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COMBINATORIAL PROOF OF THE GIRARD-WARING

FORMULA

�UKASZ BO�YK

Abstract. The well-known and celebrated identity of Girard (1629)
and Waring (1762) states that

xn + yn =

⌊n/2⌋∑
m=0

(−1)m
n

n−m

(
n−m

m

)
(xy)m (x+ y)n−2m

and can be easily proven algebraically (see H.W. Gould, The Girard�

Waring power sum formulas for symmetric functions and Fibonacci se-

quences, Fibonacci Quart. 37 (1999), no. 2, 135�140). In this note, we
provide a combinatorial proof of this identity.

Fix a natural number n ≥ 2 and consider graphs whose set of vertices is
Zn := {0, 1, . . . , n− 1} and whose set of edges E satis�es

E ⊆ {{i, i+ 1} : i ∈ Zn}, ∀e1,e2∈E e1 ̸= e2 =⇒ e1 ∩ e2 = ∅,

where the addition is taken modulo n (so basically n ≡ 0, −1 ≡ n− 1). Call
such graph an n-division. This is just an arrangement of n objects in a cycle
with some nonoverlapping pairs of adjacent elements connected. Clearly,
|E| ≤ ⌊n/2⌋.
Lemma 0.1. For m ≤ ⌊n/2⌋ the number of n-divisions with |E| = m equals

n

n−m

(
n−m

m

)
.

Proof. Let us count n-divisions according to whether {0, n − 1} is an edge.
Suppose that {0, n − 1} /∈ E in some n-division and consider a sequence
(ai)

n−1
i=0 ∈ {0, 1}n de�ned by

ai =

{
0, if ∃e∈E i ∈ e,
1, otherwise.

Then the sequence (an) consists of m blocks `00' and n− 2m blocks `1'. On
the other hand, every such sequence corresponds to exactly one n-division.
Thus the number of n-divisions in this case equals

(
n−m
m

)
.

Similarly if {0, n − 1} ∈ E in some n-division then consider a sequence
(ai)

n−2
i=1 ∈ {0, 1}n−2 de�ned as above. Now we obtain a sequence with m− 1

Received by the editors September 16, 2021, and in revised form December 3, 2021.

This work is licensed under a Creative Commons �Attribution-
NoDerivatives 4.0 International� license.

20

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


COMBINATORIAL PROOF OF THE GIRARD-WARING FORMULA 21

blocks `00' and n−2m blocks `1' and again every such sequence corresponds
to exactly one n-division. We get additional

(
n−m−1
m−1

)
graphs, hence the �nal

answer is(
n−m

m

)
+

(
n−m− 1

m− 1

)
=

(
n−m

m

)
+

m

n−m

(
n−m

m

)
=

n

n−m

(
n−m

m

)
as desired. □

Let c ≥ 1 be a natural number and let G = (V,E) be an n-division with
m edges. Call a c-coloring a function f : V → Zc+1 such that

∀{i,j}∈E f(i) = f(j) ̸= 0.

The number of c-colorings of G is clearly equal to cm(c + 1)n−2m, as each
edge is to be colored with one of c colors and each of the remaining vertices
with one of c + 1 colors. Call a pair (G, f) with G being an n-division and
f being a c-coloring on G an (n, c)-division.

Theorem 0.2. Fix n ≥ 2, c ≥ 1. Let C be the set of all (n, c)-divisions
with 1 ≤ |f−1({0})| ≠ n or |E| ≥ 1. Then C consists of equally many

(n, c)-divisions with 2 | |E| and (n, c)-divisions with 2 ∤ |E|.

Proof. We will de�ne a �xed-point-free involution Φ: C → C such that in
every pair {(G, f),Φ(G, f)} the numbers of edges di�er by one (and thus
have di�erent parity). Let (G, f) ∈ C be an (n, c)-division and let

k = min{i ∈ Zn : {i− 1, i} ∈ E or (f(i− 1) = 0 ̸= f(i) and {i, i+ 1} /∈ E)}.

Such a k exists as elements of C with |E| = 0 have at least one vertex of color
0 and at least one vertex of a di�erent color. De�ne Φ(G, f) = ((V,E′), f ′):

E′ =

{
E \ {k − 1, k}, if {k − 1, k} ∈ E,
E ∪ {k − 1, k}, otherwise,

f ′(i) =

 0 if i = k − 1 and {k − 1, k} ∈ E,
f(k) if i ∈ {k − 1, k} and {k − 1, k} /∈ E,
f(i), otherwise.

So k is the least vertex which is either a non-0-colored vertex not belonging to
an edge and preceded by a 0-colored vertex or the least edge vertex (being the
greater among two ends); and the function Φ swaps the two options (keeping
the color of k and all the remaining structure of an (n, c)-division). It is clear
that a function de�ned in such a way induces a matching of elements of C
with an even number of edges and elements of C with an odd number of
edges. □

Corollary 0.3. Fix n ≥ 2, c ≥ 1. Then

(0.1) cn + 1 =

⌊n/2⌋∑
m=0

(−1)m
n

n−m

(
n−m

m

)
cm(c+ 1)n−2m.
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Figure 1. Examples of pairs induced by Φ with (n, c) =
(9, 2) (white, yellow, and blue correspond to colors 0, 1, and
2, respectively).

Proof. Note that (n, c)-divisions not belonging to C are exactly the ones
with |E| = 0 and either none of the vertices are 0-colored or all of them
are. Thus the number of such divisions is cn + 1. Note that the number of
(n, c)-divisions with m edges is equal to

n

n−m

(
n−m

m

)
cm(c+ 1)n−2m,

so by the previous theorem, we get∑
2∤m

n

n−m

(
n−m

m

)
cm(c+ 1)n−2m

= −(cn + 1) +
∑
2|m

n

n−m

(
n−m

m

)
cm(c+ 1)n−2m,

which is equivalent to the desired identity. □

Corollary 0.4. The equation in the abstract holds for all x, y ∈ R \ {0} and

all n ≥ 2.

Proof. Fix n ≥ 2. The identity (0.1) holds for all (i.e., more than n) natural
c ≥ 1. But it is an identity of polynomials of variable c and degree n.
Thus the identity holds for all real c ̸= 0. In particular, taking c = x/y
and multiplying both sides of identity (0.1) by yn, we obtain the desired
result. □

Remark. All the identities remain valid for n = 1 or xy = 0.
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