
Volume 18, Number 2, Pages 113–128
ISSN 1715-0868

A GRAPH RELATED TO THE SUM OF ELEMENT

ORDERS OF A FINITE GROUP

MIHAI-SILVIU LAZOREC

Abstract. A finite group is called ψ-divisible iff ψ(H)|ψ(G) for any
subgroup H of a finite group G. Here, ψ(G) is the sum of element
orders of G. For now, the only known examples of such groups are the
cyclic ones of square-free order. The existence of non-abelian ψ-divisible
groups still constitutes an open question. The aim of this paper is to
make a connection between the ψ-divisibility property and graph theory.
Hence, for a finite group G, we introduce a simple undirected graph
called the ψ-divisibility graph of G. We denote it by ψG. Its vertices
are the non-trivial subgroups of G, while two distinct vertices H and K
are adjacent iff H ⊂ K and ψ(H)|ψ(K) or K ⊂ H and ψ(K)|ψ(H). We
prove that G is ψ-divisible iff ψG has a universal (dominating) vertex.
Also, we study various properties of ψG, when G is a finite cyclic group.
The choice of restricting our study to this specific class of groups is
motivated in the paper.

1. Introduction

In what follows given a simple undirected graph G we denote its vertex
set by V (G ) and its edge set by E(G ). For an integer n ≥ 2, let Cn and
τ(n) be the finite cyclic group of order n and the number of positive divisors
of n, respectively. For a finite group G, we denote by π(G) and L(G)
the set containing the prime divisors of |G| and the subgroup lattice of G,
respectively, while the order of an element x ∈ G is denoted by o(x).

Even though one can go back to the 19th century to check Cayley’s work
[19], the connection between group and graph theories became more popular
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after 1950. There are a lot of graphs defined especially on a finite group G
and, without entering into much detail, we recall the following ones:

• the commuting graph Com(G) of G in which V (Com(G)) = G and,
for two distinct vertices x and y, we have xy ∈ E(Com(G)) iff xy =
yx (see [12, 17]); we note that this graph is often redefined such that
V (Com(G)) = G \ Z(G) (see [2, 13, 27, 31, 38]);

• the power graph P (G) of G in which V (P (G)) = G and, for two
distinct vertices x and y, xy ∈ E(P (G)) iff x ∈ ⟨y⟩ or y ∈ ⟨x⟩ (see
[6, 14, 16, 25, 32, 37]); if one removes the vertex associated with the
identity of G, then the obtained graph is called the proper power
graph of G (see [23, 39]);

• the enhanced power graph EP (G) of G in which V (P (G)) = G and,
for two distinct vertices x and y, xy ∈ E(EP (G)) iff ⟨x, y⟩ is a cyclic
subgroup (see [1, 10, 48]); if one removes the vertex corresponding
to the trivial element of G, then the obtained graph is called the
deleted enhanced power graph (see [11]) or the cyclic graph of G (see
[21, 22]);

• the Gruenberg-Kegel graphGK(G) ofG in which V (GK(G)) = π(G)
and, for two distinct vertices p and q, pq ∈ E(GK(G)) iff G contains
an element x such that o(x) = pq (see [18, 34, 47]); this graph is also
called the prime graph of G;

Paper [15] is a recent survey containing some remarkable results concerning
the graphs above.

Another idea to obtain graphs related to a finite group G is to use different
subsets of L(G) as being the vertex set and define the adjacency relation
in a specific way. Some examples would be the intersection graph of G
(see [26, 36, 40, 42, 44]), the join graph of G (see [3, 35]) or the recent
factorization graph of G (see [24]).

During the last decade, the sum of element orders of a finite group G
has proven to be a tool that may be used to characterize the nature and
structure of G (see [4, 5, 7, 8, 9, 29, 30, 45, 46] for further details). We denote
the sum of element orders of G by ψ(G). Its definition is straightforward as
its name suggests, i.e.:

ψ(G) =
∑
x∈G

o(x).

In [28], the concept of ψ-divisible group was introduced. More exactly,
we say that a finite group is ψ-divisible if and only if ψ(H)|ψ(G) for all
H ∈ L(G). The main result of the same paper states that a finite abelian
group G is ψ-divisible if and only if G is cyclic of square-free order. The
connection between ψ-divisibility and the square-free order property of finite
groups was further investigated in [33]. Among others, the same paper
highlights the following result which refers to any finite group:

Theorem 1.1. Let G be a finite group. Then all subgroups of G are ψ-
divisible if and only if G is cyclic of square-free order.
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In this paper we introduce a graph which is related to the concepts out-
lined above. So, for a finite group G, we denote by ψG a graph called the
ψ-divisibility graph of G. Its vertex set is V (ψG) = L(G) \ {{1}}, where
{1} is the trivial subgroup of G. For two distinct vertices H and K we have
HK ∈ E(ψG) iff H ⊂ K and ψ(H)|ψ(K) or K ⊂ H and ψ(K)|ψ(H). We
remove the vertex corresponding to {1} as it would be a universal (or domi-
nating) vertex in our graph. As we previously saw, removing some potential
vertices is a common idea in graph theory. In our case, by removing the
trivial subgroup, some properties of the ψ-divisibility graph are more in-
teresting to study (for instance, the connectivity). To avoid the generation
of a ψ-divisibility graph isomorphic to the null graph, we work only with
non-trivial finite groups even though we always omit to write “non-trivial”.

We mention that the existence of ψ-divisible groups beyond the class of
finite abelian groups is still an open problem. It would be ideal if one could
say if and how the ψ-divisibility graph may be used to approach this problem.
In this regard, we prove that a finite group G is ψ-divisible if and only if
its ψ-divisibility graph ψG has a universal vertex. Another trouble is that
it is quite difficult to generate the ψ-divisibility graph for any finite group.
Taking into account this fact and Theorem 1.1, which provides a connection
between the ψ-divisibility property and a part of the finite cyclic groups,
most of our results concern the study of some properties of the ψ-divisibility
graph associated especially with a finite cyclic group. More exactly, we
are interested in connectivity (in this case we also discuss about diameter
and number of connected components), vertex degrees, cycles, bipartiteness,
girth, trees and planarity. Some open questions are outlined throughout the
paper.

2. Main results

Let G be a finite group. Since the vertices of the ψ-divisibility graph ψG
of G are the non-trivial subgroups of G, it is obvious that the divisor graph
of |G| is a subgraph of ψG. The first result of this Section highlights some
results which help us with drawing the edges of a ψ-divisibility graph. The
main tools would be items i) and iii) of the following lemma. For the ease of
writing, when we work with cyclic groups, we write ψ(n) instead of ψ(Cn).

Lemma 2.1. Let G1, G2 be finite groups, p be a prime number and let a, b
be positive integers. Then the following hold:

i) ψ(G1 ×G2) = ψ(G1)ψ(G2) if and only if (|G1|, |G2|) = 1 (i.e. ψ is
multiplicative);

ii) ψ(pa) = p2a+1+1
p+1 ;

iii) ψ(pa)|ψ(pb) ⇐⇒ 2a+ 1|2b+ 1;
iv) (ψ(p), ψ(p2)) = (ψ(p), ψ(p3)) = (ψ(p2), ψ(p3)) = 1.

Proof. For items i) and ii), one can check Lemma 2.1 of [5] and Lemma 2.9
(1) of [29], respectively.
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For item iii), we use some fundamental properties of the integer divisibil-
ity. We have

ψ(pa)|ψ(pb) ⇐⇒ p2a+1 + 1|p2b+1 + 1 ⇐⇒ −p2a+1 − 1| − p2b+1 − 1

⇐⇒ (−p)2a+1 − 1|(−p)2b+1 − 1 ⇐⇒ 2a+ 1|2b+ 1.

Finally, concerning item iv), we show that (ψ(p), ψ(p3)) = 1. Let d =
(ψ(p), ψ(p3)). We have d|(p4 − p)ψ(p) and d|ψ(p3). Since (p4 − p)ψ(p) =
ψ(p3) − 1, we get d|1 and the conclusion follows. Using similar ideas, one
can show that (ψ(p), ψ(p2)) = (ψ(p2), ψ(p3)) = 1. □

In what concerns the completeness of the ψ-divisibility graph of an arbi-
trary finite group, it is easy to prove the following result:

Proposition 2.2. Let G be a finite group. Then ψG is complete if and only
if G ∼= Cp, where p is a prime number.

Proof. Let G be a finite group and let H ∼= Cp be a subgroup of G, where
p ∈ π(G). Assume that ψG is a complete graph. If G contains a subgroup K
or order p2, then K ∼= Cp2 or K ∼= C2

p . Since H and K must be adjacent, it

follows that ψ(p)|ψ(p2) or ψ(p)|ψ(C2
p). The first case leads to a contradiction

due to Lemma 2.1, iv). In the second case, it is easy to show that ψ(p)|p,
again a contradiction. It follows that G is of square-free order. Suppose that
|π(G)| ≥ 2. Then L ∼= Cq is another subgroup of G, where q ∈ π(G). Due to
the definition of the adjacency relation, we cannot draw the edge HL of ψG,
a contradiction. It follows that G is of square-free order and π(G) = {p}, so
G ∼= Cp.

Conversely, we have ψG ∼= K1 and this fact completes our proof. □

It is a difficult task to obtain an explicit result concerning the vertex
degrees of the ψ-divisibility graph of an arbitrary finite group. We can say
something if we restrict our study to the class of finite cyclic groups.

Proposition 2.3. Let G be a finite cyclic group of order n.

i) If n = pα, where p ∈ π(G) and α ≥ 1, then

d(Cpβ ) = τ(2β + 1) +

⌊
1

2
·
(
2α+ 1

2β + 1
− 1

)⌋
− 2, ∀ β ∈ {1, 2, . . . , α};

ii) If n = pα1
1 pα2

2 . . . pαk
k , where k ≥ 2, pi ∈ π(G) and αi ≥ 1, then

d(Cpαi
i
) =

k∏
j=1,j ̸=i

(αj + 1) + τ(2αi + 1)− 3, ∀ i ∈ {1, 2, . . . , k}.

Proof. i) Let G ∼= Cpα , where p is a prime and α ≥ 1, and let β, γ ∈
{1, 2, . . . , α}, with β ̸= γ. According to Lemma 2.1, iii), Cpβ is
adjacent with Cpγ if and only if 2γ + 1 > 1 is a proper divisor of
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2β+1 or 2γ+1 is a multiple of 2β+1 in the range (2β+1, 2α+1].
As we know, the number of such multiples is⌊

2α+ 1

2β + 1

⌋
− 1.

But, we need to take into account only the odd multiples, so we
actually get the quantity⌊

1

2
· (2α+ 1

2β + 1
− 1)

⌋
.

Putting all things together, we obtain

d(Cpβ ) = τ(2β + 1) +

⌊
1

2
·
(
2α+ 1

2β + 1
− 1

)⌋
− 2.

ii) Let G ∼= Cn, where n = pα1
1 pα2

2 . . . pαk
k , k ≥ 2, pi ∈ π(G) and αi ≥ 1,

for all i ∈ {1, 2, . . . , k}. Fix i ∈ {1, 2, . . . , k}. Due to how we defined
the adjacency relation for ψG, the vertex Cpαi

i
may be adjacent only

with vertices contained in the subset A1 ∪A2 of V (ψG), where

A1 = L(Cpαi
i
) \ {{1}} and A2 =

{
H ∈ L(G) | Cpαi

i
⊊ H

}
.

As we previously explained, the vertex Cpαi
i

is adjacent with any

vertex Cpγ ∈ A1 if and only if 2γ + 1 > 1 is a proper divisor of
2αi + 1. Since L(G) is a decomposable lattice, due to Lemma 2.1,
i), we deduce that Cpαi

i
is adjacent with any vertex in A2. Then

d(Cpαi
i
) = τ(2αi + 1)− 2 + |A2| =

k∏
j=1,j ̸=i

(αj + 1) + τ(2αi + 1)− 3.

□

Note that item ii) of the previous result concerns only the degrees of the
vertices associated with the Sylow subgroups of G. It would be interesting
to obtain some similar formulas for all other remaining vertices.

As we explained in the first Section, most of the subsequent results con-
cern only the class of finite cyclic groups. Let p and q be two distinct primes.
For the ease of writing, we outline the following 3 sets of divisibility relations:

(P1)


ψ(p)|ψ(q)
ψ(p)|ψ(q2)
ψ(q)|ψ(p)
ψ(q)|ψ(p2)

(P2)

 ψ(p)|ψ(q2) and ψ(q)|ψ(p2)
ψ(p)|ψ(q2) and ψ(q)|ψ(p3)
ψ(p2)|ψ(q2) and ψ(q)|ψ(p3)
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(P3)



ψ(p)|ψ(q2) and ψ(q)|ψ(p2)
ψ(p)|ψ(q3) and ψ(q)|ψ(p3)
ψ(p)|ψ(q3) and ψ(q)|ψ(p2)
ψ(p)|ψ(q2) and ψ(q)|ψ(p3)
ψ(p2)|ψ(q3) and ψ(q2)|ψ(p3)
ψ(p2)|ψ(q3) and ψ(q)|ψ(p3)
ψ(p)|ψ(q3) and ψ(q2)|ψ(p3)
ψ(p)|ψ(q3) and ψ(q2)|ψ(p2)
ψ(p2)|ψ(q2) and ψ(q)|ψ(p3)

Before continuing we say a few words on these relations. Let P be the
set of the first 104 primes. Concerning (P1), by using SageMath [41], we see
that we can generate a lot of examples of pairs (p, q) ∈ P × P such that
ψ(p)|ψ(q). More exactly, there are 11631 such examples:

(2, 5), (2, 11), . . . , (3181, 24841).

The condition ψ(p)|ψ(q2) is more restrictive since

(p, q) ∈ {(151, 33469), (181, 14407), (181, 44483), (181, 66851),
(571, 24203), (571, 62591)}.

As expected, any of the conditions included into (P2) or (P3) is even more
restrictive since two divisibility relations must hold at the same time. Our
code returns an example only for ψ(p2)|ψ(q2) and ψ(q)|ψ(p3), this being
(p, q) = (2, 7). Obviously (p, q) = (7, 2) would be an example such that
ψ(p)|ψ(q3) and ψ(q2)|ψ(p2). Hence, in general, it seems that there are high
chances that none of the (P2) and, respectively, (P3) conditions holds.

One would say that cycle graphs in graph theory are equally important
as cyclic groups in group theory. Hence, the next objective is to classify the
finite cyclic groups whose ψ-divisibility graphs are cycles.

Proposition 2.4. Let G be a finite cyclic group. Then ψG is a cycle if
an only if G ∼= Cp2q2, where p, q are prime numbers, and none of the (P1)
conditions holds.

Proof. Let G be a finite cyclic group and let p ∈ π(G). Suppose that ψG
is a cycle. Then ψG is a 2-regular graph. If |π(G)| ≥ 3, then d(Cp) ≥ 3, a
contradiction. Hence |π(G)| ∈ {1, 2}. If |π(G)| = 1, according to Lemma
2.1, iii), to draw only two edges incident with Cp, we need two odd multiples
of 3. We deduce that G ∼= Cpα , where α ∈ {7, 8, 9}. Indeed, in all these 3
cases, we can draw the edges CpCp4 and CpCp7 . But, also in all these cases,
one can easily check that d(Cp5) = 0, a contradiction.

Consequently |π(G)| = 2, so there is an additional prime q such that
G ∼= Cpαqβ , where α ≥ 1, β ≥ 1. If α ≥ 3 or β ≥ 3, we use Lemma 2.1, i),
to obtain d(Cq) ≥ 3 or d(Cp) ≥ 3, a contradiction. If α = 1 or β = 1, then
ψG has at least one end-vertex, again a contradiction. Hence G ∼= Cp2q2 .
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Finally, if at least one of the (P1) conditions are met, we get d(Cp) ≥ 3 or
d(Cq) ≥ 3, a contradiction.

Conversely, if G ∼= Cp2q2 and all (P1) conditions do not hold, we can draw
the ψ-divisibility graph below (Figure 1) and finish our proof. □

Figure 1. The graph ψCp2q2
if none of the (P1) conditions holds

A well-known result in graph theory states that cycles can be used to
characterize bipartite graphs. More exactly, a non-trivial graph is bipartite
if and only if it does not contain odd cycles. In what follows, we use this
result while classifying the finite cyclic groups whose ψ-divisibility graph is
bipartite.

Proposition 2.5. Let G be a finite cyclic group. Then ψG is bipartite if
and only if one of the following holds:

i) G ∼= Cpα, where p is a prime and α ∈ {2, 3, . . . , 12};
ii) G ∼= Cpq, G ∼= Cp2q, G ∼= Cp2q2 or G ∼= Cp3q, where p, q are primes;
iii) G ∼= Cp3q2, where p, q are primes, and none of the (P2) conditions

holds;
iv) G ∼= Cp3q3, where p, q are primes, and none of the (P3) conditions

holds.

Proof. Let G be a finite cyclic group and suppose that ψG is a bipartite
graph. If |π(G)| ≥ 3, then we can choose p, q, r ∈ π(G) and use the mul-
tiplicativity of ψ to build the triangle (Cp, Cpq, Cpqr, Cp), a contradiction.
Consequently, |π(G)| ∈ {1, 2}.

i) If |π(G)| = 1, then G ∼= Cpα , where p ∈ π(G), while α ≥ 2 since
V (ψG) is partitioned into two non-empty partite sets, so we need at
least two elements in V (ψG). If α ≥ 13, then by Lemma 2.1, iii), we
may consider the triangle (Cp, Cp4 , Cp13 , Cp), a contradiction. Hence
α ∈ {2, 3, . . . , 12}.

The converse holds since ψG would be a subgraph of the bipartite
graph below (Figure 2).

Figure 2. The graph ψCp12
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If |π(G)| = 2, then G ∼= Cpαqβ , where p, q ∈ π(G) and α ≥
1, β ≥ 1. If α ≥ 4 or β ≥ 4, we can draw one of the triangles:
(Cp, Cp4 , Cp4q, Cp), (Cq, Cq4 , Cpq4 , Cq), a contradiction. Hence α, β ∈
{1, 2, 3}. Due to symmetry, it suffices to check the cases

(α, β) ∈ {(1, 1), (2, 1), (3, 1), (2, 2), (3, 2), (3, 3)}.

ii) If (α, β) ∈ {(1, 1), (2, 1), (2, 2), (3, 1)}, then G ∼= Cpq, G ∼= Cp2q,
G ∼= Cp2q2 or G ∼= Cp3q. The converse holds since ψG would be a
subgraph of one of the bipartite graphs below (Figure 3). We men-
tion that some of the vertices of each partite set are not adjacent
due to Lemma 2.1, iv).

Figure 3.

ii) & iv) The two remaining choices for (α, β) may be investigated similarly,
so we only treat the case (α, β) = (3, 3) corresponding to the last
item of our result. Therefore, G ∼= Cp3q3 . Since ψG is bipartite, we
are able to determine the partition {V1, V2} of V (ψG). Without loss
of generality, we assume that Cp ∈ V1. Then Cpq, Cpq2 , Cpq3 must be
placed in V2 to avoid adjacency. By continuing this process, we get
V1 = {Cp, Cq, Cp2 , Cq2 , Cp3 , Cq3} and

V2 = {Cpq, Cp2q2 , Cp3q3 , Cpq2 , Cp2q, Cpq3 , Cp3q, Cp2q3 , Cp3q2}.

Note that, by construction, V1 is an independent set of vertices.
Since V2 must satisfy the same property, we conclude that we can not
draw any of the following potential edges: CpqCp2q2 , CpqCp3q3 , CpqCp2q3 ,
CpqCp3q2 , Cp2q2Cp3q3 , Cp2qCp3q3 , Cpq2Cp3q3 , Cpq2Cp2q3 , Cp2qCp3q2 , i.e.
none of the (P3) conditions holds.

Conversely, if G ∼= Cp3q3 and none of the (P3) conditions is met,
then ψG is isomorphic to a subgraph of the bipartite graph below
(Figure 4). The edges marked with red mean that the vertices Cp
and Cq may be adjacent with any of the vertices placed in V2.

□

Figure 4.
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Figure 2 clearly shows that, in general, the ψ-divisibility graph does not
determine a finite group. For instance ψC212

∼= ψC312
, but C212 ≇ C312 . We

continue by highlighting the possible values of g(ψG), i.e. the values of the
girth of the ψ-divisibility graph of a finite cyclic group G.

Corollary 2.6. Let G be a finite cyclic group. Then g(ψG) ∈ {3, 4, 8,∞}.

Proof. Let G be a finite cyclic group. Using some of the reasoning outlined
in the proof of Proposition 2.5, we can state that g(ψG) = 3 in any of the
following cases:

– |π(G)| ≥ 3;
– G ∼= Cpα , where p ∈ π(G) and α ≥ 13;
– G ∼= Cpαqβ , where p, q ∈ π(G) and α ≥ 4 or β ≥ 4.

If G ∼= Cpα , where p is a prime and α ≤ 12, then ψG is a subgraph of
the graph in Figure 2 and it follows that g(ψG) = ∞. If G ∼= Cpαqβ , where
p, q ∈ π(G) and 1 ≤ α, β ≤ 3, once again, due to symmetry it suffices to
investigate the cases (α, β) ∈ {(1, 1), (2, 1), (3, 1), (2, 2), (3, 2), (3, 3)}.

Assume that (α, β) ∈ {(1, 1), (2, 1), (3, 1)}. Then ψG contains no cycles,
i.e. g(ψG) = ∞, excepting the following cases in which we have g(ψG) = 4:

– (α, β) = (2, 1) and ψ(p)|ψ(q);
– (α, β) = (3, 1) and ψ(p)|ψ(q) or ψ(p2)|ψ(q).

Suppose that (α, β) = (2, 2). As a consequence of Proposition 2.4, we
obtain

g(ψG) =

{
4, if at least one of the (P1) conditions holds

8, if none of the (P1) conditions holds
.

Finally, assume that (α, β) ∈ {(3, 2), (3, 3)}. It is clear that 3 ≤ g(ψG) ≤ 8
since ψG contains a subgraph as the one in Figure 1. Since there are a lot of
cases to handle due to which of the (P1), (P2), (P3) conditions hold, we used
SageMath [41] to check that our conclusion is true and finish our proof. □

The connectivity is one of the most relevant properties of a graph. When a
new graph is introduced, one of the main questions is if it is connected or not.
Further, based on the answer, one would be interested in determining the
diameter or the number of connected components of the graph, respectively.
Before proving our next result, let us consider the ψ-divisibility graph of
Cpn , where n ≥ 1, and let Cpα , with 1 ≤ α ≤ n be one of its vertices. Then,
according to Lemma 2.1, iii), Cpα is an isolated vertex of ψCpn

if and only
if 2α + 1 does not have a proper divisor d > 1 or a multiple m such that
2α+1 < m ≤ 2n+1. Hence, if we denote by I(V (ψCpn

)) the set of isolated
vertices of the ψ-divisibility graph ψCpn

, then it is easy to determine its size.
In what follows, we study the connectivity of the ψ-divisibility graph of a
finite cyclic group G. There are some trivial cases such as G ∼= Cpn , where
p ∈ π(G) and n ∈ {1, 2, 3}. If n = 1, then ψG is the trivial graph which is
connected and its diameter is 0. If n = 2 or n = 3, then ψG is disconnected
and its number of connected components is 2 or 3, respectively.
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Theorem 2.7. Let G be a finite cyclic group.

i) If |π(G)| ≥ 2, then ψG is connected. Moreover, 2 ≤ diam(ψG) ≤ 4;
ii) If G ∼= Cpn, where p is a prime and n ≥ 4, then ψG is disconnected.

In addition, k(ψG) = 1 + |I(V (ψG))|.

Proof. i) Let G ∼= C|G|, |π(G)| = k ≥ 2 and let |G| = pα1
1 pα2

2 . . . pαk
k ,

where pl ∈ π(G) and αl ≥ 1 for all l ∈ {1, 2, . . . , k}. Take i, j ∈
{1, 2, . . . , k} and the divisors x = pβ11 p

β2
2 . . . pβkk and y = pγ11 p

γ2
2 . . . pγkk

of |G|, where βl ≤ αl, γl ≤ αl for all l ∈ {1, 2, . . . , k} and βi > 0, γj >
0. We use the multiplicativity of ψ to draw a Cx − Cy path.

If (x, y) = 1, then (Cx, Cxy, Cy) is a Cx − Cy path. Further, we
assume that (x, y) ̸= 1. If Cx and Cy are adjacent, we are done,
so we also assume that we cannot draw the edge CxCy. If there is
l ∈ {1, 2, . . . , k} such that at least one of βl and γl is 0, then one can
choose one of the following Cx − Cy paths:

– (Cx, Cxpl , Cpl , Cypl , Cy), if βl = γl = 0;
– (Cx, Cxpγll

, Cpγll
, Cy), if βl = 0 and γl ̸= 0;

– (Cx, Cpβll
, C

yp
βl
l

, Cy), if βl ̸= 0 and γl = 0.

If βl ̸= 0 and γl ̸= 0 for all l ∈ {1, 2, . . . , k}, then(
Cx, Cpβii

, C
p
γ1
1 ...p

γi−1
i−1 p

βi
i p

γi+1
i+1 ...p

γk
k

, C
p
γ1
1 ...p

γi−1
i−1 p

γi+1
i+1 ...p

γk
k
, Cy

)
is also a Cx − Cy path. As a consequence of all these cases, we
conclude that ψG is a connected graph.

Note that the length of all determined paths is at most 4. In
addition, d(Cp1 , Cp2) = 2. Consequently, we have 2 ≤ diam(ψG) ≤ 4.

ii) Let G ∼= Cpn , where p is a prime number and n ≥ 4. To justify the
disconnectedness of ψG, it is sufficient to show that I(V (ψG)) ̸= ∅.
According to Bertrand’s postulate, there is a prime q = 2z + 1 such
that n+ 1 < q < 2n+ 1. Then Cpz is an isolated vertex in ψG.

Further, in what concerns the number of connected components
of ψG, it is sufficient to show that k(ψG − I(V (ψG))) = 1. Hence,
let Cpα , Cpβ be two non-isolated vertices of ψG, where

α, β ∈ {1, 2, . . . , n}

and α ̸= β. Hence, we can choose two positive odd integers s >
1, t > 1 such that:

– 2s+1 is a proper divisor or a multiple of 2α+1, with 2α+1 <
2s+ 1 ≤ 2n+ 1 in the latter case;

– 2t+1 is a proper divisor or a multiple of 2β +1, with 2β +1 <
2t+ 1 ≤ 2n+ 1 in the latter case.

To complete our proof, we must find a Cpα−Cpβ path in our graph.
Assume that Cpα and Cpβ are not adjacent and let ds = 2u+ 1 > 1
and dt = 2v + 1 > 1 be the lowest divisors of 2s + 1 and 2t + 1,
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respectively. First, we prove that the vertex

C
p
dsdt−1

2

exists in our graph. It suffices to show that dsdt ≤ 2n+ 1. Without
loss of generality, we assume that ds ≤ dt. We have

dsdt ≤ ds
2t+ 1

dt
=
ds
dt
(2t+ 1) ≤ 2t+ 1 ≤ 2n+ 1.

Then, we are able to draw the Cpα − Cpβ path(
Cpα , Cps , Cpu , C

p
dsdt−1

2
, Cpv , Cpt , Cpβ

)
,

so ψG − I(V (ψG)) is a connected graph, as desired.
□

The disconnectedness of the ψ-divisibility graph of Cpn , where p is a prime
and n ≥ 4, can be justified by avoiding Bertrand’s postulate. We insert a
second proof of the result which uses a different idea: by assuming that the
graph is connected, we are able to “generate” more and more vertices. So,
let G ∼= Cpn , where p is a prime and n ≥ 4. Assume that ψG is a connected
graph. As a first step, we observe that the vertices Cp1 and Cp21 are not

adjacent but, since they are connected, it follows that Cp71 ∈ V (ψG). This

means that the graph contains the vertices Cpa11
, where a1 ∈ {3, 4, 5, 6, 7} =

A1. For the second step, we use the fact that Cp61 and Cp71 must be connected

and this implies that Cpa21
∈ V (ψG), where a2 ∈ {8, 9, . . . , 97} = A2. At step

i ≥ 3, we choose the highest two elements of Ai−1, say xi and yi = xi + 1.
We observe that Xi = 2xi+1 and Yi = 2yi+1 = Xi+2 are relatively prime
since Xi is odd. Then Cpai1

∈ V (ψG), where

ai ∈
{
yi + 1, yi + 2, . . . ,

XiYi − 1

2

}
= Ai.

The process continues by repeating the same ideas and it “generates”
a countably infinite set of vertices, a contradiction. Therefore, ψG is a
disconnected graph.

Note that the converses of items i) and ii) of Theorem 2.7 also hold.
Using this remark, we are able to classify the finite cyclic groups whose
ψ-divisibility graph is a tree.

Corollary 2.8. Let G be a finite cyclic group. Then ψG is a tree if and
only if one of the following holds:

i) G ∼= Cp, where p is a prime;
ii) G ∼= Cpq, where p, q are primes;
iii) G ∼= Cp2q, where p, q are primes such that ψ(p) ∤ ψ(q);
iv) G ∼= Cp3q, where p, q are primes such that ψ(p) ∤ ψ(q) and ψ(p2) ∤

ψ(q).
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Proof. Let G be a finite cyclic group such that ψG is a tree. It follows that
ψG is connected, so G ∼= Cp, where p is a prime, or |π(G)| ≥ 2. In the latter
case, according to the proof of Corollary 2.6, ψG contains no cycles if and
only if G ∼= Cpαqβ , where p, q ∈ π(G) and one of the following holds:

– (α, β) = (1, 1);
– (α, β) = (2, 1) and ψ(p) ∤ ψ(q);
– (α, β) = (3, 1), ψ(p) ∤ ψ(q) and ψ(p2) ∤ ψ(q).

The converse holds since ψG is trivial for item i), the path (Cp, Cpq, Cq)
for item ii), the path (Cp, Cpq, Cq, Cp2q, Cp2) for item iii) or the graph below
(Figure 5) for item iv). □

Figure 5. The graph ψCp3q
if ψ(p) ∤ ψ(q) and ψ(p2) ∤ ψ(q)

We saw that the diameter of a ψ-divisibility graph associated with a
finite cyclic group takes low values: 2, 3 or 4. Without success, we tried to
determine the conditions in which this graph is of diameter 2. We insert an
open problem concerning this aspect.

Problem 2.9. Let G be a finite cyclic group. Prove that if diam(ψG) = 2,
then |π(G)| ≥ 2 and G is of square-free order.

The converse of the above statement clearly holds. The ψ-divisibility
graph in Figure 5 is of diameter 4, while examples of ψ-divisibility graphs
of diameter 3 are the ones associated with groups such as Cp2q, where
p, q ∈ π(G) and ψ(p)|ψ(q).

It is known that a graph G of order |V (G )| ≥ 3 and size |E(G )| is non-
planar if |E(G )| > 3|V (G )| − 6. We use this result to show that most of the
ψ-divisibility graphs of finite cyclic groups are non-planar.

Proposition 2.10. Let G be a finite cyclic group such that |π(G)| ≥ 4.
Then ψG is a non-planar graph.

Proof. Let G be a finite cyclic group with |π(G)| ≥ 4. Then ψCpqrs is
a subgraph of ψG, where p, q, r, s ∈ π(G). It suffices to show that this
subgraph is non-planar. Note that |V (ψCpqrs)| = 15 and the vertex degrees
with respect to ψCpqrs are:

d(Cp) = d(Cq) = d(Cr) = d(Cs) = d(Cpqr) = d(Cprs) = d(Cpqs) = d(Cqrs)

= 7;

d(Cpq) = d(Cpr) = d(Cps) = d(Cqr) = d(Cqs) = d(Crs) = 5;

d(Cpqrs) = 14.
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Then

|E(ψCpqrs)| =
1

2

∑
v∈V (ψCpqrs )

d(v) = 50 > 39 = 3|V (ψCpqrs)| − 6,

so ψCpqrs is non-planar, as desired. □

There are a lot of problems related to graph theory that were not discussed
in our paper. Some ideas for further research are outlined in the following
paragraphs.

Problem 2.11. Study other properties (regularity, clique number, automor-
phism group, spectrum, L-spectrum, number of spanning trees, chromatic
number, vertex-connectivity, eulerianity, hamiltonicity, finite group recogni-
tion, etc.) of the ψ-divisibility graph of a finite cyclic group.

A starting point concerning the regularity would be Proposition 2.3. For
a finite cyclic group G such that π(G) = {p1, p2, . . . , pk}, with k ≥ 1, it is
clear that ω(ψG) ≥ |π(G)|, where ω(ψG) is the clique number of ψG. This
happens since the subgraph induced by the vertices Cp1 , Cp1p2 , . . . , Cp1p2...pk
is isomorphic to K|π(G)|.

Also, it would be interesting to study the ψ-divisibility graph beyond the
class of finite cyclic groups. As starting points, we suggest to work with finite
abelian p-groups of small rank, finite p-groups possessing a cyclic maximal
subgroup (see Theorem 4.1, [43], vol. II) or finite groups having “many”
cyclic subgroups.

Problem 2.12. Study the properties of the ψ-divisibility graph for specific
classes of finite groups.

We end our paper with a result which establishes a connection between
the ψ-divisibility property and the ψ-divisibility graph of an arbitrary finite
group. In this way, one is able to identify ψ-divisible groups using graph
theory.

Theorem 2.13. Let G be a finite group. Then G is ψ-divisible if and only
if ψG has a universal vertex.

Proof. Let G be a finite group. Obviously, if G is ψ-divisible, then G is a
universal vertex of ψG.

Conversely, assume that ψG has a universal vertex. Due to how we defined
the adjacency relation for our graph, it follows that the universal vertex is
G or it is a vertex corresponding to a breaking point in the subgroup lattice
of G. In the first case, we are done since G would be ψ-divisible. In the
second case, G would be isomorphic to one of the so called finite BP-groups
(see [20]). According to Theorem 1.1 of [20] it follows that G ∼= Cpn , with
p ∈ π(G) and n ≥ 2, or G ∼= Q2n , where

Q2n =
〈
x, y | x2n−1

= y4 = 1, yxy−1 = x2
n−1−1

〉
, n ≥ 3,
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is the generalized quaternion group.
If we assume that G ∼= Cpn , then we arrive at a contradiction since ψG

would be disconnected (check Theorem 2.7, ii), and the remarks preceding
it concerning the cases n ∈ {2, 3}). Suppose that G ∼= Q2n . Then the

universal vertex corresponds to the breaking point H = ⟨x2n−2⟩ ∼= C2 of

the subgroup lattice L(Q2n). Consider the vertex K = ⟨x2n−2⟩ ∼= C4. Since
H is a universal vertex and H ⊂ K, it follows that ψ(2)|ψ(4), so 3|11, a
contradiction. Thus the proof is complete. □

Obviously, we can use other graph theory concepts to restate Theorem
2.13. For instance we can say that a finite group G is ψ-divisible if and only
if γ(ψG) = 1, where γ(ψG) is the domination number of ψG. Recall that a
finite abelian groups is ψ-divisible iff it is cyclic of square-free order. Then,
as a consequence of Theorem 2.13, one can state the following result:

Corollary 2.14. Let G be a finite abelian group. Then the following con-
ditions are equivalent:

i) G is ψ-divisible;
ii) G is cyclic of square-free order;
iii) ψG has a universal vertex.
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