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MOMENTS OF q-JACOBI POLYNOMIALS

AND q-ZETA VALUES

FRÉDÉRIC CHAPOTON, CHRISTIAN KRATTENTHALER, AND JIANG ZENG

Abstract. We explore some connections between moments of rescaled
little q-Jacobi polynomials, q-analogues of values at negative integers for
some Dirichlet series, and the q-Eulerian polynomials of wreath products
of symmetric groups.

Introduction

This article explores connections among the following three kinds of ob-
jects:

(A) q-analogues of Dirichlet series and their values at negative integers,
(B) basic hypergeometric polynomials and their sequences of moments,
(C) weighted enumeration of elements in coloured symmetric groups.

Let us give more details on these three points in order. Precise definitions
are postponed to section 1 and some examples can be found at the end of
section 2.

The point (A) is about a q-analogue of the Dirichlet series

(0.1) L(s, c, r) =
∑
m≥1

m≡c (mod r)

1

ms
,

where c, r are fixed integers. This is the Riemann zeta function when (c, r) =
(1, 1). For general c and r, the summands do not form a multiplicative
sequence, so there is no Euler product. One defines as in [3] a q-analogue of
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this Dirichlet series as an operator

(0.2) Lq(s, c, r) =
∑
m≥1

m≡c (mod r)

1

[m]sq
Fm,

where [m]q = (qm − 1)/(q − 1) is the usual q-integer and Fm is the formal
Frobenius operator, acting on formal power series in z with no constant term
and coefficients in Q(q), defined by

Fm(f)(q, z) = f(qm, zm).

Whenever the Dirichlet series L(s, c, r) factorizes as an Euler product, then
so does the operator Lq(s, c, r) as a product of commuting operators.

One then introduces some q-analogues of the values of L(s, c, r) at non-
positive integers, namely Lq(−n, c, r)(z) for n ≥ 0. As images of the formal
power series f(z) = z, these are formal power series in the variable z with
coefficients in Q(q). As we will see, these are in fact rational functions in q
and z.

The point (B) is about the little q-Jacobi polynomials, a system of or-
thogonal polynomials in one variable. This is one of the families in the
Askey–Wilson scheme of basic hypergeometric orthogonal polynomials (cf.
[8]). The little q-Jacobi polynomials, orthogonal with respect to the variable
x, depend on the variable q and two further parameters. For each choice
of integers (c, r), by an appropriate choice of these parameters and some
affine change in the variable x, one obtains a system of orthogonal polyno-
mials involving the variables q and z. Their sequence of moments, which
are evaluations of the associated linear functional at the monomials xn, are
therefore rational functions in q and z.

The point (C) is about the complex reflection groups G(r, n) defined as
the wreath product of the symmetric group Sn by the cyclic group Zr. The
elements of these groups can be seen as coloured permutation matrices,
where non-zero entries contain a root of unity of order dividing r. By using
two combinatorial statistics on these elements, one can refine the number
rnn! of elements of G(r, n) into a polynomial in two variables q and z, with
positive integer coefficients. In this context, the parameter c is absent.

The aim of this article is to show that (A), (B) and (C) all give essentially
the same rational function in q and z. More precisely, the rational functions
from (A) and (B) are essentially the quotients of the polynomial from (C)
by simple denominators. The part (C) is involved only when the parameter
c equals 1.

The relationship between (C) and (A) is merely a reformulation of the
results by Biagioli and the third author in [1]. The relationship between (A)
and (B) is a (q, z)-analogue of well-known results about Bernoulli numbers
and Euler numbers. We refer the reader to [6] for a recent paper on some
closely related topics, including Hankel determinants.
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1. Preliminaries

1.1. Orthogonal polynomials. In this subsection we recall some funda-
mental results of the theory of orthogonal polynomials [4, 11]. Let K be a
field.

Let δn,n′ denote the Kronecker delta function.

Definition. Let φ : K[x] → K be a linear functional. A sequence of polyno-
mials {pn(x)}n≥0 in K[x] is said to be orthogonal with respect to the linear
functional φ if:

(i) pn(x) is of degree n, for n = 0, 1, . . . ;
(ii) φ(pn(x) pn′(x)) = Kn δn,n′, Kn ̸= 0, for n = 0, 1, . . . .

The sequence {µn}n≥0 with µn = φ(xn) for n ≥ 0 is called the moment
sequence associated with φ.

Sometimes the polynomials {pn(x)} are also said to be orthogonal with
respect to the sequence of moments {µn}n≥0.

Let us write OPS as a shorthand for orthogonal polynomial system.

Theorem 1.1. 1 A sequence of monic polynomials {pn(x)}n≥0 in K[x] is
an OPS if and only if there is a sequence {bn}n≥0 and a non-zero sequence
{λn}n≥0 such that p0(x) = 1, p1(x) = x− b0 and

(1.1) pn+1(x) = (x− bn)pn(x)− λnpn−1(x) for n ≥ 1.

Theorem 1.2. Let the polynomials (pn(x))n≥0 satisfy (1.1). Then, if we fix
µ0 := λ0 ̸= 0, the functional φ with respect to which this OPS is orthogonal
is unique. Furthermore, for Qn(x) = α−npn(αx+ β), α ̸= 0, we have

Qn+1(x) =

(
x− bn − β

α

)
Qn(x)−

λn

α2
Qn−1(x), for n ≥ 1,(1.2)

and, if (pn(x))n≥0 is the OPS with respect to the moments (µn), then (Qn(x))
is the OPS with respect to the moments νn given by

(1.3) νn = φ

((
x− β

α

)n)
= α−n

n∑
j=0

(
n

j

)
(−β)n−jµj , for n ≥ 0.

Theorem 1.3. The generating function of the moments {φ(xn)} has the
continued fraction expansion∑

n≥0

φ(xn) tn =
λ0

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

.(1.4)

There is also an associated formula for Hankel determinants of the se-
quence of moments, see [11, 9, 10].

1This statement is usually called Favard’s theorem, although it was certainly known
and used before, notably in works of Thomas Jan Stieltjes, Marshal Stone and Aurel
Wintner. For a precise historical account, see Section 2.5 in the book [7].
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1.2. Wreath product of a symmetric group by a cyclic group. Let
r ≥ 1 and n ≥ 1 be integers. Let Sn be the symmetric group on {1, . . . , n}.
A permutation σ ∈ Sn will be denoted by σ = σ(1) · · ·σ(n). The wreath
product Zr ≀ Sn of Zr by Sn is the set

(1.5) G(r, n) := {(c1, . . . , cn;σ) | ci ∈ {0, . . . , r − 1}, σ ∈ Sn}.
Using a fixed primitive r-th root of unity ξ, one can see the elements in
this set as square matrices, starting from the permutation matrix for σ and
replacing the non-zero entry in column i by ξci .

This group is therefore also called the group of r-coloured permutations.
We will represent its elements as

γ = [γ(1), . . . , γ(n)] = [σ(1)c1 , . . . , σ(n)cn ].

We denote by

col(γ) :=

n∑
i=1

ci,

the colour weight of any γ ∈ G(r, n). For example, if γ = [41, 30, 24, 12] ∈
G(5, 4) then col(γ) = 7.

We endow the set of possible values for the γ(i) with the following total
order:

nr−1 < · · · < n1 < · · · < 1r−1 < · · · < 11 < 0 < 10 < · · · < n0.

The 0 is inserted here to separate the “positive” values i0 from the “negative”
values ic with c ≥ 1. It will also be used in the statistics that we are going
to define now.

The descent set of γ ∈ G(r, n) is defined by

DesG(γ) := {i ∈ {0, . . . , n− 1} | γ(i) > γ(i+ 1)},(1.6)

where γ(0) := 0, and its cardinality is denoted by desG(γ).

The major index is defined to be the sum of descent positions:

maj(γ) =
∑

i∈DesG(γ)

i,

and the flag-major index is defined by

fmaj(γ) := r ·maj(γ) + col(γ).

For example, for γ = [41, 30, 24, 12] ∈ G(5, 4) we have DesG(γ) = {0, 2},
desG(γ) = 2, maj(γ) = 2, and fmaj(γ) = 17.

Biagioli and the third author [1] defined the generating polynomials for
G(r, n) with respect to the bi-statistic (des, fmaj):

(1.7) Gr,n(Z, q) =
∑

γ∈G(r,n)

ZdesG(γ)qfmaj(γ),

and they proved the following identity. We refer the reader to Subsection 1.3
for the meaning of the q-notations.
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Theorem (Carlitz–MacMahon identity for G(r, n)). Let r and n be
positive integers. Then

Gr,n(Z, q)

(Z; qr)n+1
=
∑
k≥0

Zk[rk + 1]nq .(1.8)

The above formula gives a nice generalization of identities of Carlitz [2]
for the symmetric group (corresponding to the case where r = 1), and of
Chow and Gessel [5] for the hyperoctahedral group (corresponding to the
case where r = 2).

1.3. Little q-Jacobi polynomials. We use the standard q-notations from
[8], among which

[x]q =
1− qx

1− q
,

the q-Pochhammer symbol

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1),

and the convenient shorthand

(a, b; q)n = (a; q)n (b; q)n.

We furthermore need the q-binomial theorem [8, p. 16]

1Φ0

(
a

−
; q, z

)
=

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

(1.9)

and the q-Chu–Vandermonde formula [8, p. 17]

2Φ1

(
q−n, b

c
; q, q

)
=

∞∑
k=0

(q−n; q)k (b; q)k
(c; q)k (q; q)k

qk =
(c/b; q)n
(c; q)n

bn.(1.10)

The little q-Jacobi polynomials [8, p. 482] have the explicit representation
(1.11)

pn(x; a, b | q) = 2Φ1

(
q−n, abqn+1

aq
; q, qx

)
=

∞∑
k=0

(q−n; q)k (abq
n+1; q)k

(aq; q)k (q; q)k
(qx)k,

and are orthogonal with respect to the inner product defined by∫ 1

0
f(x)g(x)dqw(x) =

∞∑
k=0

f(qk)g(qk)w(qk),

where

w(x) =
(aq, bq; q)∞
(abq2, q; q)∞

· (qx; q)∞
(bqx; q)∞

xα+1

with a = qα.
Let pn(x) be the monic little q-Jacobi polynomials, i.e.,

pn(x) =
(−1)nq(

n
2)(aq; q)n

(abqn+1; q)n
pn(x; a, b | q).
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Then the normalized recurrence relation [8, p. 483] reads

xpn(x) = pn+1(x) + (An + Cn)pn(x) +An−1Cnpn−1(x),(1.12)

where

An = qn
(1− aqn+1)(1− abqn+1)

(1− abq2n+1)(1− abq2n+2)
,

Cn = aqn
(1− qn)(1− bqn)

(1− abq2n)(1− abq2n+1)
.

By the q-binomial theorem (1.9), the nth moment is

(1.13) µn =

∫ 1

0
xndqw(x) =

(aq; q)n
(abq2; q)n

, for n = 0, 1, 2, . . . .

We can also verify (1.13) by using the explicit formula (1.11) and the q-Chu-
Vandermonde formula (1.10): namely, for n ≥ 1, we have

(1.14)

∫ 1

0
pn(x; a, b | q)dqw(x) = 0.

We can now prove the connection between (B) and (A).

Theorem 1.4. For integers r ≥ 1, the nth moment µn of the shifted little
q-Jacobi polynomials pn(q

−c(1 + (q − 1)x);Zq−r, 1 | qr) is

µn = (1− Z)
∑
k≥0

([rk + c]q)
nZk.(1.15)

For c = 1, we have

(1.16) µn =
Gr,n(Z, q)

(Zqr; qr)n
.

Proof. By (1.3), the nth moment of pn(q
−c(1 + (q − 1)x); a, b | qr) is

νn = qnc(q − 1)−n
n∑

j=0

(
n

j

)
(−qc)j−n (aqr; qr)j

(abq2r; qr)j
.

Replacing a by Zq−r and b by 1, we get

νn = qnc(q − 1)−n
n∑

j=0

(
n

j

)
(−qc)j−n 1− Z

1− Zqrj

= (1− Z)(q − 1)−n
∑
k≥0

Zk
n∑

j=0

(
n

j

)
(−1)n−jq(rk+c)j

= (1− Z)
∑
k≥0

([rk + c]q)
nZk.

The last statement follows from (1.8). □
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Theorem 1.5. The generating function for the moments µn in (1.15) has
the continued fraction expansion∑

n≥0

µnt
n =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

.(1.17)

where the coefficients bn and λn are given by

(1.18) λn =
Zq2r(n−1)+2c [rn]2q (1− Zqr(n−1))2

(1− Zq2rn)(1− Zqr(2n−1))2(1− Zqr(2n−2))

and

bn =
qc

q − 1

(1.19)

·

(
qrn(1− Zqrn)2

(1− Zq2rn)(1− Zqr(2n+1))
+

Zqr(n−1)(1− qrn)2

(1− Zqr(2n−1))(1− Zq2rn)
− q−c

)
.

Proof. This follows by combining (1.12) and Theorems 1.4, 1.2 and 1.3 with
α = (q − 1)/qc and β = q−c. □

2. Zeta operators at negative integers

We define the q-difference operator on the formal power series f in z by

(2.1) ∆z(f) =
f(qz)− f(z)

q − 1
.

Note that ∆z(z
m) = [m]qz

m. This implies that repeated application of
the operator ∆z creates the sequence of values at negative integers for the
q-analogues of Dirichlet series. Indeed, for n ≥ 0, we have

(2.2) Lq(−n, c, r)(z) =
∑
m≥1

m≡ c(mod r)

[m]nq z
m.

and therefore

(2.3) ∆z (Lq(−n, c, r)(z)) = Lq(−n− 1, c, r)(z).

Computing the initial value for n = 0, one finds

(2.4) Lq(0, c, r)(z) =
zc

1− zr
.

By induction using (2.3), the expression Lq(−n, c, r)(z) is a rational function
in q and z with denominator (zr, qr)n+1.

The general relation between (A) and (B) is therefore, by comparison of
(2.2) with (1.15), using (2.4), that

(2.5) Lq(−n, c, r)(z)/Lq(0, c, r)(z) = µn

∣∣
Z=zr

.
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For example, with (c, r) = (1, 2), the first few values of Lq(−n, 1, 2)(z)
are

z

1− z2
,

z(qz2 + 1)

(1− z2)(1− q2z2)
,
z(q4z4 + 2q3z2 + 2q2z2 + 2qz2 + 1)

(1− z2)(1− q2z2)(1− q4z2)
.

For c = 1, comparison with (1.8) reveals the combinatorial expression

(2.6) Lq(−n, c, r)(z) = z
Gr,n(z

r, q)

(zr, qr)n+1
,

which makes the precise connection between (A) and (C).
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