Contributions to Discrete Mathematics

COMBINATORIAL PROOF OF THE GIRARD-WARING FORMULA

ŁUKASZ BOŻYK

Abstract

The well-known and celebrated identity of Girard (1629) and Waring (1762) states that $$
x^{n}+y^{n}=\sum_{m=0}^{\lfloor n / 2\rfloor}(-1)^{m} \frac{n}{n-m}\binom{n-m}{m}(x y)^{m}(x+y)^{n-2 m}
$$ and can be easily proven algebraically (see H.W. Gould, The GirardWaring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart. 37 (1999), no. 2, 135-140). In this note, we provide a combinatorial proof of this identity.

Fix a natural number $n \geq 2$ and consider graphs whose set of vertices is $\mathbb{Z}_{n}:=\{0,1, \ldots, n-1\}$ and whose set of edges E satisfies

$$
E \subseteq\left\{\{i, i+1\}: i \in \mathbb{Z}_{n}\right\}, \quad \forall_{e_{1}, e_{2} \in E} e_{1} \neq e_{2} \Longrightarrow e_{1} \cap e_{2}=\varnothing,
$$

where the addition is taken modulo n (so basically $n \equiv 0,-1 \equiv n-1$). Call such graph an n-division. This is just an arrangement of n objects in a cycle with some nonoverlapping pairs of adjacent elements connected. Clearly, $|E| \leq\lfloor n / 2\rfloor$.
Lemma 0.1. For $m \leq\lfloor n / 2\rfloor$ the number of n-divisions with $|E|=m$ equals

$$
\frac{n}{n-m}\binom{n-m}{m}
$$

Proof. Let us count n-divisions according to whether $\{0, n-1\}$ is an edge. Suppose that $\{0, n-1\} \notin E$ in some n-division and consider a sequence $\left(a_{i}\right)_{i=0}^{n-1} \in\{0,1\}^{n}$ defined by

$$
a_{i}= \begin{cases}0, & \text { if } \exists_{e \in E} i \in e \\ 1, & \text { otherwise }\end{cases}
$$

Then the sequence (a_{n}) consists of m blocks ' 00 ' and $n-2 m$ blocks ' 1 '. On the other hand, every such sequence corresponds to exactly one n-division. Thus the number of n-divisions in this case equals $\binom{n-m}{m}$.

Similarly if $\{0, n-1\} \in E$ in some n-division then consider a sequence $\left(a_{i}\right)_{i=1}^{n-2} \in\{0,1\}^{n-2}$ defined as above. Now we obtain a sequence with $m-1$

Received by the editors September 16, 2021, and in revised form December 3, 2021.
This work is licensed under a Creative Commons "AttributionNoDerivatives 4.0 International" license.
blocks ' 00 ' and $n-2 m$ blocks ' 1 ' and again every such sequence corresponds to exactly one n-division. We get additional $\binom{n-m-1}{m-1}$ graphs, hence the final answer is

$$
\binom{n-m}{m}+\binom{n-m-1}{m-1}=\binom{n-m}{m}+\frac{m}{n-m}\binom{n-m}{m}=\frac{n}{n-m}\binom{n-m}{m}
$$

as desired.
Let $c \geq 1$ be a natural number and let $G=(V, E)$ be an n-division with m edges. Call a c-coloring a function $f: V \rightarrow \mathbb{Z}_{c+1}$ such that

$$
\forall_{\{i, j\} \in E} f(i)=f(j) \neq 0
$$

The number of c-colorings of G is clearly equal to $c^{m}(c+1)^{n-2 m}$, as each edge is to be colored with one of c colors and each of the remaining vertices with one of $c+1$ colors. Call a pair (G, f) with G being an n-division and f being a c-coloring on G an (n, c)-division.

Theorem 0.2. Fix $n \geq 2, c \geq 1$. Let \mathcal{C} be the set of all (n, c)-divisions with $1 \leq\left|f^{-1}(\{0\})\right| \neq n$ or $|E| \geq 1$. Then \mathcal{C} consists of equally many (n, c)-divisions with $2||E|$ and (n, c)-divisions with $2 \nmid| E \mid$.

Proof. We will define a fixed-point-free involution $\Phi: \mathcal{C} \rightarrow \mathcal{C}$ such that in every pair $\{(G, f), \Phi(G, f)\}$ the numbers of edges differ by one (and thus have different parity). Let $(G, f) \in \mathcal{C}$ be an (n, c)-division and let
$k=\min \left\{i \in \mathbb{Z}_{n}:\{i-1, i\} \in E\right.$ or $(f(i-1)=0 \neq f(i)$ and $\left.\{i, i+1\} \notin E)\right\}$.
Such a k exists as elements of \mathcal{C} with $|E|=0$ have at least one vertex of color 0 and at least one vertex of a different color. Define $\Phi(G, f)=\left(\left(V, E^{\prime}\right), f^{\prime}\right)$:

$$
\begin{aligned}
E^{\prime} & = \begin{cases}E \backslash\{k-1, k\}, & \text { if }\{k-1, k\} \in E, \\
E \cup\{k-1, k\}, & \text { otherwise },\end{cases} \\
f^{\prime}(i) & = \begin{cases}0 & \text { if } i=k-1 \text { and }\{k-1, k\} \in E, \\
f(k) & \text { if } i \in\{k-1, k\} \text { and }\{k-1, k\} \notin E, \\
f(i), & \text { otherwise. }\end{cases}
\end{aligned}
$$

So k is the least vertex which is either a non-0-colored vertex not belonging to an edge and preceded by a 0 -colored vertex or the least edge vertex (being the greater among two ends); and the function Φ swaps the two options (keeping the color of k and all the remaining structure of an (n, c)-division). It is clear that a function defined in such a way induces a matching of elements of \mathcal{C} with an even number of edges and elements of \mathcal{C} with an odd number of edges.

Corollary 0.3. Fix $n \geq 2, c \geq 1$. Then

$$
\begin{equation*}
c^{n}+1=\sum_{m=0}^{\lfloor n / 2\rfloor}(-1)^{m} \frac{n}{n-m}\binom{n-m}{m} c^{m}(c+1)^{n-2 m} \tag{0.1}
\end{equation*}
$$

Figure 1. Examples of pairs induced by Φ with $(n, c)=$ $(9,2)$ (white, yellow, and blue correspond to colors 0,1 , and 2 , respectively).

Proof. Note that (n, c)-divisions not belonging to \mathcal{C} are exactly the ones with $|E|=0$ and either none of the vertices are 0 -colored or all of them are. Thus the number of such divisions is $c^{n}+1$. Note that the number of (n, c)-divisions with m edges is equal to

$$
\frac{n}{n-m}\binom{n-m}{m} c^{m}(c+1)^{n-2 m}
$$

so by the previous theorem, we get

$$
\begin{aligned}
& \sum_{2 \nmid m} \frac{n}{n-m}\binom{n-m}{m} c^{m}(c+1)^{n-2 m} \\
& \quad=-\left(c^{n}+1\right)+\sum_{2 \mid m} \frac{n}{n-m}\binom{n-m}{m} c^{m}(c+1)^{n-2 m}
\end{aligned}
$$

which is equivalent to the desired identity.
Corollary 0.4. The equation in the abstract holds for all $x, y \in \mathbb{R} \backslash\{0\}$ and all $n \geq 2$.

Proof. Fix $n \geq 2$. The identity (0.1) holds for all (i.e., more than n) natural $c \geq 1$. But it is an identity of polynomials of variable c and degree n. Thus the identity holds for all real $c \neq 0$. In particular, taking $c=x / y$ and multiplying both sides of identity (0.1) by y^{n}, we obtain the desired result.

Remark. All the identities remain valid for $n=1$ or $x y=0$.

References

1. H.W. Gould, The Girard-Waring power sum formulas for symmetric functions and fibonacci sequences, Fibonacci Quart. 37 (1999), no. 2, 135-140.

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, 02-097 Warsaw (Poland), ul. Banacha 2

E-mail address: l.bozyk@uw.edu.pl

