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q-ANALOGUES OF π-SERIES BY APPLYING CARLITZ

INVERSIONS TO q-PFAFF-SAALSCHÜTZ THEOREM

XIAOJING CHEN AND WENCHANG CHU

Abstract. By applying multiplicate forms of the Carlitz inverse se-
ries relations to the q-Pfaff-Saalschtz summation theorem, we establish
twenty five nonterminating q-series identities with several of them serv-
ing as q-analogues of infinite series expressions for π and 1/π, including
some typical ones discovered by Ramanujan (1914) and Guillera.

1. Introduction and Motivation

Let N and N0 be the sets of natural numbers and non-negative integers,
respectively. For an indeterminate x, the Pochhammer symbol is defined by

(x)0 ≡ 1 and (x)n = x(x+ 1) · · · (x+ n− 1) for n ∈ N

with the following shortened multiparameter notation[
α, β, · · · , γ
A,B, · · · , C

]
n

=
(α)n(β)n · · · (γ)n
(A)n(B)n · · · (C)n

.

Analogously, the rising and falling factorials with base q are given by
(x; q)0 = ⟨x; q⟩0 ≡ 1 and

(x; q)n = (1− x)(1− qx) · · · (1− qn−1x),

⟨x; q⟩n = (1− x)(1− q−1x) · · · (1− q1−nx).

Then the Gaussian binomial coefficient can be expressed as[
m

n

]
=

(q; q)m
(q; q)n(q; q)m−n

=
(qm−n+1; q)n

(q; q)n
where m, n ∈ N.
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When |q| < 1, the infinite product (x; q)∞ is well-defined. We have hence
the q-gamma function [12, §1.10]

Γq(x) = (1− q)1−x (q; q)∞
(qx; q)∞

and lim
q→1−

Γq(x) = Γ(x).

For the sake of brevity, the product and quotient of the q-shifted factorials
will be abbreviated respectively to

[α, β, · · · , γ; q]n = (α; q)n (β; q)n · · · (γ; q)n ,[
α, β, · · · , γ
A,B, · · · , C

∣∣∣q]
n

=
(α; q)n (β; q)n · · · (γ; q)n
(A; q)n (B; q)n · · · (C; q)n

.

Following Bailey [2] and Gasper–Rahman [12], we define the basic q-series
below:

ℓ+1ϕℓ

[
a0, a1, · · · , aℓ

b1, · · · , bℓ

∣∣∣q; z] =
∞∑
n=0

[
a0, a1, · · · , aℓ
q, b1, · · · , bℓ

∣∣∣q]
n

zn.

This series is well-defined when none of the denominator parameters has
the form q−m with m ∈ N0. If one of the numerator parameters has the form
q−m with m ∈ N0, the series is terminating (in that case, it is a polynomial
of z). Otherwise, the series is said to be nonterminating, where we assume
that 0 < |q| < 1.

As the q-analogues of the Gould–Hsu [13] inversions, Carlitz [4] found, in
1973, two well–known pairs of inverse series relations, which can be repro-
duced as follows. Let {ak}k≥0 and {bk}k≥0 be two sequences such that the
φ-polynomials defined by

φ(x; 0) ≡ 1 and φ(x;n) =
n−1∏
k=0

(ak + xbk) for n = 1, 2, . . .

differ from zero at x = q−m for m ∈ N0. Then the first pair of inverse
series relations discovered by Carlitz can equivalently be restated, under the
replacement

g(k) → q−(
k
2)g(k),

as follows.

Theorem 1.1 (Carlitz [4, Theorem 2]).

f(n) =

n∑
k=0

(−1)k
[
n

k

]
φ(q−k;n)g(k),(1.1)

g(n) =

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 ) ak + q−kbk

φ(q−n; k + 1)
f(k).(1.2)

Alternatively, if the φ-polynomials differ from zero at x = qm for m ∈ N0,
Carlitz deduced, under the base change q → q−1, another equivalent pair.
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We reproduce it under the replacement

f(k) → q−(
k
2)f(k),

as another theorem.

Theorem 1.2 (Carlitz [4, Theorem 4]).

f(n) =

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 )φ(qk;n)g(k),(1.3)

g(n) =

n∑
k=0

(−1)k
[
n

k

]
ak + qkbk

φ(qn; k + 1)
f(k).(1.4)

These inversion theorems have been shown by Chu [6–8] to be very useful
in proving terminating q-series identities. Among numerous q-series identi-
ties, the following q-Pfaff–Saalschütz theorem (cf. [12, II-12]) for the termi-
nating balanced series is fundamental.

Theorem 1.3. For n ∈ N0, we have the identity

(1.5) 3ϕ2

[
q−n, a, b

c, q1−nab/c

∣∣∣q; q] =

[
c/a, c/b
c, c/ab

∣∣∣q]
n

.

As a warm–up, we illustrate how to derive the q-Dougall sum by making
use of Carlitz’ inversions. Observe that (1.5) is equivalent to

3ϕ2

[
q−n, qna, qa/bd

qa/b, qa/d

∣∣∣q; q] =
(qa
bd

)n
[

b, d
qa/b, qa/d

∣∣∣q]
n

which can be rewritten as a q-binomial sum
n∑

k=0

(−1)k
[
n

k

]
q(

n−k
2 )(qka; q)n

[
a, qa/bd
qa/b, qa/d

∣∣∣q]
k

=
(qa
bd

)n
[

a, b, d
qa/b, qa/d

∣∣∣q]
n

q(
n
2).

This matches exactly (1.3) under the specifications

f(n) =
(qa
bd

)n
[

a, b, d
qa/b, qa/d

∣∣∣q]
n

q(
n
2),

g(k) =

[
a, qa/bd
qa/b, qa/d

∣∣∣q]
k

and φ(x;n) = (ax; q)n.

Then the dual relation corresponding to (1.4) reads as
n∑

k=0

(−1)k
[
n

k

]
1− q2ka

(qna; q)k+1

(qa
bd

)k
[

a, b, d
qa/b, qa/d

∣∣∣q]
k

q(
k
2) =

[
a, qa/bd
qa/b, qa/d

∣∣∣q]
n

.

This is equivalent to the q-Dougall sum (cf. [12, II-21]):

(1.6) 6ϕ5

[
a, q

√
a, −q

√
a, b, d, q−n

√
a,−

√
a, qa/b, qa/d, qn+1a

∣∣∣q; qn+1a

bd

]
=

[
qa, qa/bd
qa/b, qa/d

∣∣∣q]
n

.
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For a = b = d = q1/2, the limiting case n → ∞ of equation (1.6) becomes

1

Γ2
q(

1
2)

=
∞∑
k=0

(−1)k
(q1/2; q)3k
(q; q)3k

1− q2k+
1
2

1− q
q

k2

2

which reduces, for q → 1−, to the following infinite series expression for π

2

π
=

∞∑
k=0

(−1)k
(12)

3
k

(1)3k

{
1 + 4k

}
as recorded in one of Ramanujan’s letters to Hardy [21]. More difficult
formulae for 1/π were subsequently discovered by Ramanujan [23, 1914],
where 17 similar series representations were announced. Three of them are
reproduced as follows:

4

π
=

∞∑
k=0

[ 1
2 ,

1
2 ,

1
2

1, 1, 1

]
k

1 + 6k

4k
.(1.7)

8

π
=

∞∑
k=0

[ 1
2 ,

1
4 ,

3
4

1, 1, 1

]
k

3 + 20k

(−4)k
.(1.8)

16

π
=

∞∑
k=0

[ 1
2 ,

1
2 ,

1
2

1, 1, 1

]
k

5 + 42k

64k
.(1.9)

For their proofs and recent developments, the reader can consult the pa-
pers by Baruah-Berndt-Chan [3], Guillera [14–16] and Chu et al [9–11].

Recently, there has been a growing interest in finding q-analogues of
Ramanujan–like series (cf. [5, 10, 17–20]). Following the procedure just de-
scribed, the aim of this paper is to show systematically q-analogues of π-
related series by applying the multiplicate form of Carlitz inverse series
relations to the q-Pfaff–Saalschütz summation theorem. In the next section,
we shall derive, by employing the duplicate inversions, twenty q-series iden-
tities including q-analogues of the identities in (1.7–1.9). Then in section 3,
the triplicate inversions will be utilized to establish five q-series identities.
By applying the bisection series method to two resulting series, q-analogues
are established also for the following two remarkable series discovered by
Guillera [14,15]:

2
√
2

π
=

∞∑
k=0

(−1

8

)k
[ 1

2 ,
1
2 ,

1
2

1, 1, 1

]
k

{
1 + 6k

}
.

32
√
2

π
=

∞∑
k=0

(−3

8

)3k
[

1
2 ,

1
6 ,

5
6

1, 1, 1

]
k

{
15 + 154k

}
.



q-ANALOGUES OF π-SERIES 95

2. Duplicate Inverse Series Relations

For x ∈ R (the set of real numbers), we denote by ⌊x⌋ the nearest integer
less than or equal to x. Then for all n ∈ N0, there holds the equality

(2.1) n =
⌊
n
2

⌋
+
⌊
1+n
2

⌋
.

Using (2.1), we shall reformulate (1.5) in three different ways. Their dual
relations will lead us to q-series counterparts for several remarkable infinite
series expressions of π and 1/π.

2.1. First version. According to the q-Pfaff–Saalschütz formula (1.5), it is
not hard to verify that

3ϕ2

[
q−n, a, c

q−⌊n
2
⌋ae, q1−⌊n+1

2
⌋c/e

∣∣∣q; q] =

[
q−⌊n

2
⌋e, q−⌊n

2
⌋ae/c

q−⌊n
2
⌋ae, q−⌊n

2
⌋e/c

∣∣∣q]
n

which is equivalent to the q-binomial sum

n∑
k=0

(−1)k
[
n

k

]
(q1−k/ae; q)⌊n

2
⌋(q

−ke/c; q)⌊n+1
2

⌋

[
a, c

ae, qc/e

∣∣∣q]
k

q(
k+1
2 )

=

[
e, ae/c
ae

∣∣∣q]
⌊n+1

2
⌋

[
q/e, qc/ae

qc/e

∣∣∣q]
⌊n
2
⌋
.

Observing that this equation matches exactly to (1.1) specified by

f(k) =

[
e, ae/c
ae

∣∣∣q]
⌊ k+1

2
⌋

[
q/e, qc/ae

qc/e

∣∣∣q]
⌊ k
2
⌋
,

g(k) =

[
a, c

ae, qc/e

∣∣∣q]
k

q(
k+1
2 ),

φ(x;n) = (qx/ae; q)⌊n
2
⌋(ex/c; q)⌊n+1

2
⌋;

we may state the dual relation corresponding to (1.2) as the proposition.

Proposition 2.1 (Terminating reciprocal relation).[
a, c

ae, qc/e

∣∣∣q]
n

=
∑
k≥0

[
n

2k

]
(1− q−ke/c)q(1+2k)(k−n)

(q1−n/ae; q)k(q−ne/c; q)k+1

[
e, ae/c
ae

∣∣∣q]
k

[
q/e, qc/ae

qc/e

∣∣∣q]
k

−
∑
k≥0

[
n

2k+1

]
(1−q−k/ae)q(1+k)(1+2k−2n)

(q1−n/ae;q)k+1(q−ne/c;q)k+1

[
e, ae/c
ae

∣∣∣q]
k+1

[
q/e, qc/ae

qc/e

∣∣∣q]
k

.

The two sums just displayed are, in fact, balanced 8ϕ7-series, which do
not admit closed forms. However their combination does have a closed form.
That is the reason why we call the last relation reciprocal.
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Letting n → ∞ in Proposition 2.1 and then applying the Weierstrass
M -test (cf. Stromberg [24, §3.106]), we get the limiting relation:[

a, c
ae, qc/e

∣∣∣q]
∞

(2.2)

=
∑
k≥0

1− qkc/e

(q; q)2k

[
e, ae/c
ae

∣∣∣q]
k

[
q/e, qc/ae

qc/e

∣∣∣q]
k

qk
2−k(ac)k(2.3)

+
c

e

∑
k≥0

1− ae/q

(q; q)2k+1

[
e, ae/c
ae/q

∣∣∣q]
k+1

[
q/e, qc/ae

qc/e

∣∣∣q]
k

qk
2
(ac)k.(2.4)

Combining the two sums in (2.3) and (2.4) together, we obtain the fol-
lowing theorem.

Theorem 2.2 (Nonterminating series identity).[
a, c

ae, c/e

∣∣∣q]
∞

=

∞∑
k=0

(ac)k

(q; q)2k

[
e, ae/c
ae

∣∣∣q]
k

[
q/e, qc/ae

c/e

∣∣∣q]
k

qk
2−k

×
{
1 + qk

c(1− qke)(1− qkae/c)

e(1− q1+2k)(1− qkc/e)

}
.

We highlight two important corollaries about reciprocal product of q-
gamma functions. Their limiting cases as q → 1− yield infinite series for π
and 1/π.

Corollary 2.3. For λ ∈ R, the following identity holds:

1

Γq(1 + λ)Γq(2− λ)
=

∞∑
k=0

[
qλ, q1+λ, q1−λ, q2−λ; q

]
k

(q; q)2k(q
2; q)2k

qk
2+k

×
{
1− (1− q−k)(1− q1+2k)

(1− qλ+k)(1− q1−λ+k)

}
.

Proof. By inverting the fraction inside the braces {· · · } and then absorb-
ing the factors involving k in the factorial quotients, we can equivalently
reformulate the equation in Theorem 2.2 as[

qa, c
ae, qc/e

∣∣∣q]
∞

e(1− q)(1− a)

c(1− e)(1− ae/c)

=

∞∑
k=0

qk
2
(ac)k

(q2; q)2k

[
qe, qae/c

ae

∣∣∣q]
k

[
q/e, qc/ae

qc/e

∣∣∣q]
k

×
{
1 + q−k e(1− q1+2k)(1− qkc/e)

c(1− qke)(1− qkae/c)

}
.

The formula in Corollary 2.3 follows by specifying a = qλ and c = e = q1−λ

in the above equation. □
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Corollary 2.4. For λ ∈ R, the following identity holds:

Γq(λ)Γq(1− λ) =
∞∑
k=0

qk
2+k (q

λ; q)k(q
1−λ; q)k

(q2; q)2k

{
1− q1+2k

1− qλ+k
− 1− qλ+k

1− qλ−1−k

}
.

Proof. This result simply follows from Theorem 2.2 with a = c = q and
e = qλ. □

Remark. Letting q → 1− on both sides of Corollary 2.4 and then using
Euler’s reflection formula (cf. [22, §17])

Γ(z)Γ(1− z) =
π

sin(πz)
,

we obtain the following infinite series identity

(2.5)
π

sin(πλ)
=

∞∑
k=0

(λ)k(1− λ)k
(2k + 1)!

{
2k + 1

λ+ k
− λ+ k

λ− k − 1

}
.

This series (2.5) for 1/ sin(πz) is analogous to the well–known partial
fraction decomposition for cot(πz) that can be obtained by using logarithmic
differentiation of the Weierstrass factorization theorem for sin(πz).

By properly choosing special values of a, c and e, we find ten interest-
ing q-series identities, that correspond to the classical series with the same
convergence rate of 1/4. Here the convergence rate for a series

∞∑
k=0

ak

is defined by lim
k→∞

ak+1/ak, if this limit exists.

A1. For the series discovered by Ramanujan [23]

4

π
=

∞∑
k=0

[
1
2 ,

1
2 ,

1
2

1, 1, 1

]
k

1 + 6k

4k
,

we recover, by letting λ = 1/2 in Corollary 2.3, the following q-
analogue (cf. Chen–Chu [5, Example 38] and Guo [18, Equation 1.6]):

1

Γ2
q(

1
2)

=

∞∑
k=0

qk
2 (q1/2; q)4k
(q; q)2k(q; q)2k

1 + qk+1/2 − 2q2k+1/2

(1− q)(1 + qk+1/2)
.

A different, but simpler q-analogue can be found in Guo–Liu [19,
Equation 3] and Chen–Chu [5, Example 4]:

∞∑
k=0

1− q6k+1

1− q4
(q; q2)2k(q

2; q4)k
(q4; q4)3k

qk
2
=

1

Γ2
q4
(12)

.
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A2. For λ = 1/3, we get, from Corollary 2.3, the following identity

1

Γq(
4
3)Γq(

5
3)

=

∞∑
k=0

qk
2+k

[
q1/3, q2/3, q4/3, q5/3; q

]
k

(q; q)2k(q
2; q)2k

{
1− (1− q−k)(1− q2k+1)

(1− qk+
1
3 )(1− qk+

2
3 )

}
which gives a q-analogue of the series

9
√
3

2π
=

∞∑
k=0

[ 1
3 ,

1
3 ,

2
3 ,

2
3

1, 1, 1, 3
2

]
k

2 + 18k + 27k2

4k
.

A3. For λ = 1/4, we have, from Corollary 2.3, the following identity due
to Guo and Zudilin [20, Equation 1.6]

1

Γq(
5
4)Γq(

7
4)

=
∞∑
k=0

qk
2+k

[
q

1
4 , q

3
4 , q

5
4 , q

7
4 ; q

]
k

(q; q)2k(q
2; q)2k

{
1− (1− q−k)(1− q2k+1)

(1− qk+
1
4 )(1− qk+

3
4 )

}
which offers a q-analogue of the series

8
√
2

π
=

∞∑
k=0

[ 1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 1, 3
2

]
k

3 + 32k + 48k2

4k
.

A4. For λ = 1/6, we find, from Corollary 2.3, the following identity

1

Γq(
7
6)Γq(

11
6 )

=
∞∑
k=0

qk
2+k

[
q1/6, q5/6, q7/6, q11/6; q

]
k

(q; q)2k(q
2; q)2k

{
1− (1− q−k)(1− q2k+1)

(1− qk+
1
6 )(1− qk+

5
6 )

}
which provides a q-analogue of the series

18

π
=

∞∑
k=0

[ 1
6 ,

1
6 ,

5
6 ,

5
6

1, 1, 1, 32

]
k

5 + 72k + 108k2

4k
.

A5. Letting λ = 1/2 in Corollary 2.4, we get the following identity

Γ2
q

(
1

2

)
=

∞∑
k=0

qk
2+k (q

1/2; q)2k
(q2; q)2k

(1 + 2qk+1/2)

which is a q-analogue of the series

π

3
=

∞∑
k=0

[
1
2 ,

1
2

1, 32

]
k

(
1

4

)k

.

A6. Letting λ = 1/3 in Corollary 2.4, we deduce the following identity

Γq

(
1

3

)
Γq

(
2

3

)
=

∞∑
k=0

qk
2+k (q

1/3; q)k(q
2/3; q)k

(q2; q)2k

{
1− q1+2k

1− qk+
1
3

− 1− qk+
1
3

1− q−k− 2
3

}
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which gives a q-analogue of the series

4π√
3
=

∞∑
k=0

[ 1
3 ,

1
3 ,

2
3 ,

2
3

1, 32 ,
4
3 ,

5
3

]
k

7 + 27k + 27k2

4k
.

A7. Letting λ = 1/6 in Corollary 2.4, we obtain the following identity

Γq

(
1

6

)
Γq

(
5

6

)
=

∞∑
k=0

qk
2+k (q

1/6; q)k(q
5/6; q)k

(q2; q)2k

{
1− q1+2k

1− qk+
1
6

− 1− qk+
1
6

1− q−k− 5
6

}
which results in a q-analogue of the series

10π =
∞∑
k=0

[ 1
6 ,

1
6 ,

5
6 ,

5
6

1, 32 ,
7
6 ,

11
6

]
k

31 + 108k + 108k2

4k
.

A8. By specifying a = q, c = q2/3 and e = q1/3 in Theorem 2.2, we find

Γ2
q(

1
3)

Γq(
2
3)

=

∞∑
k=0

qk
2+ 2k

3
(q1/3; q)k(q

2/3; q)2k
(q4/3; q)k(q2; q)2k

1 + qk+
1
3 − 2q2k+1

1− q
1
3

which corresponds to the identity

√
3 Γ3(13)

2π
=

∞∑
k=0

[ 1
3 ,

2
3 ,

2
3

1, 32 ,
4
3

]
k

5 + 9k

4k
.

A9. By specifying a = c = q1/4 and e = q1/2 in Theorem 2.2, we have

Γ2
q(

3
4)

Γ2
q(

1
4)

=

∞∑
k=0

qk(k−
1
2
) (q

1/2; q)3k(q
3/2; q)k

(q3/4; q)2k(q
2; q)2k

1 + qk+
1
2 − 2q2k+

1
4

(1− q)(1 + q
1
2 )

which corresponds to the identity

2Γ2(34)

3Γ2(14)
=

∞∑
k=0

[ 1
2 ,

1
2 ,

1
2

1, 34 ,
3
4

]
k

k

4k
⇐⇒

12Γ2(34)

Γ2(14)
=

∞∑
k=0

[ 3
2 ,

3
2 ,

3
2

1, 74 ,
7
4

]
k

1

4k
.

A10. By specifying a = c = q3/4 and e = q1/2 in Theorem 2.2, we find

Γ2
q(

1
4)

Γ2
q(

3
4)

=

∞∑
k=0

qk(k+
1
2
) (q

1/2; q)3k(q
3/2; q)k

(q5/4; q)2k(q
2; q)2k

(1 + q
1
4 )(1 + qk+

1
2 − 2q2k+

3
4 )

1− q
1
4

which corresponds to the identity

Γ2(14)

8Γ2(34)
=

∞∑
k=0

[ 1
2 ,

1
2 ,

1
2

1, 54 ,
5
4

]
k

1 + 3k

4k
.
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2.2. Second version. According to (1.5), it is routine to check that

(2.6) 3ϕ2

[
q−n, q⌊

n
2
⌋a, c

ae, q1−⌊n+1
2

⌋c/e

∣∣∣q; q] =

[
q−⌊n

2
⌋e, ae/c

q−⌊n
2
⌋e/c, ae

∣∣∣q]
n

.

By making use of the factorial expression

(q−ky; q)⌊n+1
2

⌋q
⌊n+1

2
⌋k = ⟨qk/y; q⟩⌊n+1

2
⌋(−y)⌊

n+1
2

⌋q(
⌊n+1

2 ⌋
2 ),

we can reformulate (2.6) as the q-binomial identity:

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 )(qka; q)⌊n

2
⌋⟨qkc/e; q⟩⌊n+1

2
⌋

[
a, c

ae, qc/e

∣∣∣q]
k

=(−1)⌊
n+1
2

⌋q(
n
2)−(

⌊n+1
2 ⌋
2 )cn

(e; q)⌊n+1
2

⌋

e⌊
n+1
2

⌋

[
ae/c
ae

∣∣∣q]
n

[
q/e, a
qc/e

∣∣∣q]
⌊n
2
⌋
.

Since the last equation matches exactly to (1.3) specified by

f(k) = (−1)⌊
k+1
2

⌋q(
k
2)−(

⌊ k+1
2 ⌋
2 )ck

(e; q)⌊ k+1
2

⌋

e⌊
k+1
2

⌋

[
ae/c
ae

∣∣∣q]
k

[
q/e, a
qc/e

∣∣∣q]
⌊ k
2
⌋
,

g(k) =

[
a, c

ae, qc/e

∣∣∣q]
k

and φ(x;n) = (ax; q)⌊n
2
⌋⟨cx/e; q⟩⌊n+1

2
⌋;

the dual relation corresponding to (1.4) is given in the proposition.

Proposition 2.5 (Terminating reciprocal relation).[
a, c

ae, qc/e

∣∣∣q]
n

=
∑
k≥0

q
3k2−k

2

[
n

2k

]
(1− qkc/e)(−1)kc2k

(qna; q)k⟨qnc/e; q⟩k+1

(e; q)k
ek

[
ae/c
ae

∣∣∣q]
2k

[
q/e, a
qc/e

∣∣∣q]
k

+
∑
k≥0

(
q

3k2+k
2

[
n

2k+1

]
(1−aq3k+1)(−1)kc2k+1

(qna;q)k+1⟨qnc/e;q⟩k+1

(e;q)k+1

ek+1

×
[
ae/c
ae

∣∣∣q]
2k+1

[
q/e, a
qc/e

∣∣∣q]
k

)
.

Both sums just displayed can be expressed as terminating q-series, which
do not have closed forms. However their combination does have a closed
form.
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Letting n → ∞ in Proposition 2.5 and then applying the Weierstrass
M -test, we get the limiting relation:

[
a, c

ae, qc/e

∣∣∣q]
∞

(2.7)

=
∑
k≥0

(−1)kq
3k2−k

2
(1− qkc/e)

(q; q)2k

c2k(e; q)k
ek

[
ae/c
ae

∣∣∣q]
2k

[
q/e, a
qc/e

∣∣∣q]
k

(2.8)

+
c

e

∑
k≥0

(−1)kq
3k2+k

2
(1−aq3k+1)

(q; q)2k+1

c2k(e; q)k+1

ek

[
ae/c
ae

∣∣∣q]
2k+1

[
q/e, a
qc/e

∣∣∣q]
k

.

(2.9)

Combining the two sums in (2.8) and (2.9), we derive the following theo-
rem.

Theorem 2.6 (Nonterminating series identity).[
a, c

ae, c/e

∣∣∣q]
∞

=
∞∑
k=0

(−c2/e)k

(q; q)2k

(ae/c; q)2k
(ae; q)2k

[
a, e, q/e
c/e

∣∣∣q]
k

q
3k2−k

2

×
{
1 + qk

c(1− aq3k+1)(1− qke)(1− q2kae/c)

e(1− q1+2k)(1− qkc/e)(1− aeq2k)

}
.

Two implications are given below about reciprocal product of q-gamma
functions.

Corollary 2.7. For λ ∈ R, we have the infinite series identity

1

Γq(1 + λ)Γq(2− λ)

=

∞∑
k=0

(−1)k
(q1+λ; q)2k
(q2; q)22k

[
qλ, qλ, q2−λ

q

∣∣∣q]
k

q
k
2
(3+3k−2λ)

× 1− q1+λ+3k

1− q

{
1 +

q−k(1− qk)(1− q1+2k)(1− q1+2k)

(1− q1−λ+k)(1− qλ+2k)(1− q1+λ+3k)

}
.

Proof. The formula is confirmed by reformulating the equality displayed
in Theorem 2.6 in an analogous manner as that for the proof of Corollary 2.3
and then letting a = qλ and c = e = q1−λ in the resulting equation. □
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Corollary 2.8. For λ ∈ R, we have the infinite series identity

Γq(1 + λ)Γq(1− λ) =
∞∑
k=0

(−1)k
[
q, qλ; q

]
k

(q; q)2k

(qλ; q)2k
(q1+λ; q)2k

q
k
2
(3+3k−2λ)

×
{
1 +

q1+k−λ(1− q2+3k)(1− qλ+k)(1− qλ+2k)

(1− q1+2k)(1− q1−λ+k)(1− q1+λ+2k)

}
.

Proof. Specifying a = c = q and e = qλ in Theorem 2.6, we get the
desired result. □

Five q-series as well as their counterparts of classical series are exemplified
as follows.

B1. For Ramanujan’s series [23]

8

π
=

∞∑
k=0

(−1

4

)k
[

1
2 ,

1
4 ,

3
4

1, 1, 1

]
k

{
3 + 20k

}
,

we recover, by letting λ = 1/2 in Corollary 2.7, the following q-
analogue (cf. Chen and Chu [5, Example 39])

1

Γ2
q(

1
2)

=

∞∑
k=0

(−1)k
(q1/2; q)3k(q

1/2; q)2k
(q; q)k(q; q)

2
2k

q3k
2/2

×
{
(1 + qk+1/2)2(1− q3k+1/2)− q2k+1/2(1− q2k+1/2)

(1− q)(1 + qk+1/2)2

}
.

Guo and Zudilin [20, Equation 1.4] derived, by means of the WZ
machinery, another q-analogue

1

Γ2
q(

1
2)

=
∞∑
k=0

(−1)k
(q1/2; q)2k(q

1/4; q1/2)2k
(q; q)2k(q; q)2k

qk
2/2

×
{
1− q2k+1/4

1− q
+

qk+1/4(1− qk+1/4)

(1− q)(1 + qk+1/2)

}
.

This is another example (apart from A1) that there may exist
different q-analogues for the same classical series.

B2. For λ = 1/2, we get, from Corollary 2.8, the identity

Γq

(
1

2

)
Γq

(
3

2

)
=

∞∑
k=0

(−1)kq
3k2

2
+k (q; q)k(q

1/2; q)k(q
1/2; q)2k

(q3/2; q)2k(q; q)2k

×
{
1 +

qk+
1
2 (1− q3k+2)(1− q2k+

1
2 )

(1− q2k+1)(1− q2k+
3
2 )

}(2.10)
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which can also be obtained from Chu [10, Proposition 14: x = y2 =
q]. Identity (2.10) is a q-analogue of the classical series

3π

2
=

∞∑
k=0

(−1

4

)k
[ 1

2 ,
1
4 ,

3
4

3
2 ,

5
4 ,

7
4

]
k

{
5 + 21k + 20k2

}
,

which is equivalent to a formula of BBP-type due to Adamchik and
Wagon [1].

B3. For λ = 1/3, we have, from Corollary 2.8, the identity

Γq

(
1

3

)
Γq

(
2

3

)
=

∞∑
k=0

(−1)k+1 (q; q)k+1(q
1/3; q)k(q

4/3; q)2k
(q2; q)2k(q4/3; q)2k+1

q
3k2

2
+ 19k

6
+1

×
{
1 +

(1 + qk+
2
3 )(1− q−2k−1)(1− q3k+1)

(1− qk+1)(1− q2k+
1
3 )

}
which offers a q-analogue of the series

8π

3
√
3
=

∞∑
k=0

(−1

4

)k
[ 1

3 ,
2
3 ,

1
6

3
2 ,

5
3 ,

7
6

]
k

{
5 + 23k + 30k2

}
.

B4. For λ = 2/3, we obtain, from Corollary 2.8, the identity

Γq

(
1

3

)
Γq

(
5

3

)
=

∞∑
k=0

(−1)k
(q; q)k(q

2/3; q)k(q
2/3; q)2k

(q; q)2k(q5/3; q)2k
q

3k2

2
+ 5k

6

×
{
1 +

qk+
1
3 (1 + qk+

1
3 )(1− qk+

2
3 )(1− q3k+2)

(1− q2k+1)(1− q2k+
5
3 )

}
which provides a q-analogue of the series

20π

3
√
3
=

∞∑
k=0

(−1

4

)k
[ 1

3 ,
2
3 ,

5
6

3
2 ,

4
3 ,

11
6

]
k

{
13 + 40k + 30k2

}
.

B5. In addition, by specifying a = q2/3, c = q1/3 and e = q1/6 in Theo-
rem 2.6, we find the following strange looking identity

Γq(
1
6)Γq(

5
6)

Γq(
1
3)Γq(

2
3)

=

∞∑
k=0

(−1)k

[
q

2
3 , q

5
6 ; q

]
k

(q; q)2k

(q
1
2 ; q)2k

(q
5
6 ; q)2k

q
3k2

2

×
{
1 + qk+

1
6
(1− q

1
2
+2k)(1− q

5
3
+3k)

(1− q1+2k)(1− q
5
6
+2k)

}
which turns out to be a q-analogue of the series

5
√
3 =

∞∑
k=0

(−1

4

)k
[ 2

3 ,
1
4 ,

3
4 ,

5
6

1, 32 ,
11
12 ,

17
12

]
k

{
10 + 51k + 60k2

}
.
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2.3. Third version. According to (1.5), it is not difficult to show that

3ϕ2

[
q−n, q⌊

n
2
⌋a, q⌊

n+1
2

⌋c
ae, qc/e

∣∣∣q; q] =

[
q−⌊n

2
⌋e, q−⌊n+1

2
⌋ae/c

q−ne/c, ae

∣∣∣q]
n

,

which can be rewritten as the following q-binomial sum

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 )(qka; q)⌊n

2
⌋(q

kc; q)⌊n+1
2

⌋

[
a, c

ae, qc/e

∣∣∣q]
k

=q⌊
3n2−2n

4
⌋a⌊

n+1
2

⌋c⌊
n
2
⌋
[a, q/e, ae/c; q]⌊n

2
⌋ [c, e, qc/ae; q]⌊n+1

2
⌋

[ae, qc/e; q]n
.

(2.11)

The identity in (2.11) is equivalent to (1.3) with

f(k) = q⌊
3k2−2k

4
⌋a⌊

k+1
2

⌋c⌊
k
2
⌋
[a, q/e, ae/c; q]⌊ k

2
⌋ [c, e, qc/ae; q]⌊ k+1

2
⌋

[ae, qc/e; q]k
,

g(k) =

[
a, c

ae, qc/e

∣∣∣q]
k

and φ(x;n) = (ax; q)⌊n
2
⌋(cx; q)⌊n+1

2
⌋.

Thus, we have the dual relation corresponding to (1.4) which is given
below.

Proposition 2.9 (Terminating reciprocal relation).[
a, c

ae, qc/e

∣∣∣q]
n

=
∑
k≥0

[
n

2k

]
(1−q3kc)q3k

2−k(ac)k

(qna; q)k(qnc; q)k+1

[a, q/e, ae/c; q]k [c, e, qc/ae; q]k
[ae, qc/e; q]2k

− a
∑
k≥0

[
n

2k+1

]
(1−q3k+1a)q3k

2+2k(ac)k

(qna; q)k+1(qnc; q)k+1

[a, q/e, ae/c; q]k [c, e, qc/ae; q]k+1

[ae, qc/e; q]2k+1

.

The two sums on the right-hand side of Proposition 2.9 are terminating
q-series and neither of them admit closed forms. Nevertheless, their combi-
nation does have an unexpected closed form.

Letting n → ∞ in Proposition 2.9 and then applying the Weierstrass
M -test, we get the limiting relation:[

a, c
ae, qc/e

∣∣∣q]
∞

(2.12)

=
∑
k≥0

(1− q3kc)q3k
2−k(ac)k

(q; q)2k

[a, q/e, ae/c; q]k [c, e, qc/ae; q]k
[ae, qc/e; q]2k

(2.13)

− a
∑
k≥0

(1− q3k+1a)q3k
2+2k(ac)k

(q; q)2k+1

[a, q/e, ae/c; q]k [c, e, qc/ae; q]k+1

[ae, qc/e; q]2k+1

.(2.14)
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Combining the two sums in (2.13) and (2.14), we establish the following
theorem.

Theorem 2.10 (Nonterminating series identity).[
a, qc

ae, qc/e

∣∣∣q]
∞

=
∞∑
k=0

(
1− q3kc

1− c

)
[a, c, e, q/e, ae/c, qc/ae; q]k

[q, ae, qc/e; q]2k
q3k

2−k(ac)k

×
{
1− q3k

a(1− q3k+1a)(1− qkc)(1− qke)(1− q1+kc/ae)

(1− q3kc)(1− q1+2k)(1− q2kae)(1− q1+2kc/e)

}
.

Below we record two special cases of Theorem 2.10 which can be utilized
to obtain q-analogues of classical series for π and 1/π.

Corollary 2.11. For λ ∈ R, the identity below holds true

1

Γq(λ)Γq(1− λ)

=

∞∑
k=0

q3k
2 (qλ; q)3k(q

1−λ; q)3k
(q; q)32k

1− q3k+1−λ

1− q

×
{
1− q3k+λ(1− q3k+1+λ)(1− qk+1−λ)3

(1− q3k+1−λ)(1− q2k+1)3

}
.

Proof. The identity in this corollary is deduced directly by specifying a = qλ

and c = e = q1−λ in Theorem 2.10. □

Corollary 2.12. For λ ∈ R, the identity below holds true

Γq(1 + λ)Γq(2− λ)

=
∞∑
k=0

1− q3k+1

1− q

[
q, q, qλ, q1−λ, qλ, q1−λ; q

]
k

[q, q1+λ, q2−λ; q]2k
q3k

2+k

×
{
1− q1+3k(1− q2+3k)(1− q1+k)(1− qλ+k)(1− q1−λ+k)

(1− q1+3k)(1− q1+2k)(1− q1+λ+2k)(1− q2−λ+2k)

}
.

Proof. The result follows straightforwardly from Theorem 2.10 with a = c =
q and e = qλ. □

From these two corollaries, we also obtain the following five q-series iden-
tities which are q-analogues of some classical identities.

C1. Recall the following series of Ramanujan [23]:

16

π
=

∞∑
k=0

[
1
2 ,

1
2 ,

1
2

1, 1, 1

]
k

5 + 42k

64k
.
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By letting λ = 1/2 in Corollary 2.11, we recover its q-analogue
(cf. Chen and Chu [5, Example 40]) as follows

1

Γ2
q(

1
2)

=

∞∑
k=0

q3k
2 (q1/2; q)6k
(q; q)32k

1− q3k+1/2

1− q

{
1− q3k+1/2(1− q3k+3/2)

(1 + qk+1/2)3(1− q3k+1/2)

}
.

C2. For λ = 1/4, we get, from Corollary 2.11, the q-series identity

1

Γq(
1
4)Γq(

3
4)

=

∞∑
k=0

1− q3k+
3
4

1− q

(q
1
4 ; q)3k(q

3
4 ; q)3k

(q; q)32k
q3k

2

×
{
1− q3k+

1
4 (1− q3k+

5
4 )(1− qk+

3
4 )3

(1− q3k+
3
4 )(1− q2k+1)3

}
.

(2.15)

The right-hand side of (2.15) can further be simplified. To do so,
consider the series defined by

∞∑
k=0

Λ(k), where Λ(k) := (−1)k
1− q

1+6k
4

1− q

(q
1
4 ; q

1
2 )3k

(q; q)3k
q

3
4
k2 .

Then its bisection series can be reformulated as

∞∑
k=0

Λ(k) =
∞∑
k=0

{
Λ(2k) + Λ(2k + 1)

}
=

∞∑
k=0

Λ(2k)
{
1 +

Λ(2k + 1)

Λ(2k)

}
=

∞∑
k=0

(
1− q3k+

1
4

1− q

)
(q

1
4 ; q

1
2 )32k

(q; q)32k
q3k

2

×
{
1− q3k+

3
4 (1− q3k+

7
4 )(1− qk+

1
4 )3

(1− q3k+
1
4 )(1− q2k+1)3

}
.

Now it is not hard to check that

1− q3k+
1
4

1− q

{
1− q3k+

3
4 (1− q3k+

7
4 )(1− qk+

1
4 )3

(1− q3k+
1
4 )(1− q2k+1)3

}

=
1− q3k+

3
4

1− q

{
1− q3k+

1
4 (1− q3k+

5
4 )(1− qk+

3
4 )3

(1− q3k+
3
4 )(1− q2k+1)3

}
.

We therefore find the following simpler series (see Chen–Chu [5,
Example 5] and Guo–Liu [19, Equation 4])

1

Γq(
1
4)Γq(

3
4)

=
∞∑
k=0

(−1)k
1− q

1+6k
4

1− q

(q
1
4 ; q

1
2 )3k

(q; q)3k
q

3
4
k2 .
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Evidently, this is a q-analogue of the classical identity due to
Guillera [15]

2
√
2

π
=

∞∑
k=0

(−1

8

)k
[ 1

2 ,
1
2 ,

1
2

1, 1, 1

]
k

{
1 + 6k

}
.

C3. For λ = 1/2, we have, from Corollary 2.12, the q-series identity

Γ2
q

(
3

2

)
=

∞∑
k=0

q3k
2+k 1− q3k+1

1− q

(q; q)2k(q
1
2 ; q)4k

(q
3
2 ; q)22k(q; q)2k

×
{
1− q3k+1(1− qk+

1
2 )(1− qk+1)(1− q3k+2)

(1 + qk+
1
2 )(1− q2k+

3
2 )2(1− q3k+1)

}
which gives a q-analogue of the following series

9π

4
=

∞∑
k=0

[
1, 12 ,

1
2 ,

1
2

5
4 ,

5
4 ,

7
4 ,

7
4

]
k

7 + 42k + 75k2 + 42k3

64k
.

We remark that the above q-series can also be derived by letting
x = y2 = q in Chu [10, Proposition 15].

C4. Letting a = c = e = q1/4 in Theorem 2.10, we get the q-series
identity

Γq(
1
2)

Γ2
q(

1
4)

=

∞∑
k=0

q3k
2− k

2
1− q3k+

1
4

1− q

(q
1
4 ; q)4k(q

3
4 ; q)2k

(q
1
2 ; q)2k(q; q)

2
2k

×
{
1− q3k+

1
4 (1− qk+

1
4 )(1− qk+

3
4 )(1− q3k+

5
4 )

(1 + qk+
1
4 )(1− q2k+1)2(1− q3k+

1
4 )

}
which provides a q-analogue of the following series

128
√
π

Γ2(14)
=

∞∑
k=0

[ 1
4 ,

1
4 ,

1
4 ,

3
4

1, 1, 3
2 ,

3
2

]
k

17 + 396k + 1392k2 + 1344k3

64k
.

C5. Letting a = c = e = q3/4 in Theorem 2.10, we derive the q-series
identity

Γq(
3
2)

Γ2
q(

3
4)

=

∞∑
k=0

q3k
2+ k

2
1− q3k+

3
4

1− q

(q
1
4 ; q)2k(q

3
4 ; q)4k

(q
3
2 ; q)2k(q; q)

2
2k

×
{
1− q3k+

3
4 (1− qk+

1
4 )(1− qk+

3
4 )(1− q3k+

7
4 )

(1 + qk+
3
4 )(1− q2k+1)2(1− q3k+

3
4 )

}
which serves as a q-analogue of the series

64
√
π

Γ2(34)
=

∞∑
k=0

[ 1
4 ,

3
4 ,

3
4 ,

3
4

1, 1, 3
2 ,

3
2

]
k

(12k + 5)(28k + 15)

64k
.
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3. Triplicate Inverse Series Relations

For all n ∈ N0, we have the two equalities

(3.1) n =
⌊
1+n
3

⌋
+

⌊
1+2n

3

⌋
=

⌊
n
3

⌋
+
⌊
1+n
3

⌋
+
⌊
2+n
3

⌋
.

Then six dual relations can be established from (1.5). However, only two of
them give some interesting q-series identities. Five examples are illustrated
in this section without reproducing the whole inversion procedure.

3.1. First version. Starting from the following form of the q-Pfaff
–Saalschütz theorem (1.5)

3ϕ2

[
q−n, a, c

q−⌊ 1+n
3

⌋ae, q1−⌊ 2n+1
3

⌋c/e

∣∣∣q; q] =

[
q−⌊ 1+n

3
⌋e, q−⌊ 1+n

3
⌋ae/c

q−⌊ 1+n
3

⌋ae, q−⌊ 1+n
3

⌋e/c

∣∣∣q]
n

we can derive three q-series identities corresponding to the classical series of
convergence rate 4/27.

D1. For a = q1/3 and c = e = q2/3, we have the corresponding identity

1

Γq(
1
3)Γq(

2
3)

=
∞∑
k=0

q2k
2+k

1− q

[
q

1
3 , q

2
3 ; q

]
k

[
q

1
3 , q

2
3 ; q

]
2k+1

(q; q)k(q; q)2k(q; q)3k+1

×
{
1− (1− q−k)(1− q3k+1)

(1− q2k+
1
3 )(1− q2k+

2
3 )

+
q2k+1(1− qk+

1
3 )(1− qk+

2
3 )

(1− q2k+1)(1− q3k+2)

}
which gives a q-analogue of the classical series

81
√
3

2π
=

∞∑
k=0

( 4

27

)k
[ 1

3 ,
2
3 ,

1
6 ,

5
6

1, 1, 1, 3
2

]
k

{
20 + 243k + 414k2

}
.

D2. For a = c = q and e = q1/3, we get the corresponding identity

Γq

(
4

3

)
Γq

(
5

3

)
=

∞∑
k=0

q(k+1)(2k+2/3)

1− q

(q
2
3 ; q)2k(q

1
3 ; q)22k+1

(q
5
3 ; q)k(q

4
3 ; q)2k(q; q)3k+1

×
{
1− (1− q−k− 2

3 )(1− q3k+1)

(1− q2k+
1
3 )2

+
q2k+

4
3 (1− qk+

2
3 )2

(1− q2k+
4
3 )(1− q3k+2)

}
which is a q-analogue of the following series

8π
√
3 =

∞∑
k=0

( 4

27

)k
[ 2

3 ,
2
3 ,

1
6 ,

1
6

1, 43 ,
5
3 ,

7
6

]
k

{
43 + 246k + 414k2

}
.
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D3. For a = c = q and e = q2/3, we find the corresponding identity

Γq

(
4

3

)
Γq

(
5

3

)
=

∞∑
k=0

q(k+1)(2k+1/3)

1− q

(q
1
3 ; q)2k(q

2
3 ; q)22k+1

(q
4
3 ; q)k(q

5
3 ; q)2k(q; q)3k+1

×
{
1− (1− q−k− 1

3 )(1− q3k+1)

(1− q2k+
2
3 )2

+
q2k+

5
3 (1− qk+

1
3 )2

(1− q2k+
5
3 )(1− q3k+2)

}
which results in a q-analogue of the classical series

40π
√
3 =

∞∑
k=0

( 4

27

)k
[ 1

3 ,
1
3 ,

5
6 ,

5
6

1, 43 ,
5
3 ,

11
6

]
k

{
214 + 591k + 414k2

}
.

3.2. Second version. Rewriting the q-Pfaff–Saalschütz theorem (1.5) as

3ϕ2

[
q−n, q⌊

n
3
⌋a, q⌊

1+n
3

⌋c

ae, q1−⌊ 2+n
3

⌋c/e

∣∣∣q; q] =

[
q−⌊n

3
⌋e, q−⌊ 1+n

3
⌋ae/c

ae, q−⌊ 2n
3
⌋e/c

∣∣∣q]
n

we obtain two further q-series identities.

D4. For a = q1/3 and c = e = q2/3, the corresponding identity reads as

1

Γq(
1
3)Γq(

2
3)

=

∞∑
k=0

1− q4k+
5
3

1− q

(q
1
3 ; q)2k(q

2
3 ; q)2k

[
q

1
3 , q

2
3 ; q

]
2k+1

(q; q)2k(q; q)
2
3k+1

q5k
2+2k

×
{
1− (1− q−2k)(1− q3k+1)2

(1− q2k+
1
3 )(1− q2k+

2
3 )(1− q4k+

5
3 )

− q4k+
4
3
(1− q2k+

5
3 )(1− qk+

2
3 )2(1− q4k+

7
3 )

(1− q2k+1)(1− q3k+2)2(1− q4k+
5
3 )

}
which provides a q-analogue of the series

729
√
3

4π
=

∞∑
k=0

( 4

729

)k
[ 1

3 ,
2
3 ,

1
6 ,

5
6

1, 1, 1, 3
2

]
k

{
100 + 1521k + 2610k2

}
.

D5. For a = c = q and e = q1/2, the corresponding identity can be stated
as

Γ2
q

(
3

2

)
=

∞∑
k=0

q5k
2+ 3k

2

1 + q
1
2

(q
1
2 ; q)2k(q; q)

2
k(q

1
2 ; q)2k

(q
3
2 ; q)3k(q; q)3k

×
{
1 + q2k+

1
2
(1− q2k+

1
2 )(1− q4k+2)

(1− q3k+1)(1− q3k+
3
2 )

− q6k+
5
2
(1− qk+

1
2 )(1− qk+1)(1− q2k+

1
2 )(1− q4k+3)

(1− q3k+1)(1− q3k+
3
2 )(1− q3k+2)(1− q3k+

5
2 )

}
.

(3.2)
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By carrying out the same procedure as done in the case of C2, we
can show that series in the right-hand side of (3.2) is, in fact, the
bisection series of the following one

Γ2
q

(
1

2

)
=

∞∑
k=0

q
k
4
(3+5k) (q

1
2 ; q

1
2 )2k(q

1
2 ; q)k

(q
3
2 ; q

1
2 )3k

1 + q
1
2
+k − q1+

3k
2 − q1+2k

1− q
1
2

.

This is in turn the q-analogue of the classical series (cf. Zhang [25,
Example 8]):

π =
∞∑
k=0

( 2

27

)k
[
1, 1

2
4
3 ,

5
3

]
k

(
3 + 5k

)
=

∞∑
k=0

6 + 10k

2k
(
3k+2
k+1

)
(k + 1)(2k + 1)

.

4. Conclusive Comments

We have shown that the inversion technique is efficient for obtaining q-
series identities whose limiting cases result in interesting infinite series for π.
The examples presented in this paper are far from exhaustive. For instance,
if we start with the quadruplicate form of the q-Pfaff–Saalschütz theorem
(1.5)

3ϕ2

[
q−n, q⌊

1+n
4

⌋a, q⌊
3+n
4

⌋c

ae, q1−⌊n
2
⌋c/e

∣∣∣q; q] =

[
q−⌊ 1+n

4
⌋e, q−⌊ 3+n

4
⌋ae/c

ae, q−⌊ 1+n
2

⌋e/c

∣∣∣q]
n

,

then its dual series will give rise to the bisection series of the following
q-series

1

Γq(
1
4)Γq(

3
4)

=
∞∑
k=0

(−1)k
(q

1
4 ; q

1
2 )2k(q

1
4 ; q

1
2 )3k

(q; q)k(q; q)
2
2k

q
7
4
k2

×
{
1− q

1
4
+ 5k

2

1− q
− q

3
4
+ 5k

2 (1− q
1
4
+ 3k

2 )

(1− q)(1 + q
1
4
+ k

2 )2(1 + q
1
2
+k)2

}(4.1)

which turns out to be a q-analogue of the elegant series for
√
2/π with

convergence rate −27/512 discovered by Guillera [14]:

32
√
2

π
=

∞∑
k=0

(−3

8

)3k
[

1
2 ,

1
6 ,

5
6

1, 1, 1

]
k

{
15 + 154k

}
.

We remark that the fractions in the braces of (4.1) is slightly simpler than
that obtained recently by Guillera [17] through a totally different approach
– “the WZ-method”.
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