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ON SIGNS OF CERTAIN TOEPLITZ-HESSENBERG
DETERMINANTS WHOSE ELEMENTS INVOLVE
BERNOULLI NUMBERS
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Dedicated to my granddaughter, Taylor Xi-Ke Qi, who was born in February 2023

ABSTRACT. In the paper, by virtue of Wronski’s formula and Kaluza’s
theorem related to a power series and its reciprocal, by means of Cahill
and Narayan’s recursive relation, and with the aid of the logarithmic
convexity of the sequence of the Bernoulli numbers, the author presents
the signs of certain Toeplitz—Hessenberg determinants whose elements
involve the Bernoulli numbers and combinatorial numbers. Moreover,
with the help of a derivative formula for the ratio of two differentiable
functions, the author provides an alternative proof of Wronski’s formula.

1. MOTIVATIONS

A lower (respectively upper) Hessenberg matrix is an n x n matrix H,, =
(hij)1<ij<n, where h;; = 0 for all pairs (4, j) such that i+1 < j (respectively
j+1 < i). See [14, Chapter 10]. A Toeplitz matrix is an n X n matrix
Ty = (tk,j)o<k,j<n—1, Where ty ; = tj_;, that is, a matrix of the form

to t1 to -t topn

t1 to t-1 tnt1 t—nto

ta i1 to -+ top+2 tonys
th—2 tn-3 tn—g - to t_1
th—1 tn—2 th-3 - ty to

See [5]. For our convenience, we call the determinants |H,| and |T},| the
Hessenberg determinant and the Toeplitz determinant, respectively. If an
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n X n matrix M, is both a Hessenberg matrix and a Toeplitz matrix, we call
its determinant |M,,| the Toeplitz—Hessenberg determinant.
The Bernoulli numbers B, for r € Ny = {0,1,2,...} are defined by

z > z" z > 22
T :ZOB’”T! =1- 2*2327"(27«)!’ 2] < 2m-
r= r=

The Bernoulli numbers B, for r € N = {1,2,...} can be expressed in
terms of a Toeplitz—Hessenberg determinant as

= 1 O -~ 0 0 0
i1 .
: ; 1 0 0 O
i i 1 .- 0 0 0
4! 3! 2!
. . S B,
(1.1) : : : oo i =(-1)"—, reN
1 1 1 9 0 7!
—1)! —91 —3)! ]
(rll). (r 12). (r 13). i 1y
| —1)! —2)1 | |
7i. (Tll). (r 12). ?i i 1
(r+1)! 7! (r—1)! 40 3t 2

The expression (1.1) is a reformulation of a determinantal expression of
B, for r € Ny in the papers [1, p. 42, (2.6)], [6, pp. 351-352], [8, Section 21.5],
[9, p. 1], and [13, p. 3].

Replacing the elements 1 by the Bernoulli number Bs and substituting
the Bernoulli numbers By for the elements % for 2 < k < 7r+1 in the
Toeplitz—Hessenberg determinant on the left hand side of the equation (1.1),
we construct a new Toeplitz—Hessenberg determinant

By By 0 -0 0 0
Bg By By -0 0 0
By Bs By -~ 0 0 0
D, = : : : .o+ |, reN
Byir—1) Bapr—2) Bapr-3 -+ Bs Bz 0
Byr  By-1) By -+ Bs Bs B
Bogy1y B2 Bop-1) - Bs Bs Ba

Substituting the Bernoulli number By for the elements 1 and replacing
the elements % for 2 < k < r+1 by Byy_1) in the Toeplitz-Hessenberg
determinant on the left hand side of the equation (1.1), we create another
new Toeplitz—Hessenberg determinant

Bs By 0 -+ 0 0 0
By By By -+ 0 0 0
Bg By Bs -+ 0 0 0

Or=| : : oo ], rel
Bayr—2) Bapr—3) Bag-4y -+ B2 By 0
By—1) Bapr—2) Bapr-3) -+ Ba B2 By
Bar Bapp—1) Bap—2) -+ Bs Bs Ba
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Straightforward computation gives

b 1 1 Rt 5189

(12) 77300 2T 73507 TP 157507 YT 18191250°
: o 1 11 299 10417

7 27180 37 7560 17 926800

Therefore, we guess that, for r € N,

(1.3) D, <0,

and

(1.4) D, > 0.

In this paper, among other things, we will confirm that these two guesses
are both true.

2. WRONSKI’'S FORMULA AND KALUZA’S THEOREM

For the main theorems of this paper, we require results of Wronski and
Kaluza, as stated below.

Lemma 2.1 (Wronski’s formula [4, p. 17, Theorem 1.3]). If ap # 0 and
(2.1) P(z) = ag + a1z + agx® + -,

is a formal series, then the coefficients of the reciprocal series

2.2 = by + byz + box? + - -
(2.2) Pla) 0 + brx + bax” +
are given by
aj ag 0 0 0 0 0
az ax ag 0 0 0 O
(1) as as al ag - 0 0 O
(2 3) br == Tyl y reN
a
0 r—2 Qp-3 Qr—4 ap—5 -+ a1 ag 0
Qr—1 Gr-2 G@pr-3 Gr—4 -+ A2 a1 ag
ar  Qr—1 Qr-2 GQp-3 ~--+ Qa3 az ai

The formula (2.3) can also be found in [6, p. 347] and [12, Lemma 2.4].
We also remark that, in [2, p. 40, Entry 5], there exists a general derivative
formula
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d” [p(x) =
@Y T [q(w)] g t(x)
p(z) q(z) 0 0 0
p'(z) q'(z) q(z) e 0 0
'z () D) - 0 0
o : : N : : ’
P (@) ¢ @) ()" @) e qla) 0
P V(@) ¢ V@) ([N D) - ((Ty)d (@) q(z)
P (@) D" V@) - () (@) () ()

for r € Ng. The derivative formula (2.4) for the ratio of two differentiable
functions can also be found in [12, p. 94] and [13, Lemma 1]. We observe
that Lemma 2.1 can be proved from the formula (2.4) alternatively. See
Section 5 in this paper. This is a proof of Lemma 2.1 that differs from those
in [4, 12].

Lemma 2.2 (Kaluza’s theorem [4, p. 13, Problem 6] and [7]). Let
P(z) =ag+ a1z +asx® +-- -,
be a formal power series over the field of real numbers such that a, > 0 and
(2.5) 20, — arq >0,
forr=0,1,2,.... If

1

=by+ b boxZ 4 - .
P(:c) 0 + 01 + box” + s

then b. <0 forr=1,2,....

The inequality (2.5) means that the sequence a, for r € Ny is strictly
logarithmically convex.

3. NEGATIVITY OF CERTAIN TOEPLITZ-HESSENBERG DETERMINANTS

In this section, we present the negativity of certain Toeplitz—Hessenberg
determinants whose elements involve the products of the Bernoulli numbers
B, and combinatorial numbers (25;%). As a consequence, we verify that

the first guess (1.3) is true.
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Theorem 3.1. For m,r € N and £ € Ny, we have

(3.1)
Am4-1¢ Am, ¢ 0 T 0 0
Am+2.0 Qm+1,0 Qom0 0 0
Qm+3,0 42,0 Am+1,0 T 0 0
(_1)(M+1)7“ : : : - : : <0,
Um4r—24 Omir—3L Omiyr—40 °°° Am ¢ 0
Um4r—1,4 Omir—24 OAmir—3¢ “°° Omyll Am, ¢
Qm+r.0 Omyr—1, QAm4r—20 - Am420 Am410
where
2i+j . .
(32) a5 = < 9 By, 1€N, jéeN.
In particular, for £ € Ng and r € N, we have
az ¢ aie 0 s 0 0 0
asy ag g aye - 0 0 0
a4,g a37g CLQ% e 0 0 0
(3.3) : : : I <0,
ar_1¢0 Qr_2¢ Qr-3¢ -+ azy arp 0O
Qry Qr_14 GQpr_2¢ -+ A3¢ A2y A1y
Ar4-1,0 Qr ¢ Qr—1¢ - Q4y¢ Q3¢ A2y

and for £ = 0 we obtain the negativity D, < 0 in (1.3).

Proof. From [15, Theorems 1.1 and 1.2], we conclude that, for fixed ¢ € Ny,
the sequence

|
(2r +€).|B2T|7
(2r)!

is logarithmically convex in r € N. Let
2(r +m) + £]!
[2(m + 7)]!

Then the sequence a, for r € Ny is logarithmically convex, that is, the
inequality (2.5) is valid.
By virtue of Wronski’s formula (2.3) in Lemma 2.1, we obtain

(3.4) ar = |BQ(m+r)|a meN, £réeNg.

aj aq 0 s 0 0 0
a9 al aq cee 0 0 0
( 1)r as an al tee 0 0 0
by = a6+1
r—2 Qr_3 ar—4 -+ a1 ag O
Qr—1 GQp-2 Q-3 -+ A2 ap ag
Qp Gr—-1 Qp-2 -+ Qa3 az ai
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C1
C2
C3
_ (=)
- ar+1
0 Cr—2
Cr—1
Cr

for m,r € N, where

o — <2(m+r)+€

2(m+r)

Co 0

C1 Co

C2 C1
Cr—3 Cr—4
Cr—2 Cr—3
Cr—1 Cr—2

Qp
>|B2(m+7‘) = E7

0
0
0

a1
C2
€3

m e N

0 0
0 0
0 0
Co 0
c1 €
Co2 C1
£, r € Np.

Utilizing Lemma 2.2 and logarithmic convexity of the sequence (3.4), we
arrive at the negativity of the sequence b,., that is,

C1 (&)
Co C1
c3 C2
1y
Cr—2 Cr_3
Cr—1 Cr—2
Cr  Cr—1

0
o
1

Cr—4
Cr—3
Cr—2

0 0 O
0 0 O
0 0 O
c1 (O 0
C2 €1 Co
c3 Cy (1

<0,

for m,r € N. Employing the relation |Ba,| = (—=1)"t!Bsy, for r € N, and
utilizing a basic property of determinants lead to the formula (3.1).

When taking m = 1 in (3.1), we readily derive (3.3). When taking m =1
and ¢ = 0 in (3.1) or taking ¢ = 0 in (3.3), we immediately derive D, < 0.
The proof of Theorem 3.1 is complete.

Theorem 3.2. For{ € Ny andr € N, if a > 0

(3.5)

(="

aye —%
az ¢ aye
as.e az.¢
Qr_2y¢ Qr_3¢
Qr_140 Qr_2¢
Qr ¢ Qr_1.0

0
_a
Vil

aie

QAr—4.0
Ar—3.¢
Ar—2.¢

5(0+2)!

+3)(0+4)
0 0
0 0
0 0
aie —7g
a2y Aa1ye
azye azy

O

we have

o O

<0,

o
aie
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where a; j is defined by (3.2). In particular, for r € N and o > %, we have

By -« 0 .- 0 0 0
B4 B2 — s 0 0 0
Bg By By .- 0 0 0
(3.6) (-] : : S RN
Bor_y Borg Borg By —a 0
Bor_o Bor—y Bor g By By -«
Bo.  Bor_o Bor 4 Bs By Bo
and
By —By 0 - 0 0 0
By By —-By --- 0 0 0
Bg By By .- 0 0 0
(3.7) =" : : : : © 1 <0.
Bor_y Borg Borg By —By 0
Bor—o Bory Bor g By By —By
By Bar—2 Bory Bs By Bo
Proof. Let
(2r+10)
ar (2’]")! ’ 27"7 r Z 1
Since
44 0)! 2410 2
aga—a%:( —F‘)\Bﬂa—[( + )B@ > 0,

is equivalent to

|:2+f |B |:|
4+Z |B‘

5(0+2)!
T (+3)(+4)

the sequence a, for r € Ny with ag = « is strictly logarithmically convex.
By virtue of Wronski’s formula (2.3) in Lemma 2.1, we obtain

ai « 0 0 -« 0 0 O

as ai « 0 -« 0 0 O

(—1) as as ai « -« 0 0 O

bT = a7‘+1
ar—2 Qr—3 Qp—4 GQp—5 ap «a 0

Qr—1 Qr—2 Gr-3 Gr—4 az a;p «

Qp Qr—1 Gr—2 Gr_3 az az ai
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a ¢ 0 0 0 0 0
(&) C1 % 0 0 0
Coryr | e B 0ol
O/'H .
Cr—2 Cr—3 Cr—4 Cp—5 -+ (O % 0
Cr—1 Cr-2 Cr—3 Cp—4 -+ C2 C1
Cr Cr—1 Cr—2 Cp_3 -+ C3 C2 C]
awe -% 0 0 0 0 0
az ¢ aie —% 0 0 0 0
gy | 0 e e TE o 000
ol : : : : o : E
ar_2¢ Qr_3¢ Qr_4¢ GQr5¢ -+ ayp —5 0O
ar_14 Qr_24 Qr 3¢ Qr4¢ “** QG240 G1¢ —7F
Qry Qr_140 Qpr_2¢ GQr_3¢ -+ A3¢ Q20 A1y

where ¢, is defined by

9+ ¢
cT:<7’+ >\Bgry, 0,1 €N,
2r

and a; ¢ for 1 < r < r are defined by (3.2). Making use of Lemma 2.2 and
logarithmic convexity of the sequence a, for r € Ny reveals the negativity of
the sequence b,, that is, the inequality (3.5) is valid.

Letting ¢ = 0 in (3.5) results in (3.6). When letting o = 1 in (3.6) and
considering By =1 > %, we deduce (3.7).

The negativity in (3.7) can also be proved by directly combining Wronski’s
formula in Lemma 2.1 and Kaluza’s theorem in Lemma 2.2 with the result
in [15, Theorem 1.1}, which reads that the sequence | B, | for n > 0 is strictly
logarithmically convex. The proof of Theorem 3.2 is complete. U

4. PoOSITIVITY OF THE TOEPLITZ-HESSENBERG DETERMINANT 23,

In this section, by induction, and with the recursive relation of Cahill
and Narayan [3, p. 222, Theorem)] for general Hessenberg determinants, we
confirm that the second guess (1.4) is also true.

Theorem 4.1. The sequence of the Toeplitz—Hessenberg determinants ©,
for r € N satisfies the recursive relation

(41) Qr == Z ‘BQ(T—Z—FI)‘@Z—M T Z 27
/=1

where ®y = 1. Consequently, the positivity ©, > 0 for r € N in (1.4) is
true.
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Proof. Let Hy =1 and

h171 hl’g 0 ce 0 0
ha 1 ha.2 ha.3 0 0
hg,l h372 h373 ce 0 0
H, = : : : : r
hr—21 hr_22 hr_23 ... hp_o, 1 0
hr—11 hr—12 he1z oo he—1po1 heoag
hr,l hr,2 hr,S v hr,rfl hr,r

for r € N. The recursive relation of Cahill and Narayan [3, p. 222, Theorem|]
states that the sequence H, for r € Ny, with H; = hy 1, satisfies

r r—1
(4.2) He =Y (1) "hpe (H hj,jH) Hy 4,
(=1

j=¢
for r» > 2, where the empty product is understood to be 1. Setting
h&m = BQ(Z—m—f—l)v -1 < £—m <r-— 1,
in (4.2) yields

r r—1 r
Dr = (=1)"'Bap_ey) (H Bo) Dy1=_ |Boprr1) D1,

/=1 j=t =1

for » > 2, where we used the facts that By = 1 and (—1)T+1BQT > 0 for
r € N. The recursive relation (4.1) is thus proved.

Since ®g =1 and ®; > 0 for 1 < ¢ < 4, see the second line in (1.2), from
the recursive relation (4.1), by induction, we readily conclude that ©, > 0
for » € N. The proof of Theorem 4.1 is complete. O

By virtue of (4.2), we can deduce that the sequence of the Toeplitz—
Hessenberg determinants D, for r € N satisfies the recursive relation

,
(4.3) D, = — Z | Ba(r—42)| By D1,
=1

where Dy = 1. From (4.3), we cannot see the negativity D, < 0 for r € N
immediately.

The recursive relation (4.2) reveals that all the Hessenberg determinants
whose elements satisfy hj;i 1 > 0for 1 < j <r—1and (—1)Z_mhg,m > 0
for £ —m > 0 are positive.

5. AN ALTERNATIVE PROOF OF WRONSKI’S FORMULA

In this section, making use of the derivative formula (2.4) for the ratio
of two differentiable functions, we provide an alternative proof, which is
different from those in [4, 12], of Wronski’s formula [4, p. 17, Theorem 1.3]
recited in Lemma 2.1 as follows.
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The formal series (2.1) means that

o0

P (x) = ZCL[<£>TCC£7T = (r)ra, = rla,, 1€ Ny,
£=0
as x — 0, where
- z—1)(z—C+1), £>1
<Z>e=n£[0(z—m)={1’ /=0

is called the ¢-th falling factorial of z € C. The formal series (2.2) means
that

(r)

P(x) - Prti(a)
1 P(z) 0 0 0
0 Plx) P(z) 0 0
0 P'(x) (3)P'(x) 0 0
X | :
0 PU2(z (7:2 P=3)(z) P(z) 0
0 Pr—U(x) (rzl Pr=2)(z) (:_é) P'(x) P(x
0 PO() ()P V() (,2o)P"(x) (,1,)P'(x)
1 ag 0 0 0
0 aj a 0 0
0 2las ) ar 0 0
(1) .
- ar+1
0 0 (r—2)lay,—o (TIQ) (r—3)a,_3 ao 0
0 (r—1lay,— (TIl) (r—2)la,_2 (::;)al agp
0 rla, (;) (r—1lay—1 (TT2)2 as ( 1)a1
al ap 0 0 0
2'&2 %al ag 0 0
3'a3 %ag %al 0 0
ey - -
ay’ (r—2)la,_o (TI!Q a3 (Tg!2)'ar_4 ag 0
(7’ - 1)!@,«_1 (Til)!a'r—Q (ngl)!ar—ii T E::;g:al ag
rla, %arfl %aer T 0127!2)!@2 (Tii!l)!al
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aj ag 0 0 0

a9 al a 0 0

as a9 al cee 0 0

(=Dt : S

="+ | o : : AR
a6+1

ar—2 Qr-3 Qr—g -+ ap 0

Qr—1 Gr—2 Qr-3 -+ Q1 Q4o

Qp r—1 Qpr—2 -+ A2 a1

as © — 0. Substituting this result into (5.1) gives the formula (2.3). The
proof of Wronski’s formula [4, p. 17, Theorem 1.3] recited in Lemma 2.1 is
complete.

By the way, this paper is a companion of the articles [10, 11].
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