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ON A GENERALIZED BASIC SERIES AND

ROGERS–RAMANUJAN TYPE IDENTITIES

P. SONIK, D. RANGANATHA, AND M. GOYAL

Abstract. In this paper, we give the generalization of MacMahon’s
type combinatorial identities. A generalized q-series is interpreted as
the generating function of two different combinatorial objects, viz., re-
stricted n-color partitions and weighted lattice paths which give entirely
new Rogers–Ramanujan–MacMahon type combinatorial identities. This
result yields an infinite class of 2-way combinatorial identities which
further extends the work of Agarwal and Goyal. We also discuss the
bijective proof of the main result. Forbye, eight particular cases are also
discussed which give a combinatorial interpretation of eight entirely new
Rogers–Ramanujan type identities.

1. Introduction

An efficient procedure for analyzing partitions lies in their graphical rep-
resentations. In 1989, Agarwal and Bressoud [4] studied a novel category
of weighted lattice paths and they interpreted certain basic hypergeomet-
ric series with multiple indices of summation as generating functions for
weighted lattice paths. They also provided a one-to-one correspondence
between weighted lattice paths of weight λ and n-color partitions of λ.
In recent years, the literature witnessed substantial growth in the study
of graphical representation of ordinary partitions, (n + t)-color partitions,
split (n + t)-color partitions, etc. To depict partitions graphically, several
mathematicians use different combinatorial tools such as Ferrers graphs [9],
weighted lattice paths [4], associated lattice paths [6, 8], modified lattice
paths [7, 14], split lattice paths [12], etc.
The following q-series (1.1)–(1.3) of Slater [17] and q-series (1.4)–(1.6) of
Rogers [15] were combinatorially explained by Agarwal [1, 2], Agarwal and
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Goyal [5, 13] respectively in terms of n-color partitions and weighted lattice
paths:

∞∑
n=0

qn
2

(q; q2)n(q2; q2)n
=
(q2, q8, q10; q10)∞(q6, q14; q20)∞

(q; q)∞
,(1.1)

∞∑
n=0

qn
2+n

(q; q2)n(q2; q2)n
=
(q, q9, q10; q10)∞(q8, q12; q20)∞

(q; q)∞
,(1.2)

∞∑
n=0

q2n
2

(q; q2)n(q2; q2)n
=
(q, q7, q8; q8)∞(q6, q10; q16)∞

(q; q)∞
,(1.3)

∞∑
n=0

q3n
2

(q; q2)n(q4; q4)n
=
(−q3,−q5,−q7; q10)∞

(q4, q6; q10)∞
,(1.4)

∞∑
n=0

q2n
2

(q; q2)n(q4; q4)n
=
(−q3,−q7,−q11; q14)∞
(q2, q6, q8, q12; q14)∞

,(1.5)

∞∑
n=0

q2n(n+1)

(q; q2)n(q4; q4)n
=
(−q5,−q7,−q9; q14)∞
(q4, q6, q8, q10; q14)∞

.(1.6)

where

(a; q)n =
n−1∏
r=0

(1− aqr), (a; q)∞ = lim
n→∞

(a; q)n,

(a1, a2, . . . , at; z)∞ =

t∏
r=1

(ar; z)∞ and |q| < 1.

Agarwal and Goyal [6] also succeeded to expand the above mentioned out-
comes to 3-way combinatorial identities by the use of associated lattice
paths.
Let us consider the following generalized q-series:

∞∑
n=0

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
,(1.7)

where α, s,m ∈ Z+ and β ∈ Z+ ∪ {0}.
The crux of this paper is to interpret the above generalized basic series (1.7)
as the generating function of certain restricted classes of n-color partitions
and weighted lattice paths. Hence, these results provide an infinite set
of combinatorial identities and thereby provide many Rogers–Ramanujan–
MacMahon type combinatorial identities. The main result in this paper is
stated as:

Theorem 1.1. Let G
(α,β)
(s,m)(λ) represent the number of n-color partitions of

λ in such a way that
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(1) odd parts appear with odd subscripts and even with even, each sub-
script is greater than or equal to α + β and it is congruent to α +
β (mod s),

(2) e ≡ i (mod 2m), provided ei is the least or the single part in the
partition,

(3) the weighted difference of any two consecutive parts is greater than
or equal to −2β and is congruent to −2β (mod 2m).

Let H
(α,β)
(s,m)(λ) represent the number of lattice paths of weight λ which begin

from (0, 0) and

(1) they have no valley above height 0,
(2) the height of every peak is greater than or equal to α and is congruent

to α (mod s),
(3) there is a plain of length congruent to β (mod 2m) in the beginning

of the path and the length of the other plains, if any, are congruent
to 0 (mod 2m).

Then, we have G
(α,β)
(s,m)(λ) = H

(α,β)
(s,m)(λ) for all λ and

∞∑
λ=0

G
(α,β)
(s,m)(λ) q

λ =
∞∑
λ=0

H
(α,β)
(s,m)(λ) q

λ =
∞∑
n=0

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
,(1.8)

where α, s,m ∈ Z+ and β ∈ Z+ ∪ {0}.

Before we proceed further, we list some necessary definitions and termi-
nologies from the literature.

Definition 1.2 ([3]). An n-color partition of a positive integer λ is a par-
tition where a part of size n, can appear with n different colors represented
by subscripts: n1, n2, n3, . . . , nn.

For example, the n-color partitions of 3 are 31, 32, 33, 21 + 11, 22 + 11,
11 + 11 + 11.

Definition 1.3. The weighted difference of two parts xi and yj, (x ≥ y), is
defined by x− y − i− j and is expressed by ((xi − yj)).

Definition 1.4 ([4]). All weighted lattice paths will be of finite lengths and
they lie in the first quadrant. They will start on the y-axis or on the x-axis
and end on the x-axis. Only three steps are allowed:
Northeast: From (a, b) to (a+ 1, b+ 1).
Southeast: From (a, b) to (a+ 1, b− 1), only allowed if b > 0.
Horizontal: From (a, 0) to (a+ 1, 0), only allowed along x-axis.
Every lattice path is either empty or ends with a southeast step: from (a, 1)
to (a+ 1, 0).
To illustrate the lattice paths, the following terminology is used.
Peak: Either a vertex on the y-axis which is followed by a southeast step or
a vertex preceded by a northeast step and followed by a southeast step.
Valley: A vertex preceded by a southeast step and followed by a northeast
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step. Remember that a southeast step followed by a horizontal step followed
by a northeast step does not form a valley.
Mountain: A section of the path which begins on either the x- or y-axis,
which terminates on the x-axis, and which does not touch the x-axis through-
out in between the end points. There is at least one peak in a mountain and
the number of peaks may exceed one.
Plain: A section of the path including only horizontal steps which begins
either on the y-axis or at a vertex preceded by a southeast step and termi-
nates at a vertex followed by a northeast step.
The height of a vertex is its y-coordinate, the weight of a vertex is its x-
coordinate and the weight of a lattice path is the sum of the weights of its
peaks.

2. Proof of Theorem 1.1

Theorem 1.1 will be proved in three steps. Firstly, we will prove that the
utmost right-hand side of (1.8) produces the n-color partitions enumerated

by G
(α,β)
(s,m)(λ). Then we will illustrate that the utmost right-hand side of

(1.8) also produces the weighted lattice paths enumerated by H
(α,β)
(s,m)(λ).

In the end, we will set up a one to one correspondence between n-color

partitions enumerated by G
(α,β)
(s,m)(λ) and weighted lattice paths enumerated

by H
(α,β)
(s,m)(λ).

Step 1: Let G
(α,β)
(s,m)(ℓ, λ) represent the number of partitions of λ enumerated

by G
(α,β)
(s,m)(λ) with the added restriction that there be exactly ℓ parts. First

of all, we will prove the following recurrence relation:

G
(α,β)
(s,m)(ℓ, λ) = G

(α,β)
(s,m)(ℓ, λ− 2mℓ) +G

(α,β)
(s,m)(ℓ− 1, λ− 2αℓ+ α− β)

+G
(α,β)
(s,m)(ℓ, λ− 2sℓ+ s)−G

(α,β)
(s,m)(ℓ, λ− 2ℓ(s+m) + s).

To prove this, we split the partitions enumerated by G
(α,β)
(s,m)(ℓ, λ) into three

classes:
(i) those that do not contain kk as a part,
(ii) those that contain (α+ β)(α+β) as a part, and
(iii) those that contain kk, k > α+ β as a part.
We now transform the partitions in class (i) by subtracting 2m from each
part ignoring the subscripts. Obviously, this transformation will not disturb
the inequalities between the parts and so the transformed partition will be of

the type enumerated byG
(α,β)
(s,m)(ℓ, λ−2mℓ). Next, we transform the partitions

in class (ii) by deleting the part (α+ β)(α+β) and then subtracting 2α from
all the remaining parts ignoring the subscripts. The transformed partition

will be of the type enumerated by G
(α,β)
(s,m)(ℓ − 1, λ − 2αℓ + α − β). Finally,

we transform the partitions in class (iii) by replacing kk by (k − s)(k−s)
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and then subtracting 2s from all the remaining parts. This will produce a
partition of λ−2sℓ+s into ℓ parts. It is important to note here that by this
transformation we get only those partitions of λ− 2sℓ+ s into ℓ parts which
contain a part of the form kk. Therefore, the actual number of partitions

which belong to class (iii) is G
(α,β)
(s,m)(ℓ, λ−2sℓ+s)−G

(α,β)
(s,m)(ℓ, λ−2ℓ(s+m)+s),

where G
(α,β)
(s,m)(ℓ, λ−2ℓ(s+m)+s) is the number of partitions of λ−2sℓ+s into

ℓ parts which are free from the parts like kk. The above transformations
are clearly reversible and so establish a bijection between the partitions

enumerated by G
(α,β)
(s,m)(ℓ, λ) and those enumerated by

G
(α,β)
(s,m)(ℓ, λ− 2mℓ) +G

(α,β)
(s,m)(ℓ− 1, λ− 2αℓ+ α− β)

+G
(α,β)
(s,m)(ℓ, λ− 2sℓ+ s)−G

(α,β)
(s,m)(ℓ, λ− 2ℓ(s+m) + s).

This generates the identity

G
(α,β)
(s,m)(ℓ, λ) = G

(α,β)
(s,m)(ℓ, λ− 2mℓ) +G

(α,β)
(s,m)(ℓ− 1, λ− 2αℓ+ α− β)

+G
(α,β)
(s,m)(ℓ, λ− 2sℓ+ s)−G

(α,β)
(s,m)(ℓ, λ− 2ℓ(s+m) + s).(2.1)

Let

f
(α,β)
(s,m)(z; q) =

∞∑
λ=0

∞∑
ℓ=0

G
(α,β)
(s,m)(ℓ, λ)z

ℓqλ.(2.2)

From (2.1) and (2.2), we have

f
(α,β)
(s,m)(z; q) =

∞∑
λ=0

∞∑
ℓ=0

[
G

(α,β)
(s,m)(ℓ, λ− 2mℓ) +G

(α,β)
(s,m)(ℓ− 1, λ− 2αℓ+ α− β)

+G
(α,β)
(s,m)(ℓ, λ− 2sℓ+ s)−G

(α,β)
(s,m)(ℓ, λ− 2ℓ(s+m) + s)

]
zℓqλ,(2.3)

=⇒ f
(α,β)
(s,m)(z; q) = f

(α,β)
(s,m)(zq

2m; q) + zqα+βf
(α,β)
(s,m)(zq

2α; q) + q−sf
(α,β)
(s,m)(zq

2s; q)

− q−sf
(α,β)
(s,m)(zq

2(s+m); q).(2.4)

Since f
(α,β)
(s,m)(z; q) is analytic function for |q| < 1 and |z| < |q|−1, we have

f
(α,β)
(s,m)(z; q) =

∞∑
n=0

γn(q)z
n.(2.5)

Employing (2.5) into (2.4) and then comparing the coefficients of zn on each
side of the resulting identity, we deduce that

γn(q)[(1− q2mn)− q−s+2sn(1− q2mn)] = qβ+2αn−αγn−1(q).

Therefore

γn(q) =
qα(2n−1)+βγn−1(q)

(1− q2mn)(1− q2s(n−1)+s)
.
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On iterating and using γ0(q) = 1, we obtain that

γn(q) =
qαn

2+βn

(q2m; q2m)n(qs; q2s)n
.

Hence

f
(α,β)
(s,m)(z; q) =

∞∑
n=0

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
zn.

Therefore

∞∑
λ=0

G
(α,β)
(s,m)(λ)q

λ =

∞∑
λ=0

∞∑
l=0

G
(α,β)
(s,m)(l, λ)q

λ = f
(α,β)
(s,m)(1; q)

=

∞∑
n=0

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
.

Step II: In this step, we will prove that

∞∑
λ=0

H
(α,β)
(s,m)(λ) q

λ =
∞∑
n=0

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
.(2.6)

In

qαn
2+βn

(qs; q2s)n(q2m; q2m)n
,

the factor qαn
2+βn generates a lattice path from (0, 0) to (β+2αn, 0) having

n peaks each of height α and a plain of length β in the beginning of the
path. For example, β = 2, n = 4, α = 3, the path begin as

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1

2

3

4

5

Figure 1. Four peaks each of height 3, three valleys each
at height zero and a plain of length 2 in the beginning of the
path.

In Figure 1, we take two consecutive peaks say, jth and (j+1)st and denote
them by A1 and A2 respectively.
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A
1

A
2

Figure 2. Two peaks of the same height.

Clearly, in Figure 2

A1 ≡ (β + α(2j − 1), α) and A2 ≡ (β + α(2j + 1), α).

The factor 1/(q2m; q2m)n generates n nonnegative multiples of 2m, say,

a1 ≥ a2 ≥ · · · ≥ an ≥ 0

which are encoded by inserting an horizontal steps in front of the first moun-
tain and aj −aj+1 horizontal steps in front of the (n− j+1)st mountain for
1 ≤ j ≤ n−1. Thus the x-coordinate of the jth peak is increased by an−j+1

and the x-coordinate of the (j + 1)st peak is increased by an−j . Figure 2
now turns into Figure 3.

A
1

A
2

Figure 3. Two peaks separated by a plain of length multiple
of 2m.

Thus two consecutive peaks A1 and A2 becomes

A1 ≡ (β + α(2j − 1) + an−j+1, α) and A2 ≡ (β + α(2j + 1) + an−j , α).

The factor 1/(qs; q2s)n generates n nonnegative odd multiples of s, say

b1 × s, b2 × 3s, b3 × 5s, . . . , bn × (2n− 1)s.

These can be encoded by raising the height of jth peak by sbn−j+1, 1 ≤ j ≤
n. So, jth peak grows to height sbn−j+1+α. Each increase by one in height of
a given peak increases its weight by one and the weight of each subsequent
peak by two. Figure 3 is altered to Figure 4 or Figure 5 depending on
whether bn−j > bn−j+1 or bn−j < bn−j+1. When bn−j = bn−j+1, Figure 3 is
not altered.
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A
1

A
2

Figure 4. A2 has more height than A1 for bn−j > bn−j+1.

A
1

A
2

Figure 5. A1 has more height than A2 for bn−j < bn−j+1.

In this way, we can uniquely generate each lattice path enumerated by

H
(α,β)
(s,m)(λ). This demonstrates (2.6).

Step III: We now establish a bijection between the lattice paths enumer-

ated by H
(α,β)
(s,m)(λ) and the n-color partitions enumerated by G

(α,β)
(s,m)(λ). We

do this by encoding every path as the sequence of the weights of the peaks
with each weight subscripted by the height of the respective peak. There-
fore, if in the final figure, we represent the jth and (j+1)st peak by Cu and
Dv, (D ≥ C), respectively, then

C =β + α(2j − 1) + an−j+1 + 2s(bn + bn−1 + · · ·+ bn−j+2) + sbn−j+1,

D =β + α(2j + 1) + an−j + 2s(bn + bn−1 + · · ·+ bn−j+1) + sbn−j ,

u =sbn−j+1 + α,

v =sbn−j + α.

Depending on the parity of α, β and sbn−j+1, the following eight cases arise:
Case 1: If α, β and sbn−j+1 are odd, then C is odd and u is even. So, C
and u have opposite parity.
Case 2: If α, β are odd and sbn−j+1 is even, then C is even and u is odd.
So, C and u have opposite parity.
Case 3: If α is even, β and sbn−j+1 are odd, then C is even and u is odd.
So, C and u have opposite parity.
Case 4: If α is even, β is odd, sbn−j+1 is even, then C is odd and u is even.
So, C and u have opposite parity.
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Case 5: If α, β and sbn−j+1 are even, then C is even and u is even. So, C
and u have the same parity.
Case 6: If α, β are even and sbn−j+1 is odd, then C is odd and u is odd.
So, C and u have the same parity.
Case 7: If α is odd, β is even, sbn−j+1 is odd, then C is even and u is even.
So, C and u have the same parity.
Case 8: If α is odd, β and sbn−j+1 are even, then C is odd and u is odd.
So, C and u have the same parity.
To get the same parity, we replace Cu by Cu+β in cases 1–4. If we replace
Cu by Cu+β in cases 5–8, then parity remains the same. Thus, to maintain
the uniformity of the result, we replace Cu by Cu+β in all the cases.
On similar lines, Dv will be replaced by Dv+β. Therefore, we conclude
that even parts appear with even subscripts and odd with odd. Now, let
u′ = u + β = sbn−j+1 + α + β and v′ = v + β = sbn−j + α + β. From
this, it is clear that all subscripts are greater than or equal to α + β and
u′ ≡ α+ β (mod s). Now, weighted difference of Cu′ and Dv′ is equal to

((Dv′ − Cu′)) = D − C − v′ − u′ = −2β + (an−j − an−j+1).

Clearly, the weighted difference is greater than or equal to −2β and it is
congruent to −2β (mod 2m).
Next, say Cu′ is the first peak, then it will correspond to the least part in
the corresponding n-color partition or to the singleton part if the n-color
partition contains only one part and in both of the cases

C − u′ = an ≡ 0 (mod 2m) .

This gives C ≡ u′ (mod 2m). To check the reverse implication, we take

two n-color parts of a partition enumerated by G
(α,β)
(s,m)(λ), say Ex and Fy.

Let B1 ≡ (E, x − β) and B2 ≡ (F, y − β) be the associated peaks in the
corresponding lattice path.

B
1
≡ (E, x−β)

B
2
≡ (F, y−β)

Plain

Figure 6. Two peaks separated by a plain.

The length of the plain between the two peaks is

F − E − x− y + 2β = ((Fy − Ex)) + 2β ≡ 0 (mod 2m) .
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Also, there cannot be a valley above height 0. This can be proved by con-
tradiction. Let us assume a valley V at height δ (δ > 0) between the peaks
B1 and B2.

B
1
≡ (E, x−β)

B
2
≡ (F, y−β)

V

δ

Figure 7. Two peaks and a Valley at height δ.

Clearly, there is a descent of x−δ−β from B1 to V and an ascent of y−δ−β
from V to B2. This implies

F = E + (x− δ − β) + (y − δ − β) =⇒ F − E − x− y = −2δ − 2β

=⇒ ((Fy − Ex)) = −2δ − 2β.

Now,

((Fy − Ex)) ≥ −2β =⇒ −2δ − 2β ≥ −2β =⇒ −2δ ≥ 0 =⇒ δ = 0.

This confirms, there is no valley above height 0.
Now in (1.8), the extra factor qβn puts β horizontal steps in front of the first
peak. This makes the length of the plain (which is in the beginning of the
path) congruent to β (mod 2m). This completes the proof of Theorem 1.1.

3. Rogers–Ramanujan–MacMahon type combinatorial identities

For some particular values of α, β, s and m, the generalized series (1.7)
yields the following eight Rogers–Ramanujan type identities. These iden-
tities are also found in Bailey [10], Chu and Zhang [11] and Slater’s com-
pendium [17].

∞∑
n=0

q2n
2

(q2; q4)n(q2; q2)n
=
(q12, q16, q28; q28)∞

(q2; q2)∞
,(3.1)

∞∑
n=0

q2n
2

(q2; q4)n(q4; q4)n
=
(q4, q16, q20; q20)∞(q12, q28; q40)∞

(q2; q2)∞
,(3.2)

∞∑
n=0

q2n
2+2n

(q2; q4)n(q4; q4)n
=
(q2, q18, q20; q20)∞(q16, q24; q40)∞

(q2; q2)∞
,(3.3)
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∞∑
n=0

q4n
2

(q2; q4)n(q4; q4)n
=
(q2, q14, q16; q16)∞(q12, q20; q32)∞

(q2; q2)∞
,(3.4)

∞∑
n=0

qn
2+n

(q2; q4)n(q2; q2)n
=
(−q2; q2)∞(q4, q10, q14; q14)∞
(q2; q2)∞(−q2,−q12; q14)∞

,(3.5)

∞∑
n=0

q4n
2

(q2; q4)n(q8; q8)n
=
(−q6,−q14,−q22; q28)∞
(q4, q12, q16, q24; q28)∞

,(3.6)

∞∑
n=0

q4n(n+1)

(q2; q4)n(q8; q8)n
=
(−q10,−q14,−q18; q28)∞
(q8, q12, q16, q20; q28)∞

,(3.7)

∞∑
n=0

q6n
2

(q2; q4)n(q8; q8)n
=
(−q6,−q10,−q14; q20)∞

(q8, q12; q20)∞
.(3.8)

The q-series (3.1)–(3.8) have their combinatorial counterparts in the fol-
lowing theorems, respectively.

Theorem 3.1. Let X1(λ) represent the number of ordinary partitions of λ
into parts congruent to ±2,±4,±6,±8,±10, 14 (mod 28). Then

X1(λ) = G
(2,0)
(2,1)(λ) = H

(2,0)
(2,1) (λ), for all λ.

where G
(2,0)
(2,1)(λ), H

(2,0)
(2,1) (λ) are as described in Theorem 1.1.

Theorem 3.2. Let X2(λ) represent the number of ordinary partitions of λ
into parts congruent to ±2,±6,±8,±10,±14,±18 (mod 40). Then

X2(λ) = G
(2,0)
(2,2)(λ) = H

(2,0)
(2,2) (λ), for all λ.

where G
(2,0)
(2,2)(λ), H

(2,0)
(2,2) (λ) are as described in Theorem 1.1.

Theorem 3.3. Let X3(λ) represent the number of ordinary partitions of λ
into parts congruent to ±4,±6,±8,±10,±12,±14 (mod 40). Then

X3(λ) = G
(2,2)
(2,2)(λ) = H

(2,2)
(2,2) (λ), for all λ.

where G
(2,2)
(2,2)(λ), H

(2,2)
(2,2) (λ) are as described in Theorem 1.1.

The below-mentioned table describes the particular case (3.1) more pre-
cisely.
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Partitions enum. Partitions enum. Lattice paths enum.

by X1(8) by G
(2,0)
(2,1)(8) by H

(2,0)
(2,1) (8)

8, 6+2, 4+4, 4+2+2, 2+2+2+2 82

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

84

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

88

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

6222

0 1 2 3 4 5 6 7 8 9

1

2

3

4

Theorem 3.4. Let X4(λ) represent the number of ordinary partitions of λ
into parts congruent to ±4,±6,±8,±10 (mod 32). Then

X4(λ) = G
(4,0)
(2,2)(λ) = H

(4,0)
(2,2) (λ), for all λ.

where G
(4,0)
(2,2)(λ), H

(4,0)
(2,2) (λ) are as described in Theorem 1.1.

Theorem 3.5. Let Y5(λ) represent the number of ordinary partitions of λ
into parts congruent to ±2,±6 (mod 14) and Z5(λ) represent the number of
ordinary partitions of λ into distinct parts congruent to ±4,±6, 0 (mod 14).
Then

X5(λ) =

λ∑
i=0

Y5(λ− i)Z5(i) = G
(1,1)
(2,1)(λ) = H

(1,1)
(2,1) (λ), for all λ.

where G
(1,1)
(2,1)(λ), H

(1,1)
(2,1) (λ) are as described in Theorem 1.1.
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Theorem 3.6. Let Y6(λ) represent the number of ordinary partitions of λ
into parts congruent to ±4,±12 (mod 28) and Z6(λ) represent the number
of ordinary partitions of λ into distinct parts congruent to ±6, 14 (mod 28).
Then

X6(λ) =
λ∑

i=0

Y6(λ− i)Z6(i) = G
(4,0)
(2,4)(λ) = H

(4,0)
(2,4) (λ), for all λ.

where G
(4,0)
(2,4)(λ), H

(4,0)
(2,4) (λ) are as described in Theorem 1.1

Theorem 3.7. Let Y7(λ) represent the number of ordinary partitions of λ
into parts congruent to ±8,±12 (mod 28) and Z7(λ) represent the number
of ordinary partitions of λ into distinct parts congruent to ±10, 14 (mod 28).
Then

X7(λ) =
λ∑

i=0

Y7(λ− i)Z7(i) = G
(4,4)
(2,4)(λ) = H

(4,4)
(2,4) (λ), for all λ.

where G
(4,4)
(2,4)(λ), H

(4,4)
(2,4) (λ) are as described in Theorem 1.1

Theorem 3.8. Let Y8(λ) represent the number of ordinary partitions of λ
into parts congruent to ±8 (mod 20) and Z8(λ) represent the number of
ordinary partitions of λ into distinct parts congruent to ±6, 10 (mod 20).
Then

X8(λ) =
λ∑

i=0

Y8(λ− i)Z8(i) = G
(6,0)
(2,4)(λ) = H

(6,0)
(2,4) (λ), for all λ.

where G
(6,0)
(2,4)(λ), H

(6,0)
(2,4) (λ) are as described in Theorem 1.1.

4. Conclusion

We have provided an infinite class of combinatorial identities by interpret-
ing a generalized q-series in terms of n-color partitions and weighted lattice
paths. Our results not only generalized the results we found in the litera-
ture (Agarwal [1, 2], Agarwal and Goyal [5, 13], Sareen and Rana [16]), but
also provide entirely new Rogers–Ramanujan–MacMahon type combinato-
rial identities. So, the obvious question that arises here is, can we further
explore this technique to study the results found in literature in a more
generalized form and also to establish new results.
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