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THE SIMPLICITY INDEX OF TOURNAMENTS

ABDERRAHIM BOUSSAÏRI, SOUFIANE LAKHLIFI, AND IMANE TALBAOUI

Abstract. An n-tournament T with vertex set V is simple if there is
no subset M of V such that 2 ≤ |M | ≤ n− 1 and for every x ∈ V \M ,
either M → x or x → M . The simplicity index of an n-tournament T
is the minimum number s(T ) of arcs whose reversal yields a nonsimple
tournament. Müller and Pelant (1974) proved that s(T ) ≤ (n − 1)/2,
and that equality holds if and only if T is doubly regular. As doubly
regular tournaments exist only if n ≡ 3 (mod 4), s(T ) < (n − 1)/2 for
n ̸≡ 3 (mod 4). In this paper, we study the class of n-tournaments with
maximal simplicity index for n ̸≡ 3 (mod 4).

1. Introduction

A tournament T consists of a finite set V of vertices together with a set A
of ordered pairs of distinct vertices, called arcs, such that for all x ̸= y ∈ V ,
(x, y) ∈ A if and only if (y, x) /∈ A. Such a tournament is denoted by
T = (V,A). Given x ̸= y ∈ V , we say that x dominates y and we write
x → y when (x, y) ∈ A. Similarly, given two disjoint subsets X and Y of V ,
we write X → Y if x → y holds for every (x, y) ∈ X × Y . Throughout this
paper, we mean by an n-tournament a tournament with n vertices.

A tournament is regular if there is an integer k ≥ 1 such that each vertex
dominates exactly k vertices. It is doubly regular if there is an integer k ≥ 1
such that every unordered pair of vertices dominates exactly k vertices.

A tournament is transitive, if for any vertices x, y and z, x → y and y → z
implies that x → z. A tournament T = (V,A) is reducible if V admits a
bipartition {X,Y } such that X → Y . The notion of simple tournament
was introduced by Fried and Lakser [8], it was motivated by questions in
algebra. It is closely related to modular decomposition [9] which involves
the notion of module. Recall that a module of a tournament T = (V,A) is a
subset M of V such that for every x ∈ V \M either M → {x} or {x} → M .
For example, ∅, {x}, where x ∈ V , and V are modules of T called trivial
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modules. An n-tournament is simple [6, 15] (or prime [4] or primitive [5] or
indecomposable [10, 17]) if n ≥ 3 and all its modules are trivial. The simple
tournaments with at most 5 vertices are shown in Figure 1. A tournament
is decomposable if it admits a nontrivial module.

Figure 1. The simple tournaments with at most 5 vertices

Given an n-tournament T , the Slater index i(T ) of T is the minimum
number of arcs that must be reversed to make T transitive [18]. It is not
difficult to see that i(T ) ≤ n(n − 1)/4. However, we do not know an exact
determination of the upper bound of i(T ). Erdős and Moon [7] proved that
this bound is asymptotically equal to n2/4. Recently, Satake [16] proved
that the Slater index of doubly regular n-tournaments is at least

n(n− 1)

4
− n

3
2 log2(2n).

Kirkland [11] defined the reversal index iR(T ) of a tournament T as the
minimum number of arcs whose reversal makes T reducible. Clearly, iR(T ) ≤
i(T ). Kirkland [11] proved that iR(T ) ≤ ⌊(n− 1)/2⌋ and characterized all
the tournaments for which equality holds.

The indices above can be interpreted in terms of distance between tour-
naments. The distance d(T1, T2) between two tournaments T1 and T2 with
the same vertex set is the number of pairs {x, y} of vertices for which the
arc between x and y has not the same direction in T1 and T2. Let F be a
family of tournaments with vertex set V . The distance from a tournament
T to the family F is d(T,F) = min{d(T, T ′) : T ′ ∈ F}. If F is the family
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of transitive tournaments on V , then i(T ) = d(T,F). If F is the family of
reducible tournaments on V , then iR(T ) = d(T,F).

By considering the family of decomposable tournaments, we obtain the
simplicity index introduced by Müller and Pelant [15]. Precisely, consider
an n-tournament T , where n ≥ 3. The simplicity index s(T ) of T (also
called the arrow-simplicity of T in [15]) is the minimum number of arcs
that must be reversed to make T nonsimple. For example, the tournaments
shown in Figure 1 have simplicity index 1. Obviously, s(T ) ≤ iR(T ) and
s(T ) ≤ (n − 1)/2. Müller and Pelant proved that s(T ) = (n − 1)/2 if and
only if T is doubly regular.

A dual notion of the simplicity index is the decomposability index [2],
which is obtained by considering the family of simple tournaments.

In this paper, we provide an upper bound for s(T ), where T is an n-
tournament for n ̸≡ 3 (mod 4). More precisely, we obtain the following
result.

Theorem 1.1. Given an n-tournament T , the following statements hold

(1) if n = 4k + 2, then s(T ) ≤ 2k;
(2) if n = 4k + 1, then s(T ) ≤ 2k − 1;
(3) if n = 4k, then s(T ) ≤ 2k − 2.

To prove that the bounds in this theorem are the best possible, we use
the double regularity as follows.

Theorem 1.2. Let l ∈ {1, 2, 3}. Consider a doubly regular tournament T
of order 4k+3, where k ≥ l. The simplicity index of a tournament obtained
from T by removing l vertices is (2k + 1)− l.

As shown by the next result, the opposite direction in Theorem 1.2 holds
when l = 1.

Theorem 1.3. Given a tournament T with 4k+2 vertices, where k ≥ 1, if
s(T ) = 2k, then T is obtained from a doubly regular tournament by removing
one vertex.

The existence of doubly regular tournaments is equivalent to the existence
of skew-Hadamard matrices [3]. Wallis [20] conjectured that n × n skew-
Hadamard matrices exist if and only if n = 2 or n is divisible by 4. Infinite
families of skew-Hadamard matrices can be found in [12].

The most known examples of a doubly regular tournament are obtained
from Paley construction. For a prime power q ≡ 3 (mod 4), the Paley
tournament of order q is the tournament whose vertex set is the finite field
Fq, such that x dominates y if and only if x−y is a nonzero quadratic residue
in Fq.
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2. Preliminaries

Let T = (V,A) be an n-tournament and let x ∈ V . The out-neighborhood
of x is

N+
T (x) := {y ∈ V : x → y} ,

and the in-neighborhood of x is

N−
T (x) := {y ∈ V : y → x} .

The out-degree of x (resp. the in-degree of x) is

δ+T (x) :=
∣∣N+

T (x)
∣∣ (resp. δ−T (x) :=

∣∣N−
T (x)

∣∣ ).
The out-degree of x is also called the score of x in T . Recall that

(2.1)
∑
z∈V

δ+T (z) =
∑
z∈V

δ−T (z) =
n (n− 1)

2
.

A tournament is near-regular if there exists an integer k > 0 such that the
out-degree of every vertex equals k or k − 1.

Remark: Let T be an n-tournament. It follows from (2.1) that

(1) T is regular if and only if n is odd and every vertex has out-degree
(n− 1)/2;

(2) T is near-regular if and only if n is even and T has n/2 vertices of
out-degree n/2 and n/2 vertices of out-degree (n− 2)/2.

Notation. Let T = (V,A) be a near-regular tournament of order 4k + 2.
We can partition V into two (2k + 1)-subsets,

Veven := {z ∈ V, δ+T (z) = 2k} and Vodd := {z ∈ V, δ+T (z) = 2k + 1}.

Let x, y be distinct vertices of an n-tournament T = (V,A). The set
V \ {x, y} can be partitioned into four subsets:

N+
T (x) ∩N+

T (y), N−
T (x) ∩N−

T (y),

N+
T (x) ∩N−

T (y), N−
T (x) ∩N+

T (y).

The out-degree (resp. the in-degree) of (x, y) is

δ+T (x, y) :=
∣∣N+

T (x) ∩N+
T (y)

∣∣ (resp. δ−T (x, y) :=
∣∣N−

T (x) ∩N−
T (y)

∣∣).
The elements of (N+

T (x) ∩N−
T (y)) ∪ (N−

T (x) ∩N+
T (y)) are called separators

of x, y and their number is denoted by σT (x, y).

Lemma 2.3. Let T be an n-tournament with vertex set V . For any x ̸=
y ∈ V , we have

• σT (x, y) + δ−T (x, y) + δ+T (x, y) = n− 2;

• δ−T (x, y)− δ+T (x, y) = δ−T (x)− δ+T (y).

In particular, if T is regular, then for any x ̸= y ∈ V , δ−T (x, y) = δ+T (x, y).
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Proof. The first assertion is obvious. For the second assertion, we have∣∣N−
T (x)

∣∣ = ∣∣N−
T (x) ∩N−

T (y)
∣∣+ ∣∣N−

T (x) ∩N+
T (y)

∣∣+ ∣∣N−
T (x) ∩ {y}

∣∣
and ∣∣N+

T (y)
∣∣ = ∣∣N+

T (y) ∩N+
T (x)

∣∣+ ∣∣N+
T (y) ∩N−

T (x)
∣∣+ ∣∣N+

T (y) ∩ {x}
∣∣ .

Moreover, y ∈ N−
T (x) if and only if x ∈ N+

T (y). Then∣∣N−
T (x) ∩ {y}

∣∣ = ∣∣N+
T (y) ∩ {x}

∣∣
and hence∣∣N−

T (x) ∩N−
T (y)

∣∣− ∣∣N+
T (x) ∩N+

T (y)
∣∣ = ∣∣N−

T (x)
∣∣− ∣∣N+

T (y)
∣∣ . □

Let T = (V,A) be a tournament. For each vertex z ∈ V , we have

δ−T (z)δ
+
T (z) =

∣∣∣{{x, y} ∈
(
V
2

)
: z ∈ (N−

T (x) ∩N+
T (y)) ∪ (N+

T (x) ∩N−
T (y))}

∣∣∣ .
By double-counting, we obtain

(2.2)
∑
z∈V

δ+T (z)δ
−
T (z) =

∑
{x,y}∈(V2)

σT (x, y).

In the next proposition, we give some basic properties of doubly regular
tournaments. For the proof, see [15].

Proposition 2.4. Let T = (V,A) be a doubly regular n-tournament. There
exists k ≥ 0 such that n = 4k + 3, T is regular, and for all x, y ∈ V such
that x → y, we have∣∣N+

T (x) ∩N+
T (y)

∣∣ = ∣∣N−
T (x) ∩N−

T (y)
∣∣ = ∣∣N+

T (x) ∩N−
T (y)

∣∣ = k

and
∣∣N−

T (x) ∩N+
T (y)

∣∣ = k + 1.

3. Proof of Theorem 1.1

Let T = (V,A) be a tournament. Given a subset B of A, we denote by
Inv(T,B) the tournament obtained from T by reversing all the arcs of B.
We also use the following notation:

δ+T = min
{
δ+T (x) : x ∈ V

}
, δ−T = min

{
δ−T (x) : x ∈ V

}
,

δT = min(δ+T , δ
−
T ), σT = min{σT (x, y) : x ̸= y ∈ V }.

The next proposition provides an upper bound of the simplicity index of a
tournament.

Proposition 3.1. For a tournament T = (V,A) with at least 3 vertices, we
have s(T ) ≤ min(δT , σT ).



THE SIMPLICITY INDEX OF TOURNAMENTS 177

Proof. Let x ∈ V . Clearly, the subset V \ {x} is a nontrivial module of
Inv(T, {x} ×N+

T (x)) and Inv(T,N−
T (x)× {x}). It follows that

s(T ) ≤ min
x∈V

(δ+T (x), δ
−
T (x)) = δT .

Now, consider an unordered pair {x, y} of vertices of T and let

B :=
(
{x} ×

(
(N+

T (x) ∩N−
T (y)

)
∪
(
N+

T (y) ∩N−
T (x)

)
× {x}

)
.

Clearly, {x, y} is a module of Inv(T,B). It follows that

s(T ) ≤ |B| =
∣∣N+

T (x) ∩N−
T (y)

∣∣+ ∣∣N+
T (y) ∩N−

T (x)
∣∣ = σT (x, y).

Hence, s(T ) ≤ σT . □

In addition to the previous proposition, the proof of Theorem 1.1 requires
the following lemma.

Lemma 3.2. Given an n-tournament T = (V,A) with n ≥ 2, we have

δT ≤
⌊
n− 1

2

⌋
and σT ≤

⌊
n− 1

2

⌋
.

Proof. For every x ∈ V , we have min
(
δ+T (x), δ

−
T (x)

)
≤ (n− 1)/2. Thus,

δT ≤
⌊
n− 1

2

⌋
.

Now, to verify that σT ≤ ⌊(n− 1)/2⌋, observe that

σT ≤ 1(|V |
2

) ∑
{x,y}∈(V2)

σT (x, y).

It follows from (2.2) that

σT ≤ 2

n(n− 1)

∑
z∈V

δ+T (z)δ
−
T (z)

≤ 2

n(n− 1)

∑
z∈V

(
δ+T (z) + δ−T (z)

2

)2

≤ (n− 1)

2
. □

Proof of Theorem 1.1. For the first statement, suppose that n = 4k+2. By
Proposition 3.1 and Lemma 3.2, we have

s(T ) ≤ δT ≤
⌊
n− 1

2

⌋
= 2k.

For the second statement, suppose that n = 4k + 1. By Proposition 3.1,
s(T ) ≤ δT . If T is not regular, then δT < (n−1)/2 and hence s(T ) ≤ 2k−1.
Suppose that T is regular and let x ̸= y ∈ V . By Lemma 2.3,

σT (x, y) = n− 2− δ−T (x, y)− δ+T (x, y) and δ−T (x, y) = δ+T (x, y).
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Therefore, σT (x, y) is odd, and hence σT is odd as well. By Lemma 3.2,
σT ≤ ⌊(n− 1)/2⌋ = 2k. Since σT is odd, we obtain σT ≤ 2k − 1. It follows
from Proposition 3.1 that s(T ) ≤ 2k − 1.

For the third statement, suppose that n = 4k. If T is not near-regular,
then δT < 2k−1, and hence s(T ) ≤ 2k−2 by Proposition 3.1. Suppose that
T is near-regular. By Remark 2.1, for every z ∈ V , δ+T (z) ∈ {2k, 2k − 1}. It
follows from (2.2) that

(3.1)
∑

{x,y}∈(V2)

σT (x, y) =
∑
z∈V

δ+T (z)δ
−
T (z) = 8k2(2k − 1).

Thus, we obtain

σT ≤ 1(|V |
2

) ∑
{x,y}∈(V2)

σT (x, y)

≤ 2

4k(4k − 1)
8k2(2k − 1)

≤ (2k − 1) +
2k − 1

4k − 1
≤ 2k − 1.

Since s(T ) ≤ σT by Proposition 3.1, we obtain s(T ) ≤ σT ≤ 2k−1. Seeking
a contradiction, suppose that s(T ) = 2k − 1. We obtain σT = 2k − 1. Let
x ∈ Veven and y ∈ Vodd (see Notation 2.2). It follows from Lemma 2.3
that σT (x, y) is even and hence σT (x, y) ≥ 2k. Thus, there are at least

(2k)2 unordered pairs {x, y} satisfying σT (x, y) ≥ 2k. For the other 2
(
2k
2

)
unordered pairs, we have σT (x, y) ≥ σT = 2k − 1. It follows that∑

{x,y}∈(V2)

σT (x, y) ≥ 2

(
2k

2

)
(2k − 1) + (2k)2(2k) > 8k2(2k − 1),

which contradicts (3.1). Consequently, s(T ) ≤ 2k − 2. □

4. Proof of Theorem 1.2

To begin, recall that a graph is defined by a vertex set V and an edge
set E. Two distinct vertices x and y of G are adjacent if {x, y} ∈ E. For a
vertex x in G, the set

NG(x) := {y ∈ V : {x, y} ∈ E}

is called the neighborhood of x in G. The degree of x is δG(x) := |NG(x)|.
Let T = (V,A) be a tournament. To each subset C of V , we associate a

graph in the following way. Denote by sC(T ) the minimum number of arcs
that must be reversed to make C a module of T . Clearly,

(4.1) s(T ) = min {sC(T ) : 2 ≤ |C| ≤ n− 1} .
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A graph G = (V,E) is called a decomposability graph for C if |E| = sC(T )
and C is a module of the tournament

Inv(T, {(x, y) ∈ A : {x, y} ∈ E})
obtained from T by reversing the arc between x and y for each edge {x, y} of
G. In the next lemma, we provide some of the properties of decomposability
graphs.

Lemma 4.1. Let T = (V,A) be a n-tournament and let C be a subset of V
such that 2 ≤ |C| ≤ n − 1. Given a decomposability graph G = (V,E) for
C, the following assertions hold

• G is bipartite with bipartition {C, V \ C};
• for each x ∈ V \ C, NG(x) = N+

T (x) ∩ C or NG(x) = N−
T (x) ∩ C,

and δG(x) = min
(∣∣N−

T (x) ∩ C
∣∣ , ∣∣N+

T (x) ∩ C
∣∣).

Proof. The first assertion follows from the minimality of |E| = sC(T ). For
the second assertion, consider x ∈ V \ C. Since C is a module of the
tournament Inv(T, {(x, y) ∈ A : {x, y} ∈ E}), we have

NG(x) = N+
T (x) ∩ C or NG(x) = N−

T (x) ∩ C.

Furthermore, it follows from the minimality of |E| = sC(T ) that

δG(x) = min
(∣∣N−

T (x) ∩ C
∣∣ , ∣∣N+

T (x) ∩ C
∣∣) .

□

The next proposition is useful to prove Theorems 1.2 and 1.3.

Proposition 4.2. Let T = (V,A) be an n-tournament and let C be a subset
of V such that 2 ≤ |C| ≤ n− 1. Given a decomposability graph G = (V,E)
for C, the following statements hold

• if n− δT ≤ |C|, then sC(T ) ≥ δT ;
• if |C| ≤ σT , then sC(T ) ≥ σT .

Proof. Before showing the first assertion, we establish

(4.2) |E| ≥ (n− |C|)(|C| − (n− 1− δT )).

Let x ∈ V ∖ C. By the second assertion of Lemma 4.1

δG(x) = min(
∣∣N−

T (x) ∩ C
∣∣ , ∣∣N+

T (x) ∩ C
∣∣)

= |C| −max(
∣∣N−

T (x) ∩ C
∣∣ , ∣∣N+

T (x) ∩ C
∣∣).

Therefore, we obtain

δG(x) ≥ |C| −max(
∣∣N−

T (x)
∣∣ , ∣∣N+

T (x)
∣∣)

≥ (|C| − (n− 1− δT )).(4.3)

Since G is bipartite with bipartition {C, V \ C}, we have

|E| =
∑

x∈V ∖C

δG(x).
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It follows from (4.3) that

|E| ≥ |V ∖ C| (|C| − (n− 1− δT ))

≥ (n− |C|)(|C| − (n− 1− δT )).

Thus, (4.2) holds. Moreover, we have

(n− |C|)(|C| − (n− 1− δT ))− δT = (n− 1− |C|)(|C| − (n− δT )).

Now, to prove the first assertion, suppose that n− δT ≤ |C|. We obtain

(n− 1− |C|)(|C| − (n− δT ) ≥ 0,

and hence

(n− |C|)(|C| − (n− 1− δT )) ≥ δT .

It follows that sC(T ) = |E| ≥ δT .
Before showing the second assertion, we establish

(4.4) |E| ≥ |C|
2

(2− |C|+ σT ).

Consider two vertices x ̸= y ∈ C. For convenience, denote by ST (x, y) the
set of separators of {x, y}. Clearly, we have (ST (x, y)\C) ⊆ NG(x)∪NG(y).
It follows that

δG(x) + δG(y) ≥ |ST (x, y) \ C| ≥ σT (x, y)− (|C| − 2).

Consequently, we obtain

(4.5) δG(x) + δG(y) ≥ σT − |C|+ 2.

Furthermore, observe that∑
{x,y}∈(C2)

(δG(x) + δG(y)) = (|C| − 1)
∑
x∈C

δG(x).

It follows from (4.5) that

(|C| − 1)
∑
x∈C

δG(x) ≥
(
|C|
2

)
(2− |C|+ σT ).

Therefore, we have ∑
x∈C

δG(x) ≥
|C|
2

(2− |C|+ σT ).

Since G is bipartite with bipartition {C, V \ C}, we have

|E| =
∑
x∈C

δG(x).

We obtain

|E| ≥ |C|
2

(2− |C|+ σT ),

so (4.4) holds.
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Finally, to prove the second assertion, suppose that |C| ≤ σT . We obtain

|C|
2

(2− |C|+ σT ) ≥ σT .

Since sC(T ) = |E|, it follows from (4.4) that sC(T ) ≥ σT . □

Proof of Theorem 1.2. Let l ∈ {1, 2, 3}. Consider a tournament R from T
by removing l vertices v1, . . . , vl. Set V

′ := V ∖ {v1, . . . , vl}. It follows from
Theorem 1.1 that s(R) ≤ (2k + 1) − l. It remains to show that s(R) ≥
(2k+1)− l. By (4.1), it suffices to verify that sC(R) ≥ (2k+1)− l for every
subset C of V ′ such that

2 ≤ |C| ≤ (4k + 2)− l.

Let C ⊆ V ′ such that

2 ≤ |C| ≤ (4k + 2)− l.

We distinguish the following three cases.
Case 1: Suppose that 2 ≤ |C| ≤ (2k + 1)− l.

Since T is doubly regular, it follows from Proposition 2.4 that σT =
2k + 1. Therefore, σR ≥ (2k + 1)− l. Since

2 ≤ |C| ≤ (2k + 1)− l, σR ≥ |C| .

It follows from Proposition 4.2 that sC(R) ≥ σR, and hence sC(R) ≥
(2k + 1)− l.

Case 2: Suppose that 2k + 2 ≤ |C| ≤ (4k + 2)− l.
Since T is doubly regular, it follows from Proposition 2.4 that T is reg-
ular. Thus, δT = 2k + 1. It follows that δR ≥ (2k + 1)− l. Since

2k + 2 ≤ |C| ≤ (4k + 2)− l,

we obtain |C| + δR ≥ (4k + 3) − l. It follows from Proposition 4.2 that
sC(R) ≥ δR, and hence sC(R) ≥ (2k + 1)− l.

Case 3: (2k + 2)− l ≤ |C| ≤ 2k + 1.
Let G = (E′, V ′) be a decomposability graph for C. We verify that

(4.6) |{x ∈ V ′ ∖ C : δG(x) ̸= 0}| ≥ |V ′ ∖ C| − 1.

Otherwise, there exist x ̸= y ∈ V ′ ∖ C such that δG(x) = δG(y) = 0. It
follows from the second assertion of Lemma 4.1 applied to R that C is
contained in one of the following intersections:

(N−
R (x) ∩N+

R (y)), (N−
R (x) ∩N−

R (y)),

(N+
R (x) ∩N+

R (y)), or (N+
R (x) ∩N−

R (y)).

Thus, C is contained in

(N−
T (x) ∩N+

T (y)), (N−
T (x) ∩N−

T (y)),

(N+
T (x) ∩N+

T (y)), or (N+
T (x) ∩N−

T (y)).
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It follows from Proposition 2.4 that |C| ≤ k+1, which contradicts |C| ≥
(2k+2)− l because k ≥ l. Consequently, (4.6) holds. Since G is bipartite
with bipartition {C, V ′ ∖ C}, we have∣∣E′∣∣ = ∑

x∈V ′∖C

δG(x).

Since |E′| = sC(R), we obtain

sC(R) =
∑

x∈V ′∖C

δG(x)

≥
∣∣V ′ ∖ C

∣∣− 1 (by (4.6))

≥ (2k + 1)− l (because |C| ≤ 2k + 1). □

5. Proof of Theorem 1.3

If a tournament T is obtained from a doubly regular (4k+3)-tournament
by deleting one vertex, then T is near-regular and it follows from Proposition
2.4 that

(C1) if x, y ∈ Veven (see Notation 2.2) or x, y ∈ Vodd, then σT (x, y) =
2k + 1.

(C2) if x ∈ Veven and y ∈ Vodd, then σT (x, y) = 2k.

Conversely, we have the following proposition.

Proposition 5.1. Let T = (V,A) be a near-regular tournament of order
4k + 2. If T satisfies (C1) and (C2), then the tournament U obtained from
T by adding a vertex ω which dominates Vodd and is dominated by Veven is
doubly regular.

The proof of this proposition uses the following lemma.

Lemma 5.2. Under the notation and conditions of Proposition 5.1, for
every x, y ∈ V such that x → y, we have

• if x, y ∈ Vodd, then∣∣N−
T (x) ∩N+

T (y)
∣∣ = k + 1 and

∣∣N+
T (x) ∩N−

T (y)
∣∣ = k;

• if x, y ∈ Veven, then∣∣N−
T (x) ∩N+

T (y)
∣∣ = k + 1 and

∣∣N+
T (x) ∩N−

T (y)
∣∣ = k;

• if x ∈ Vodd and y ∈ Veven, then∣∣N−
T (x) ∩N+

T (y)
∣∣ = k and

∣∣N+
T (x) ∩N−

T (y)
∣∣ = k;

• if x ∈ Veven and y ∈ Vodd, then∣∣N−
T (x) ∩N+

T (y)
∣∣ = k + 1 and

∣∣N+
T (x) ∩N−

T (y)
∣∣ = k − 1.
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Proof. We have

(5.1)


∣∣N−

T (x) ∩N−
T (y)

∣∣+ ∣∣N−
T (x) ∩N+

T (y)
∣∣ = ∣∣N−

T (x)
∣∣

and∣∣N+
T (x) ∩N+

T (y)
∣∣+ ∣∣N−

T (x) ∩N+
T (y)

∣∣ = ∣∣N+
T (y)

∣∣ .
By using Lemma 2.3, we obtain

(5.2)
∣∣N−

T (x) ∩N+
T (y)

∣∣ = 1

2

(∣∣N−
T (x)

∣∣+ ∣∣N+
T (y)

∣∣− 4k + σT (x, y)
)
.

Using Assertions (C1) and (C2), we obtain the desired values of

|N−
T (x) ∩N+

T (y)|.
Then, |N+

T (x) ∩N−
T (y)| follows immediately because

|N+
T (x) ∩N−

T (y)| = σ(x, y)− |N−
T (x) ∩N+

T (y)|.
□

Proof of Proposition 5.1. Clearly, U is regular. Furthermore, by Lemma 2.3,

δ+U (x, y) =
4k − σU (x, y) + 1

2

for distinct x, y ∈ V ∪ {ω}. Therefore, U is doubly regular if and only if
σU (x, y) = 2k + 1 for every x, y ∈ V ∪ {ω}. This equality follows directly
from (C1) and (C2) when x, y ∈ V . Hence, it remains to prove that

(5.3) σU (ω, z) = 2k + 1 for every z ∈ V .

Consider z ∈ V . It is not difficult to see that

σU (ω, z) =
∣∣N+

T (z) ∩ Veven

∣∣+ ∣∣N−
T (z) ∩ Vodd

∣∣ (see Notation 2.2).

Let

Aodd := (N+
T (z) ∩ Vodd), Aeven := (N+

T (z) ∩ Veven),

Bodd := (N−
T (z) ∩ Vodd), and Beven := (N−

T (z) ∩ Veven).

We determine |Aodd|, |Aeven|, |Bodd|, and |Beven| as follows.
To begin, suppose that z ∈ Vodd. By counting the number of arcs from

N+
T (z) to N−

T (z) in two ways, we get∑
t∈Aodd

∣∣N−
T (z) ∩N+

T (t)
∣∣+ ∑

t∈Aeven

∣∣N−
T (z) ∩N+

T (t)
∣∣

=
∑

t∈Bodd

∣∣N−
T (t) ∩N+

T (z)
∣∣+ ∑

t∈Beven

∣∣N−
T (t) ∩N+

T (z)
∣∣ .

It follows from Lemma 5.2 that

(k + 1) |Aodd|+ k |Aeven| = (k + 1)(|Bodd|+ |Beven|).
Since z ∈ Vodd, we have

|Aodd|+ |Aeven| = 2k + 1, |Bodd|+ |Beven| = 2k,

|Aodd|+ |Bodd| = 2k, and |Aeven|+ |Beven| = 2k + 1.
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It follows that |Aodd| = k, |Bodd| = k, |Beven| = k, and |Aeven| = k + 1.
Similarly, if z ∈ Veven, then |Aodd| = k, |Bodd| = k + 1, |Beven| = k, and

|Aeven| = k.
Consequently, (5.3) holds whatever the parity of δ+T (z). □

Proof of Theorem 1.3. Given k ≥ 1, consider a tournament T , with 4k + 2
vertices, such that s(T ) = 2k. By Proposition 3.1, δT ≥ 2k. Thus, T is near-
regular. We conclude by applying Proposition 5.1. Therefore, it suffices to
verify that (C1) and (C2) are satisfied.

By Proposition 3.1, σT (x, y) ≥ 2k for distinct x, y ∈ V . Moreover, it
follows from Lemma 2.3 that if x, y ∈ Veven or x, y ∈ Vodd (see Notation 2.2),
then σT (x, y) is odd and hence σT (x, y) ≥ 2k + 1.

Lastly, seeking a contradiction, suppose that (C1) or (C2) are not satis-
fied. One of the following situations occurs

• there are distinct x, y ∈ Veven such that σT (x, y) > 2k + 1,
• there are distinct x, y ∈ Vodd such that σT (x, y) > 2k + 1,
• there are x ∈ Veven and y ∈ Vodd such that σT (x, y) > 2k.

We obtain∑
{x,y}∈(V2)

σT (x, y) > (2k + 1)

(
|Veven|

2

)
+ (2k + 1)

(
|Vodd|
2

)
+ 2k |Veven| |Vodd|

= 4k(2k + 1)2,

which contradicts (2.2). Consequently, (C1) and (C2) are satisfied. □

6. Concluding remarks

1. An n-tournament with n = 4k+1 is called near-homogeneous [19] if every
unordered pair of its vertices belongs to k or (k+1) 3-cycles. The existence
of near-homogeneous tournaments is discussed in [19], [1], and [14]. For
n ≡ 1 (mod 4) or n ≡ 0 (mod 4), the n-tournaments given in Theorem 1.2
are not the only ones with a maximal simplicity index. Indeed, let T be a
near-homogeneous tournament T with 4k+1 vertices. By adapting the proof
of Theorem 1.2, we can verify that s(T ) = 2k − 1. Moreover, by removing
one vertex from T , we obtain a (4k)-tournament whose simplicity index is
2k−2. Consequently, an analogue of Theorem 1.3 does not exist when l = 2
or 3.
2. The score vector of a n-tournament T is the ordered sequence of the
scores of T listed in a nondecreasing order. Kirkland [11] proved that the
reversal index of an n-tournament T is equal to

min

{
j∑

i=1

si −
(
j

2

)
: 1 ≤ j ≤ n

}
,

where (s1, s2, . . . , sn) is the score vector of T .
An equivalent form of this result was obtained earlier by Li and Huang

[13]. As a consequence, two tournaments with the same score vector have the
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same reversal index. This fact is not true for the simplicity index. Indeed,
for an odd number n, consider the n-tournament Rn whose vertex set is
the additive group Zn = {0, 1, . . . , n− 1} of integers modulo n, such that i
dominates j if and only if i−j ∈ {1, . . . , (n−1)/2}. It is not difficult to verify
that the tournament Rn is regular and simple. Moreover, by reversing the
arc (0, (n− 1)/2), we obtain a nonsimple tournament. Hence, the simplicity
index of Rn is 1. If n is prime and n ≡ 3 (mod 4), the Paley tournament
Pn is also regular but its simplicity index is (n− 1)/2.

Let T be an n-tournament with vertex set {v1, . . . , vn}. The sequences
L1 = (δ+T (vi))1≤i≤n and L2 = (δ+T (vi, vj))1≤i<j≤n are frequently used in our
study of the simplicity index. It is natural to ask whether the simplicity
index of T can be expressed in terms of L1 and L2.
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