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SOME RESULTS ABOUT STAR-FACTORS IN GRAPHS

SIZHONG ZHOU, YANG XU, AND ZHIREN SUN

Abstract. For a set S of connected graphs, a subgraph F of a graph G
is defined as an S-factor of G if F satisfies that V (F ) = V (G) and every
component of F is isomorphic to an element of S. If every component
of F is a star, then F is said to be a star-factor. A star-factor with size
at most n may be written for a {K1,t : 1 ≤ t ≤ n}-factor. A graph
G is called a {K1,t : 1 ≤ t ≤ n}-factor deleted graph if G − e has a
{K1,t : 1 ≤ t ≤ n}-factor for every e ∈ E(G). The sun toughness of a
graph G is denoted by s(G) and defined as follows:

s(G) = min

{
|X|

sun(G−X)
: X ⊆ V (G), sun(G−X) ≥ 2

}
if G is not a complete graph, and s(G) = +∞ if G is a complete graph,
where sun(G − X) denotes the number of sun components of G − X.
In this paper, we prove that (i) if G is a connected graph, and its sun
toughness satisfies s(G) ≥ 1

n
, then G admits a {K1,t : 1 ≤ t ≤ n}-factor;

(ii) if G is a (k+1)-connected graph, and its sun toughness s(G) > k+1
n+1

,

then G − Y admits a {K1,t : 1 ≤ t ≤ n}-factor for any Y ⊆ V (G) with
|Y | = k; (iii) if G is a 2-edge-connected graph, and its sun toughness
s(G) ≥ 1

n−1
, then G is a {K1,t : 1 ≤ t ≤ n}-factor deleted graph.

Furthermore, it is shown that our results are sharp.

1. Introduction

Graph theory plays an important role in chemical sciences. The basic
layout of the graph theoretic model is a molecular structure in which ver-
tices of the graph correspond to atoms, and edges correspond to chemical
bonds. The study of this graph model supplies information on the chemical
structure. One-factors or {K1,1}-factors (also called special star-factors) in
graphs correspond to Kekulé structures in chemistry. Kekulé structure pos-
sesses strong connections with organic chemistry, the enumeration of Kekulé
structures in benzenoid molecules is a traditional and extensively elaborated
field of mathematical chemistry [5]. Hosoya and Gutman [6] found a curi-
ous chemical relation between the Kekulé structure of hexagonal chains and
the Hosoya index of a caterpillar tree. Xiao and Chen [16] found a curious
chemical relation between the Kekulé structure of square-hexagonal chains
and the Hosoya index of a caterpillar tree. Much other information on chem-
ical structures can be extracted from the enumeration and classification of
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Kekulé structures. The star-factor problem can be considered as a gener-
alization of the well-known One-factor, {K1,1}-factor or Kekulé structure
problem, and possesses extensive applications in chemistry.

In this paper, we deal with only finite and undirected graphs, which have
neither multiple edges nor loops. We denote by G = (V (G), E(G)) a graph,
where V (G) denotes the vertex set of G and E(G) denotes the edge set of
G. We denote the degree of a vertex x in G by dG(x). Let X be a subset of
V (G). We use G−X to denote the subgraph obtained from G by deleting
vertices in X together with the edges incident to vertices in X. Let E′ be
a subset of E(G). We denote by G − E′ the subgraph obtained from G
by deleting E′. Especially, we write G − x = G − {x} for x ∈ V (G) and
G − e = G − {e} for e ∈ E(G). For a graph G, we use κ(G) to denote its
connectivity, and use λ(G) to denote its edge-connectivity. Let m and n
be two positive integers. A path of order n is denoted by Pn. We use Kn

to denote a complete graph of order n and use Km,n to denote a complete
bipartite graph with bipartite sets of order m and n. The graph K1,n is said
to be a star. The vertex of degree n in K1,n is defined as the center when
n ≥ 2. For K1,1, an arbitrary chosen vertex is its center.

For a set S of connected graphs, a subgraph F of a graph G is defined as
an S-factor of G if F satisfies that V (F ) = V (G) and if every component of
F is isomorphic to an element of S. If every component of F is a path, then
F is said to be a path-factor. If every component of F is a star, then F is said
to be a star-factor. Thus, the well-known perfect matching (i.e. 1-factor) is
a P2-factor or a K1,1-factor. A star-factor with size at most n and at least
m may be written for a {K1,t : m ≤ t ≤ n}-factor. A graph G is called a
{K1,t : m ≤ t ≤ n}-factor deleted graph if G − e has a {K1,t : m ≤ t ≤ n}-
factor for every e ∈ E(G). In particular, a {K1,t : m ≤ t ≤ n}-factor is a
{K1,t : 1 ≤ t ≤ n}-factor and a {K1,t : m ≤ t ≤ n}-factor deleted graph is a
{K1,t : 1 ≤ t ≤ n}-factor deleted graph when m = 1.

Let i(G) be the number of isolated vertices of G. Amahashi and Kano [1]
and Las Vergnas [10] verified independently the following theorem on the
existence of a {K1,t : 1 ≤ t ≤ n}-factor, where n ≥ 2 is an integer.

Theorem 1.1 (Amahashi and Kano [1], Las Vergnas [10]). Let n be a pos-
itive integer with n ≥ 2. Then a graph G admits a {K1,t : 1 ≤ t ≤ n}-factor
if and only if i(G−X) ≤ n|X| for any subset X of V (G).

Kano, Lu and Yu [7] justified the following theorem on the existence of a
{K1,2,K1,3,K5}-factor.

Theorem 1.2 (Kano, Lu and Yu [7]). A graph G admits a {K1,2,K1,3,K5}-
factor if G satisfies i(G−X) ≤ 1

2 |X| for any subset X of V (G).

It is obvious that a graph with a {K1,2,K1,3,K5}-factor includes a {K1,2,
K1,3,K1,4}-factor. Hence, a graph satisfying the condition of Theorem 1.2
admits a {K1,2,K1,3,K1,4}-factor. Kano and Saito [8] presented a sufficient
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condition for a graph having a {K1,t : m ≤ t ≤ 2m}-factor, which is an
extension of the above observation.

Theorem 1.3 (Kano and Saito [8]). Let G be a graph, and let m ≥ 2 be an
integer. Then G admits a {K1,t : m ≤ t ≤ 2m}-factor if i(G −X) ≤ 1

m |X|
for any subset X of V (G).

It is easy to see that a ({K1,t : m ≤ t ≤ 2m−1}∪{K2m+1})-factor is also a
{K1,t : m ≤ t ≤ 2m}-factor. Zhang, Yan and Kano [17] proved the following
theorem on the existence of a ({K1,t : m ≤ t ≤ 2m− 1} ∪ {K2m+1})-factor,
which is an improvement of Theorem 1.3.

Theorem 1.4 (Zhang, Yan and Kano [17]). Let G be a graph, and let m ≥ 2
be an integer. Then G admits a ({K1,t : m ≤ t ≤ 2m−1}∪{K2m+1})-factor
if G satisfies i(G−X) ≤ 1

m |X| for any subset X of V (G).

A claw is a graph isomorphic to K1,3. A graph is said to be a claw-
free graph if it does not contain an induced claw. Kelmans [9] showed the
following results on {K1,2}-factors in claw-free graphs.

Theorem 1.5 (Kelmans [9]). Let G be a 2-connected claw-free graph of
order n. If n ≡ 1 (mod 3), then G − x admits a {K1,2}-factor (i.e. {P3}-
factor) for any x ∈ V (G).

Theorem 1.6 (Kelmans [9]). Let G be a 2-connected claw-free graph of
order n. If n ≡ 0 (mod 3), then G − e admits a {K1,2}-factor (i.e. {P3}-
factor) for any e ∈ E(G).

Note that {x} is a vertex subset of G for any x ∈ V (G), and {e} is an edge
subset of G for any e ∈ E(G). Naturally, motivated by the above theorems,
we consider the more general problems:

Problem 1. After deleting any k vertices of a graph G, does the remaining
graph ofG admit a star-factor? That is to say, doesG−U admit a star-factor
for any U ⊆ V (G) with |U | = k?

Problem 2. After deleting any m edges of a graph G, does the remaining
graph of G admit a star-factor? That is to say, does G − E′ admit a star-
factor for any E′ ⊆ E(G) with |E′| = m?

Our main results in this paper imply that the two problems above are
true, which are shown in the following section. The other results on graph
factors see [2, 3, 4, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31].

2. Main results and their proofs

A graph R is defined as a factor-critical graph if R− x contains a perfect
matching (i.e. {K1,1}-factor) for every x ∈ V (R). A graph H is defined as
a sun if H = K1, H = K2 or H is the corona of a factor-critical graph R
with order at least three, i.e., H is obtained from R by adding a new vertex
w = w(v) together with a new edge vw for every v ∈ V (R). A sun of order
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n with n ≥ 6 is defined as a big sun. We use sun(G) to denote the number
of sun components of a graph G.

The sun toughness of a graph G is denoted by s(G) and defined by

s(G) = min

{
|X|

sun(G−X)
: X ⊆ V (G), sun(G−X) ≥ 2

}
if G is not a complete graph; and s(G) = +∞ if G is a complete graph.
Then we study the relationship between sun toughness and star-factors with
prescribed properties in graphs. Our main results in this paper are shown
in the following.

Theorem 2.1. Let G be a connected graph, and let n be an integer with
n ≥ 2. If its sun toughness s(G) ≥ 1

n , then G admits a {K1,t : 1 ≤ t ≤ n}-
factor.

Proof. If G is a complete graph, it is obvious that G admits a {K1,t : 1 ≤
t ≤ n}-factor. In the following, we assume that G is a non-complete graph.
Suppose that G satisfies the hypothesis of Theorem 2.1, but it has no {K1,t :
1 ≤ t ≤ n}-factor. In light of Theorem 1.1, there exists a vertex subset X
of G satisfying

i(G−X) > n|X|.
Since G is a connected graph, X ̸= ∅. Hence, i(G − X) > n|X| ≥ n ≥ 2.
Combining this with sun(G−X) ≥ i(G−X) and the definition of s(G), we
get

s(G) ≤ |X|
sun(G−X)

≤ |X|
i(G−X)

<
|X|
n|X|

=
1

n
,

which contradicts that s(G) ≥ 1
n . Theorem 2.1 is verified. □

Theorem 2.2. Let k and n be two integers with k ≥ 1 and n ≥ 2, and let G
be a (k + 1)-connected graph. If its sun toughness s(G) > k+1

n+1 , then G− Y

admits a {K1,t : 1 ≤ t ≤ n}-factor for any Y ⊆ V (G) with |Y | = k.

Proof. We write G′ = G − Y . Assume that G′ has no {K1,t : 1 ≤ t ≤ n}-
factor. Then it follows from Theorem 1.1 that

i(G′ −X) ≥ n|X|+ 1 (1)

for some vertex subset X of G′.
Claim 1. X ̸= ∅.
Let X = ∅. Note that G is a (k+1)-connected graph and |Y | = k. Thus,

G′ = G − Y is connected. Hence, i(G′) = 0. Combining this with (1) and
X = ∅, we get

0 = i(G′) = i(G′ −X) ≥ n|X|+ 1 = 1,

which is a contradiction. This completes the proof of Claim 1.
In the following, we consider two cases by the value of sun(G′ −X).
Case 1. sun(G′ −X) ≤ 1.
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Note that i(G′−X) ≤ sun(G′−X) ≤ 1. In terms of (1) and Claim 1, we
obtain

1 ≥ sun(G′ −X) ≥ i(G′ −X) ≥ n|X|+ 1 ≥ n+ 1 > 1,

a contradiction.
Case 2. sun(G′ −X) ≥ 2.
Note that sun(G− (X ∪Y )) = sun(G′−X). According to the hypothesis

of Theorem 2.2, the definition of s(G), sun(G′ − X) ≥ i(G′ − X) and (1),
we obtain

k + 1

n+ 1
< s(G)

≤ |X ∪ Y |
sun(G− (X ∪ Y ))

=
|X|+ k

sun(G′ −X)

≤ |X|+ k

i(G′ −X)

≤ |X|+ k

n|X|+ 1
,

which implies
|X| < 1,

which contradicts Claim 1. This completes the proof of Theorem 2.2. □

Theorem 2.3. Let n be a positive integer with n ≥ 2, and let G be a 2-
edge-connected graph. Then G is a {K1,t : 1 ≤ t ≤ n}-factor deleted graph
if its sun toughness s(G) ≥ 1

n−1 .

Proof. Obviously, Theorem 2.3 holds for a complete graph. Next, we may
assume that G is a non-complete graph.

Let G′ = G− e for any e ∈ E(G). In order to prove Theorem 2.3, we only
need to verify that G′ admits a {K1,t : 1 ≤ t ≤ n}-factor. By contradiction,
suppose that G′ has no {K1,t : 1 ≤ t ≤ n}-factor. Then it follows from
Theorem 1.1 that

i(G′ −X) ≥ n|X|+ 1 (2)

for some X ⊆ V (G′). In the following, we consider two cases for the value
of |X|.

Case 1. |X| = 0.
In terms of (2), we obtain

i(G′) ≥ 1. (3)

On the other hand, since G a 2-edge-connected graph, G′ = G − e is an
edge-connected graph, which implies

i(G′) = 0,

contradicting (3).
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Case 2. |X| ≥ 1.
Note that i(G′−X) ≤ sun(G′−X) = sun(G−X− e) ≤ sun(G−X)+2,

which implies
sun(G−X) ≥ i(G′ −X)− 2. (4)

Subcase 2.1. sun(G−X) ≥ 2.
In light of (2), (4), the definition of s(G) and the hypothesis of Theorem

2.3, we obtain

1

n− 1
≤ s(G)

≤ |X|
sun(G−X)

≤ |X|
i(G′ −X)− 2

≤ |X|
n|X|+ 1− 2

=
|X|

n|X| − 1
,

and thus
1

n− 1
≤ |X|

n|X| − 1
. (5)

Let f(|X|) = |X|
n|X|−1 . Then we have

f ′(|X|) =
( |X|
n|X| − 1

)′
= − 1

(n|X| − 1)2
< 0,

which implies that f(|X|) attains its maximum value at |X| = 1. Combining
this with (5), we get

1

n− 1
≤ s(G) ≤ |X|

sun(G−X)
≤ |X|

i(G′ −X)− 2
≤ 1

n− 1
,

which implies
sun(G−X) = i(G′ −X)− 2. (6)

Note that G′ = G− e. Hence, i(G′ −X) ≤ i(G−X) + 2. Combining this
with (6) and sun(G−X) ≥ i(G−X), we obtain

i(G−X) ≤ sun(G−X) = i(G′ −X)− 2 ≤ i(G−X) + 2− 2 = i(G−X),

which implies
i(G−X) = i(G′ −X)− 2. (7)

It follows from (7) and G′ = G− e that G−X has at least a component
K2. Thus, we have

sun(G−X) ≥ i(G−X) + 1 = i(G′ −X)− 2 + 1 = i(G′ −X)− 1,

which contradicts (6).
Subcase 2.2. sun(G−X) ≤ 1.
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According to (2), (4) and n ≥ 2, we have

sun(G−X) ≥ i(G′ −X)− 2 ≥ n|X|+ 1− 2 ≥ n− 1 ≥ 1.

Combining this with sun(G−X) ≤ 1, we get

sun(G−X) = 1 (8)

and

i(G′ −X) = 3. (9)

We write e = xy. Let v1, v2, v3 be three isolated vertices in G′ − X. If
x, y ∈ V (G) \ {v1, v2, v3}, then by (9) we have

sun(G−X) ≥ 3,

which contradicts (8).
If x ∈ {v1, v2, v3} and y ∈ V (G) \ {v1, v2, v3} (or x ∈ V (G) \ {v1, v2, v3}

and y ∈ {v1, v2, v3}), then it follows from (8) and (9) that

1 = sun(G−X) ≥ 2,

which is a contradiction.
If x, y ∈ {v1, v2, v3}, then from (9), it is easy to see that there are at least

two sun components K1 and K2 in G−X, that is,

sun(G−X) ≥ 2,

which contradicts (8). Theorem 2.3 is proved. □

3. Remarks

Remark 1. The condition s(G) ≥ 1
n in Theorem 2.1 is sharp. In order

to prove this, we construct a graph G = Kr ∨ (rn + 1)K1, where ∨ means
“join”, and r, n are two positive integers with n ≥ 2. Obviously, s(G) =

r
rn+1 < r

rn = 1
n . But S(G) → 1

n when r → +∞. Let X = V (Kr). Then

|X| = r and

i(G−X) = rn+ 1 = n|X|+ 1 > n|X|.
In light of Theorem 1.1, G has no {K1,t : 1 ≤ t ≤ n}-factor.

Remark 2. We show that s(G) > k+1
n+1 in Theorem 2.2 is best possible.

We construct a graph G = Kk+1 ∨ (n + 1)K1, where k, n are two positive
integers with n ≥ 2 and ∨ means “join”. It is obvious that s(G) = k+1

n+1 and

G is a (k+1)-connected graph. Set Y = V (Kk) ⊆ V (Kk+1) and G′ = G−Y .
Let X = V (Kk+1) \ Y = V (K1). Then |X| = 1 and

i(G′ −X) = n+ 1 = n|X|+ 1 > n|X|.

In view of Theorem 1.1, G′ = G− Y has no {K1,t : 1 ≤ t ≤ n}-factor.
Remark 3. In the following, we show that the hypothesis s(G) ≥ 1

n−1 in

Theorem 2.3 cannot be replaced by s(G) ≥ 1
n .

Let m ≥ 2 be an integer. We construct a graph G = Km∨ ((mn− 1)K1∪
K2), where ∨ means “join”. It is easy to see that s(G) = m

(mn−1)+1 = 1
n and
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G is an m-edge-connected graph. Let G′ = G − e, where e ∈ E(K2). We
choose X = V (Km), and so |X| = m. Then we have

i(G′ −X) = (mn− 1) + 2 = mn+ 1 = n|X|+ 1 > n|X|.
In terms of Theorem 1.1, G′ = G− e has no {K1,t : 1 ≤ t ≤ n}-factor, that
is, G is not a {K1,t : 1 ≤ t ≤ n}-factor deleted graph.
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