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COMBINATORIAL SETTLEMENT PLANNING

MATE PULJIZ, STJEPAN ŠEBEK, AND JOSIP ŽUBRINIĆ

Abstract. In this article, we consider a combinatorial settlement model
on a rectangular grid where at least one side (east, south, or west) of
each house must be exposed to sunlight without obstructions. We are
interested in maximal configurations, where no additional houses can be
added. For a fixed m×n grid, we explicitly calculate the lowest number
of houses, and give close to optimal bounds on the highest number of
houses that a maximal configuration can have. Additionally, we pro-
vide an integer programming formulation of the problem and solve it
explicitly for small values of m and n.

1. Introduction

Consider the following problem: a rectangular m×n tract of land, whose
sides are oriented north-south and east-west as in Figure 1, consists of mn
square lots of size 1 × 1. Each 1 × 1 square lot can be either empty, or
occupied by a single house. A house is said to be blocked from sunlight if
the three lots immediately to its east, west and south are all occupied (it is
assumed that sunlight always comes from the south1). Along the boundary
of the rectangular m × n grid, there are no obstructions to sunlight. We
refer to the models of such rectangular tracts of land, with certain lots
occupied, as configurations. Of interest are maximal configurations, where
no house is blocked from the sunlight, and any further addition of a house to
the configuration on any empty lot would result in either that house being
blocked from the sunlight, or it would cut off sunlight from some previously
built house, or both.

We can encode any fixed configuration as a 0-1, m × n matrix C, with
Ci,j = 1 if and only if a house is built on the lot (i, j) (i-th row and j-th
column, counted from the top left corner). We can, equivalently, think of

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

Received by the editors November 9, 2021, and in revised form November 23, 2021.
2010 Mathematics Subject Classification. 05B40, 90C10, 00A67.
Key words and phrases. maximal configuration, optimal patterns, tilings, forbidden

induced subgraph problem, shift space.
1Our Southern Hemisphere friends are welcome to turn the page upside down when

inspecting the figures in our paper.

20

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


COMBINATORIAL SETTLEMENT PLANNING 21

North

Figure 1. An example of a tract of land (m = 5, n = 7).
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(a) Impermissible (b) Permissible (c) Maximal

Figure 2. Examples of impermissible, permissible and max-
imal configuration on a 5× 4 tract of land.

C as a subset of [m] × [n] = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, where, again,
(i, j) ∈ C if and only if a house is built on the lot (i, j).

It is natural to define the building density of a configuration C as

|C|
mn

,

where

|C| =
m∑
i=1

n∑
j=1

Ci,j

is the total number of occupied lots in the configuration C, i.e. the cardinality
of C when C is interpreted as a subset of [m] × [n]. We also call |C| the
occupancy of C.

A configuration C is said to be permissible if no house in it is blocked
from the sunlight, otherwise it is called impermissible.

A configuration C is said to be maximal if it is permissible and no other
permissible configuration strictly contains it, i.e. no further houses can be
added to it, whilst ensuring that all the houses still get some sunlight. See
Figure 2 for examples of impermissible, permissible and maximal configura-
tion on a 5×4 tract of land. Shaded squares represent houses and unshaded
squares represent empty lots on the tract of land. The houses that are
blocked from the sunlight are marked with the letter x.

One is naturally interested in maximal configurations, especially those
that achieve the highest and the lowest building density, or occupancy. One
can think of those as solving one of two natural optimization problems
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Problem 1. Maximize the revenue of a real estate investor, by building as
many houses as possible, whilst ensuring that each house gets
some sunlight.

Problem 2. Maximize the quality of living, by arranging the houses in order
to achieve the lowest building density possible, whilst ensuring
that no new houses can be added in the future without compro-
mising access to sunlight.

Maximal configurations, for a particular m,n ∈ N, with the highest build-
ing density possible we call efficient, while those with the lowest building
density possible we call inefficient. We denote the number of occupied lots
(occupancy) in any of the efficient configurations by Em,n, and the number
of occupied lots in any of the inefficient configurations by Im,n.

One may also be interested in maximal configurations which exhibit occu-
pancies in between those two extremes. We study these and related problems
in an accompanying paper [8].

We were introduced to this problem by Juraj Božić who came up with it
during his studies at the Faculty of Architecture, University of Zagreb. His
main goal was to design a model for settlement planning where the impact
of the architect would be as small as possible and people would have a lot of
freedom in the process of building the settlement. This minimal intervention
from the side of the architect is given through the condition that houses are
not allowed to be blocked from the sunlight and that the tracts of land on
which the settlements are built are of rectangular shapes.

Remark 1.1 (Boundary condition): As stated in the formulation of the prob-
lem, there are no obstructions to sunlight along the boundary of the rectan-
gular m×n grid. However, it is possible to consider various other boundary
conditions. One might be interested in the case where the whole border is
bricked up and houses can get sunlight only from the empty lots within the
grid. In fact, it is not hard to show that for each m,n ≥ 2 there is an efficient
configuration with all lots along the southern, eastern and western border
occupied. This implies Em,n = Ěm−1,n−2 + 2m + n − 2 where Ěm−1,n−2 is
the number of occupied lots in any efficient (m− 1)× (n− 2) configuration
with the bricked up boundary. Note that the boundary condition along the
northern side of the border is irrelevant.

The rest of the paper is organized as follows. In Section 2 we provide
coarse bounds on the size of maximal configurations. In Section 3 we intro-
duce periodic configurations on Z2 which, when restricted to a finite grid,
come close to attaining the occupancy of efficient or inefficient configura-
tions. In Section 4 we find a closed formula for Im,n and improve the bounds
on Em,n. In Section 5 we give an integer programming formulation of our
optimization problems and compute Em,n explicitly, for values m,n ≤ 16,
using IBM ILOG CPLEX [2]. In Section 6, we provide alternative formu-
lations of the problem of finding efficient configurations. Finally, in Section



COMBINATORIAL SETTLEMENT PLANNING 23

7, we provide several possible directions for further research related to the
model that we have studied.

2. Two simple bounds and asymptotics for large m and n

Lemma 2.1. If C is any maximal configuration on the m×n grid, m,n ≥ 2,
then

1

2
mn ≤ |C| ≤ 3

4
mn+

m− 1

2
+

n

4
.

Proof. We first prove the upper bound. If we interpret C as the set of all
occupied lots, then its complement Cc is the set of all empty lots. Note that
each occupied lot is either on the eastern, southern or western edge of the
grid (there are 2m + n − 2 such lots), or it gets sunlight from at least one
empty lot in Cc, or possibly both. Furthermore, each empty lot in Cc gives
light to at most 3 occupied lots in C. Therefore,

|C| ≤ 3|Cc|+ 2m+ n− 2,

4|C| ≤ 3(|Cc|+ |C|) + 2m+ n− 2 = 3mn+ 2m+ n− 2,

and the upper bound follows.
To prove the lower bound, it suffices to construct an injection from Cc to

C, as then, the bound would follow from

mn = |C|+ |Cc| ≤ 2|C|.

To that end, consider any empty lot (i, j) ∈ Cc. Since C is maximal,
the house cannot be built on the lot (i, j), i.e. (i, j) cannot be added to
the configuration, without blocking some existing house (or itself) from the
sunlight. This can happen in exactly two ways,

• either (i, j) is the only source of light to at least one of its occupied
neighbors to the east, north or west: (i, j+1), (i−1, j), or (i, j−1),
(Note that we do not require that all of those three neighbors are
occupied).

• or alternatively, its neighbors to the east, south and west: (i, j +1),
(i + 1, j), and (i, j − 1) are all occupied. (but (i, j) is not the only
source of light to (i, j + 1), nor (i− 1, j), nor (i, j − 1), if occupied.)

In the first case, we map (i, j) ∈ Cc to any of the neighbors: (i, j + 1),
(i−1, j), or (i, j−1) that are occupied and for which (i, j) is the only source
of light. In the second case, we map (i, j) ∈ Cc to its east neighbor (i, j+1).
It is clear from the construction that this does define an injection from Cc

to C, thus completing the proof of the lower bound. □

Remark: Lemma 2.1 shows that for large grids, as both m → ∞ and n → ∞,
the building density of maximal configurations must be between 1

2 and 3
4 . We

will later see that efficient configurations, in the limit, do approach building
density 3

4 , while inefficient configurations, in the limit, do approach building

density 1
2 . It is also interesting to note that these limit building densities are
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Figure 3. Brick pattern.

in fact, attained on the infinite grid by periodic configurations introduced
in Section 3.

3. (Near-)optimal patterns

In this section we describe periodic configurations on Z2 which yield op-
timal building densities, and the associated finite versions of these config-
urations which obey a similar periodic rule. The motivation for this is to
construct somewhat regular configurations with near-optimal building den-
sities. For this, we introduce the following definitions

A configuration on Z2 is simply a subset of Z2, or equivalently a function

belonging to {0, 1}Z2
. For a fixed configuration C on Z2, we define its

building density as

D(C) = lim
n→∞

1

(2n+ 1)2

n∑
i=−n

n∑
j=−n

Ci,j ,

when this limit exists.
A similar argument as in Lemma 2.1 yields the following bounds for the

building density of maximal configurations on Z2

1

2
≤ D(C) ≤ 3

4
, ∀C ∈ {0, 1}Z2

, C maximal.

3.1. Patterns occurring in efficient configurations.

3.1.1. Brick pattern. Here we introduce the pattern for maximal configu-
rations which we refer to as the brick pattern, see Figure 3. This pattern
defines a maximal configuration Cbrick on Z2 with the highest possible build-
ing density of D(Cbrick) = 3/4.

Note that the configuration on Z2 with the brick pattern has the following
two properties

• Each empty lot provides light to exactly three occupied neighbors.
• Each occupied lot receives light from exactly one neighbor.

The construction of finite maximal configurations with the brick pattern is
depicted in Figure 4. The configurations are obtained by restricting the
configuration Cbrick to a finite grid, and building additional houses on the
newly available lots. Among all such restrictions, we choose one that, in the
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(a)
(b)

Figure 4. Finite configurations obtained from the brick
pattern.

end, yields the highest occupancy. In order to determine the occupancy of
such configurations, we start by fixing the dimensionsm ≥ 2 and n ≥ 3. This
configuration consists of

⌈
n
2

⌉
fully filled vertical columns of height m. The

remaining
⌊
n
2

⌋
columns are filled in a shifted manner with only around half

of the lots occupied. In fact, due to the necessity of shifting the half empty
columns, we end up with around a half of them filled with

⌊
m
2

⌋
houses and

the remaining filled with
⌈
m
2

⌉
houses. However, it is always more efficient

to arrange the houses in such a way that there are⌈⌊n2 ⌋
2

⌉
columns with

⌈
m
2

⌉
houses and ⌊⌊n2 ⌋

2

⌋
columns with

⌊
m
2

⌋
houses. We leave it to the interested reader to verify that

in the cases n ≡ 0 (mod 4), independently of m, and n ≡ 2 (mod 4),m ≡
0 (mod 2), there is a possible minor improvement by choosing the restriction
such that the bottom right lot can be filled, see Figure 4(b).

Definition 3.1 (Brick pattern function). The function that gives us the
occupancy |C| of a configuration with the brick pattern is

Obrick(m,n) :=
m

⌈
n
2

⌉
+
⌈
⌊n
2
⌋

2

⌉ ⌈
m
2

⌉
+
⌊
⌊n
2
⌋

2

⌋ ⌊
m
2

⌋
+ 1,

if n ≡ 0 (mod 4); or

if

{
n ≡ 2 (mod 4); and

m ≡ 0 (mod 2).

m
⌈
n
2

⌉
+
⌈
⌊n
2
⌋

2

⌉ ⌈
m
2

⌉
+
⌊
⌊n
2
⌋

2

⌋ ⌊
m
2

⌋
, otherwise.

Additionally, for n = 2, we have Obrick(m, 2) = 2m.

3.1.2. Comb pattern. Another pattern occurring in efficient configurations
is the comb pattern, see Figure 5. The configuration Ccomb with such a
pattern of built houses exhibits a building density of 2/3. Note that the
configuration on Z2 with the comb pattern has the following two properties
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Figure 5. Comb pattern.

(a)
(b)

Figure 6. Finite configurations obtained from the comb
pattern.

• Each empty lot provides light to exactly two of its neighbors.
• Each occupied lot receives light from exactly one neighbor.

The way in which we obtain finite maximal configurations with the comb
pattern is by restricting Ccomb to a finite grid and filling all the southernmost
lots, see Figure 6.

Definition 3.2 (Comb pattern function). The function that gives us the
occupancy |C| of a configuration with the comb pattern is

Ocomb(m,n) :=


n+ (m− 1)

(
2
3n

)
, if n ≡ 0 (mod 3);

n+ (m− 1)
(
2
3(n− 1) + 1

)
, if n ≡ 1 (mod 3);

n+ (m− 1)
(
2
3(n− 2) + 2

)
, if n ≡ 2 (mod 3),

where m,n ≥ 2.

Remark: Based on its intermediate building density of 2/3, it is expected
that this pattern will not be occurring in either efficient nor inefficient con-
figurations when both m and n are large. It does, however, occur in some
efficient configurations when either m or n are small. This is confirmed in
Table 2.

3.1.3. Brick–comb combination. We note here that the brick pattern and
the comb pattern are compatible in the sense that one can design maximal
configurations by alternating between these patterns. This is illustrated in
Figure 7. For certain dimensions m and n, the combination of these patterns
is more efficient than each of the patterns separately.

3.2. Patterns occurring in inefficient configurations.
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(a) Brick pattern only. (b) Comb pattern only.

(c) The combination of the two patterns.

Figure 7. Consider the tract of land with dimensions 5×10.
While the configuration with the brick pattern exhibits the
occupancy of 38, as well as the configuration with the comb
pattern, the combination, on the other hand, exhibits the
occupancy of 39.

Figure 8. Rake pattern

3.2.1. Rake pattern. The rake pattern is a periodic pattern similar to the
comb pattern but with bigger gaps. However, the configuration Crake with
the rake pattern, see Figure 8, yields the minimal possible building density
of 1/2. Note that the configuration on Z2 with the rake pattern has the
following two properties

• Each empty lot provides light to only one of its neighbors.
• Each occupied lot receives light from only one of its neighbors.

The finite maximal configurations with the rake pattern are obtained by
restricting Crake to a finite grid, and building additional houses on the newly
available lots. Among all such restrictions, we choose one that, in the end,
yields the lowest occupancy, see Figure 9.
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(a)
(b)

Figure 9. Finite configurations obtained from the rake pat-
tern.

Figure 10. Stripe pattern.

Definition 3.4 (Rake pattern function). The function that gives us the
occupancy |C| of a configuration with the rake pattern is

Orake(m,n) :=


n+ (m− 1)

(
1
2n

)
, if n ≡ 0 (mod 4);

n+ (m− 1)
(
1
2(n− 1) + 1

)
, if n ≡ 1 (mod 4);

n+ (m− 1)
(
1
2(n− 2) + 2

)
, if n ≡ 2 (mod 4);

n+ (m− 1)
(
1
2(n− 3) + 2

)
, if n ≡ 3 (mod 4),

where m,n ≥ 2.

3.2.2. Stripe pattern. The stripe pattern is a periodic pattern consisting
of horizontal lines of built houses depicted in Figure 10. The configuration
Cstripe on Z2 with the stripe pattern also yields the minimal possible building
density of 1/2, the same as the rake pattern. Note that the configuration
on Z2 with the stripe pattern has the following two properties

• Each empty lot provides light to only one of its neighbors.
• Each occupied lot receives light from only one of its neighbors.

Remark: Notice that both of the above mentioned properties are shared by
both the stripe and rake patterns. However, not all periodic patterns with
the building density of 1/2 obey these two conditions, see the check pattern
in Section 3.2.4.

The finite maximal configurations with the stripe pattern are obtained
by restricting Cstripe to a finite grid and building additional houses on the
newly available lots. Among all such restrictions, we choose one that, in the
end, yields the lowest occupancy, see Figure 11.
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(a)
(b)

Figure 11. Finite configurations obtained from the stripe
pattern.

Definition 3.6 (Stripe pattern function). The function that gives us the
occupancy |C| of a configuration with the stripe pattern is

Ostripe(m,n) :=

2m+
⌊
m
2

⌋
(n− 2), if m ≡ 0 (mod 2);

2m+
⌊
m
2

⌋
(n− 2) +

(
1
2n

)
, if m ≡ 1 (mod 2), n ≡ 0 (mod 4);

2m+
⌊
m
2

⌋
(n− 2) +

(
1
2(n− 1) + 1

)
, if m ≡ 1 (mod 2), n ≡ 1 (mod 4);

2m+
⌊
m
2

⌋
(n− 2) +

(
1
2(n− 2) + 2

)
, if m ≡ 1 (mod 2), n ≡ 2 (mod 4);

2m+
⌊
m
2

⌋
(n− 2) +

(
1
2(n− 3) + 2

)
, if m ≡ 1 (mod 2), n ≡ 3 (mod 4),

where m,n ≥ 2.

Remark 3.7: Note that, in the case whenm is odd, in order to yield the lowest
occupancy, we need to fill the first row with a part of the rake pattern, see
Figure 11(a).

3.2.3. Rake–stripe combination. Inspired by Remark 3.7 and forthcoming
Lemma 4.1, we form a combination of the rake and stripe patterns, see
Figure 12. This combination yields lower occupancy than each of the pat-
terns separately. Moreover, in Theorem 4.5, we show that this combination
attains the lowest occupancy possible among all maximal configurations.

Definition 3.8 (Rake–stripe pattern function). The function that gives us
the occupancy |C| of a configuration with the rake–stripe pattern is
(3.1)

Orake−stripe(m,n) :=


n+ 2 + (m− 2)

(
1
2n

)
, if n ≡ 0 (mod 4);

n+ 2 + (m− 2)
(
1
2(n− 1) + 1

)
, if n ≡ 1 (mod 4);

n+ 2 + (m− 2)
(
1
2(n− 2) + 2

)
, if n ≡ 2 (mod 4);

n+ 2 + (m− 2)
(
1
2(n− 3) + 2

)
, if n ≡ 3 (mod 4),

when m,n ≥ 2.
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(a) Rake pattern only. (b) Stripe pattern only.

(c) The combination of the two patterns.

Figure 12. Consider the tract of land with dimensions 6×8.
While the configuration with the rake pattern exhibits the oc-
cupancy of 28, and the stripe pattern exhibits the occupancy
of 30, the combination, on the other hand, exhibits the oc-
cupancy of 26.

Figure 13. Check pattern.

3.2.4. Check pattern. Check pattern is a periodic pattern depicted in Figure
13. The maximal configuration Ccheck with the check pattern exhibits the
building density of 1/2. Note that the configuration on Z2 with the check
pattern has the following two properties

• Each empty lot provides light to exactly three neighbors.
• Each occupied lot receives light from exactly three neighbors.

The finite maximal configurations with the check pattern are obtained
by restricting Ccheck to a finite grid and building additional houses on the
newly available lots. Among all such restrictions, we choose one that, in the
end, yields the lowest occupancy, see Figure 14.
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(a)

(b)

Figure 14. Finite configurations obtained from the check
pattern.

Definition 3.9 (Check pattern function). The function that gives us the
occupancy |C| of a configuration with the check pattern is

Ocheck(m,n) := 2(m− 1) + n+

⌊
m− 1

2

⌋⌈
n− 2

2

⌉
+

⌈
m− 1

2

⌉⌊
n− 2

2

⌋
.

4. Im,n and bounds on Em,n

Recall that Im,n and Em,n are, respectively, the lowest and the highest
occupancy attained among all of the maximal configurations on the m × n
grid. In Lemma 2.1 we have proved

1

2
mn ≤ Im,n ≤ Em,n ≤ 3

4
mn+

m− 1

2
+

n

4
.

Furthermore, the occupancy of any concrete maximal configuration C pro-
vides an upper bound on Im,n and a lower bound on Em,n, since

Im,n ≤ |C| ≤ Em,n, for any maximal configuration C.

In this section we obtain an explicit formula for Im,n (Theorem 4.5) and
provide improved bounds on Em,n.

4.1. Explicit formula for Im,n. The main result of this section is Theorem
4.5. First we prove several auxiliary lemmas.

Lemma 4.1. If C is any maximal configuration on the m×n grid, m,n ≥ 2,
then the number of occupied lots in the two southernmost rows is at least
n+ 2.

Proof. We argue by contradiction. Suppose that there exist a maximal con-
figuration C containing at most n + 1 occupied lots in rows m − 1 and m.
Note that the lot (m, 1) is occupied in any maximal configuration, as its
only neighbors (m, 2) and (m− 1, 1) always get sunlight as they are on the
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border. For the same reason, the lot (m,n) is also occupied in any maximal
configuration.

We may also assume that the lot (m− 1, 1) is occupied in C. If that was
not the case, it would mean that (m − 1, 2), (m − 1, 3) and (m, 2) are all
occupied because of the maximality of C. We could then move the house
from (m, 2) to (m− 1, 1), and we would still have a maximal configuration,
with the same number of occupied lots as before. By similar reasoning, we
may also assume that the lot (m− 1, n) is occupied in C.

Therefore, of the remaining 2n − 4 lots {m − 1,m} × {2, 3, . . . , n − 1},
at most n − 3 are occupied. By the pigeonhole principle, there must exist
2 ≤ i ≤ n− 1 such that both lots (i,m− 1) and (i,m) are empty. But this
cannot happen in a maximal configuration, as there are no obstructions for
(i,m) to be occupied — a contradiction. □

Lemma 4.2. Let C be any maximal configuration on the m×n grid, m,n ≥
2, and let 1 ≤ l ≤ m be a positive integer. The number of occupied lots in
the restriction of the configuration C to the grid S = {1, 2, . . . , l}× {1, 2} is
at least one half of all the lots in S, i.e.

|C ∩ S| ≥ 1

2
|S| = l.

The same is true if one takes S to be along the eastern border of the grid,
instead of the western border, i.e. if S = {1, 2, . . . , l} × {n− 1, n}.
Proof. Let 1 ≤ i ≤ l and consider the lots (i, 1) and (i, 2). It is not possible
that both of these are empty in a maximal configuration, since the only
reason for leaving (i, 1) empty is if (i, 2) was occupied and, further, (i, 1)
was its only source of light. From here, the claim follows for the western
border. Because of the mirror symmetry East↔West, the eastern border
case also follows. □

Lemma 4.3. Let C be any maximal configuration on the m×n grid, m ≥ 2,
n ≥ 3, and let 1 ≤ l ≤ m be a positive integer. The number of occupied lots
in the restriction of the configuration C to the grid S = {1, 2, . . . , l}×{1, 2, 3}
is at least two thirds of all the lots in S, i.e.

|C ∩ S| ≥ 2

3
|S| = 2l.

The same is true if one takes S to be along the eastern border of the grid,
instead of the western border, i.e. if S = {1, 2, . . . , l} × {n− 2, n− 1, n}.
Proof. Let 1 ≤ i ≤ l and consider the lots (i, 1), (i, 2) and (i, 3). We will
show that either two out of three of these lots must be occupied or, failing
that, there must be another row above them (i.e. i > 1), and taking into
account the additional three lots in the row above (i − 1, 1), (i − 1, 2) and
(i− 1, 3), at least 4 out of the total of 6 lots must be occupied. From this,
the statement of the lemma will follow.

First, we assume that (i, 1) is empty. Arguing as in the proof of Lemma
4.2, since C is maximal, the lot (i, 2) must be occupied, with (i, 1) being its
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only source of light. Therefore, (i, 3) must also be occupied and we get two
out of three occupied lots.

Otherwise, assume that (i, 1) is occupied. If (i, 2) or (i, 3) is also occupied,
we are done, so assume that both (i, 2) and (i, 3) are empty. Since C is
maximal, the only reason for (i, 2) being empty is

• either (i, 2) is the only source of light to at least one of its occupied
neighbors: (i, 3), (i− 1, 2), or (i, 1);

• or alternatively, its neighbors to the east, south and west: (i, 3),
(i+ 1, 2), and (i, 1) are all occupied.

Since (i, 3) is assumed empty, and (i, 1) has light coming from west border,
the only possibility is that (i − 1, 2) is occupied with (i, 2) being its only
source of light. This implies that (i− 1, 1) and (i− 1, 3) are also occupied.
Hence, 4 out of 6 lots {i− 1, i} × {1, 2, 3} are occupied. This completes the
proof of the western border version of the lemma. Again, the eastern border
case follows from the mirror symmetry East↔West. □

Lemma 4.4. Let C be any maximal configuration on the m×n grid, m ≥ 2,
n ≥ 4, and let 1 ≤ l ≤ m, 1 ≤ t ≤ n − 3 be positive integers. The
number of occupied lots in the restriction of the configuration C to the grid
S = {1, 2, . . . , l} × {t, t+ 1, t+ 2, t+ 3} is at least one half of all the lots in
S, i.e.

|C ∩ S| ≥ 1

2
|S| = 2l.

Proof. Let 1 ≤ i ≤ l and consider the lots (i, t), (i, t + 1), (i, t + 2) and
(i, t + 3). We will show that either two out of four of these lots must be
occupied or, failing that, there must be another row above them (i.e. i > 1),
and taking into account the additional four lots in the row above (i− 1, t),
(i − 1, t + 1), (i − 1, t + 2) and (i − 1, t + 3), at least four out of the total
of eight lots must be occupied. From this, the statement of the lemma will
follow.

We may assume that at most one out of four lots (i, t), (i, t+1), (i, t+2)
and (i, t+3) is occupied, as otherwise we are done. Let us first assume that
either (i, t) or (i, t + 1) is the only occupied lot among those four. Since C
is maximal, there are exactly four possible reasons for (i, t+2) being empty

• its neighbors to the east, south and west: (i, t+3), (i+1, t+2), and
(i, t+ 1) are all occupied;

• or (i, t+2) is the only source of light to its western neighbor (i, t+3);
• or (i, t+2) is the only source of light to its eastern neighbor (i, t+1);
• or (i, t + 2) is the only source of light to its northern neighbor (i −
1, t+ 2).

In both cases (whether (i, t) or (i, t + 1) is the only occupied lot among
(i, t), (i, t+1), (i, t+2) and (i, t+3)) the only possibility is that (i−1, t+2)
is occupied with (i, t + 2) being its only source of light. This implies that
(i− 1, t+ 1) and (i− 1, t+ 3) are also occupied. Hence, at least four out of
eight lots {i− 1, i} × {t, t+ 1, t+ 2, t+ 3} are occupied.
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A similar argument shows that if (i, t+2) or (i, t+3) is the only occupied
lot among (i, t), (i, t+1), (i, t+2) and (i, t+3); then all of the lots (i−1, t),
(i − 1, t + 1) and (i − 1, t + 2) must also be occupied, and therefore again,
at least four out of eight lots {i− 1, i} × {t, t+ 1, t+ 2, t+ 3} are occupied.

Finally, assume that none of the lots (i, t), (i, t+1), (i, t+2) and (i, t+3)
are occupied. Arguing as in the previous cases, we conclude that all the lots:
(i−1, t), (i−1, t+1), (i−1, t+2) and (i−1, t+3) must be occupied. Hence,
once more, at least four out of eight lots {i− 1, i}×{t, t+1, t+2, t+3} are
occupied. □

With this lemmas, we can improve the lower bound on the number of
occupied lots in any maximal configuration and compute, exactly, the occu-
pancies of inefficient configurations Im,n.

Theorem 4.5 (Sharp lower bound on Im,n). If C is any maximal configu-
ration on the m× n grid, m,n ≥ 2, then

|C| ≥ Im,n ≥


mn
2 + 2, if n ≡ 0 (mod 4),

m(n+2)
2 , if n ≡ 2 (mod 4),

m(n+1)
2 + 1, if n ≡ 1 (mod 2).

Remark: These bounds are sharp since they are attained by configurations
with the rake–stripe pattern combination introduced in Section 3.2.3. The
expressions above match the occupancy of the rake–stripe configurations
given in equation (3.1) and are, therefore, the values of Im,n.

Proof of Theorem 4.5. If n = 2, all the lots must be occupied and we see that
the bound holds. We now assume n ≥ 3, and consider four cases depending
on the remainder after dividing n by 4. In all four cases, we split the grid in
the lower part consisting of the two southernmost rows L = {m−1,m}× [n]
and the upper part consisting of the rest U = [m− 2]× [n]. The upper part
we further divide depending on the said remainder. Note that, from Lemma
4.1, |C ∩ L| ≥ n+ 2.

Case 1. n ≡ 0 (mod 4) We divide U in equal blocks of width 4 and
height m − 2 (Figure 15(a)). Applying Lemma 4.4 to each block, we get

|C ∩ U | ≥ 1
2 |U | = (m−2)n

2 . Thus, |C| = |C ∩ U |+ |C ∩ L| ≥ mn
2 + 2.

Case 2. n ≡ 1 (mod 4) We divide U in the western block of width
3, the eastern block of width 2, and the middle portion (if any) into equal
blocks of width 4 (Figure 15(b)). Applying Lemma 4.3 to the western block,
Lemma 4.2 to the eastern block, and Lemma 4.4 to the blocks in the middle

portion, we get |C ∩U | ≥ 2
3(m−2) ·3+ 1

2(m−2)(n−3) = (m−2)(n+1)
2 . Thus,

|C| = |C ∩ U |+ |C ∩ L| ≥ m(n+1)
2 + 1.

Case 3. n ≡ 2 (mod 4) We divide U in the western block of width 3,
the eastern block of width 3, and the middle portion (if any) into equal
blocks of width 4 (Figure 15(c)). Applying Lemma 4.3 to the western and
eastern block, and Lemma 4.4 to the blocks in the middle portion, we get



COMBINATORIAL SETTLEMENT PLANNING 35

2 × n

4 4 . . . 4 4

m
−

2

(a) n ≡ 0 (mod 4)

2 × n

3 4 . . . 4 2
m

−
2

(b) n ≡ 1 (mod 4)

2 × n

3 4 . . . 4 3

m
−

2

(c) n ≡ 2 (mod 4)

2 × n

3 4 . . . 4 4

m
−

2

(d) n ≡ 3 (mod 4)

Figure 15. The subdivisions of the m× n grid used in the
proof of Theorem 4.5.

|C ∩ U | ≥ 2
3(m − 2) · 6 + 1

2(m − 2)(n − 6) = (m−2)(n+2)
2 . Thus, |C| =

|C ∩ U |+ |C ∩ L| ≥ m(n+2)
2 .

Case 4. n ≡ 3 (mod 4) We divide U in the western block of width 3,
and the rest (if any) into equal blocks of width 4 (Figure 15(d)). Applying
Lemma 4.3 to the western block, and Lemma 4.4 to the blocks of width

4, we get |C ∩ U | ≥ 2
3(m − 2) · 3 + 1

2(m − 2)(n − 3) = (m−2)(n+1)
2 . Thus,

|C| = |C ∩ U |+ |C ∩ L| ≥ m(n+1)
2 + 1. □

4.2. Improved bounds for Em,n. We now turn to the efficient configura-
tions and improve bounds on Em,n.

Proposition 4.7 (Upper bound on Em,n). If C is any maximal configura-
tion on the m× n grid, m,n ≥ 2, then

|C| ≤ Em,n ≤

{
mn−

⌊
n
4

⌋
· (m− 1), if n ̸≡ 3 (mod 4),

mn−
⌊
n
4

⌋
· (m− 1)−

⌊
m
2

⌋
, if n ≡ 3 (mod 4).

Proof. The idea for this proof is taken from the solution of the problem
posed in the 10th Middle European Mathematical Olympiad (see [6]). We
begin the proof by dividing the tract of land, not including the bottom row,
into

⌊
n
4

⌋
· (m− 1) adjacent blocks of size 1× 4, starting from the west. Now

we claim that there exist an injection from the set of these blocks to the set
of empty lots. Consider a single such block. Two situations are possible.
Either this block itself contains an empty lot, in which case it can be mapped
to its easternmost empty lot, or it is entirely occupied, which implies that
the block directly below it now must have at least two empty lots. In that
situation, we map the upper block to the westernmost empty lot of the lower
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block, and the lower block to its easternmost empty lot. This mapping is
clearly an injection. In the case n ≡ 3 (mod 4), we can extend our injection
by dividing the easternmost three columns into

⌊
m
2

⌋
blocks of size 2 × 3.

Since each of these contains at least one empty lot, we can injectively map
those blocks into empty lots as well. This completes the proof. □

Remark: Note that with the above proposition and the brick pattern function
defined in Section 3.1.1, we have completely solved the case m× 3, m ≥ 2.
We have

2m+
⌈m
2

⌉
≤ Em,3 ≤ 3m−

⌊m
2

⌋
.

Before proceeding, we recall some well-known facts about the floor and
ceiling functions which will be useful latter on

∀x ∈ R ⌈−x⌉ = −⌊x⌋ ,(4.1)

∀x ∈ R ⌊−x⌋ = −⌈x⌉ ,(4.2)

∀x ∈ R, ∀k ∈ Z ⌈x+ k⌉ = ⌈x⌉+ k,(4.3)

∀x ∈ R, ∀k ∈ Z ⌊x+ k⌋ = ⌊x⌋+ k,(4.4)

∀k, l ∈ N

⌊
k

l

⌋
=

⌈
k − l + 1

l

⌉
.(4.5)

We will now give an improved upper bound on the size of maximal config-
urations. The bound is not going to be explicit, but given by the following
recurrence relation. For a fixed n ∈ N, we define the sequence (Rm,n)m∈N∪{0}
as follows

(4.6)

{
R0,n = 0, R1,n = n,

Rm,n = Rm−1,n + n−
⌊
Rm−1,n−Rm−2,n

3

⌋
, if m ≥ 2.

Remark: From (4.6) it is not hard to see that

Rm,n = mn−
⌊n
3

⌋
−

⌊
n−

⌊
n
3

⌋
3

⌋
− · · · −

n−
⌊
n−⌊···⌋

3

⌋
3


︸ ︷︷ ︸

m−1 terms

= mn− fn(0)− f2
n(0)− · · · − fm−1

n (0),

where fn(x) =

⌊
n− x

3

⌋
, and fk

n denotes the composition fn ◦ fn ◦ · · · ◦ fn︸ ︷︷ ︸
k times

.
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Remark: Using (4.1) and (4.3) we can rewrite the recurrence relation (4.6)
as

Rm,n = Rm−1,n + n−
⌊
Rm−1,n −Rm−2,n

3

⌋
= n+

⌈
Rm−1,n +

−Rm−1,n +Rm−2,n

3

⌉
(4.7)

= n+

⌈
2Rm−1,n +Rm−2,n

3

⌉
, for m ≥ 2,

where we noted that Rm−1,n is always an integer.

We will also need the following lemma.

Lemma 4.11. Let m ≥ 2, n ≥ 1, and let C be any permissible configuration
on the m× n grid. If 2 ≤ r ≤ m then

|C ∩ ({r − 1} × [n])| ≤ n−
⌊
|C ∩ ({r} × [n])|

3

⌋
.

In other words, if there are k occupied lots in row r, then there are at most
n−

⌊
k
3

⌋
occupied lots in the row above it.

Proof. Let (r, j) be an arbitrary occupied lot in row r ≥ 2 of a permissible
configuration C, which is not on the eastern or western border (1 < j < n).
It cannot happen that all three lots (r − 1, j − 1), (r − 1, j), and (r −
1, j + 1) in the row above are occupied, as this would mean that (r − 1, j)
is blocked from the sun. We are, therefore, able to construct a map f :
C ∩ ({r} × {2, . . . , n− 1}) → Cc ∩ ({r − 1} × [n]), which, to each occupied
lot (r, j) ∈ C ∩ ({r} × {2, . . . , n − 1}), assigns an empty lot in {(r − 1, j −
1), (r − 1, j), (r − 1, j + 1)}. By construction, each empty lot in row r − 1
can be mapped to at most 3 occupied lots in row r, hence

|C ∩ ({r} × {2, . . . , n− 1})| ≤ 3|Cc ∩ ({r − 1} × [n])|.

Since |Cc∩({r−1}×[n])| = n−|C∩({r−1}×[n])|, and |C∩({r}×[n])|−2 ≤
|C ∩ ({r} × {2, . . . , n− 1})|, we get

|C ∩ ({r} × [n])| − 2

3
≤ n− |C ∩ ({r − 1} × [n])|.

Therefore,

|C ∩ ({r − 1} × [n])| ≤ n− |C ∩ ({r} × [n])| − 2

3
,

and since the number on the left hand side is an integer

|C ∩ ({r − 1} × [n])| ≤
⌊
n− |C ∩ ({r} × [n])| − 2

3

⌋
.
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It remains to observe that⌊
n− |C ∩ ({r} × [n])| − 2

3

⌋
= n−

⌈
|C ∩ ({r} × [n])| − 2

3

⌉
= n−

⌊
|C ∩ ({r} × [n])|

3

⌋
,

where we used (4.4), (4.2), and (4.5) for l = 3. □

Theorem 4.12 (Improved upper bound on Em,n). If C is any maximal
configuration on the m× n grid, m,n ≥ 1, then

|C| ≤ Em,n ≤ Rm,n,

where Rm,n is defined by the recurrence relation (4.6) (or (4.7)).

Remark: This bound seems to be sharp when n = 1, 2, 3, 4, 5 or 8, regardless
of m (see Table 2), but it is not sharp in general (see Remark 4.14 below).

Proof of Theorem 4.12. Let the number of columns n ∈ N be fixed. We will
argue by induction on the number of rows m.

The statement of the theorem is trivially true for m = 0 and m = 1 (and
any n ∈ N). The claim for m = 0 seems artificial, but it allows us for a
simpler proof. To complete the inductive step, let us assume that m ≥ 2,
that the theorem holds for m − 1 and m − 2, and that C is a maximal
configuration on m× n grid.

We set S = {2, . . . ,m} × [n] and T = {3, . . . ,m} × [n] (if m = 2 then
T = ∅). Note that the number of occupied lots in C in row 2 is |C ∩ S| −
|C ∩ T |. By Lemma 4.11, the number of occupied lots in row 1 is at most

n−
⌊
|C∩S|−|C∩T |

3

⌋
. Hence,

|C| ≤ n−
⌊
|C ∩ S| − |C ∩ T |

3

⌋
+ |C ∩ S|

= n+

⌈
|C ∩ T | − |C ∩ S|

3
+ |C ∩ S|

⌉
= n+

⌈
|C ∩ T |+ 2|C ∩ S|

3

⌉
.

Above we used (4.1) and (4.3). Note that by assumption |C ∩ S| ≤ Rm−1,n

and |C ∩T | ≤ Rm−2,n, as |C ∩S| and |C ∩T | are, perhaps not maximal but
certainly, permissible configurations on grids of dimension (m− 1)× n and
(m− 2)× n, respectively. Therefore,

|C| ≤ n+

⌈
Rm−2,n + 2Rm−1,n

3

⌉
= Rm,n.

This completes the inductive step and the proof of the theorem. □
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Table 1. Rm,7 and Em,7. Changing R3,7 to 17 and R4,7

to 22 and updating all the remaining values Rm,n, m ≥ 5,
according to (4.7), gives the correct values Em,7, for 5 ≤
m ≤ 16, which we were able to check using computer assisted
exhaustive search.

m Rm,7

2 12
3 18
4 23
5 29
6 34
7 40
8 45
9 51
10 56
...

...

m Em,7

2 12
3 17
4 22
5 28
6 33
7 39
8 44
9 50
10 55
...

...

Remark 4.14: The argument used in the proof of Theorem 4.12 actually
shows

Em,n ≤ n+

⌈
Em−2,n + 2Em−1,n

3

⌉
, for m ≥ 2.

Since the right-hand side of this expression is increasing in both Em−2,n and
Em−1,n, it is possible to obtain even better bounds on Em,n than those
achieved by Rm,n simply by computing explicitly (using e.g. exhaustive
search) few strategically chosen values of Em,n, and then letting the re-
currence relation take over. The bound is, in a way, self-improving. As an
example, in Table 1 are listed values of Rm,n and Em,n, for 2 ≤ m ≤ 10 and
n = 7. The values Rm,n are clearly not matching Em,n, but if we change R3,7

into 17 and R4,7 into 22, and if we update all the remaining values Rm,n,
m ≥ 5, according to (4.7), we obtain the correct values Em,7, for 5 ≤ m ≤ 16.
We were able to check these using computer assisted exhaustive search.

Remark: It is straightforward to check, by induction, that the bound on
Em,n, given by the recurrence relation Rm,n, in Theorem 4.12 is better than
the one previously obtained in Proposition 4.7.

5. IP formulation and explicit solutions

In this section we describe integer programming (IP) formulations for
the problems of finding efficient and inefficient maximal configurations. By
solving these problems we gain insight in the shape of the explicit solutions
and the associated occupancies. The decision variables consist of a m × n
matrix X ∈ {0, 1}m×n representing the configuration C on the tract of land
with dimensions m× n.
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For the sake of elegance of the formulations, we introduce the following
notation

Definition 5.1. Let C be a configuration of houses on a tract of land with
dimensions m × n. For a lot (i, j) we define the following propositions (if
applicable)

• PE
i,j := “(i, j) is empty and it is the only source of light to its eastern

immediate neighbor.” ⇐⇒ Ci,j+1 + Ci,j+2 + Ci+1,j+1 = 3.

• PW
i,j := “(i, j) is empty and it is the only source of light to its western

immediate neighbor.” ⇐⇒ Ci,j−1 + Ci,j−2 + Ci+1,j−1 = 3.

• PN
i,j := “(i, j) is empty and it is the only source of light to its north-

ern immediate neighbor.” ⇐⇒ Ci−1,j+1 + Ci−1,j−1 + Ci−1,j = 3.

• PC
i,j := “(i, j) is itself blocked from the sun.” ⇐⇒ Ci,j+1+Ci,j−1+

Ci+1,j = 3.

Remark: Consider a maximal configuration C. We stress here that there are
two distinct reasons why there would occur Ci,j = 0,

• either (i, j) is itself blocked from the sun;
• or (i, j) is the only source of light to one of its immediate neighbors.

This can be summarized with the following characterization of maximal
configurations pertaining to the algebraic formulas.

Lemma 5.3. Let C be a maximal configuration. For every 1 < i < m,
2 < j < n− 1 we have

Ci,j = 0 ⇒ PE
i,j ∨ PW

i,j ∨ PN
i,j ∨ PC

i,j ,

with the similar formulas for the indices i = 1,m, j = 1, 2, n − 1, n while
keeping in mind the existence of its neighbors.

Efficient configurations (IP formulation). Let m,n ∈ N be the dimen-
sions of the tract of land. The IP formulation of the problem of finding
efficient maximal configurations is the following

(5.1)

maximize

m∑
i=1

n∑
j=1

Xi,j

subject to ¬PC
i,j , i = 1, . . .m− 1, j = 2, . . . , n− 1

Xi,j ∈ {0, 1}, i = 1, . . .m, j = 1, . . . , n

Inefficient configurations (IP formulation). Let m,n ∈ N be the di-
mensions of the tract of land. The IP formulation of the problem of finding
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Table 2. Table of occupancies of efficient configurations as
calculated by IBM ILOG CPLEX.

m/n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 4 5 7 9 10 12 14 15 17 19 20 22 24 25 27
3 6 8 10 13 15 17 20 22 24 27 29 31 34 36 38
4 8 10 13 17 19 22 26 28 31 35 37 40 44 46 49
5 10 13 16 21 24 28 32 35 39 43 47 50 54 58 62
6 12 15 19 25 28 33 38 42 46 51 55 60 64 69 73
7 14 18 22 29 33 39 44 49 54 60 65 70 75 81 86
8 16 20 25 33 37 44 50 56 61 68 73 80 85 92 97
9 18 23 28 37 42 50 56 63 69 77 83 90 96 104 110
10 20 25 31 41 46 55 62 70 76 85 91 100 106 115 121
11 22 28 34 45 51 61 68 77 84 94 101 110 117 127 134
12 24 30 37 49 55 66 74 84 91 102 109 120 127 138 145
13 26 33 40 53 60 72 80 91 99 111 119 130 138 150 158
14 28 35 43 57 64 77 86 98 106 119 127 140 148 161 169
15 30 38 46 61 69 83 92 105 114 128 137 150 159 173 182
16 32 40 49 65 73 88 98 112 121 136 145 160 169 184 193

■ Efficient configurations obtained by the brick pattern
■ Efficient configurations obtained by the comb pattern
■ Efficient configurations obtained by both the brick

and the comb pattern

inefficient maximal configurations is the following

(5.2)

minimize

m∑
i=1

n∑
j=1

Xi,j

subject to Xi,j = 0 ⇒ PE
i,j ∨ PW

i,j ∨ PN
i,j ∨ PC

i,j ,

Xi,j ∈ {0, 1}, i = 1, . . .m, j = 1, . . . , n

Remark: The constraint ¬PC
i,j in (5.1) ensures that the resulting configura-

tion is permissible, while the constraint Xi,j = 0 ⇒ PE
i,j ∨ PW

i,j ∨PN
i,j ∨PC

i,j in

(5.2) ensures that the resulting configuration is maximal. Although we can
put both constraints in both optimization problems, it turns out that it is
sufficient to use only one of them in each.

In order to rephrase the above logical constraints into the equivalent alge-
braic constraints according to the standard integer programming convention,
one can consult [14, Chapters 8 and 9]. However, we have used IBM ILOG
CPLEX for solving the above integer programs, and IBM Optimization Pro-
gramming Language (OPL) supports the definitions of constraints in the
form of logical constraints. The reference guide for integer programming
with IBM ILOG CPLEX can be found in [2].

In Theorem 4.5 we have concluded that the rake–stripe pattern configu-
rations are examples of inefficient configurations. However, we still do not
know examples of efficient configurations for all m,n ∈ N. The only insight
into the set of efficient configurations comes from the explicit solutions to
the problem (5.1). We have gathered the computed occupancies of efficient
configurations in Table 2.
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(a) 5× 10 efficient configuration. (b) 5× 12 efficient configuration.

Figure 16. Examples of efficient configurations.

(a) IP solution. (b) Brick pattern configuration.

Figure 17. The IP solution to the problem of finding effi-
cient configurations and the corresponding brick pattern con-
figuration on 14×14 grid. Note that both have the maximum
occupancy of 148.

Note that the maximum occupancy is often attained by a number of differ-
ent configurations. In some cases, the IP solutions resemble configurations
with one of the special patterns introduced before, such as the brick or comb
patterns, see Figure 17.

It is worth noting that a large portion of calculated occupancies of the
efficient configurations could not be obtained by either brick nor comb pat-
terns. Some of them are obtained by a certain combination of the two, see
Figure 16(a). Some are obtained by the configurations with yet unexplained
underlying patterns, see Figure 16(b).

We leave the following question open.

Question. What is the explicit expression for Em,n?
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Figure 18. The graph representation of the 4 × 6 tract of
land.

6. Alternative formulations of the problem

In this section we give alternative formulations for the problem of find-
ing efficient configurations in the hope of getting more people interested in
answering Question 1.

6.1. Tilings. The problem of finding efficient configurations can be formu-
lated as a tiling problem with overlaps and protrusions allowed, and rotations
forbidden as follows. Let C be a maximal configuration on an m × n grid.
Now cover each empty lot by a ⊥-tetromino which covers that lot as well as
the neighboring lots to the east, west and north. Note that some tetrominoes
may protrude from the grid, and some may overlap. The permissibility of C
guarantees that the (m−1)×(n−2) subgrid {1, 2 . . . ,m−1}×{2, 3, . . . , n−1}
is completely covered by (at least one) ⊥-tetromino. Conversely, each such a
tiling guarantees the permissibility of the corresponding configuration. How-
ever, such a tiling does not guarantee that the corresponding configuration
is maximal, even in the case when the tiling itself is maximal2. Nevertheless,
efficient configurations correspond exactly to tilings with the fewest number
of tiles. Therefore Em,n = mn − k where k is the number of tiles in an
optimal tiling of the (m− 1)× (n− 2) grid.

This formulation of the tiling problem does not seem to be very common
in literature. For some classical results about T -tetromino tilings see [3, 11,
5, 10].

6.2. Forbidden induced subgraph problem. A tract of land can be
represented as a rectangular lattice graph where each lot is represented by a
vertex. In order to distinguish the north from the south we orient the edges
as in Figure 18. The problem of finding efficient configurations is equivalent
to finding the largest set of vertices for which the induced graph does not
contain either of the subgraphs in Figure 19. The literature on the problem
of forbidden induced subgraphs is extensive, see [15, 13].

2The tiling is maximal if removing any tile leaves some lot in {1, 2 . . . ,m − 1} ×
{2, 3, . . . , n− 1} uncovered.
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Figure 19. The forbidden subgraphs.

1 1 1

1

Figure 20. The forbidden pattern.

6.3. Subshift on Z2. Note that permissible configurations on Z2 can be
interpreted as elements of the Z2-shift of finite type with the alphabet A =
{0, 1} where the set of forbidden patterns consists of a single pattern in
Figure 20, see [4]. An empty lot is represented by 0, and occupied by 1. It
is interesting to note that the question of whether the shift space defined by
a set of forbidden patterns is empty, in general, is undecidable [1, 9].

6.4. Dominating set. In graph theory, a dominating set for a graph G =
(V,E) is a subset D of V such that every vertex not in D is adjacent to
at least one member of D. The domination number γ(G) is the number of
vertices in a smallest dominating set for G, see [12]. This problem is usually
studied in the setting of an undirected graph, but if we introduce direction
to the edges, as in Figure 21, then our problem can be equivalently formu-
lated as the problem of finding the domination number. For domination on
digraphs see [7].

In Remark 1.1 we observed that for any tract of land there exists an ef-
ficient configuration with all lots along the southern, eastern and western
borders occupied. Therefore, the problem of finding efficient configurations
can be restricted to finding efficient configurations with all the lots along
the southern, eastern and western borders occupied. The empty lots in any
such maximal configuration with border lots occupied can be seen as the
dominating set for the corresponding directed graph, see Figure 21. Con-
versely, any dominating set in the digraph can be translated to a maximal
configuration with occupied lots on the southern, eastern and western bor-
ders. Therefore, the occupancy of the efficient configuration on the m × n
tract of land is exactly mn − γ(G) where γ(G) is the domination number.
Note that the directed graph only represents the inner (m − 1) × (n − 2)
region of the m×n tract of land without the southern, eastern and western
borders.
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(a)

(b)

Figure 21. The efficient configuration on the 5× 6 tract of
land and the corresponding digraph representation with the
dominating set shaded.

7. Concluding remarks

In this chapter, we give several possible directions for further research.
One possibility is to move away from rectangular tracts of land and vary their
shape; another is to change the shape of lots and the underlying structure
of how they fit together. One could consider hexagonal lots where each lot
has six neighbors and a house can get sunlight from southeast, south and
southwest (but not from north-east, north and north-west). Yet another
possibility is to consider multi-story buildings which block the sunlight to
more than just one neighboring lot. Note that in this situation it would be
natural to assume that the sunlight to different stories of a building could
arrive from different sides, which makes this variation of the problem much
more complex.

In the accompanying paper [8] we consider a dynamical version of the
problem where the houses are built one-by-one. This setup resembles the
Random sequential adsorption model which was studied extensively. The
main question in these kinds of models is to determine the saturation cov-
erage, i.e. the expected proportion of the land used, when houses are built
in random order, respecting the underlying rule. In the aforementioned pa-
per we tackle this problem only with the aid of computer simulations, but
it would be even more interesting to tackle the problem in a formal way
and obtain theoretical results. The simulations in that paper point to the
saturation coverage of approximately 0.636 when the tract of land is large.
Since obtaining exact results seems quite involved, one could first consider a
toy-model with a rectangular tract of land of a small height m. If one takes
a fully built southern-most row, the toy-model reduces to a one-dimensional
problem with slightly modified rules.

In the dynamical context, it would be also interesting to study a version
of the problem with selfish agents which do not wish to build on a shaded
lot, but do not care about others and are allowed to build a house on a lot
even if that house is going to block the sunlight to an already built house.
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Alternatively, one can consider altruistic agents which do not mind building
on a shaded lot, but are not allowed to block sunlight to existing houses.
Here, again, one would be interested in the saturation coverage.
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