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BECK-TYPE COMPANION IDENTITIES FOR FRANKLIN’S

IDENTITY

CRISTINA BALLANTINE AND AMANDA WELCH

Abstract. In 2017, Beck conjectured that the difference in the number
of parts in all partitions of n into odd parts and the number of parts
in all strict partitions of n is equal to the number of partitions of n
whose set of even parts has one element, and also to the number of
partitions of n with exactly one part repeated. Andrews proved the
conjecture using generating functions. Beck’s identity is a companion
identity to Euler’s identity. The theorem has been generalized (with
a combinatorial proof) by Yang to a companion identity to Glaisher’s
identity. Franklin generalized Glaisher’s identity, and in this article,
we provide a Beck-type companion identity to Franklin’s identity and
prove it both analytically and combinatorially. Andrews’ and Yang’s
respective theorems fit naturally into this very general frame. We also
discuss how Franklin’s identity and the companion Beck-type identities
can be further generalized to Euler pairs of any order.

1. Introduction

Let n be a non-negative integer. A partition λ of n is a non-increasing
sequence of positive integers λ = (λ1, λ2, . . . , λℓ) that add up to n, i.e.,

ℓ∑
i=1

λi = n.

The numbers λi are called the parts of λ and n is called the size of λ.
The number of parts of the partition is called the length of λ and is denoted
by ℓ(λ).

We will also use the exponential notation for parts in a partition. The
exponent of a part is the multiplicity of the part in the partition. For
example, (52, 4, 33, 12) denotes the partition (5, 5, 4, 3, 3, 3, 1, 1). Mostly, we
will use the exponential notation when referring to rectangular partitions,
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i.e., partitions in which all parts are equal. Thus, we write (mi) for the
partition consisting of i parts equal to m.

It is customary to denote by p(n) the number of partitions of n. We denote
by p(n | X) the number of partitions of n satisfying condition X. Partition
identities are statements asserting that, for all non-negative integers n,

(1.1) p(n | X) = p(n | Y ).

A Beck-type identity for (1.1) is a companion identity asserting that the
difference between the number of parts in all partitions of n satisfying con-
dition X and the number of parts in all partitions of n satisfying condition
Y equals c p(n | X ′) and also c p(n | Y ′), where c is some constant related to
the original identity, and X ′, respectively Y ′, is a condition that is a small
relaxation of condition X, respectively Y . This idea appeared first in [1],
where George Beck conjectured companion identities to Euler’s identity.

In the remainder of the introduction, we give a brief history of the de-
velopment of Beck-type identities in recent years and introduce companion
identities to Franklin’s identity. Before we continue, we note that in the
introduction and in the notation we use, there is substantial overlap with
[7]. However, the essential difference between the results of that article and
those of the current article is that the method of proof used here can be
generalized to Euler pairs while the method used in [7] gives a modular
refinement of the identity that is very interesting from a number theoretic
point of view but does not have a natural generalization to Euler pairs.

Next, we introduce notation used throughout the article.
We denote by Oj,r(n), respectively O≤j,r(n), the set of partitions of n

with exactly j, respectively at most j, different parts (possibly repeated)
congruent to 0 (mod r) and by Dj,r(n), respectively D≤j,r(n), the set of
partitions of n in which exactly j, respectively at most j, different parts
are repeated at least r times and all other parts appear no more than r− 1
times.

Euler’s partition identity states that for all non-negative integers n,

(1.2) |O0,2(n)| = |D0,2(n)|.

Glaisher’s identity generalizes Euler’s identity and states that for all non-
negative integers n and all integers r ≥ 2,

(1.3) |O0,r(n)| = |D0,r(n)|.

In 1883, Franklin [9] proved the generalization of Glaisher’s identity: for
all non-negative integers n, j and all integers r ≥ 2,

(1.4) |Oj,r(n)| = |Dj,r(n)|.

George Beck conjectured a companion identity to Euler’s partition iden-
tity (1.2), namely

(1.5) |O1,2(n)| = |D1,2(n)| = b(n),
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where b(n) is the difference between the number of parts in all partitions
in O0,2(n) and the number of parts in all partitions in D0,2(n). Andrews
proved these identities in [3] using generating functions. Since then, in a
fairly short time, many articles appeared giving generalizations of this result
as well as combinatorial proofs in many cases. See for example [10, 16, 5,
11, 12, 13, 4, 6, 8]. Some authors have started referring to these companion
identities as Beck-type identities. Some of the earlier generalizations [16]
gave companion identities to Glaisher’s identity (1.3). Let bj,r(n) denote
the difference between the number of parts in all partitions in Oj,r(n) and
the number of parts in all partitions in Dj,r(n). Then the Beck-type identity
accompanying (1.3) introduced in [16] is

(1.6) |O1,r(n)| = |D1,r(n)| =
1

r − 1
b0,r(n).

The main result of this article gives a Beck-type companion identity for
Franklin’s identity (1.4). Let b≤j,r(n) denote the difference between the
number of parts in all partitions in O≤j,r(n) and the number of parts in all
partitions in D≤j,r(n), i.e.,

b≤j,r(n) =
∑

λ∈O≤j,r(n)

ℓ(λ)−
∑

λ∈D≤j,r(n)

ℓ(λ).

Theorem 1.1. Let n, j, r be non-negative integers with r ≥ 2. Then,

1

r − 1
b≤j,r(n) = (j + 1)|Oj+1,r(n)| = (j + 1)|Dj+1,r(n)|.

The case j = 0 gives (1.6). Theorem 1.1 is obtained from the repeated
application of the next theorem for which we give both analytic and combi-
natorial proofs in Section 2.

Theorem 1.2. For all non-negative integers n, j and all integers r ≥ 2, we
have

1

r − 1
bj,r(n) = (j + 1)|Oj+1,r(n)| − j|Oj,r(n)|(1.7)

= (j + 1)|Dj+1,r(n)| − j|Dj,r(n)|.(1.8)

Note that Theorem 1.2 itself can be viewed as a generalization of (1.6).
However, based on numerical evidence, it appears that for j ≥ 1, the right
hand side of (1.7), and thus also of (1.8), is non-positive.

We remark that while [12] gives another generalization of (1.6) involv-
ing the number of parts in Oj,r(n) (but not in Dj,r(n)), their result does
not lead to a natural generalization as in Theorem 1.1 nor to the further
generalization to Euler pairs described in Section 4.

In our combinatorial proofs, we use the following two operations on par-
titions. Given partitions λ = (λ1, λ2, . . . , λℓ(λ)) and µ = (µ1, µ2, . . . , µℓ(µ)),
the partition λ ∪ µ is the partition whose parts are precisely the parts of
λ and µ, i.e., λ1, λ2, . . . , λℓ(λ), µ1, µ2, . . . , µℓ(µ), arranged in non-increasing
order. The partition λ \ µ is defined only if all parts of µ (considered with
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multiplicity) are also parts of λ. Then, λ \ µ is the partition obtained from
λ by removing all parts of µ (with multiplicity).

2. Proof of Theorem 1.2

2.1. Analytic proof. For the remainder of this section, fix an integer r ≥ 2.
Denote by Oj,r(m,n), respectively Dj,r(m,n), the subset of partitions in
Oj,r(n), respectively Dj,r(n), with m parts. We start with the trivariate
generating functions for the sequences {|Oj,r(m,n)|} and {|Dj,r(m,n)|}. Let
z, w, and q be complex variables of modulus less than 1 so that all series
converge absolutely. We define

Or(z, w, q) :=

∞∑
n=0

∞∑
m=0

∞∑
j=0

|Oj,r(m,n)|zmwjqn,

and

Dr(z, w, q) :=

∞∑
n=0

∞∑
m=0

∞∑
j=0

|Dj,r(m,n)|zmwjqn.

We have

Or(z, w, q)

=
∞∏
n=1

(
1 + wzqrn + wz2q2(rn) + wz3q3(rn) + · · ·

)
·

∞∏
n=1

n̸≡0 (mod r)

1

1− zqn

=
∞∏
n=1

(
1 +

wzqrn

1− zqrn

)
·

∞∏
n=1

n̸≡0 (mod r)

1

1− zqn
,

and

Dr(z, w, q)

=
∞∏
n=1

(
1 + zqn + z2q2n + · · ·+ zr−1q(r−1)n + wzrqrn + wzr+1q(r+1)n + · · ·

)
=

∞∏
n=1

(
1 + zqn + z2q2n + · · ·+ zr−1q(r−1)n

)(
1 + wzrqrn + wz2rq(2r)n + · · ·

)
=

∞∏
n=1

(
1 +

wzrqrn

1− zrqrn

)
·

∞∏
n=1

1− zrqrn

1− zqn
.

Clearly,

∞∑
n=0

∞∑
j=0

bj,r(n)w
jqn =

∂

∂z

∣∣∣∣
z=1

(
Or(z, w, q)−Dr(z, w, q)

)
.
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Using logarithmic differentiation,

∂

∂z

∣∣∣∣
z=1

Or(z, w, q)

=

∞∏
n=1

(
1 +

wqrn

1− qrn

)
·

∞∏
n=1

n ̸≡0 (mod r)

1

1− qn

·

 ∞∑
m=1

wqmr

(1− qmr)(1− (1− w)qmr)
+

∞∑
m=1

m ̸≡0 (mod r)

qm

1− qm

 ,

and

∂

∂z

∣∣∣∣
z=1

Dr(z, w, q)

=

∞∏
n=1

(
1 +

wqrn

1− qrn

)
·

∞∏
n=1

1− qrn

1− qn

·

( ∞∑
m=1

wrqmr

(1− qmr)(1− (1− w)qmr)
+

∞∑
m=1

(r − 1)q(r+1)m + qm − rqrm

(1− qm)(1− qrm)

)

=

∞∏
n=1

(
1 +

wqrn

1− qrn

)
·

∞∏
n=1

1− qrn

1− qn

·

( ∞∑
m=1

wrqmr

(1− qmr)(1− (1− w)qmr)
+

qm

1− qm
− qrm

1− qrm
− (r − 1)qrm

1− qrm

)
.

It follows that

∞∑
n=0

∞∑
j=0

bj,r(n)w
jqn = (1− r)

∞∏
n=1

(
1 +

wqrn

1− qrn

) ∞∏
n=1

n̸≡0 (mod r)

1

1− qn

·

( ∞∑
m=1

(
wqmr

(1− qmr)(1− (1− w)qmr)
− qrm

1− qrm

))
.

Since

wqmr

(1− qmr)(1− (1− w)qmr)
=

1

1− qrm
− 1

1− (1− w)qrm
,

we have

∞∑
m=1

(
wqmr

(1− qmr)(1− (1− w)qmr)
− qrm

1− qrm

)
=

∞∑
m=1

−(1− w)qmr

1− (1− w)qmr
.
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Thus,
∞∑
n=0

∞∑
j=0

bj,r(n)w
jqn

= (r − 1)
∞∏
n=1

(
1 +

wqrn

1− qrn

) ∞∏
n=1

n̸≡0 (mod r)

1

1− qn

( ∞∑
m=1

(1− w)qmr

1− (1− w)qmr

)

= (r − 1)(1− w)
∞∑

m=1

 qmr

1− qmr

∞∏
n=1
n̸=m

(
1 +

wqrn

1− qrn

)
·

∞∏
n=1

n̸≡0 (mod r)

1

1− qn


= (r − 1)(1− w)

∞∑
n=0

∞∑
j=0

(j + 1)|Oj+1,r(n)|wjqn

= (r − 1)

∞∑
n=0

∞∑
j=0

((j + 1)|Oj+1,r(n)| − j|Oj,r(n)|)wjqn.

To see the second to last equality above, notice that the exponent of q
coming from the term

qmr

1− qmr
,

keeps track of the part mr (with multiplicity) of a partition λ in Oj+1,r(n)
and the exponent of q coming from the first product keeps track of the other
j different parts of λ divisible by r and it is weighted by wj . The exponent
of q in the second product keeps track of the parts of λ not divisible by r.
Then, λ contributes j + 1 to the coefficient of wjqn.

2.2. Combinatorial proof. To begin, we briefly recall Franklin’s bijective
proof of (1.4). Denote Glaisher’s bijection by ψ : O0,r(n) → D0,r(n). Then
Franklin’s bijection φ : Oj,r(n) → Dj,r(n) is defined as follows. Let

λ ∈ Oj,r(n). Suppose the parts of λ divisible by r are (mir)
ki withmi, ki > 0

for 1 ≤ i ≤ j, and the mi are distinct. Let

λ = λ \
j⋃

i=1

(mir)
ki ,

be the partition obtained from λ by removing all parts equal to mir for
1 ≤ i ≤ j. Then

λ ∈ O0,r

(
n−

j∑
i=1

kimir

)
.

Let

µ = ψ(λ) ∈ D0,r

(
n−

j∑
i=1

kimir

)
,
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be the image of λ under Glaisher’s bijection. Finally, let
µ = µ ∪ ((m1)

k1r, (m2)
k2r, . . . , (mj)

kjr). Since the parts mi, 1 ≤ i ≤ j, are
all distinct and they are the only parts repeated at least r times, we have
that µ ∈ Dj,r(n). Set φ(λ) = µ.

To describe the inverse mapping, let µ ∈ Dj,r(n). Suppose the j different
parts that are repeated at least r times are mi, 1 ≤ i ≤ j, and each mi

has multiplicity ai in µ. For each 1 ≤ i ≤ j, write ai = kir + di with
0 ≤ di ≤ r − 1, and remove kir parts equal to mi from µ to obtain a
partition

µ ∈ D0,r

(
n−

j∑
i=1

kimir

)
.

Let

λ = ψ−1(µ) ∈ O0,r

(
n−

j∑
i=1

kimir

)
,

be the image of µ under the inverse of Glaisher’s bijection. Let

λ = λ ∪ ((m1r)
k1 , (m2r)

k2 , . . . , (mjr)
kj ).

Clearly, λ ∈ Oj,r(n). Then φ
−1(µ) = λ.

Recently, Xiong and Keith [15] introduced a new beautiful bijection to
prove Glaisher’s identity. Clearly, it could have been used above instead of
Glaisher’s bijection.

In [8], we used the Xiong–Keith bijection to give a combinatorial proof
for (1.6), which is the case j = 0 of (1.7). Note that combinatorial proofs
of (1.6) using ideas similar to Glaisher’s bijection are given in [16] and
[6]. In this subsection, we use the combinatorial proof of (1.6) to give a
combinatorial proof of (1.7). This, combined with Franklin’s bijection, gives
a combinatorial proof of (1.8). At this time, we do not know how to prove
(1.8) combinatorially directly using the Xiong–Keith bijection, without using
Franklin’s bijection.

To count the difference in the number of parts in all partitions in Oj,r(n)
and the number of parts in all partitions in Dj,r(n), we use Franklin’s bijec-
tion φ : Oj,r(n) → Dj,r(n) described above. Then,

(2.1) bj,r(n) =
∑

λ∈Oj,r(n)

ℓ(λ)−
∑

λ∈Dj,r(n)

ℓ(λ) =
∑

λ∈Oj,r(n)

(ℓ(λ)− ℓ(φ(λ)).

Let λ be a partition in Oj,r(n). Suppose the j different parts of λ that

are congruent to 0 mod r are (mir)
ki with mi, ki > 0, for i = 1, 2, . . . , j, and

mi distinct. When

λ = λ

j⋃
i=1

(mir)
ki ,
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is mapped to

φ(λ) = ψ(λ)

j⋃
i=1

(mi)
kir,

we obtain a contribution of

(r − 1)

(
−

j∑
i=1

ki

)
,

to ℓ(λ) − ℓ(φ(λ)) from mapping (mir)
ki to (mi)

kir, i = 1, 2, . . . , j, and a
contribution of (ℓ(λ)− ℓ(ψ(λ))). Summing this over all possible λ ∈ Oj,r(n)

whose parts congruent to 0 mod r are precisely (mir)
ki , for i = 1, 2, . . . , j,

results in a contribution of

(r − 1)

(
−

j∑
i=1

ki

)∣∣∣∣∣O0,r

(
n−

j∑
i=1

rmiki

)∣∣∣∣∣+ b0,r

(
n−

j∑
i=1

rmiki

)
.

Using (1.6), which has several combinatorial proofs, the above is equal to

(r − 1)

(
−

j∑
i=1

ki

)∣∣∣∣∣O0,r

(
n−

j∑
i=1

rmiki

)∣∣∣∣∣+ (r − 1)

∣∣∣∣∣O1,r

(
n−

j∑
i=1

rmiki

)∣∣∣∣∣ .
Next, we reinterpret

O0,r

(
n−

j∑
i=1

rmiki

)
,

and

O1,r

(
n−

j∑
i=1

rmiki

)
.

First, note that

ζ : µ 7→ µ

j⋃
i=1

(mir)
ki ,

gives a bijection between

O0,r

(
n−

j∑
i=1

rmiki

)
,

and the subset of partitions in Oj,r(n) whose parts congruent to 0 (mod r)

are precisely (mir)
ki , 1 ≤ i ≤ j.

Next, we consider ζ as a mapping on

O1,r

(
n−

j∑
i=1

rmiki

)
.
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If

µ ∈ O1,r

(
n−

j∑
i=1

rmiki

)
,

then ζ(µ) fits in exactly one of the following two cases.

(i) If mtr is a part of µ for some 1 ≤ t ≤ j, then ζ(µ) ∈ Oj,r(n) and
it contains each part mir, i ̸= t, with multiplicity ki, and part mtr
with multiplicity larger than kt, or

(ii) If µ does not contain any mir as a part, then ζ(µ) ∈ Oj+1,r(n) and
it contains each part mir, 1 ≤ i ≤ j with multiplicity ki.

We obtain a bijection between

O1,r

(
n−

j∑
i=1

rmiki

)
,

and the union of the subsets of Oj,r(n), respectively Oj+1,r(n), described in
(i), respectively (ii), above.

To obtain the contribution of all partitions λ ∈ Oj,r(n) to (2.1), we con-
sider this process for all possible j-tuples of positive integers
m = (m1,m2, . . . ,mj) with mi distinct, and k = (k1, k2, . . . , kj).

For simplicity, we write bj,r(n) = A+B, where

A := (r − 1)
∑
m,k

(
−

j∑
i=1

ki

)∣∣∣∣∣O0,r

(
n−

j∑
i=1

rmiki

)∣∣∣∣∣ ,
and

B := (r − 1)
∑
m,k

∣∣∣∣∣O1,r

(
n−

j∑
i=1

rmiki

)∣∣∣∣∣ .
We determine the contribution of each partition η ∈ Oj,r(n) ∪ Oj+1,r(n)

to A+B.
Case 1: η ∈ Oj,r(n).

Suppose (mir)
ki , 1 ≤ i ≤ j, are the parts congruent to 0 (mod r) in η

and let m(η) be the total number of parts congruent to 0 (mod r) in η,
i.e.,

m(η) =

j∑
i=1

ki.

Then η contributes −(r − 1)m(η) to A.
The contribution of η to B comes from (i) above. For each choice of t,
1 ≤ t ≤ j, and ht, 1 ≤ ht ≤ kt − 1, the partition η can be written as

η = µ
⋃
i ̸=t

(mir)
ki ∪ ((mtr)

ht),
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with

µ ∈ O1,r

n− rmtht −
∑
i ̸=t

rmiki

 ,

and mtr is a part of µ with multiplicity kt − ht. Thus, η contributes

(r − 1)

j∑
i=1

(ki − 1) = (r − 1)(m(η)− j),

to B.
Case 2: η ∈ Oj+1,r(n).

Suppose (mir)
ki , 1 ≤ i ≤ j + 1, are the parts congruent to 0 (mod r) in

η. The partition η does not contribute to A. The contribution of η to B
comes from (ii) above. For each choice of t, 1 ≤ t ≤ j + 1, the partition
η can be written as

η = µ
⋃
i ̸=t

(mir)
ki ,

with

µ ∈ O1,r(n−
∑
i ̸=t

rmiki),

where mtr is a part of µ with multiplicity kt and none of mir, i ̸= t, are
parts of µ. Thus, η contributes (r − 1)(j + 1) to B.
In total, we have

bj,r(n) = (r − 1)

 ∑
η∈Oj,r(n)

−m(η) +
∑

η∈Oj,r(n)

(m(η)− j) +
∑

η∈Oj+1,r(n)

(j + 1)


= (r − 1)(−j|Oj,r(n)|+ (j + 1)|Oj+1,r(n)|).

3. A second Beck-type identity

Let Tj,r(n) denote the number of different parts with multiplicity between
r + 1 and 2r − 1 in all partitions in Dj,r(n). Let b

′
j,r(n) be the difference in

the number of different parts in Dj,r(n) and the number of different parts

in Oj,r(n). If we denote by ℓ(λ) the number of different parts in λ, then

b′j,r(n) =
∑

λ∈Dj,r(n)

ℓ(λ)−
∑

λ∈Oj,r(n)

ℓ(λ).

In [16], Yang showed that

(3.1) b′0,r(n) = T1,r(n).

This statement generalizes to a companion identity to Franklin’s identity as
follows. Denote by b′≤j,r(n) the difference in the number of different parts in

all partitions in D≤j,r(n) and the number of different parts in all partitions
in O≤j,r(n).
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Theorem 3.1. Let n, j, r be non-negative integers with r ≥ 2. Then,

b′≤j,r(n) = Tj+1,r(n).

In [7], Theorem 3.1 is proved by repeated application of the next theorem.

Theorem 3.2. For all non-negative integers n, j, r with r ≥ 2, we have

b′j,r(n) = Tj+1,r(n)− Tj,r(n).

Proof. For analytic and combinatorial proofs that are similar to the proofs
of Theorem 2 we refer the reader to [7]. □

4. Further Generalizations

Let S1 and S2 be subsets of the positive integers. We define Õj,r(n) to
be the set of partitions of n with exactly j different parts from rS1 and all

other parts from S2 and D̃j,r(n) to be the set of partitions of n with parts
in S1 and exactly j different parts repeated at least r times. Subbarao [14]
proved the following theorem.

Theorem 4.1. Let r ≥ 2. Then, |Õ0,r(n)| = |D̃0,r(n)| for all non-negative
integers n if and only if rS1 ⊆ S1 and S2 = S1 \ rS1.

Andrews [2] first discovered this result for r = 2 and called a pair (S1, S2)

such that |Õ0,2(n)| = |D̃0,2(n)| an Euler pair since the pair S1 = N and
S2 = 2N − 1 gives Euler’s identity. By analogy, Subbarao called a pair

(S1, S2) such that |Õ0,r(n)| = |D̃0,r(n)| an Euler pair of order r. In [6], we
showed that, if (S1, S2) is an Euler pair, the identity of Theorem 4.1 has
companion Beck-type identities analogous to (1.6) and (3.1).

It is straightforward to show that if (S1, S2) is an Euler pair of order r,

then |Õj,r(n)| = |D̃j,r(n)|. A similar argument to [6] establishes analogues
of Theorems 1.2 and 3.2 and thus analogues of Theorems 1.1 and 3.1 for

all Euler pairs of order r. Denote by b̃j,r(n) the difference in the number of

parts in Õj,r(n) and the number of parts in D̃j,r(n). Denote by b̃′j,r(n) the

analogous difference of the number of different parts. Define b̃≤j,r(n) and

b̃′≤j,r(n) in analogy to b≤j,r(n) and b
′
≤j,r(n). Let T̃j,r(n) denote the number

of parts with multiplicity between r+1 and 2r−1 in all partitions in D̃j,r(n).
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Theorem 4.2. For all non-negative integers n, j and all integers r ≥ 2, we
have

1

r − 1
b̃≤j,r(n) = (j + 1)|Õj+1,r(n)|

= (j + 1)|D̃j+1,r(n)|.
1

r − 1
b̃j,r(n) = (j + 1)|Õj+1,r(n)| − j|Õj,r(n)|

= (j + 1)|D̃j+1,r(n)| − j|D̃j,r(n)|.

b̃′≤j,r(n) = T̃j+1,r(n).

b̃′j,r(n) = T̃j+1,r(n)− T̃j,r(n).
Since there are infinite families of Euler pairs of order r, we obtain infinite

families of new Beck-type identities. Below we give some examples of pairs
for which Theorem 4.2 gives new Beck-type identities.

The following pairs (S1, S2) are Euler pairs (of order 2).

(i) S1 = {m ∈ N : m ̸≡ 0 (mod 3)}; S2 = {m ∈ N : m ≡ 1, 5 (mod 6)}.
In this case, the identity |Õ0,2(n)| = |D̃0,2(n)| is known as Schur’s
identity.

(ii) S1 = {m ∈ N : m ≡ 2, 4, 5 (mod 6)};
S2 = {m ∈ N : m ≡ 2, 5, 11 (mod 12)}.
In this case, the identity |Õ0,2(n)| = |D̃0,2(n)| is known as Göllnitz’s
identity.

(iii) S1 = {m ∈ N : m = x2 + 2y2 for some x, y ∈ Z};
S2 = {m ∈ N : m ≡ 1(mod 2) and m = x2+2y2 for some x, y ∈ Z}.

The following is an Euler pair of order 3.

(iv) S1 = {m ∈ N : m = x2 + xy + y2 for some x, y ∈ Z};
S2 = {m ∈ N : ∃x, z ∈ Z, gcd(m, 3) = 1 and m = x2 + xy + y2}.

The following pairs (S1, S2) are Euler pairs of order r.

(v) S1 = {m ∈ N : m ≡ ±r (mod r(r + 1))};
S2 = {m ∈ N :m ≡ ±r (mod r(r + 1)) and

m ̸≡ ±r2
(
mod r2(r + 1)

)
}.

(vi) S1 = {m ∈ N : m ≡ ±r,−1 (mod r(r + 1))};
S2 = {m ∈ N :m ≡ ±r,−1 (mod r(r + 1)) and

m ̸≡ ±r2,−r
(
mod r2(r + 1)

)
}.

If r = 2, this Euler pair becomes Göllnitz’s pair in (ii) above.
(vii) Let r + 1 be a prime.

S1 = {m ∈ N : m ̸≡ 0 (mod r + 1)};
S2 = {m ∈ N : m ̸≡ tr, t(r + 1)

(
mod r2 + r

)
for 1 ≤ t ≤ r}.

If r = 2, this Euler pair becomes Schur’s pair in (i) above.
(viii) Let p be a prime and r a quadratic residue (mod p).

S1 = {m ∈ N : m quadratic residue (mod p)};
S2 = {m ∈ N : m ̸≡ 0 (mod r) and m quadratic residue (mod p)}.
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