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ON SOME PARTITION THEOREMS OF M. V. SUBBARAO

DARLISON NYIRENDA AND BEAULLAH MUGWANGWAVARI

ABSTRACT. M.V. Subbarao proved that the number of partitions of n
in which parts occur with multiplicities 2, 3 and 5 is equal to the number
of partitions of n in which parts are congruent to £2,+3,6 (mod 12),
and generalized this result. In this paper, we give a new generalization
of this identity and also present a new partition theorem in the spirit of
Subbarao’s generalization of the identity.

1. INTRODUCTION

A partition of a positive integer n is a representation A = A\ +Aa+-- -+ A\,
where \y > Ay > ---> A\, > 1 and

zT: )\i =n.
i=1

The integer n is called the weight of A which is denoted by |\| and
Ai’s are called parts. Other alternative notations include (A1, Ag,..., ;)
or (u"™,puy?,...) where pg > pg > --- and m; is the multiplicity of ;.
The partition 14 + 14 + 10+ 10+ 7+ 7+ 74+ 14+ 14+ 1 + 1 can be
written as (14,14,10,10,7,7,7,1,1,1,1) or (142,102,73,1%). The union of
two partitions A and § is simply the multiset union A U 8 where A and (8
are treated as multisets. For example, (142,102,73,1%) U (13,103,6,1%) =
(142,13,10°,73,6,1%). The number of all partitions of n is called the (unre-
stricted) partition function. If restrictions are imposed on the parts of par-
titions, the corresponding enumerating function is then called a restricted
partition function. One such example is the number of partitions of n into
distinct parts. It turns out that for a fixed weight, partitions into distinct
parts are related to partitions into odd parts. The following theorem demon-
strates the relationship.

Theorem 1.1 (Euler). The number of partitions of n into distinct parts is
equal to the number of partitions of n into odd parts.
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Theorem 1.1 was extended to a more general setting. This extension is
due to J. W. L Glaisher (see [2]).

Theorem 1.2 (Glaisher). Let k > 1. The number of partitions of n wherein
parts are not divisible by k is equal to the number of partitions of n in which
parts occur at most k — 1 times.

The theorem above has an interesting bijective proof which we recall from

the literature. Let A = (A", A2, ..., A"") be a partition of n whose parts
are not divisible by k. Note that the notation for A implies Ay > Ao > ---
are parts with multiplicities mq, mo, ..., respectively. Now, write m;’s in

k-ary expansion, i.e.
l;
m; = a;jk’ where 0 <a;; <k —1.

§=0

We map A" to Uéf'zo(kj ;)% where now k7 ); is a part with multiplicity
a;j. The image of A\ which we shall denote by ¢()), is given by

ro 1
U U® ).
i=1;j=0

Clearly, this is a partition of n with parts occurring not more than k — 1
times.

On the other hand, assume that p = (u{l , /42, ...) is a partition of n into
parts occurring not more than k — 1 times. Write u; = k™a; where k does
not divide a; and then map u{ “ to (ai)k”fi for each i, where now a; is a part
with multiplicity £™ f;. The inverse of ¢ is then given by

o~ () = (@)™
i>1
In the resulting partition, it is also clear that the parts are not divisible
by k. M.V Subbarao proved the following theorem.

Theorem 1.3 (Subbarao, [5]). The number of partitions of n in which parts
occur with multiplicities 2, 8 and 5 is equal to the number of partitions of n
in which parts are congruent to £2,+3,6 (mod 12).

A generalization of the above theorem was also given as follows.

Theorem 1.4 (Subbarao, [5]). Let m > 1,7 > 0 be integers, and let Ay, »(n)
denote the number of partitions of n such that all even multiplicities of the
parts are less than 2m, and all odd multiplicities are at least 2r + 1 and at
most 2(m + 1) — 1. Let By, »(n) be the number of partitions of n in which
parts are either odd and congruent to 2r + 1 (mod 4r + 2) or even and not
congruent to 0 (mod 2m). Then Ay, (n) = Byr(n).

Indeed Theorem 1.3 is a special case of Theorem 1.4 (m =2 and r = 1).
It is worth mentioning that Theorem 1.3 has been generalized in different
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directions (see [5], [1] and the references therein). To avoid ambiguity, any
partition identity in which one side describes a restriction on the multiplicity
of parts and the other side describes parts being in certain residue classes
shall be called an identity of Subbarao type. The partitions involved will be
called Subbarao type partitions.

In this paper, we provide a new generalization of Theorem 1.3 and deduce
the parity for a partition function of Subbarao type. This is done in Section
2. In Section 3, we state a new partition theorem in the spirit of Theorem
1.4 and give its bijective proof.

2. GENERALIZATION OF THEOREM 1.3

Our goal in this section is to give a simple extension of Theorem 1.3. We
start by formulating the following definition.

Definition 2.1. Let k£ > 2 and ay,a9,...,a, > 1 be integers. The tuple
(a1,a2,...,a,) is called k-admissible if

i. ged(as,a5) =1 Vi # j;
' T

. > aa; = > fia; and 0 < a4, i < k—1 foralli =1,2,...,r =
i= j

1 =1
CkiZ,Bi Vi=1,...,7“;
iii. A,NA;=0forl<i#j<r where

Ai:{xezx x=—(s+ km)a; (mod kHal),
i=1

.
1<s<k—-1, m=0,1,..., Haj —1
o
For instance, consider the tuple (2,5) and let k = 5. Observe that

ged(2,5) = 1 so that condition (i) of Definition 2.1 is satisfied. Note that
0-240:-5=0,0-241-5=5,0-24+2-5=10,0-24+3-5=15,

0-2+4-5=20,1-240-5=2,1-24+1-5=7,1-2+2-5=12,
1-243-5=17,1-2+4-5=222.240-5=4,2-2+1-5=0,
2.242.5=14,2-24+3-5=19,2-2+4-5=24,3-240-5 =6,
3.2+41-5=11,3-24+2-5=16,3-2+3-5=21,3-24+4-5 = 26,
4.240-5=84-2+1-5=13,4-2+2-5=18,4-2+3-5=23,

4-244-5=28.
Since none of the linear combinations above evaluates to the same value,
condition (ii) of Definition 2.1 is satisfied. Furthermore,

A ={r € Z>1: x =2i (mod 50),i € {1,2,3...,24}\ {5,10,15,20}},

and
Ay ={x € Z>1 : x = 5,10, 15,20, 30, 35,40,45 (mod 50)}.
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Clearly, A1 N A2 = () and thus condition (iii) of Definition 2.1 is satisfied.
Indeed, (2,5) is 5-admissible.

Let (a1, a2,as,...,a,) be a k-admissible tuple where k& > 2. Denote by
B(ai,as,...,ar,k,n), the number of partitions of n in which parts occur
with multiplicities aya; + asgag + - - - + a.a, where 0 < a; < k— 1. Then we
have the following theorem.

Theorem 2.2. Let C(ay,as,...,ar,k,n) be the number of partitions of
n into parts congruent to —(s + mk)a; (mod kajasas...a,) where s =
1,2,...,k—1,5=1,2,...,r and

m=0,1,2,...,| [Ja| -1
=

Then

B(ayi,as,...,ar,k,n) = Cl(ay,ag,...,a, k,n).
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Proof. Note that

B(a17 az, . .. 7a7”7n)qn

M8

3
Il
o

1+ qaln + q2a1n 4.+ q(kfl)aln + qagn + q2a2n 4.+ q(kfl)agn

,’:18

i
I

i q(a1+a2)n+q(a1+2a2)n+.“+q((k:—l)al+(k—1)a2+...+(k—1)ar)n)

N

-1 k-1 k-

[y

k—1

q
=0

(a1a1+a2a2+...a7~ar)n

—

S
Il
—
Q
Il
Q
Q

1=0 a2=0 az3=0

k—1 k—1 k—1 k—1
qa1a1n> ( Z qa2a2n> ( Z qa3a3n> o ( Z qararn>
1 \a1=0 as=0 a3=0 a,=0

1— a1nk: qaznk 1— qa3nk 1— qarnkz
1— a1n><1_qa2n><1_qa3n>"'<1_qarn>

(
i

8

n

ég

n=1
ﬁ a]nk)
_J=1 n=1 (1 —q%")

|
R}

1 1_[1 (1 ka]n aj > <1 _ qlmjn—Qaj> <1 _ qkajn—3aj> cee
n—=
1
1— qkajn—(k—l)aj

J
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r k—1 oo <
- H _ qkajn—sa; >
el IS Rl G
r k—1 oo 1 1
j=1s=1n=1 kl'[am sa; kl_[azn saj—ka;
1—q =1 1—q i=1
1 1
kl_[azn sa;—2ka; knazn sa;—3ka,
l—q i=1 1_q =1
1
r k
kIl ain—sa;— IT ai | -1 |kay
i=1 i=1
1—¢q i#j
k
_1+H a;
i=1
r k—1 i#] [e%S)

T
kE I a;n—saj—mka;

1_q =1

= C(a1>a2>"'7a7’>k7n)qn

The second to last equal sign is due to the fact that the exponents of ¢ in
T

the denominator are of the form k [] a;n — sa; — mka; where
i=1

m=0,1,2,..., ﬁai 1
-
[l
Lemma 2.3. Let k € Z~1. If a1 # az (mod k), then Ay N Ay = () where
Ay ={zx€Z>:x=—(1+km)a; (mod kajaz) :m =0,...,az — 1},
Ay={zr €Z> :2=—(1+4ka)az (mod kajaz):a=0,...,a; —1}.

Proof. Suppose a1 # as (mod k). If Ay N Ay # 0, then there is z € Z>
such that z = —(1+km)a; (mod kajaz) and x = —(1+ka)az (mod kajaz)
for some m € {0,1,...,a2 — 1} and @ € {0,1,...,a; — 1}. Thus

—(1+km)a; + (1 4+ ka)ag =0 (mod kajaz)
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so that
(a2 —a1) + k(aag —may) =0 (mod kajas) .

From this, it is clear that as — a; is congruent to 0 (mod k), which is a
contradiction. Thus we must have A; N Ay = 0. O

Corollary 2.4. If a1 # a2 (mod 2) and ged(ay,a2) = 1, then the num-
ber of partitions of n in which parts occur with multiplicities a1, as, a1 + ao
is equal to the number of partitions of n into parts congruent to —(1 +
2m)a; (mod 2ajaz) where j =1,2 and

2
m=0,1,..., Hai —1.
=1

i3
Proof. By Lemma 2.3 with & = 2, we have A1 N Ay = (). Since ged(aq,az) =
1 and a1,as,a1 + ao are all different, by Definition 2.1, we conclude that

(a1,a2) is a 2-admissible tuple. Setting k = r = 2 in Theorem 2.2 yields the
result. O

Remark: Corollary 2.4 is a generalization of Subbarao’s partition theorem,
Theorem 1.3, where a1 = 2 and ao = 3. Of course Theorem 2.2 is a more
general extension.

Bijective proof of Theorem 2.2. Let A be enumerated by
B(ai,az,...,a.,k,n). Write each multiplicity m of a part p as a linear
combination of a1, as,...,a,, i.e.

m = aia1 + aea2 + -+ + QpQy.

For clarity sake, we shall call «; the coefficient of a; in the multiplicity m
of p. Now construct partitions (3;’s in this way:

Bi = ((ajp1)*, (ajp2)*¥,...), 1<j<r

where p; > pa > ... are the distinct parts of A and «;; is the coefficient of
a; in the multiplicity of the part p; of A\. Then divide each part in 3; by
a; and then apply the Glaisher map ¢ (see Theorem 1.2). In other words,
compute

(2.1) o (P peT . ).
Multiply each part in (2.1) by a; to get a;o'(p;™,py~,...) and the
image of A is given by taking the union over all j’s, i.e.

.
U o™ 01,057, ).
j=1

To invert the process, suppose p is enumerated by C(ay,as,...,ar, k,n).
Decompose p into (1, pa, . . ., ptr) where u; is a sub-partition consisting of
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parts congruent to

—(s+mk)a; (mod k H al-) :
i=1

For each pj, perform the following steps:
(a) Divide each part by a;.
(b) Apply ¢ to the result in (a).
(c) Repeat each part in (b), a; times, and call the resulting partition fi;.

Then the image of u is given by
-
U fj-
j=1
We include the following example to illustrate our bijection.

Example 2.6. Let A = (273,220,193 15° 126 108, 711 510 413 216} gnd k =
3, a1:3, a2:5.

Clearly, A is enumerated by B(3,5,5,708). We have
B1 = (81,66%,57,36%,30,212,12,6%), By = (75,50, 35,252, 20%, 10%)

so that

b (27,22%,19,12%,10,7%,4,2°) and B _ (15,10, 7,52, 4%,22).
a as

We now apply the Glaisher map to 31/a; and S2/a2 and obtain

¢_1 <61) - (222’ 197 10, 72, 477 22a 127)’
ai

¢~ (52> = (10,7,5%,4%,2%).
a2
Multiplying each part of ¢~1(51/a1) by a; and each part of ¢~1(B2/az)
by a9, and then taking the union results in the image of \ as
(662, 57,50, 35,30, 25°, 212, 20, 12, 10%, 62, 3%7)

a partition enumerated by C(3,5,5,708).
We now invert the process. The residue set is

{3,5,6,10,12,15, 20, 21, 24, 25, 30, 33, 35, 39, 40, 42}.
Thus
w1 = (66%,57,30,212, 12,62, 3%7),
o = (50,35, 25,207, 10).
Applying the Glaisher map ¢ with
1=1-3%2=2-3°,5=2.3°4+1.3", 7=1-3"+2.3% and 27 = 33,
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we obtain

¢ (“1> = (27,222,19, 10, 72, 4, 22),

¢ (‘”) — (10,7,5%,4%,2%).

a2
Thus repeating each part in ¢(u1/a1) a1 times, and each part in qb(’;—;) a9
times, and taking the union leads us to the following:
A= (273,225,193,15°,126, 108, 711 510 413 216),

More generally, consider a function in which even parts and odd parts
satisfy the ‘Subbarao’ condition separately. Let g(mq,mg, a1, as,n) denote
the number of partitions of n in which even parts occur with multiplicities
mi, Mo, my + mg and odd parts occur with multiplicities a1, as,a; + az. It
is clear that ¢(2,3,2,3,n) enumerates partitions considered in Theorem 1.3.
In the next section, we look at a special case of g(mi,ma,a1,az,n).

3. ON THE FUNCTION g(mj1, mg,2mzi,2ma,n)

First, we recall the following g-series notation. In all cases, |q| < 1,

n

(a;q)n = [J(1 = ag),
i=1
n
. _ 1 1)
(a:¢)oc = lim (1 — ag").
i=1
From the definition of g(mi,ma,aj,az,n), it is not difficult to note that
n_ (5@ ) oo (=475 477 ) o
(=93¢ )00 (=425 42 o

o
> " glma,mg, a1, a9,n)q

n=0

Thus

o0 _2my. 2mq _ 2ma. ,2ma2
E g(mi,ma,2my,2mao,n)q" :( q2 147" )oo(—47™3 47 )
o (—g?m1; ¢?m1) oo (—q%m2; gPm2 ) o

=1+ 0g+0¢°> +0¢> +--- (mod 2).
This yields
(3.1) g(m1, ma,2my,2mo,n) =0 (mod 2) Vn > 1.

Denote by G(mq, mga,2mq,2ms,n) the set of partitions enumerated by
g(mi,ma,2mq,2mg,n). Let h(mi, ma,2mq,2mgo,n) be the number of parti-
tions in G(my, mao, 2my, 2ma,n) satisfying the following property:

All parts are congruent to 0 (mod 4) or else for every odd part t occurring
with multiplicity 27, there is an even part 2t having multiplicity j, and for
every even part s congruent to 2 (mod 4) occurring with multiplicity I, there
is an odd part 5 which has multiplicity 2I.

Then we have the following result.



ON SOME PARTITION THEOREMS OF M. V. SUBBARAO 69

Theorem 3.1.
(3.2) h(my, ma,2my,2mo,n) =0 (mod 2) Vn > 1.
Proof. Define the map

¥ G(mi,ma,2mq, 2meo,n) — G(my, ma,2mq, 2mao,n)

as follows:
For \ = (A{l,A£2, . ,)\lfl) € G(my, ma,2mq,2ma,n),
fi
(2xi) 2, if A =1 (mod 2);
A\ N 2fi
o (3) , if Ay =2 (mod 4);

)\Zf i otherwise.

Then

l
Y = (.
=1

We claim that v is an involution. To see this, proceed as follows.
If A; =0 (mod 4), then

Bp(A)) = p(A) = A
If \; =1 (mod 2), then

w‘:ﬁ

| N 203
D) = p(2M0)F) = (2) (since 2X\; =2 (mod 4)).

We have that ¢ (p(A)) = M.
If \i =2 (mod 4), then

i

YA = ¢ <<;>2f> = (2 @)) N (since %is odd).

Thus ¢(P(A])) = A%,
Therefore 1 ()(A\)) = A. Indeed 9 is an involution on

G(mq,ma,2mq,2me, n).
A careful look into the set reveals that the
h(mi,ma,2my, 2mg, n)-partitions

are precisely those partitions fixed under the involution. For this reason,
their number must have the same parity as the number of all partitions in
G(my,mg,2my,2meo, n). O
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4. A NEW PARTITION THEOREM OF SUBBARAO TYPE

Bijections for Theorem 1.4 have been given in [1, 3, 4]. In the spirit of
Theorem 1.4, we state the following new theorem.

Theorem 4.1. For r € Z>, let E.(n) denote the set of partitions of n
wherein parts appear 5,10,15,5r + 2,57 + 7,5r + 12,57 + 17,107 + 4, 10r +
9,10r+14,10r+19, 15r+6, 15r+11, 15r4+16, 15r+21, 20r+8, 20r+13, 20r+18
or 20r + 23 times and F.(n) be the set of partitions of n wherein parts are
congruent to £5,10 (mod 20) or £(5r + 2),£(10r + 4) (mod 25r + 10).
Then |E,(n)| = |Er(n)|.

Although our goal is to exhibit a bijection for this theorem, observe that

o0
Z |Er(n)|q" = H (1 + ¢ + 1O 4 g 4 g 4 BT (Br12)n
n>0 —

+q(5r+17)n+q(10r+4)n _|_q(10'r+9)n _|_q(107"+14)n
4 q(10rH19)n | ((15r+6)n | (A5r+1n | (15r+16)n

4 (B2 Q0r+8)n | ((20r+13)n

4 q2or+18n q(20r+23)n>

3
q (5r+2)nj Z q5
=0
5(5r+2)n) ( 20n
(1 _ q(57"+2)n)( )

I
8
Mdk

3
—
I
o

I
3
/: o,

3
I
—_

1 1
mycaycree SN § R v
q( " )( " S) 7=0 (mod 5), 1 q]
j#0 (mod 20)

»
Il
—
3
Il
—_

I
:»&
3

W~
8

I
—
[

1 H 1

25r+10)n—s(br+2 —aJ

1= q( ) ( ) j=0 (mod 5), 1 q
jZ0 (mod 20)

s=1n=1

[e.e]
=Y [F(n)lg".
n=0
We now describe a bijective proof.

Proof. Let A = (A[",A\3",...) € E,(n). For an integer ¢t > 1, denote the
order of a with respect to t by ord;(a) which we define as

ords(a) = max{a € Z>p : t%a}

and define a map 7 : E,(n) — F,(n) as follows.
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Case I: m; =0 (mod 5)
Mg ys

) YANE
A (543 ) , where s = ords(\;).

Case II: m; =

Case III: m; =

(@r+m&xrrwﬁ), if \; 2 0 (mod 5)

Case IV: m; =3 (mod 5)
((Gr +22)8 A 7208) i A £ 0 (mod 5)
A .
(((57’1'3))"')4.5 ’)\Zmi20r8> , if Ay =0 (mod 5).
Case V: m; =4 (mod 5)

(((5r +2)N)%, /\?i_m?ﬂ%) ;A #0 (mod 5)
A .
2-5

(C%?M) A?”W4>,ﬁ&zo@mdm.

where ¢ = ords()\;) in Cases II, III, IV and V.

In Cases II, I, IV and V, if m;—15r—6 > 0, m;—5r—2 > 0, m; —20r—8 >
0, m; — 10r — 4 > 0, then apply Case I to the sub-partitions )\;m—15r—6’
A;”i_5T_2, )\Zmi—zor—s, and )\?“_107"_4, respectively.
The image is then defined as

T(A) = [J (™).

i>1

Example 4.2. Let n =42 and r = 4. Then
E4(42) — {(45’ 122), (35’ 127)’ (210’ 122)’ (25’ 132)}‘
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The sub-partitions 2° and 132 of (2°,13?) have multiplicities congruent to
0 (mod 5) and 2 (mod 5), respectively. Applying the map 7 gives
2° 10
132 (22,5%).
Hence, taking the union of the image parts we obtain that (2°,132) —
(22,10,5%). Similarly, applying 7 to the remaining partitions gives
(4°,1%) = (22,5)
(35,127) (22,15, 5)
(2'9,1%2) 5 (22,10?)

which are partitions in Fy(42).
We now describe the inverse of 7. Let p = (u7*, 152, ..., 1) € Fr(n).
Define a map 7! : F.(n) — E,(n) as follows.

Case I p; #0 (mod 5r + 2).
Using the base 4 representation, we write w; as

(4.1) Wi =A4PL 4 4P2 4P 4o 4 AP 4y

where p1 > p2 > ... > pp > 1 and 0 < n < 4. This representation
of w; in (4.1) comes from its unique quaternary expansion. Just for
illustration at this stage, if w; = 14+2-4+2-42 4+ 3. 4%, we rewrite
wias 1+ (d+4)+ (42 +4%) + (4 +4'+4Y sothat n = 1, p; = po =
p3s=4,p1s=ps =2,ps = pr = 1.

Having identified, p1,p2,...,p; and n from (4.1), construct a par-

tition
i\ P AN i\ ®
J— 4P1X7> U(4p2><—> U~--U<4pl><—> .
i < 5 5 5
Thus
. i\ o1
pit U (%) .

Case IT: p; =0 (mod 5r + 2).
Using the base 5 representation, we write w; as

Wi =B 52 £ 50 4 4 5P

where pg > py > -+ > py > 0and 0 < ¢ < 5 (just as in (4.1)).
Construct a partition

5742 5r+2
g (5 )G (s )T
! 51 + 2 5r 4+ 2

L 5r+-2 L 5r+2
P3 _ pL _
U<5 X5r+2> Y U<5 X5r—|—2> ‘
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Thus

s (5r+2)¢
Ly U - :
Hi Yi <5r + 2)
The image is then defined as
) = ).
i>1
Example 4.3. Let n =42 and r = 4. Then
Fy(42) = {(22,5%), (22,15,5), (22, 10?), (22,10, 5%)}.
The sub-partitions 22 and 5% of (22, 5) have parts congruent to
0 (mod 22) and 5 (mod 22), respectively. Applying the map 77! gives
22 5 122
5% 45,
Hence, taking the union of the image parts we obtain that (22,5%)
(4%,122). Similarly, applying 7! to the remaining partitions gives
(22,15,5) — (3°,1%7)
(22,10%) — (2'0,12%)
(22,10, 5%) — (2°,13%)
which are partitions in F4(42).
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