As seen at the end of the
proof of Proposition 10.9, {€°(c), & (o), &%(0)} is a partition of €(o) and
|62(0)| < | (0)| < |6%(a)|. Tt follows that &°(o) # @. Hence, there exists
u € &(0) such that Fe,y(u) ¢ &(0), so Fey)(u) € W(o). Since Ls(o) is
isomorphic to Ly, (Ly)*, or Lz, there exist v,w € W (o) such that

W <L5(0)V <Lg(o) Fio(o) (1)

and

{teW(o):v <L5(O’)t <Ls(o) Fg(g)(u)} =d.
or
Fe(o)(U) <p4(0)V <Lg(o)W

and

{t e W(0): Fe(o)(u) <p5(0)t <15(0) v} = @

In the first instance, it follows from (10.47) that [w, Fi(s)(u)]s = (e, f) and
[v, Fie(0)(u)]o # (e, ), which contradicts Fyg()(u) <—=o V(o) \u, Fe()(u)}
(see Notation 10.8). Similarly, the second instance leads to a contradiction.
It follows that

&(o) =2,
so we have
V(o) =Ws(o).
Lastly, suppose for a contradiction that Ls(o) is isomorphic to Ly. There
exists a sequence (v, )ns0 of elements of V(o) such that

N — {v,:n>0}

n +—> v,
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is an isomorphism from Ly onto Ls(o). Let n > 0. It follows from (10.47)
that [vp,vn41]e # (e, f) and [vp, Vpsple = (e, f) for every p > 2. Conse-
quently, there exists a directed path 7 on Z (see Definition 10.30) such that
o is isomorphic to 7[N]. By Remark 10.31, o —vjg is prime, which contradicts
the fact that o is critical. Similarly, if Ls(c) is isomorphic to (Ly)*, then o
is not critical. It follows that Ls(o) is isomorphic to Lz. Hence, there exists
a sequence (vp)nez of elements of V(o) such that

p: Z — {vp:n>0}

n o — v,

is an isomorphism from Lz onto Ls(c). It follows from (10.47) that ¢
is an isomorphism from o onto a directed path on Z. By Remark 10.31,
o[{vn :n >0}] is prime, so (RT) holds. O

Proposition 10.33. Let o be an infinite critical 2-structure. If there exists
v e Ws(o) such that |A\(v)| =1 (see Notation 10.11), then (RT) holds.

Proof. Suppose that there exists u € Ws(o) such that |A\(u)| = 1. Hence,
there exists e € E(o) such that A(u) = {e}. By Lemma 10.22, we have

W (o) =Ws(o)
(10.48) and
for every v e Ws(o), A\(v) ={e}.

Let v € Ws(o). There exists e, € F(o —v) such that o — v is not {e,}-
connected. Moreover, we have e, = en (V(o —v) x V(o0 —v)). For each
w € V(o) {v}, we denote by C;’ the unique element of Cy,, ) (0~v) containing
w.
We prove that & (o) = @. Otherwise, as observed in the proof of Propo-
sition 10.32, there exists u € &(o) such that Fe(,)(u) € W(o). For conve-
nience, set
v =Fgp)(u).

Let Dy € (Cie,1 (0 -v)N{Cy'}). Since o is {e}-connected, there exists w € D,
such that <v,w>,# {e}. Since v «—, V(o) \ {u,v} (see Notation 10.8), we
obtain <v,t>,# {e} for each t € V(o) \ {u,v}. Hence, for each t € V(o —v)\
CY, o —t is {e;}-connected, where e, =en (V(o-t) x V(o -t)). It follows
from (10.48) that t € &(¢). Thus, we have W (o) ¢ (C}} u{v}). It follows
from Proposition 10.9 that W (o) \ {v} is infinite. Let w ¢ (W (o) ~ {v}).
Recall that <wv,t>,# {e} for each t € V(o) \ {u,v}. Hence, o - {u,w} is
{efu,wy }-connected, where eg,, ,y = en(V (o —{u,w})xV (o ~{u,w})). Since
o —w is not {ey }-connected, we obtain [u,V (o — {u,w})], = (e,€), which
contradicts the fact that w ¢ & (o). Consequently, we have & (o) = @, so

(10.49) V(o) =W(o).
Consider distinct v,w € V(o). We show that
(10.50) cyucCy =V(o).
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Let Dy € (Cie,1 (0 -v)N{C'}). Since o is {e}-connected, there exists u € D,
such that <u,v>,# {e}. It follows that

(10.51) V(o) N C} is {e}-connected.

Since v e (V(o) N C}Y), we obtain (V (o) N C}’) c Cy. It follows that (10.50)
holds.

We conclude as follows. Consider distinct v,w € V(o). By (10.50), we
have C;f uCy =V (o). By exchanging v and w if necessary, we can assume
that C}’ is equipotent to V(o). We verify that o[C}’] is prime. For a
contradiction, suppose that M is a nontrivial module of o[C}’]. Clearly, M is
a module of o—v. Since o is prime, there exists t € M such that <t,v>,# {e}.
Let s € M ~ {t}. Since C}’ is {e}-connected and M is a module of o[C}’],
o[CY¥] - s is {e}-connected as well. Since <t,v>,% {e} and t € (C¥ ~ {s}),
we obtain that (C; ~ {s}) u {v} is {e}-connected. Moreover, by (10.51),
V(o) N~ CY is {e}-connected. Since v e (V(o)NCP)n ((CY N {s})u{v}),

V(o) ~ C) v ((Cy ~ {s}) u{v}),
which is V(o) \{s}, is {e}-connected, which contradicts (10.48) and (10.49).
Consequently, o[C}’] is prime. It follows that (RT) holds. O

Theorem 10.1 follows easily:

Proof of Theorem 10.1. Let o be an infinite prime 2-structures. Clearly,
if o is not critical, then (RT) holds. Hence, suppose that o is critical. By
Proposition 10.9, V(¢) and W (o) are equipotent.

By Proposition 10.29, if W, (o) # @, then (RT) holds. Thus, suppose that

Wr(o) =@.
By Observation 10.12, we have
W(o) =Wg(o)uWs(o).

Since W (0 )uWs(0o) is infinite, it follows from Lemma 10.23 that Wy (o) ¢

W5(0)7 S0
Wi(o)=W;s(0o).

Finally, it follows from Propositions 10.32 and 10.33 that (RT) holds. O
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A. PrROOF OF THEOREM 5.21

We need the next two results to prove Theorem 5.21. The next lemma
has to be compared with Corollary 5.14.

Lemma A.1. Let o be a 2-structure such that v(o) > 7. If o is prime, and
neither critical nor almost critical, then there exists v € V(o) such that o—v
is prime and noncritical (that is, v e S (o) N Se(0)).

Proof. Since o is not critical, we have .# (o) # @. If |#(0)| > 2, then it
suffices to apply Theorem 5.10. Now, suppose that .¥(¢) admits a unique
element denoted by x. Since o is not almost critical, we have .Z.(¢) = @. It
follows that o — x is prime and noncritical. O

Proposition A.2. Let o be a 2-structure such that v(o) > 7. If o is prime,
and neither critical nor almost critical, then there exists v € V(o) such that
o —v 1s prime, and neither critical nor almost critical, as well.

The proof of Proposition A.2 is long and technical. We decompose it into
several claims.

The beginning of the proof of Proposition A.2. By Lemma A.1,
L(o)\ (o) + 2.

If there exists v € (o) \ /(o) such that | (o —v)| > 2, then it follows
from Theorem 5.10 applied to ¢ — v that ¢ — v is prime, and neither critical
nor almost critical.

To continue, suppose that

(A1) |- (0 —v)| <1 for every v e . (o) \ Z(0).

Given v € (o) \ S.(0), we have . (0 —v) # @ because v ¢ S.(c). Thus,
for every v € (o) \ S (o), (0 —v) admits a unique element. Consider
the function f: . (0)\Z.(c) — V(0o), which maps each v € ¥ (o)~ .7, (0)
to the unique element of . (o - v).

Given v € (o) \ S(0), if f(v) ¢ S.(oc —v), then o — v is prime, and
neither critical nor almost critical. Lastly, suppose that
(A.2) S (0 -v) =S (o-v)={f(v)} for every ve . (o) \ (o).

Let ve . (o) \.7(0). It follows from Theorem 5.13 applied to o —v that
(A.3) v(o) =2n+ 2, where n > 3,

and there exists an isomorphism ¢, from (o —v) — f(v) onto an element 7,
of Ra, satistying (5.7).

Observation A.3. Recall that if (A.1) or (A.2) does not hold, then we can
conclude as above. In the sequel, we suppose that (A.1) and (A.2) hold. We
establish the new claims below in order to finally obtain a contradiction.

Claim A.4. We have f:.7(0) N S(0) — V(o) S (0).
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Proof. Otherwise, there exists v € . (o) \ Z.(0) such that f(v) € (o).
Since o — {v, f(v)} is prime, we have f(v) € % (o)~ S(0). It follows that
(fef)(v)=v.

As seen in the proof of Theorem 5.13, ¢, and ¢ (, are isomorphisms from

P(o—{v, f(v)}) onto Pp,. We obtain that ¢, o ()7t is an automorphism
of P,,. We have

(A4) Aut(P2n) = {Idg,... 2n-1},m2n} (see Notation 4.21).
It follows that

Pfv) = Pv OF T2p © Py-

Recall that (5.7) holds for ¢, and ¢y(,). Therefore, if ¢, = ¢y, then
{v, f(v)} is a module of o, which contradicts the fact that o is prime. Sup-
pose that ¢,y = T2, 0 y. Since (5.7) holds for ¢y(,y, we have

[Uv (Saf(v))_l({27’ S {07 R 1}})]0 = [(@f(v))_l(o)v (@f(v))_1(2)]a-

Since @y (y) = Tan © Py, We obtain

[v, (@v)_l({zi +1:7€{0,...,n-1}})]5 = [(‘Pv)_l(2n -1), (‘Pv)_l(2n -3)]o-

Since 1, is critical, with P(7,) = Pa,, it follows from Proposition 4.15 that

[(00) (20 = 1), (0) (20 = 3)]5 = [(20) " (2), (0) 7 (0)]o
Therefore, we obtain
[0, (po) ({20 + 120 €{0,...,n=13}))]o = [(00) ' (2), (20) 1 (0)]o
Since (5.7) holds for ¢, we have

[f(0), (o) ({20 + 120 € {0,...,n=1}3)]o = [(20) 1 (2), (90) " (0)]o
It follows that
[f(v), (<pv)_1({2i +1:7€{0,....,n=-1}})]s
= [v, (gpv)_l({% +1:7€{0,...,n=1}})]s.
Similarly, we have
[f(©), (o) ({2i:i€{0,...,n-1}})],
= [v, (o) ({207 €{0,...,n-1}})],-

Consequently, {v, f(v)} is a module of o, which contradicts the fact that o
is prime. O

Claim A.5. The function f is injective.

Proof. Otherwise, there exist distinct v, w € . (o) \ .#.(0) such that f(v) =
f(w). By Claim A4, f(v) € V(o) (o). Since o - {v, f(v)} and o -
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{w, f(v)} are prime, it follows from Lemma 4.4 that {v,w} is a module of
o — f(v). Therefore, the bijection

v Vi) N{w, f(v)} — V(o) {v, f(v)}

— W
zeV(o)N{v,w, f(v)} — =,

is an isomorphism from (o - w) - f(v) onto (0 —v) — f(v). Thus, we can
choose ¢, o9 for ¢,. As shown in the proof of Theorem 5.13, ¢, and
©y 0 9 satisty (5.7). Since w € (o) and f(v) € V(o) \ #(0), there exists
p € {0,...,2n - 1} such that ¢,(w) = p. Observe that ma, o ¢, (see (A.4))
is also an isomorphism from (o - v) — f(v) onto (7,)*, with (7,)* € Rap,
satisfying (5.7). Therefore, we can assume that

w = (9011)71(207
where t € {0,...,n—1}. Since ¢, satisfies (5.7), we obtain

[f(v),w]s = [(‘Pv)_l(o)v (901))_1(2)]0‘
Since n > 3 by (A.3), there exist k,l € {0,...,n — 1} such that k < [ and
pe{2i:i€{0,...,n—1}} ~ {2k, 2l}. Since ¢, satisfies (5.8), we obtain
[f(v),w]o = [(@v)_l(m‘:)v (‘Pv)_l(%)]a-
Since ¢y, that is, ¢, o9 satisfies (5.7), we obtain [f(v), (@, o 1) 1({2i
i€{0,....,n=1})]s = [(y o) 1(0), (¢v 0 1)1 (2)],. Furthermore, since

@y, 0t satisfies (5.8), we obtain [(@, 0 1)71(0), (¢s 0 ¥)"H2)]s = [(py ©
) H(2k), (wy 0 )71 (20)]s. Since p e {2i:ie{0,...,n—1}}~ {2k, 21}, we

obtain
(p0) 71 (2k), (20) 12D € V() ~ {u, f(v), w}.
Thus, ™" ((100) ™ (2k)) = (90) " (2k) and &~ (o) (2D) = (00) 7' (2D). It
follows that
[f(0): (puoy) ({2 i e {0,...,n = 1}N)]o = [(00) ' (2K), (00) ' (2D)]6.
Since (¢,)71(2p) = w and ¥~ (w) = v, we have v € (@, 0 ) ({2 : i €
{0,...,n—=1}}). Consequently, we obtain
[f(0),0]0 = [(p0) 1 (2R), (00) 7 (2D) o

Hence [f(v),v], = [f(v),w],. Since {v,w} is a module of o — f(v), {v,w}
is a module of o, which contradicts the fact ¢ is prime. It follows that f is
injective. [l

Claim A.6. For every ve (o) N (o), Np)(f(v)) ={v}.

Proof. Otherwise, consider v € .7 (0) \ (o) such that Np()(f(v)) # {v}.
By Claim A4, f(v) € V(o) ~ (o). It follows from Lemma 4.4 that
dp(s)(f(v)) < 2. Since o - {v, f(v)} is prime, we have v € Np(,)(f(v)),
and hence

dIP’(U)(f(U)) =2.
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Since v € Np()(f(v)), there exists w € V(o) \ {v, f(v)} such that
NP(O’)(f(U)) = {an}'

For a contradiction, suppose that w € .#(¢). Since o — {f(v),w} is prime,
we obtain w € #(0)\ (), and f(w) = f(v), which contradicts Claim A.5.
It follows that

w¢ S (o).

Observe that may, 0@, (see (A.4)) is also an isomorphism from (o -v) - f(v)
onto (7,)*, with (7,)* € Rayp, satisfying (5.7). Therefore, we can assume
that

w = (ps) " (2p),
where p € {0,...,n~1}. Since w ¢ (o), we have dp(,)(w) < 2 by Lemma 4.4.
Since o — {f(v),w} is prime, we obtain
dp(sy(w) =1 or 2.
We distinguish the following two cases. Each of them leads to a contradic-
tion.
CAsE 1: dp(o)(w) =1.
Since o - { f(v),w} is prime, we have
Np(oy(w) = {f(v)}.
It follows from Lemma 4.4 that

(A.5) F(©) <=0 {(00) (@) ri e {0, 2n =11}~ {(00) T (2D)),

which contradicts the fact that ¢, is an isomorphism satisfying (5.7).
Indeed, since n > 3 by (A.3), there exists ¢ € {0,...,n -1} ~ {p}. Since
(5.7) is satisfied by ¢, we have

[£(0), (9) " 20)]5 = [(20)71(0). (20) " (D)]ors
and
[/ (0): (20) (24 + D)o = [(00)7(2): (90) 71 (0)]o
Since T, € Rap, we have (0,2),, # (2,0),, by Remark 5.12. Hence, we
have [0,2],, # [2,0],. Since ¢, is an isomorphism from (o —v) - f(v)
onto 7, we obtain

(A.6) [(£2)71(0), (20) 1 (2)]6 = [(0) ' (2), () (0) ]
It follows that

[£(0), (9) 7' 20)]o # [f(0). (p0) ™ (20 + D],

which contradicts (A.5).
CASE 2: dp(y)(w) = 2.
Since f(v) € Np(y)(w), there exists u € V(o) ~ {f(v),w} such that

N]P’(cf)(w) = {U, f(U)}
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Since (0 —v) = {f(v)} and o — {u,w} is prime, we obtain u # v.
Therefore, we have

U= (SOU)_l(i)v
where i € {0,...,2n - 1} ~ {2p}. By Lemma 4.4, {f(v), (p,) (i)} is a
module of o —w, that is,

(A.7) {f(v), (py) 1 (i)} is a module of o — (v,) " (2p).

Since (5.7) is satisfied by ¢, we have

<f(0): (o) (1) >0=<(20) 7 (0), (20) ' (2) >0
for every j €{0,...,2n—1}. It follows that

<(90) (@) (20) T () >0=<(00) TH(0), (90) H(2) >0

for every j € {0,...,2n -1} \ {2p,i}. Since ¢, is an isomorphism from
(0—-v) - f(v) onto 7,, we have <i,j>, =<0,2>, for every j€{0,...,2n—
1}~ {2p,i}. Since 7, € Ray, it follows from (4.4) that <i,2p>,, =<0,1>,, .
We obtain p =0 and i = 1. It follows from (A.7) that

(A.8) {f(),(¢s) (1)} is a module of o - (¢,)"*(0).

Since 7, € Ran, Ty is critical and P(7,) = Py,. It follows from Propo-
sition 4.15 that [1,3],, = [0,2],,. Since ¢, is an isomorphism from
(0 —v) - f(v) onto 7, we obtain

[(20) ™ (1), (20) ™ (3)]e = [(20) (0D (20) ™ (D)]ors

Since (5.7) is satisfied by ¢,, we have

[£(0), (¢0) ™ (3)]o = [(20) 7 (2), (20) 71 (0) o
By (A.6), [(¢u)7H(0), (¢0) 1 (2)]o # [(20)7H(2), (00) 1 (0)]o. Tt follows

that
[(20) (1), (20) ' (3)]o # [F(v). (20) ' (3)]o,
which contradicts (A.8). O

Claim A.7. We have |.7 (o) \ Z(0)] = 1.

Proof. Otherwise, consider distinct v,w € (o) \ Z.(0). Since f is injec-
tive, we have f(v) # f(w). Furthermore, it follows from Claim A.6 that
Npoy(f(v)) = {v} and Np(,)(f(w)) = {w}. As previously noted, by consid-
ering ¢, o ma, (see (A.4)) instead of ¢, we can assume that

w = (pu) "' (2p),

where p € {0,...,n—1}. Since Np(,)(f(w)) = {w}, it follows from Lemma 4.4
that

w4 (o) ({0, 20 = 1)~ {w, f(w)}) U {v, f(v)}.
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Since w = (¢,)7H(2p), we obtain p=n—-1 and ¢, (f(w)) = 2n—1. Therefore,
we have

[w, (o) ({0, .20 = 1) N {w, f(w)}) u{v, f(0)}]o =
[(2)7(2), (20) 1 (0)]6

As observed in Remark 5.16, Np(,_)(f(v)) = @, and P(o —v) - f(v) =
P(o - {v, f(v)}). Since ¢, is an isomorphism from P(c — {v, f(v)}) onto
P,,,, we obtain

Np(o-)((20) 7 (20-2)) = {(p0) " (20-3), (p0) T (20~ 1)}

It follows from Lemma 4.4 that {(¢,) 1 (2n-3), (p,)"1(2n-1)} is a module

of (¢ -v) - ((py,)1(2n - 2)), that is, (¢ —v) —w. Since Npoy(f(v)) = {v},
it follows from Lemma 4.4 that

V>, V(O’) N\ {U,f('U)}-

Consequently, {(¢,)™1(2n -3), (¢y) 1 (2n - 1)} is a module of ¢ — w, which
contradicts the fact that w € .7 (o). O

The end of the proof of Proposition A.2. We conclude as follows. By Claim
AT, (o) \ S (o) admits a unique element denoted by v. By Claim A.6,

Np(oy(f(v)) = {v}. Thus, o —{v, f(v)} is prime. Set
X =V(o)~A{v, f(v)}.

Moreover, we have f(v) ¢ #(0) by Claim A.4. Since Np(,)(f(v)) = {v} by
Claim A.6, it follows from Lemma 4.4 that

(Ag) V<o V(U) N {U,f(’l))},

that is, v € (X),-.
We prove that

[(20) (1), V(0) ~ {(0) 71 (0),(0) " (1)} o =
(A.10) [(2)7(0), (90) 1 (2) o
Since (5.7) is satisfied by ¢,, we have
(), (20) ({20 7 € 40, n=111)]o = [ (0), 67 ()]s,

and
[f(v), (po) ({20 + 120 € {0,...,n =1} D)]s = [p7'(2), 971 (0)]o-

Since [(¢0)71(0), (20) ()] # [(90) 7 (2), (90) 7' (0)]& by (A.6), we obtain
f(v) ¢ (X)s. Since o is prime, it follows from (A.9) that

(A.11) [v, V(o) A, f(0)}o # [0, ()]
Since ¢, is an isomorphism from P(o - {v, f(v)}) onto Ps,, we obtain that
a[X]={()71(0), (#o) "' (1)} is prime. Set

Y = X~ {(00)7H(0), (o) H(1)).
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Since v € (X),, we have v € (Y),. As previously, since (5.7) is satisfied by
¢y, it follows from (A.6) that f(v) ¢ (Y),. Since (A.11) holds, it follows
from statements (P1) and (P2) of Lemma 3.17 that o[Y u{v, f(v)}] =0 -

{(#0)71(0), (u) (1)} is prime. Hence,
(90)7H(1) € Np(o) ((0)71(0))-
For a contradiction, suppose that (p,)"1(0) € # (o). Since o - {(p,)"1(0),
(p,)1(1)} is prime, we obtain (¢,)71(0) € #(0)\.%.(c), which contradicts
Claim A.7. It follows that
(2)7(0) ¢ 7 (0).
Since (p,)71(1) € Np(o)((cpv)_l(O)), it follows from Lemma 4.4 that

dp(oy((ps)71(0)) =1 or 2.
For a contradiction, suppose that dp(o)((gov)_l(O)) = 2. There exists w €
V(o) {(90)7H(0), (pu) 71 (1)} such that Np(o)((0)71(0)) = { ()" (1), w}.
Since Np(,)(f(v)) = {v} by Claim A.6, we have (¢,)7'(0) ¢ Np(y)(f(v)).
Thus w # f(v). Furthermore, since . (o —v) = { f(v)}, we have (¢,)~1(0) ¢
(0 -v), and hence (¢,)71(0) ¢ Np(s)(v). Therefore, w # v. It follows that
weY. Since {(p,) 1(1),w} is a module of o — (¢,) 1(0) by Lemma 4.4,
we obtain (¢,) (1) € Y, (w). But, since ¢, is an isomorphism from P(c -

{v, f(v)}) onto Pay, we have Np(g—(v,f(v)y) ((90) 1 (0)) = {(») "' (1)}. Since
o—{v, f(v)} is critical, it follows from Lemma 4.4 applied to o—{v, f(v)} that

(V(a)~{v, F(0) )~ {(p0)71(0), (p0) 71 (1)} is a module of (o - {v, f(v)}) -
(¢0)71(0). We obtain ¢~ 1(1) € (Y),. Consequently, o~ 1(1) € Y, (w) n(Y),,
which contradicts Lemma 3.13. It follows that

Npo) ((90)7H(0)) = {(00) (1)}
Since (¢,)71(0) ¢ #(0), it follows from Lemma 4.4 that
V() ~ {(0)7H(0), (w0)H(1)}

is a module of & — (,)7(0). Since ¢, is an isomorphism from o - {v, f(v)}
onto an element of Ry, we have

[(20) (1), (20) ™ (3)]o = [(20) 7' (0), () ()]s

It follows that (A.10) holds. In particular, we have
(A.12) [(p0) (1), 9]0 = [(20) T (0), (20) 7 (2)]o
Similarly, we have
[(20) (20 -2), V() ~ {(00) " (20 - 1),(00) (20 - 2)}]5 =
[(20)71(2), (90) T (0)]o

In particular, we obtain

[(Sav)_l(Qn -2),v]s = [(@v)_1(2)7 (‘Pv)_l(o)]w
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By (A.6), we have [(¢u)7(0),(¢0) ()]0 # [(20)7(2), (0)7H(0)]o.
Therefore, it follows from (A.12) that

v o {(p0) (1), (p0) (20 - 2) ),
which contradicts (A.9). O

Proof of Theorem 5.21. We proceed by induction on v(c) —v(7) > 1. The
result is obvious when v(o) —v(7) = 1. Hence, suppose that v(o) - v(7) > 2.
Since v(7) > 5, we have v(o) > 7.

For convenience, we denote by .4 (o) the set of v € V(o) such that o —v
is prime, and neither critical nor almost critical. By Proposition A.2,

N (o) +@.
To begin®!, we prove that there exists X ¢ V(o) such that

o[X]=~1
(A.13) and
(V(o)NX)n (o) + @.

Consider Y ¢ V(o) such that o[Y] ~ 7, and suppose that o —u is decompos-
able for every u € V(o) \Y. It follows from Corollary 3.21 that there exist
distinct v,w € V(o) \Y such that o — {v,w} is prime. Thus, 7 embeds into
o —{v,w}. Denote by C' the component of P(c) containing v and w. For
a contradiction, suppose that V(C) ¢ V(o) \ (o). By Proposition 4.5,
[V(e)\V(C)|<1,s0]|¥(c)| <1. Since o is not critical, we have |.#(c)| = 1.
By Theorem 5.13, C' is the unique component of P(¢) such that v(C) > 2.
If V(C)n.#(c) = @, then it follows from Theorem 5.13 that o is almost
critical. Consequently, we have V(C) n . (o) # @. Therefore, there exist
distinct vertices co, ..., c, of C satisfying

e {co,c1} ={v,w};

e p>2 {cp,...,cp1} S V(o) F(0), and ¢, € S (0);

o forie{0,...,p—1}, {ci,cis1} € E(P(0)).
Let i € {1,...,p~1}. We have c;_1,cis1 € Np()(ci). Since ¢; ¢ (o),
it follows from Lemma 4.4 that Np()(ci) = {ci-1,civ1}, and {ci-1,¢is1} is
a module of o — ¢;. Thus, o - {¢;i-1,¢;} ~ 0 —{ci,civ1}. It follows that
o—{co,c1} ~o—{cp-1,¢p}, that is, o —{v,w} ~ 0 —{cp-1,¢p}. Since T embeds
into o — {v,w}, 7 embeds into o - {cp_1, ¢y} as well. Since ¢, € .7 (o), (A.13)
holds.

Now, we consider X ¢ V(o) such that (A.13) holds. There exists

ve(V(o)N X)n.S(0).

If there exists w € (V(o) N X)n A (o) + @, then it suffices to apply the
induction hypothesis to ¢ —w. Hence, suppose that

(V(e)~X)n A (o) =@.

A-lFrom here until (*) (see page 197), the proof is similar to that of Theorem 5.19.
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Thus, v ¢ A4 (o). Since A (o) # @, consider
(%) reXn AN (o).

Since o — v is prime, o — v is critical or almost critical. We distinguish the

following two cases.

CASE 1: 0 —wv is critical.
Since v(o) —v(71) > 2, we have X ¢ V(o —v). Since o — v is critical, it
follows from Corollary 3.21 that there exist distinct w,w’ € V(o —v)~ X
such that {w,w'} € E(P(o —v)). Thus, 7 embeds into (o —v) — {w,w’}.
First, suppose that there exists y € (V (o) —v) ~ {z} such that {x,y} €
E(P(o -v)). Since {z,y},{w,w'} € E(P(c -v)), it follows from Corol-
lary 4.8 that (o -v)—{x,y} ~ (60 —v) — {w,w'}. Therefore, T embeds into
(0 —v) = {x,y} as well. To conclude, it suffices to apply the induction
hypothesis to o — .
Second, suppose that z is an isolated vertex of P(o —v). It follows from
Corollary 4.6 that there exists n > 3 such that P(0 - v) = Pay, ® Koy,
In particular, we obtain that v(c) is even. In another vein, it follows
from Corollary 5.5 (and Remark 5.6) that there exists e € E(P(o —v))n
E(P(c)). Since e, {w,w'} € E(P(c —v)), it follows from Corollary 4.8
that (o0-v)—e ~ (0-v)—{w,w’'}. Therefore, 7 embeds into (c-v)—e, and
hence 7 embeds into o—e. Since e € E(P(0)), o—e is prime. Furthermore,
since e € F(P(0 - v)), (0 —e) —v is prime. Thus, o — e is not critical.
Lastly, since v(o - e) is even, it follows from Theorem 5.13 that o —e
is not almost critical. To conclude, it suffices to apply the induction
hypothesis to o —e.

CASE 2: ¢ —v is almost critical.
There exists w € V(o —v) such that

(0 -v) =S (0 -v)={w}.

It follows from Theorem 5.13 that v(o) = 2n + 2, where n > 3, and there
exists an isomorphism ¢ from (o —v) — w onto an element p of Ry,
satisfying (5.7).

We can conclude when w ¢ X. Indeed, suppose that X ¢ V(o) \ {v,w}.
It follows from the first statement of Fact 5.18 that w € Ext,(X). In
what follows, we suppose that

we X.

First, suppose that

T *w.
Since P(p) = Pay, @ is an isomorphism from P((o-v)—w) onto Pyy,. Since
x # w, there exists y € V(o —v) N {z,w} such that {z,y} € E(P((c —v) -
w)). As observed in Remark 5.16, we have P((c —v) —w) = P(0 —v) —w.
Thus

{I’y} € E(]P)(U - 1}))7
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so (o0 —v) —{x,y} is prime. Furthermore, since X ¢ V(o —v), it follows
from Corollary 3.21 that there exist u,u’ € V(o —v) ~ X such that (o -
v) —{u,u'} is prime. Since (0 -v) = {w} and w € X, we obtain u # u’.
Hence

{u,u'} e E(P(0 —v)).
It follows from the second statement of Fact 5.18 that (o —v) — {z,y} ~
(0—v)—{u,u'}. Tt follows that 7 embeds into (o —v)—{z,y}. Therefore,
7 embeds into 0 — . To conclude, it suffices to apply the induction
hypothesis to o — .
Second, suppose that

Set
Y =V(o)\ {v,w}.
Since Z(o —v) = {w}, o[Y] is critical. Furthermore, o[Y U {v}] is
prime because o[Y U {v}] = 0 —z. It follows that v € .Z.(c[Y U {v}]).
By Corollary 5.5 (and Remark 5.6), there exists e € E(P(c[Y u{v}]))n
E(P(c[Y])). Set
Z =Y \e.

We have o[Z] is prime. Since e € E(P(c[Y u{v}]), we obtain o[Y U
{v}]) —e= (0 —-e€)—x is prime. Since (6 —e€) -z =0[Z uU{v}], we have
v € Ext,(Z). Furthermore, it follows from the first statement of Fact 5.18
that 2 € Ext,(Z). Since (0—e)—x = o[ Zu{v}] and (o0-€)-v = o[ Zu{x}],
we obtain that

14) (0 —e)-wv and (o - €) —x are prime.

Since (o —v) — e is prime, we have e € E(P(c — v)). In another vein,
it follows from Corollary 3.21 applied to o — v that there exist u,u’ €
V(o —v)\ X such that (o -v) - {u,u'} is prime. Since . (¢ - v) = {w},
we obtain u # u'. Hence, {u,u’'} € E(P(c —v)). Therefore, we obtain
e, {u,u’} € E(P(c-v)). By the second statement of Fact 5.18, (c-v)—e =~
(o —v) = {u,u'}. Since 7 embeds into (o —v) — {u,u’},

15) 7 embeds into (o —v) —e.

Finally, we distinguish the following two subcases.

Subcase 2.1: o — e is decomposable.
Since 0 —e = o[Z U {v,x}], it follows from statement (P5) of
Lemma 3.17 that {v, x} is a module of o—e. It follows that (o—e)-z ~
(0 —e) —v. By (A.15), 7 embeds into (¢ —e) —v. Consequently, T
embeds into (o —e)—z. To conclude, it suffices to apply the induction
hypothesis to o — x because x € A (o).

Subcase 2.2: o — e is prime.
It follows from (A.14) that

v,z €S (0—e).
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Consequently, o —e is neither critical nor almost critical. Moreover, it
follows from (A.15) that 7 embeds into o —e. To conclude, it suffices
to apply the induction hypothesis to o —e. O
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B. PrROOFS OF PROPOSITIONS 5.27, 5.28, AND 5.29

Proof of Proposition 5.27. Consider s € .#.(7) such that P(7 - s) ~ Py, ®
K{oyy- Therefore, v(o) = 2n + 2. Since v(o) > 7, we obtain

n>3.

Up to isomorphism, we can assume that

V(r)={0,...,2n+ 1},

s=2n+1,

and

P(r - (2n+ 1)) = Pop ® K3}

For a contradiction, suppose that

(B.1) |e(T) 2 2,
and consider t € .7.(7) ~ {2n + 1}. By Corollary 5.25, Np(;_(2n+1))(t) =
Np(r—)(2n + 1), and Np(r_(2p+1))(t) # @. Since Np(r_(2n+1))(t) # D, t # 2n.
Moreover, since v(7) > 8, it follows from Corollary 5.25 that 7—t ~ 7—(2n+1).
Therefore, P(7 1) ~ Py, ® K{5,). Consider an isomorphism ¢ from P(7-1)
onto Py, & Ko,y. Since Np(r_y)(2n+1) # @, ¢y (2n + 1) # 2n.

Since 7~ (2n + 1) is critical and P(7 - (2n + 1)) = Py, @ K{gy, it follows
from Theorem 4.24 that

T — (27’L + 1) = O'(TQTLJrl),

where n > 3. Furthermore, since 2, € Aut(o(7Th,+1)) by Remark 4.26, we
can assume that n <t < 2n-1. Similarly, there exists an isomorphism ¢ from
7—t onto 0 (T2n+1) such that n < p(2n+1) < 2n-1. Since Np(,_(2n11))(t) * @,
it follows from Lemma 4.4 that dp(;_(2n+1))(t) =1 or 2.

The following observation is useful in what follows. Let z,y € {0,...,2n}
such that z <y < 2n.

(B.2) If {1 (x), o (y)} n{2n,2n+1} = @, then ¢ ' (z) < ' (y).
Indeed, we have
(29 o (tonn) = (¢ (@), 07 (Y)) 7
because ¢ is an isomorphism from 7 —t onto o(Tsy+1)
= (7 @), ))r-oneny because 20+ 14 {7 (@), ()}
= (¢} (=), go_l(y))a(Tan) because 7 — (2n+ 1) = 0(Topn+1)
= (71 (@), 07 (U)o (Tnni1)-(2m) Decause 2n ¢ {7 (2), 07 (y)}-

Since = < y < 2n, we obtain

(T Y) o (Tons1)—(2m) = (@7 (@), 07 (U)o (Tons1)—(2n)-
Since Thns1 — (2n) = Lo, and z < y, we have ¢~ '(z) < p~1(y).



PRIME 2-STRUCTURES 201

First, suppose that dp(;_(2,+1)) (t) = 1, and denote by u the unique element
of Np(r—(2n+1))(t)- Since n <t <2n -1, we obtain ¢ = 2n - 1, and hence u =
2n-2. Since Np(r—(2n+1))(t) = Np(r—p)(2n+1), we have Np(,_¢)(2n+1) = {u},
that is, Np(;—+)(2n+1) = {2n - 2}. Since n < p(2n + 1) <2n -1, we obtain

e(2n+1)=2n-1 and p(2n-2)=2n-2.
Furthermore, since {t,u} ¢ E(P(7 - (2n+1))), it follows from Lemma 4.40
that (7 - (2n+1)) — {t,u} is critical, and
EP((t-2n+1))-{t,u}))=EP(r-(2n+1)))~{{2n-3,u},{t,u}}.
Similarly, (7 —t) = {2n + 1,u} is critical, and
E(P((r-1t) = {2n+1,u})) = E(P(r - 1)) ~ {{¢"(2n - 3),u}, {2n + 1, u}}.

Thus, 2n is the unique isolated vertex of P((7 — (2n+ 1)) — {¢,u}), that is,
P(7 - {t,u,2n + 1}). Analogously, ¢ 1(2n) is the unique isolated vertex of
P(r - {t,u,2n + 1}). Therefore,

©(2n) = 2n.

Recall that 7 - (2n+1) = 0(T2n+1), and ¢ is an isomorphism from 7 —¢ onto
0(Ton+1). Consequently, o 2,3} is an automorphism of o(T2,41) —{2n -
2,2n—-1,2n}, that is, 0 (Ton+1 —{2n-2,2n-1,2n}). Since Top+1 —{2n—-2,2n—
1,2n} is linear, 0(Thp+1 — {2n—2,2n - 1,2n}) is rigid. Hence,

#o0,....2n-3} = Id{o,...,2n—3}‘

Since ¢(2n —2) = 2n -2 and ¢(2n) = 2n, we obtain that {2n —1,2n + 1},
that is, {s,t} is a module of 7, which contradicts the fact that 7 is prime.
It follows that dp(,_g)(t) # 1.

Second, suppose that dp(,_g)(t) = 2. Since dp(,_)(t) # 1, ¢ # 2n—~1. Hence,
n <t < 2n—2. Similarly, by setting j = ¢(2n + 1), we have n < j < 2n - 2.
Recall that Np(;_(2n+1))(t) = Np(r—)(2n + 1) by Corollary 5.25. It follows
that

P G-D G+ = {E- 1241}
It follows from (B.2) that
e l(j-1)=t-—Tand o '(j+1)=t+1.
Since {t - 2,t - 1},{t - 1,t},{t,t +1} € E(P(7 - (2n+1))), it follows from
Lemma 4.39 that (7 —(2n+1)) - {¢,t + 1} is critical, and
EP((r-(2n+1))-{t-1,t}))
=(EP(r-2n+1))N{{kk+1}:ke{t-2,t-1,t}})
u{{t-2,t+1}}
(B.3) ={{kk+1}:ke{0,...;t=-3}u{t+1,...,2n-2}}
u{{t-2,t+1}}.
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Similarly, we obtain (7 —t) - {2n+1,¢71(j — 1)} is critical, and
E(®((r-t)-{2n+1,¢"'(j - 1)}))
B.4)  ={{o k), o (k+1)}:ke{0,....5-3 u{j+1,....2n-2}}
v{{e (-2, 97 G+ )

Since ¢ 1(j - 1) =t -1, we have

(r-Cn+1)-{t-1Lt}=(r-t)-{2n+ 1,0 (j - 1)}.
Set
w=1-{t,t+1,2n+1}.
It follows from (B.3) that

{t-2}ift=2n-2

B.5 Npy(t+1) =
(B.5) IP’(M)(+) {{t_27t+2}ift<2n—2.

Similarly, it follows from (B.4) that

{7 (G-2)}ifj=2n-2
{7 -2),¢7 ' G+2)} if j<2n-2.
Since ¢~ 1(j+1) =t + 1, we obtain ¢ = 2n — 2 if and only if j = 2n - 2.
To begin, suppose that ¢t =2n -2 and j = 2n - 2. By (B.5) and (B.6), we

have ¢~1(2n —4) = 2n—4. By proceeding by induction, it follows from (B.3)
and (B.4) that

(B.6)  Np(uy(p ' (j+1)) = {

() =1
for every 1 € {0,...,2n—4}. Since o }(j—1)=t—-1and p1(j+1) =t +1,
we obtain

(1) =1
for every [ € {0,...,2n -3} u{2n—1}. Recall that 7— (2n+ 1) = 0(Tan+1),
and ¢ is an isomorphism from 7 -t onto o(75,+1). Since p(2n+1) =2n -2,
we obtain ¢ 1(2n) = 2n. It follows that {2n —2,2n + 1} is a module of 7,
which contradicts the fact that 7 is prime.

Now, suppose that ¢ < 2n -2 and j < 2n—2. By (B.5) and (B.6), we have
{o1(j-2),07 1 +2)} = {t-2,t+2}. It follows from (B.2) that
el j-2)=t-2and o ' (j+2)=t+2.
It follows from (B.3) that
Npuy(t-2) ={t-3,t+1}.

Similarly, it follows from (B.4) that

Neoy (@' (5 -2)) ={¢ (G -3),¢ ' (G + 1)}

Since o 1(j+1) =t+1 and ¢ }(j-2) =t -2, we obtain p!(j -3) =t - 3.
By proceeding by induction, we obtain

el -k)=t—k



PRIME 2-STRUCTURES 203

for every k€ {2,...,min(¢,j)}. For instance, suppose that ¢ < j. We obtain
@ 1(j-t) =0. Since dp(y(0) = 1, we have d]p(u)(go_l(j —t)) = 1. Hence,
j—t=0or 2n-1. Since j < 2n -2, we obtain j = ¢. Thus, we have

(1) =1

for every 1 € {0,...,t—2}. Similarly, we obtain
() =1

for every le {t+1,...,2n—1}. Since ¢ 1(j—1) =t -1 and j = t, we obtain
(1) =1

for every 1 € {0,...,2n -1} \ {t}. Recall that 7— (2n+ 1) = 0(T2n+1), and
¢ is an isomorphism from 7 -t onto o(T%,41). We obtain ¢~ 1(2n) = 2n. It
follows that {t,2n+1} is a module of 7, which contradicts the fact that 7 is
prime. U

Proof of Proposition 5.28. Consider s € #.(0) such that P(c —s) ~ Pay1.
Therefore, v(o) = 2n + 2. Since v(o) > 7, we obtain

n>3.
Up to isomorphism, we can assume that
V(o) ={0,...,2n+1},
s=2n+1,
and
P(o—(2n+1)) = Popy1.

Since o - (2n + 1) is critical and P(o - (2n + 1)) = Pay.1, it follows from
Proposition 4.27 that

(0,1)y # (1,0),,
(B.7) and,
[0,1], #[0,2],.

Furthermore, for any p,q € {0,...,2n} such that p < ¢, we have

[0,2], if p and ¢ are even,
B8 9 o=
(B2) [p.q] {[O, 1], otherwise.

Suppose that |#.(o)| > 2. Consider any element ¢t of .7.(¢) \ {s}. Since
Ton+1 € Aut(Pan11) (see Notation 4.21), we can assume that

n<t<2n.
It follows from Corollary 5.25 that
Np(o-(2n+1)) (1) = Np(g—t)(2n + 1)
(B.9) and
P(O‘ - t) ja P2n+1.
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As above, since P(o —t) ~ Py, there exists an isomorphism ¢ from o —
t onto 7, where 7 is a critical 2-structure such that P(7) = Ps,+1. By
Proposition 4.27,

(p=1(0), 7" (1))o = (¢7' (1), ¢71(0))o
(B.10) and

[71(0), 07 (D)]6 # [¢71(0), 71 (2) ]
Furthermore, for any p,q € {0,...,2n} such that p < g, we have
[©71(0),¢071(2)], if p and ¢ are even,

(B.11) [ ' (p), ¢ N (@)]o = {[90-1(0),@-1(1)]0 otheruise.

Similarly, we can assume that n < (2n+1) < 2n.
For a contradiction, suppose that

(B.12) dp(o—(2n+1)) (1) = 1.
Since n <t < 2n, we have t = 2n. Hence
Np(g-(2n+1))(2n) = {2n - 1}.
It follows from (B.9) that p(2n+1) = 2n, Np(s_(2n))(2n+1) = {o1(2n-1)},
and
v(2n-1)=2n-1.
It follows from Lemma 4.40 that (o — (2n+1)) — {2n —1,2n} is critical and
E(P((c-(2n+1))-{2n-1,2n}))
=EP(c-2n+1)))N{{k,k+1}:ke{2n-2,2n-1}}
={{k,k+1}:k€{0,...,2n-3}}
= E(Pop-1).
Thus, we obtain
P(o-{2n-1,2n,2n+1}) = Py,1.
Similarly, 7 — {2n - 1,2n} is critical and
P(r-{2n-1,2n})) = Pap-1.
Observe that (80_1)r{07...,2n—2} is an isomorphism from P(7 - {2n - 1,2n})),

which is Py, 1, onto P(0—{2n,2n+1,071(2n—-1)}). Since p(2n-1) = 2n—1,
we have

oc-{2n-1,2n2n+1} =0 -{2n,2n+ 1,0 (2n -1)}.
It follows that
PHo0,...2n-2} € Aut(Pop-1).
Therefore, we obtain
#Ho,...2n-2} = Id{o,...,znq} O 7Ton—1-

We distinguish the following two cases. In each of them, we obtain a con-
tradiction.
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CASE 1: @0, 2n-2y = Id(o,.. 2n-2}-
Since ¢(2n —1) = 2n — 1, we obtain

(B.13) o(k) =k
for each k € {0,...,2n—1}. We verify that {2n,2n+ 1} is a module of o.
Let pe{0,...,2n—1}. For instance, assume that p is even. We obtain

[p.2n+1], = [0 (p),¢ ' (2n)]s Dy (B.13)

=[¢71(0),¢7'(2)], by (B.11)
=[0,2], by (B.13)
=[p,2n], by (B.8).

Similarly, we have [p,2n + 1], = [p,2n], when p is odd. It follows that
{2n,2n +1} is a module of o, which contradicts the fact that o is prime.
CASE 2: 910, 2n-2} = T2n-1-

We obtain
(B.14) p(k)=2n-2-k
for each k € {0,...,2n - 2}. Therefore, we have
(0,1)5 = (¢ (2n-2),97' (20 -3))s by (B.14)
= (¢ 1(1),97(0))s by (B.11)
= (' (2n-1),07 (20 -2)), by (B.11)
=(2n-1,91(2n-2)),
because ¢ ' (2n—-1) =2n -1

=(2n-1,0)¢ by (B.14)
=(1,0), by (B.8).

It follows that (0,1), = (1,0),, which contradicts (B.7).
Consequently, (B.12) does not hold. Therefore, dp(y_(25+1)(t) = 2. Since
n<t<2n, we have n <t <2n-1. Set

j=p(2n+1).
By (B.9), Np(o—(2n+1))(t) = Np(g—t)(2n + 1). Hence, n < j <2n -1 and
{(p_l(.j - 1)7‘70_1(]. + 1)} = {t_ 17t+ 1}
It follows that
(B.15) e l(j-1)=t-Tand o '(j+1)=t+1
or

(B.16) e lj-1)=t+land o '(j+1)=t-1.
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Suppose that (B.15) holds. We prove that
t=7,
t=n,
(B.17) n is odd,
and
for each 1 €{0,...,n—-2}u{n+2,...,2n}, p()=2n-1.
Recall that P(o — (2n+ 1)) = Pyy41. By Lemma 4.39,
B(B((0 - (2n+1)) - {t-1,1}))
=(E(P(c-(2n+1)))
N{kk+1}cke{t-2,t -1t} ) u{{t-2,t+1}}.

It follows that
E(P(oc-{t-1,t,2n+1}))
(B.18) =k k+1}:ke{0,... t-3yu{t+1,...,2n-1}}
u{{t-2,t+1}}.
(Note that if ¢ =2n -1, then
E(P(c-{t-1,t,2n+1}))
={{k,k+1}:ke{0,...;t -3} u{{t-2,t+1}}.)
Similarly, we have
E(P(o-{p-1(j - 1),t,2n +1}))
(B.19) ={{o k), o " (k+1)}:ke{0,....5 -3 u{j+1,....2n-1}}
U{e (G -2, G+ D
(Note that if j = 2n -1, then
E(P(o -~ {p-1( - 1),t,20+ 1}))
(B.20) e )+ D k{0, -3}
DG -2),07 G+ D)
Since (B.15) holds, we have
(B.21)  E(P(o-{t-1,t,2n+1})) = E(P(c - {¢ '(j - 1),t,2n +1}).

We show that ¢~ 1(j —2) # ¢t — 2. Otherwise, we have ¢ 1(j - 2) = t - 2.
By proceeding by induction, it follows from (B.18), (B.19), and (B.21) that
0 (j-k)=t—kfor ke{l,...,min(t,7)}. It follows that ¢t = j. Hence,
o(l) =1 for 1 € {0,...,t —1}. Analogously, by proceeding by induction, we
obtain ¢(l) =1 for l € {t +1,...,2n}. Thus, {t,2n + 1} is a module of o,
which contradicts the fact that o is prime. It follows that

e lj-2)#t-2.
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Since p1(j+1) =t +1 by (B.15), it follows from (B.18) and (B.19) that

t<2n-2,

j<2n-2,

30_1(j +2) = t_27

and

e l(j-2)=t+2.

By proceeding by induction, it follows from (B.18), (B.19), and (B.21) that
o t(j+k)=t—kfor ke{2,...,min(t,2n - j)}. Since t,j € {n,...,2n -2},
we have min(t,2n—7j) = 2n—j. For k = 2n—j, we obtain ¢ 1(2n) =t —2n+.
Therefore, t —2n+ j = 0 or 2n. Since t < 2n -2 and j < 2n — 2, we have
t+j=2n. Since t >n and j > n, we obtain

t=7and t=n.
It follows that for k€ {2,...,n}, we have
ol n+k)=n-k
(B.22) and (similarly)
ol (n-k)=n+k.
For a contradiction with (B.17), suppose that n is even. We obtain
(0,1)5 = (¢ (2n),9"" (20~ 1)), by (B.22)
= (¢ (n+1),97 (n-1)); by (B.11)
=(n+1,n-1), by (B.15) (because t = j and t = n)
= (1,0)0 by (B.8),
which contradicts (B.7). It follows that n is odd. It follows from (B.22) that

o(l) =2n-1for each € {0,...,n-2}u{n+2,...,2n}. Hence, (B.17) holds.
Set

Y = Ton+1 0P
Clearly, v is another isomorphism from P(o —t) onto Pa,4+1. As previously
for ¢, we obtain that for any p,q € {0,...,2n} such that p < g,

[¢v71(0),471(2)], if p and q are even,

-1 -1 _
(B:23) [ () v (@)]o = {[w—l(o),w-l(l)]g otherwise.

Since (B.17) holds, we obtain

(B.24) (1) =1foreach [ €{0,...,n-2}u{n+2,...,2n}.
Since n > 3, we have [0,1], = [¢"1(0),¢71(1)]s. Furthermore, we have
[0,2], = [0,2n], by (B.8)

[
[v71(0),47"(2n)], by (B.24)
[v71(0),v71(2)], by (B.23).
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It follows from (B.8) and (B.23) that

[p,qlo = [¥ 7" (), v ()]0

for any p,q € {0,...,2n} such that p < ¢. Therefore, 1)~! is an isomorphism
from o — (2n + 1) onto o —t. Finally, since ¢ = j and ¢ = n, it follows from
(B.15) that

(B.25) Y(n-1)=n+1land Y(n+1)=n-1.

It follows from (B.24) and (B.25) that ™! satisfies (5.24).
Lastly, suppose that (B.16) holds. Since (B.16) holds, we have o — {¢,t +
1,2n+1}y =0 {t,o1(j-1),2n+1}. Thus, we have
(B.26) E(P((c - (2n+1))={t,t+1}) = E(P((c -t) - {o ' (j - 1),2n+1}).
Set
p=o-{t,t+1,2n+1}.
To conclude, we distinguish the following two cases.

CASE 1: t=2n-1.
It follows from Lemma 4.40 applied to (0 — (2n+1)) — {2n—1,2n} that

(B.27) E(P(p)) ={{k,k+1}:ke{0,...,2n-3}}.
Thus,
(B.28) Np(uy(2n -2) = {2n - 3}.

If j <2n -1, then it follows from (B.19) that

Ny (e ' (G +1)) ={e (1 -2), ¢ (j +2)},

which contradicts (B.28) because ¢ 1(j+1) = 2n-2 by (B.16). Therefore,
j=2n-1. It follows from (B.20) that

Neguy (9™ (2n)) = {¢™' (2n-3)}.
Since (B.16) holds, we have p~1(2n) = 2n - 2. It follows that
o 1(2n-3) =2n - 3.
By proceeding by induction, it follows from (B.26), (B.27), and (B.28)
that
o l@2n-k)=2n-k
for each k € {3,...,2n}. We obtain that for each k € {0,...,2n -3},
(B.29) o(k) = k.
Since n > 3, we obtain
[0.1]0 = [¢71(0), 7" (D)o
and

[0,2]5 = [¢7(0), 7' (2) o
It follows from (B.8) and (B.11) that

[p,dlo = (¢ (), ¢ (0)]o
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for any p,q € {0,...,2n} such that p < q. Therefore, ! is an iso-
morphism from o - (2n + 1) onto o —¢. Since t = 2n - 1, we have
Np(o—(2n+1))(t) = {2n=2,2n}. It follows from (B.16) that o 1(2n) = 2n-2
and ¢ 1(2n - 2) = 2n. Consequently, p~! satisfies (5.24).
CASE 2: t<2n—1.
Recall that P(o — (2n+1)) = Pypy1. It follows from Lemma 4.39 applied
to (0 - (2n+1)) - {t,t+ 1} that
(B.30) EP(u)) ={{k,k+1}:ke{0,....t -2} u{t+2,...,2n-1}}
u{{t-1,t+2}}.
We obtain
N]P(u)(t - 1) = {t - 2,t + 2}
Since (B.16) holds, we have
e lG+1)=t-1.
If j =2n -1, then it follows from (B.20) that
Neguy (™ G+ 1)) = {97 (j - 2)}-
Therefore, we have
j<2n-1.
It follows from (B.19) that
Ney (e (G +1) ={¢ (1 -2),¢7 G+ 2)}-

Therefore, we have

(B.31) e l(j-2)=t-2and o 1(j+2)=t+2
or
(B.32) e lj-2)=t+2and o 1 (j+2)=t-2.

For a contradiction, suppose that (B.32) holds. By proceeding by induc-
tion, it follows from (B.30), (B.19), and (B.26) that

e l(G+k)=t-k

for each k € {1,...,min(¢,2n — j)}. Since t,j € {n,...,2n}, we have
min(t,2n—j) = 2n—j. Thus, for k = 2n—j, we obtain ¢~ 1(2n) = t+;j-2n. It
follows that t+j = 2n or 4n. Since n <t < 2n-1 and n < j < 2n, we obtain
t+j = 2n, and hence, t = n and j = n. Therefore, for each [ € {0,...,n—1},
we have ¢ '(2n —1) = [. Symmetrically, we obtain ¢~ !(l) = 2n — [ for
1€{0,...,n-1}. It follows that for each p € {0,...,n—-1}u{n+1,...,2n},
we have

(B.33) ¢ (2n-p) =p.
Set
W = Mane1 0 @.
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Clearly, v is another isomorphism from P(o —t) onto Ps,4+1. By Propo-
sition 4.27, for any p,q € {0,...,2n} such that p < ¢, we have
[¢v71(0),471(2)], if p and q are even,

-1 -1 —
(B:34)  [v7 (), v ()]s = {[w‘l(O),Wl(l)]a otherwise.

It follows from (B.33) that for each p€ {0,...,n-1}u{n+1,...,2n}, we
have

(B.35) 7 (p) = p.
Since n > 3, we have [0,1], = [+"1(0),%"1(1)], and [0,2], = [¢»1(0),
Y71(2)],. Tt follows from (B.8) and (B.34) that for each p € {0,...,
n-1}u{n+1,...,2n}, we have

[p,t]o = [¥ " (p),2n +1],.

We obtain that {t,2n+1} is a module of o, which contradicts the fact that
o is prime. Consequently, (B.32) does not hold. Hence, (B.31) holds.
By proceeding by induction, it follows from (B.30), (B.19), and (B.26)
that ¢ '(j - k) =t — k for each k € {2,...,min(t,)}. Therefore, t = j.
Symmetrically, we obtain o '(t+k) =t +k for each ke {2,...,2n—t}. It
follows that for [ € {0,...,t =2} u{t+2,...,2n}, we have

(B.36) o ) =1.

For a contradiction, suppose that ¢ is even. Since n > 3 and ¢t > n, we
have ¢t > 3. By (B.36), we have

v 1(0)=0
(B.37) and
e (1) =1.
We obtain
(0,1)p=(t-1,t+1), by (B.8)
= (N t+1),0(t-1))s by (B.16) (because t = j)
= (¢ (1), 97 (0))s by (B.11)
- (1,0), by (B.37),
which contradicts (B.7). It follows that t is odd. By (B.36),
[0,1]6 = [ (0), 07 (1)]o-
Furthermore, we have
[0,2], = [0,2n], by (B.8)
[p7(0). 97 (20)]5 by (B.36)
=[¢ M 0),¢71(2)], by (B.11).
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It follows from (B.8) and (B.11) that

[p,dlo = [0 (p), ¢ (@)]o

for any p,q € {0,...,2n} such that p < q. Therefore, ¢! is an isomor-
phism from o — s onto o —t. By (B.16), we have o !(t+1) =¢ -1 and
¢ H(t-1)=t+1. It follows from (B.36) that ¢! satisfies (5.24).

To conclude, we verify that .7.(0) = {t,2n + 1}. As shown above, (5.24)
holds. For a contradiction, suppose that there exists ¢’ € 7.(c) N {t,2n+1}.
By what precedes, (5.24) holds also when ¢ is replaced by t'. It follows that
{t,t'} is a module of o —(2n+1), which contradicts the fact that o — (2n+1)
is prime. O

Remark B.1. Let o be a prime 2-structure with v(o) > 7. Suppose that
there exist distinct s,t € /(o). Suppose also that P(o - s) ~ Pa,41. By
Proposition 5.28,

Fe(o) ={s,t}.
Moreover, consider an isomorphism ¢, from P(o — s) onto Pyp41. It follows
from Proposition 5.28 that

ps(t) is odd
and
(@3(0)7 ‘705(2))0 = (‘PS(Q)’ 905(0))0-

Proof of Proposition 5.29. Consider s € #.(0) such that P(o — s) ~ Py,.
Therefore, v(o) =2n + 1. Since v(o) > 7, we obtain

n > 3.

Suppose that there exists ¢t € Z.(0) \ {s}. We verify that we can assume
that (5.25) holds. Let ¢4 be an isomorphism from P(o - s) onto Psy,. Since
Ton € Aut(Pay,) (see Notation 4.21), we can assume that

n<ps(t) <2n-1.

Denote by 75 the unique 2-structure defined on {0,...,2n — 1} such that
s is an isomorphism from o — s onto 75. Since @, is an isomorphism from
P(o - s) onto Py, 7, is critical and P(75) = P»,. Here, we can assume
that V(o) = {0,...,2n}, s = 2n, and ¢s = Idgg_ 2,-13. Thus, we have
te{n,...,2n—-1} and P(o - (2n)) = Py, so (5.25) holds. Furthermore, note
that 74 =0 — (2n).

It follows from Proposition 4.15 that

(B.38) <0,1>,#<0,2>, (see Notation 1.1).

Moreover, for any p,q € {0,...,2n — 1} such that p < ¢, we have

(B.39) [p,qlo = {[07 1], if p is even and ¢ is odd,

[0,2], otherwise.
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It follows from Corollary 5.25 that

(B.40) Np(o—(2n)) () = Np(g_1)(212).

Since v(o - (2n)) = 2n, it follows from Corollary 4.6 that P(c —t) ~ Pa,. As
above, there exists an isomorphism ¢ from ¢ -t onto 7, where 7 is a critical
2-structure such that P(7) = Py,. It follows from Proposition 4.15 that

(B.41) <07(0),¢07 (1) >o#<71(0), 071 (2) 6 -
Furthermore, for any p,q € {0,...,2n -1} such that p < ¢, we have
-1 -1 e .
_ _ 0),¢ " (1)], if p is even and ¢ is odd
B.42) [¢ X (p), ¢ (@)]s = [~ (0), ,
( ) e (@) ()] {[@1(0),<p1(2)]0 otherwise.

Similarly, we can assume that n < ¢(2n) <2n - 1.
To begin with case 1, suppose that

dp(o-(2n)) (1) = 1.

Since n <t <2n -1, we have

t=2n-1.
By (B.40), dp(s—s)(2n) = 1. Similarly, we have
©(2n) =2n-1.
Moreover, it follows from (B.40) that
(B.43) o 1(2n-2)=2n-2.

It follows from Lemma 4.40 that (o - (2n)) - {2n —2,2n — 1} is critical and
E(P((c-(2n))-{2n-2,2n-1}))
=E(P(oc-s))N{{k,k+1}:ke{2n-3,2n-2}}
={{k,k+1}:ke{0,...,2n—4}}.
Observe that P(o —{2n-2,2n - 1,2n}) = Py,_o. Clearly, (go_l)r{ow’gn_g} is

an isomorphism from P, 5 onto P(o —{p~1(2n-2),2n~-1,2n}). By (B.43),
we have

o-{o ' (2n-2),2n-1,2n} =0 - {2n-2,2n - 1,2n}.
It follows that
(™) 0,....2n-3) € Aut(Pan_2).

Therefore, we obtain

(B.44) ©H0,....2n-3} = 1dfo, . on-3) O T2 (see Notation 4.21).
For a contradiction, suppose that

(B.45) ©No,...2n-3} = Idfo, . 2n-3}-

By (B.43), we have

(B.46) w(k)=k
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for each k € {0,...,2n—-2}. We verify that {2n—1,2n} is a module of 0. Let

v €{0,...,2n —2}. For instance, assume that v is even. We obtain
[v,2n-1], =[0,1], by (B.39)
=[¢7(0),¢7' ()]s by (B.46)
=[¢7' (v), 07 (20 - )], by (B.42)
=[v,2n], because p(v) = v by (B.46),

and ¢(2n) =2n - 1.
Similarly, we have [v,2n - 1], = [v,2n], when v is odd. It follows that

{2n - 1,2n} is a module of o, which contradicts the fact that o is prime.
Consequently, (B.45) does not hold. By (B.44), we have

(™) 10,....2n-3}) = Tan-2.
We obtain
(B.47) o Y(k)=2n-3-k.

for each k € {0,...,2n - 3}. Therefore, we have

(0,2)5 = (¢7'(2n-3),9"' (2n-5)); by (B.47)
= (¢ '(2n-2),¢7' (2n-5)), by (B.42)
=(2n-2,2), by (B.43) and (B.47)
- (2,0), by (B.39).
Moreover, set
Y = oy © Q.

Clearly, 1 is another isomorphism from P(o —t) onto P,. As previously for
¢, we obtain that for any p,q € {0,...,2n} such that p < g,

(B.48)
W—l(p) w_l(q)]g _ {[1/1_1(0),1[)_1(1)]0 if p is even and ¢ is odd,

[¢¥71(0),%7(2)], otherwise.

Since 1 (2n-1) = 2n, it follows from (B.43) and (B.47) that 1)~ is defined
by

{0,....,2n-1} — {0,...,2n-2}u{2n}
0 —  2n,
1 — 2n-2,
2<k<2n-1 — k-2

(B.49)
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We obtain
[¢71(0), 7 (1],

[2n,2n - 2], by (B.49)
[ (2n-1),¢7'(2n-2)],

[o71(2n-3), ¢ (2n-4)], by (B.42)
[0,1], by (B.47).

Similarly, we have

[¢71(0),%7(2)]6 = [2n,0], by (B.49)
=[¢'(2n-1),¢ " (2n-3)], by (B.47)
=[¢'(2n-3),¢7"(2n-5)], by (B.42)
=[0,2], by (B.47).

It follows from (B.48) and (B.39) that

[ (), v (D)]o = [p,qls
1

for any p,q € {0,...,2n — 1} such that p < q. Consequently, )™ is an
isomorphism from o — (2n) onto o — (2n —1). Hence, (5.26) holds.
To continue with case 2, suppose that

dp(o-(2n)) (1) = 2.

Since n <t <2n-1, we have n <t < 2n—2. Thus, Np(s_(20))(t) = {t-1,t+1}.
Set

j = ¢(2n).
Recall that n < j < 2n-1. By (B.40), Np,—)(2n) = {t - 1,t + 1}. Hence,
n<j<2n-2 and

{7 ' G-1), 07 G+ ={t-1,t+1}.
It follows that
(B.50) e l(j-1)=t-Tland p ' (j+1)=t+1
or
(B.51) e lj-1)=t+land o '(j+1)=t-1.
For a contradiction, suppose that (B.50) holds. Recall that
E(P(oc-(2n))) ={{k,k+1}:ke{0,...,2n-2}}.
By Lemma 4.39,
E®((o-(2n)) -{t-1,t}))
(B.52) ={{kk+1}:ke{0,...;t=-3}u{t+1,...,2n-2}}
u{{t-2,t+1}}.



PRIME 2-STRUCTURES 215

Similarly, we have
E(P(o - {t.¢"'(j-1),2n}))
B.53) = {{o k), o N (k+1)}:ke{0,...,j -3 u{j+1,...,2n-2}}
u{{er' (G -2),¢ G+ 1)}
Since (B.50) holds, we have
(B.54) E(P(o - {t-1,t,2n})) = E(P(0 - {t, "' (7 - 1),2n}).
We distinguish the following two cases. Both lead us to a contradiction.
CASE 1: o7 1(j-2)=t-2.
By proceeding by induction, we obtain ¢ '(j — k) = t —k for k €
{2,...,min(4,t)}. It follows that j = ¢. Similarly, we obtain that ¢~1(1) =
lfor ke {t+2,...,2n-1}. Since (B.50) holds, we obtain (y;)~1(I) = for
1€{0,...,2n -1}~ {t}. It follows from (B.39) and (B.42) that {t,2n} is
a module of o, which contradicts the fact that o is prime.
CASE 2: o 1(j-2)#t-2.
Since ¢ 1(j +1) =t + 1, it follows from (B.52), (B.53), and (B.54) that
t<2n-3,7<2n-3, and
e l(j-2)=t+2and o ' (j+2)=t-2.
By proceeding by induction, we obtain ¢ 1(j —k) =t +k for ke {2,...,
min(j,2n -t -1)}. Since t,j € {n,...,2n - 3}, we have
min(j,2n-t-1)=2n-t-1.
For k =2n—-t-1, we obtain j+t-2n+1 =0 or 2n—1, which is impossible
because j,t € {n,...,2n - 3}.
Consequently, (B.50) does not hold. Therefore, (B.51) holds. Recall that
E(]P)(U - {ta So_l(j - 1)7 272}))
(B.55) = {0 (k+ 1)} ke {0,...,j-3}u{j+1,...,2n-2}}
u{{e (-2, G+ D)
Furthermore, by Lemma 4.39, we have
EP((0-(2n)) -{t,t+1}))
(B.56) ={{kk+1}:ke{0,...;t-2}u{t+2,...,2n - 2}}
u{{t-1,t+2}}.
Since (B.51) holds, we obtain
(B.57) E(P(o - {t,t+1,2n})) = E(P(c - {t,¢ " (j - 1),2n}).
Set
pw=o-{t,t+1,2n}.
Since ¢ '(j+1) =t -1, we obtain

(B.58) Np((t=1) = Np(y (97 (5 +1)).
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For a contradiction, suppose that

e l(j-2)=t+2.
Since dp(,) (7' (j - 2)) = 2, we have dp(,(t+2) =2, so t < 2n-4. By
proceeding by induction, we obtain ¢~ (j-k) = t+k for k € {2,..., min(j, 2n—

t—1)}. Since j > n and ¢t > n, we have min(j,2n —t-1) = 2n -t - 1. For
k=2n-t-1, we obtain o !(j+t+1-2n)=2n-1. Thus, j+t+1-2n=0or

2n — 1, which is impossible because j,t € {n,...,2n - 2}. Consequently, we
have
(B.59) e l(j-2)=t-2.

By proceeding by induction, we obtain ¢ '(j - k) =t -k for k € {2,...,
min(j,t)}. It follows that j =¢. We obtain

(B.60) e () =1forle{0,...,t-2}.
Since t > n and n > 3, we obtain

[¢71(0), 7" (1)]o = [0, 1],
Similarly, if ¢ > 4, then [p~1(0),¢71(2)], = [0,2],. Hence, suppose that
t =3. We obtain ¢t < 2n — 3 because n > 3. It follows from (B.58) that
(B.61) {t-2t+2}={¢7'(G-2),¢ " G+ 2}

Since ¢ 1(j - 2) =t -2 by (B.59), we have ¢ 1(j +2) = t + 2. Recall that
7 =t. By proceeding by induction, we obtain

(B.62) el =lforle{t+2,...,2n-1}.
We have
[¢7(0), 07 (D)o = [¢ (1), 07 (2n - 1)], by (B42)
=[1,2n-1], by (B.60) and (B.62)
=[0,2], by (B.39).

Therefore, we have
[©71(0),¢7'(1)]o = [0, 1], and [¢7'(0),¢7(2)], = [0, 2],
It follows from (B.39) and (B.42) that

o™ (), ¢ (@)]o =[P, alo

for any p,q € {0,...,2n — 1} such that p < ¢. Consequently, p~! is an
isomorphism from o — (2n) onto o —t. Moreover, ¢! is defined by

{0,....2n -1} — {0,....2n} {1}
t — 2n because t = j and ¢(2n) = j,
t-1 — t+1 Dby (B51),

t+1 — t—-1 by (B.51),
veV(o)\{t-1,t,t+1,2n} — v by (B.60) and (B.62).

Consequently, (5.27) holds.
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We conclude as follows. For a contradiction, suppose that there exists
ue (o) N {t,2n}. We distinguish the following two cases.
CASE 1: dp(y—(20))(t) = dp(o—(2n)) (1)
First, suppose that
dp(o-(2n))(t) = 1.
Thus, (5.26) holds. In particular, we have t = 2n — 1. It follows that
u=0. Since {0,1} € E(P(¢ - (2n))), (6 - (2n)) - {0,1} is prime. Set

X =V(o)~{0,1,2n}.

It follows from (5.26) that 2n € Ext,(X). Hence o - {0,1} is prime,
which contradicts 0 € .7.(0).

Second, suppose that dp(s_(2n))(t) = 2. We have t,u € {1,...,2n - 2}.
For instance, assume that ¢ < u. We obtain that (5.27) holds, but also
(5.27) holds after replacing t by wu. Precisely, the function

0y {0,...,2n -1} — {0,...,2n} \ {t}
t —  2n,
t—1 — t+1,
t+1 — t-1,

veV(o)N{t-1,t,t+1,2n} +— v,

is an isomorphism from o — (2n) onto o —t. Similarly, the function

0y {0,...,2n -1} — {0,....,2n} ~ {u}
U — 2n,
u—1 — u+1,
u+1 — u-1,

veV(o)N{u-Luu+1,2n} — o,

is an isomorphism from o - (2n) onto o —u. We distinguish the following
three subcases.
Subcase a: t <u-—3.
Since Np(y—(2n))(u) = {u = 1,u + 1}, it follows from Lemma 4.4 that
{u—-1,u+1} is a module of (¢ — (2n)) —w. In particular, we have

[t,u—1]p = [t,u+1],.
Moreover, we have
[t,u—-1], =[2n,u-1], by applying 6,
=[u,u+1], by applying (6,)",
and
[t,u+1], =[2n,u+1], by applying 6,
=[u,u-1], by applying (6,)7".

It follows that
[u,u—1]g = [u,u+1],.
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Since {u —1,u + 1} is a module of (o - (2n)) —u, {u—-1,u+1} is a
module of o — (2n), which contradicts 2n € (o).

Subcase b: t=u—2.
Since Np(y—(2n))(t + 1) = {t,t + 2}, it follows from Lemma 4.4 that

{t,t+2} is a module of (0 — (2n)) — (¢t + 1). Furthermore, we have

[t+1,t+2],=[t-1,t+2], by applying (6;)"

t-1,2n], by applying 6,

t+3,t], by applying 6,

=[
[
=[t+1,t], by applying (Gt)_l
[
[t+1,t], by (B.39).

Therefore, {t,t+ 2} is a module of (¢ — (2n)), which contradicts
2ne . (o).

Subcase ¢: t=u-1.
First, suppose that t is even. We obtain

[0,1], = [t,t+ 1], by (B.39)

[2n,t-1], by applying 6,

=[t+1,t-1], by applying (6,)"

=[2,0], by (B.39),

which contradicts (B.38). Second, suppose that ¢ is odd. We have
1<t<2n-3. If t <2n -5, then t +4 < 2n — 1 and we obtain

[0,1], =[t+1,t+4], by (B.39)
=[2n,t+4], by applying 6,
=[t,t+4], by applying (6;)”"

=[0,2], by (B.39),

which contradicts (B.38). If t > 2n—4, then ¢t = 2n-3, u = 2n -2, and
we obtain

[0,t]s by (B.39)

[0,2n], by applying 6,

[0,t+1], by applying (6,)"

=1[0,2], by (B.39),

[0,1]5

which contradicts (B.38).

CASE 2: dp(a_(Qn))(t) * dp(a_(gn))(u).
For instance, assume that

dp(o-(2n))(t) = 1 and dp(y—(2n))(u) = 2.
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We have t =2n -1 and 1 <u < 2n—2. We obtain that (5.26) holds, and
(5.27) holds after replacing t by u. Precisely, the function
O,: {0,....2n-1}y — {0,...,2n-2}u{2n}
0 —  2n,
1 — 22,
2<k<2n-1 +— k-2,

is an isomorphism from o — (2n) onto o — t. Furthermore, the function

O : {0,...,2n -1} — {0,...,2n} \ {u}
U —  2n,
u—1 — u+1,
u+1 — u-1,

veV(o)~{u-Lu,u+1,2n} — v,

is an isomorphism from o - (2n) onto o —u. We distinguish the following
three subcases.
Subcase a: u < 2n —4.
Since Np(y—(2n))(u) = {u = 1,u + 1}, it follows from Lemma 4.4 that
{u-1,u+1} is a module of (¢ - (2n)) — u. Furthermore, we have

[277,, (2 1]0 = [O,U + 1]0 by applying (et)_l
=[0,u+3], by (B.39)
=[2n,u+1], by applying 6,.

Therefore, {u —1,u + 1} is a module of o — u, which contradicts u €
(o).
Subcase b: u=2n-3.
We obtain
[0,1], =[0,u], Dby (B.39)
[0,2n], by applying 6,

=[2,0], by applying (6;)7",

which contradicts (B.38).
Subcase ¢: u=2n-2.
We obtain

[0,1]5

[0,3], by (B.39)

[2n,1], by applying 6,
[2n.-2,1], by applying (6,)""
[2,0l, by (B39),

which contradicts (B.38).
Both cases above lead us to a contradiction. Consequently, .Z.(0) =
{t,2n}.
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