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COVERINGS WITH CONGRUENT

AND NON-CONGRUENT HYPERBALLS

GENERATED BY DOUBLY TRUNCATED

COXETER ORTHOSCHEMES

MIKLÓS EPER AND JENŐ SZIRMAI

Abstract. After the investigation of the congruent and non-congruent
hyperball packings related to doubly truncated Coxeter orthoscheme
tilings [Acta Univ. Sapientiae, Mathematica, 11, 2 (2019), 437–459],
we consider the corresponding covering problems. In Non-fundamental
trunc-simplex tilings and their optimal hyperball packings and coverings
in hyperbolic space the authors gave a partial classification of super-
groups of some hyperbolic space groups whose fundamental domains
will be integer parts of truncated tetrahedra, and determined the opti-
mal congruent hyperball packing and covering configurations belonging
to some of these classes.

In this paper, we complement these results with the investigation of
the non-congruent covering cases and the remaining congruent cases.
We prove, that between congruent and non-congruent hyperball co-
verings the thinnest belongs to the {7, 3, 7} Coxeter tiling with density
≈ 1.26829. This covering density is smaller than the conjectured lower
bound density of L. Fejes Tóth for coverings with balls and horoballs.

We also study the local packing arrangements related to {u, 3, 7} (6 <
u < 7, u ∈ R) doubly truncated orthoschemes and the corresponding
hyperball coverings. We prove, that these coverings are achieved their
minimum density at parameter u ≈ 6.45953 with covering density ≈
1.26454 which is smaller than the above record-small density, but this
hyperball arrangement related to this locally optimal covering can not
be extended to the entire H3.

Moreover, we see that in the hyperbolic plane H2 the universal lower
bound of the congruent circle, horocycle, hypercycle covering density√
12/π can be approximated arbitrarily well also with non-congruent hy-

percycle coverings generated by doubly truncated Coxeter orthoschemes.
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1. Introduction

The investigation of optimal dense packings and coverings with congruent
balls in spaces with constant curvature is one of the important topics in
discrete geometry. The most explored is the Euclidean case. One of the
greatest results is the solution of the famous Kepler-conjecture [12] (Hilbert’s
18th problem). Its computer-supported proof was given by Thomas Hales
in the early 2000s, which is based on the ideas of László Fejes Tóth [9].

In the hyperbolic case, there are far more open questions. In n-dimension
(n ≥ 3) e.g. it isn’t clear when the most dense packing is realised with
classical balls. The so far known highest packing density is ≈ 0.77147 with
classical balls in H3, published in [21], where the authors also determined a
classical ball configuration, which provides the so far known thinnest cover-
ing density ≈ 1.36893.

Moreover, in hyperbolic space, the definition of the density of the packings
and coverings is crucial, as was shown by Károly Böröczky in his works [4]
and [5]. The most common density definition considers the local density of
the balls related to their Dirichlet-Voronoi cells. We will use as well this
local density definition and also its extension. A very important result of
the classical ball and horoball packings is the following theorem:

Theorem 1.1 (K. Böröczky [6], [7]). In an n-dimensional space of constant
curvature, consider a packing of spheres of radius r. In the case of spherical
space, assume that r < π/4. Then the density of each sphere in its Dirichlet–
Voronoi cell cannot exceed the density of n+ 1 spheres of radius r mutually
touching one another with respect to the simplex spanned by their centers.

In hyperbolic space Hn (n ≥ 2) in addition to the classical spheres,
there are two other types of balls: horoballs and hyperballs, which are non-
compact “balls”, and the above packing and covering problems with these
kinds of balls were also intensively investigated. The densest packing confi-
guration, which Theorem 1.1 states, can be realized in H3, but surprisingly
not with classical balls, but with horoballs, providing density ≈ 0.85328
(this density can be attained with more different types of horoball pack-
ings related to fully asymptotic Coxeter tiling [15]). In higher dimensions
(n = 4, ..., 9) there are also interesting results with high densities (see [16],
[17], [18]). It was also shown, that in Hn (n ≥ 4) the density of locally
optimal horoball packing related to n-dimensional fully asymptotic regular
simplices exceeds the conjectured bound, for example in H4 it attains den-
sity ≈ 0.77147, but the corresponding configuration can not be extended to
the entire hyperbolic space (see [23], [24]). Another question is, what will
be the configuration in certain dimensions for optimal horoball packing and
covering with horoballs of “different types” [19], [25].

In the epoch-making book of László Fejes Tóth [9] one can find the de-
scription of a horoball covering with density ≈ 1.280, which belongs to the
{6, 3, 3} tiling, and here conjectured that this would give the thinnest co-
vering in the H3.
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We know even less about the packings and coverings with hyperballs.
In the hyperbolic plane (n = 2) I. Vermes proved, that the upper bound
for congruent hypercycle packing density is 3/π [35], and the lower bound
for congruent hypercycle covering density is

√
12/π [36]. We note, that the

densest hypercycle packings and least dense covering can be realized with
the same density as the optimal packing and coverings using horospheres, as
it was shown e.g. in [37]. However, there are no results related to the densest
hypercycle packings and thinnest hypercycle coverings with noncongruent
hypercycles.

Moreover, in higher dimensions, there are few results related to congruent
and noncongruent hyperball packings and coverings. The locally optimal
hyperball packing configuration was researched in previous works related
to several tilings: to tilings with truncated regular hyperbolic simplices in
[30], [32]; to tilings with cubes and octahedrons in [26] (that yields den-
sity ≈ 0.84931 in noncongruent cases); to tilings with truncated Coxeter
orthoschemes in [22] (that yields density ≈ 0.81335).

But these are just some of the works, where the densest hyperball packings
were investigated in Hn (see also [28], [27]). In [29] the least dense hyperball
coverings are determined related to 3-,4- and 5-dimensional Coxeter tilings,
which can be derived from Coxeter orthoschemes by truncating the principal
vertex with its polar plane. In several cases, there were found locally optimal
configurations, which densities exceeds the Böröczky-Florian upper bound
related to the classical ball and horoball packings.

Other types of ball packings and coverings in Hn are the so-called hyp-
hor packings [31] and coverings [8], where in a configuration we use both
horoball and hyperball, and the fundamental domain of the tilings are simply
truncated simply asymptotic Coxeter orthoschemes. In the hyperbolic plane
in both cases (packing and covering) the theoretic bound of the density
(as above) can be attained in limit. In H3 the optimal packing density is
≈ 0.83267, and the optimal covering density is ≈ 1.27297 both related to the
{7, 3, 6} Coxeter tiling. Moreover, we also considered configurations {p, 3, 6}
(6 < p < 7, p ∈ R), and we got better densities: ≈ 0.85397 for packing,
≈ 1.26885 for covering, but these tilings can not be extended to the entire
hyperbolic space.

In [33] we considered congruent hyperball packings in 3-dimensional hy-
perbolic space and developed a decomposition algorithm that for each sa-
turated hyperball packing provides a decomposition of H3 into truncated
tetrahedra. Therefore, in order to get a density upper bound for hyperball
packings, it is sufficient to determine the density upper bound of hyperball
packings in truncated simplices. In [34] we proved, using the above results,
that the density upper bound of the saturated congruent hyperball (hyper-
sphere) packings related to the corresponding truncated tetrahedron cells is
realized in regular truncated tetrahedra with density ≈ 0.86338. Further-
more, we prove that the density of locally optimal congruent hyperball ar-
rangement in regular truncated tetrahedron is not monotonically increasing
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function of the height (radius) of corresponding optimal hyperball, contrary
to the ball (sphere) and horoball (horosphere) packings.

Our discussion in this paper related to previous investigations (see [20])
where the authors considered some tilings generated by doubly truncated
orthoschemes in H3, and determined their optimal packing and covering
configurations with congruent hyperballs. In [20] was also shown, that the
tiling {7, 3, 7} provides ≈ 1.26829 covering density, which is the currently
known smallest ball covering density in H3. We note here that in [22] the
corresponding packing problem was solved for congruent and noncongruent
hyperballs related to similar orthoschemes. The tiling {7, 3, 7} provides
the optimal ≈ 0.81335 packing density, which is realized with packings of
congruent hyperballs.

In this paper, we complete and close the investigation started in the men-
tioned previous papers. Now, we prove, that the thinnest covering with
congruent or noncongruent hyperballs related to doubly truncated Coxeter
orthoschemes generated tilings is realized at the {7, 3, 7} tiling with density
≈ 1.26829 (see also [20]). We note here that this covering density is smaller
than the conjectured lower bound of L. Fejes Tóth density for coverings with
balls and horoballs.

Moreover, we also consider {u, 3, 7} (6 < u < 7, u ∈ R) tilings, where the
locally optimal density is ≈ 1.26454, at parameter u ≈ 6.45953.

Finally, we discuss the hypercycle coverings with congruent or noncon-
gruent hypercycles, related to doubly truncated Coxeter orthoschemes gen-
erated tilings in the hyperbolic plane H2. We prove that the universal lower
bound of the congruent circle or horocycle and hypercycle covering density√
12/π can be approximated arbitrarily well with non-congruent hypercycle

coverings.

2. Basic notions

2.1. The projective model of hyperbolic space H3. For the compu-
tations, we use the projective Beltrami-Cayley-Klein model of hyperbolic
space. The model is defined in the E1,n Lorentz space with signature (1, n),
i.e. consider Vn+1 real vector space equipped with the bilinear form:

⟨ x, y⟩ = −x0y0 + x1y1 + · · ·+ xnyn.

In the vector space consider the following equivalence relation:

x(x0, . . . , xn) ∼ y(y0, . . . , yn) ⇔ ∃c ∈ R\{0} : y = c · x.

The factorization with ∼ induces the Pn(Vn+1,Vn+1) n-dimensional real
projective space. In this space to interpret the points of Hn hyperbolic
space, consider the following quadratic form:

Q = {[x] ∈ Pn|⟨ x, x⟩ = 0} =: ∂Hn,

The inner points relative to the cone-component determined by Q are the
points of Hn (for them ⟨ x, x⟩ < 0), the point of Q = ∂Hn are called the
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points at infinity, and the points lying outside realtive to Q are outer points
of Hn (for them ⟨ x, x⟩ > 0). We can also define a linear polarity between
the points and hyperplanes of the space: the polar hyperplane of a point
[x] ∈ Pn is Pol(x) := {[y] ∈ Pn|⟨ x, y⟩ = 0}, and hence x ∈ Vn+1 is
incident with a ∈ Vn+1 if and only if ⟨ x, a⟩ = 0. In this projective model
we can define a metric structure related to the above bilinear form, where
for the distance of two proper points:

(2.1) cosh(d(x,y)) =
−⟨ x, y⟩√

⟨ x, x⟩⟨ y, y⟩
.

This corresponds to the distance formula in the well-known Beltrami-Cayley-
Klein model.

2.2. Hyperballs. We implement the covering of Hn with hyperballs: we
assign hyperballs to a doubly truncated orthoscheme, and if the hyperballs
cover it then accordingly to the images of the orthoscheme, the images of
the hyperballs provide a covering of the space.

The equidistant surface (or hypersphere) is a quadratic surface that lies
at a constant distance from a plane in both halfspaces. The infinite body of
the hypersphere is called a hyperball. The n-dimensional half-hypersphere
(n = 2, 3) with distance h to a hyperplane π is denoted by Hh

n. In the above
model, the equation of Hh

n can be written:

(2.2) 1−
n∑

i=1

x2i =

(
− u0
sinhh

+
n∑

i=1

ui
sinhh

xi

)2

,

where (u0, ..., un) is the polar point of π hyperplane.
The volume of a bounded hyperball piece Hh

n(An−1) bounded by an (n−
1)-polytope An−1 ⊂ π, Hh

n and by hyperplanes orthogonal to π derived from
the facets of An−1 can be determined by the following formulas that follow
from the suitable extension of the classical method of J. Bolyai [2]:

(2.3) V ol3(Hh
3(A2)) =

1

4
V ol2(A2) [sinh (2h) + 2h] ,

where the volume of the hyperbolic (n−1)-polytope An−1 lying in the plane
π is V oln−1(An−1).

From the equation of the Hh
n, we can see that the equivalents of the

hyperballs in our model will be ellipsoids.

3. Covering with hyperballs in hyperbolic space H3

3.1. Coxeter orthoschemes and tilings.

Definition 3.1. In the Hn (2 ≤ n ∈ N) space a complete orthoscheme O of
degree d (0 ≤ d ≤ 2) is a polytope bounded with hyperplanes H0, . . . ,Hn+d,
for which H i ⊥ Hj, unless j ̸= i− 1, i, i+ 1.
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In the classical (d = 0) case let denote the vertex opposite to H i hyper-
plane with Ai (0 ≤ i ≤ n), and let denote the dihedral angle of H i and Hj

planes with αij (hence αij if 0 ≤ i < j − 1 ≤ n).
In this paper, we deal with orthoschemes of degree d = 2, which can

be described geometrically, as follows. We can give the sequence of the
vertices of the orthoschemes A0, . . . , An, where AiAi+1 edge is perpendicular
to Ai+2Ai+3 edge for all i ∈ {0, . . . , n − 3}. Here A0 and An are called the
principal vertices of the orthoschemes. In the case d = 2 these principal
vertices are outer points of the above model, so they are truncated by its
polar planes Pol(A0) and Pol(An), and the orthoscheme is called doubly
truncated (see Fig. 1). Now, we suppose that the A0An line intersects the
model, and does not deal with the other case.

In general, the Coxeter orthoschemes were classified by H.-C. Im Hof, he
proved that they exist in dimension ≤ 9, and gave a full list of them [10]
[11].

Figure 1. 3-dimensional Coxeter orthoscheme of degree
d = 2 with outer vertices A0, A3, truncated by

π0, π3 = HLC, JQE polar planes.

Now consider the reflections on the facets of the doubly truncated or-
thoscheme, and denote them with r1, . . . , rn+3, hence define the group

G = ⟨r1, . . . , rn+3|(rirj)mij = 1⟩,

where αij = π/mij , so mii = 1, and if mij = ∞ (i.e. H i and Hj are
parallel), than to the ri, rj pair belongs no relation. Suppose that 2 ≤ mij ∈
{N∪∞} if i ̸= j. The Coxeter group G acts on hyperbolic space Hn

properly
discontinously, thus the images of the orthoscheme under this action provide
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a T tiling of Hn
(i.e. the images of the orthoscheme fills the Hn

without
overlap).

For the complete Coxeter orthoschemes O ⊂ Hn we adopt the usual con-
ventions and sometimes even use them in the Coxeter case: if two nodes are
related by the weight cos (π/mij) then they are joined by a (mij − 2)-fold
line for mij = 3, 4 and by a single line marked by mij for mij ≥ 5. In
the hyperbolic case if two bounding hyperplanes of O are parallel, then the
corresponding nodes are joined by a line marked ∞. If they are divergent
then their nodes are joined by a dotted line.

In the following, we concentrate only on dimension 3 and on hyperbolic
Coxeter-Schläfli symbol of the complete orthoscheme tiling P generated by
reflections on the facets of a complete orthoscheme O. To every scheme
there is a corresponding symmetric 4 × 4 matrix (bij) where bii = 1 and,
for i ̸= j ∈ {0, 1, 2, 3}, bij equals to − cosαij with all dihedral angles αij

between the faces Hi, Hj of O.
For example, (bij) in formula (3.1) is the so-called Coxeter-Schläfli matrix

with parameters (u; v;w), i.e. α01 = π/u, α12 = π/v, α23 = π/w. Now only
3 ≤ u, v, w come into account (see [10, 11]).

(3.1) (bij) = ⟨bi, bj⟩ :=


1 − cos π

u 0 0
− cos π

u 1 − cos π
v 0

0 − cos π
v 1 − cos π

w
0 0 − cos π

w 1

 .

This 3-dimensional complete (truncated or frustum) orthoscheme
O = O(u, v, w) and its reflection group Guvw will be described in Fig. 1, 2,
and by the symmetric Coxeter-Schläfli matrix (bij) in formula (3.1), further-
more by its inverse matrix (hij) in formula (3.2).
(3.2)

(hij) = (bij)−1 = ⟨ai,aj⟩ :=

=
1

B



sin2 π
w − cos2 π

v cos π
u sin2 π

w cos π
u cos π

v cos π
u cos π

v cos
π
w

cos π
u sin2 π

w sin2 π
w cos π

v cos π
w cos π

v

cos π
u cos π

v cos π
v sin2 π

u cos π
w sin2 π

u

cos π
u cos π

v cos
π
w cos π

w cos π
v cos π

w sin2 π
u sin2 π

u − cos2 π
v


,

where

B = det(bij) = sin2
π

u
sin2

π

w
− cos2

π

v
< 0, i.e. sin

π

u
sin

π

w
− cos

π

v
< 0.

The volume of an doubly truncated HLCA1A2JQE Coxeter orthoscheme
with outer vertices A0, A3 (see Fig. 1) in Hn can be determined by the
following theorem of R. Kellerhals [13, 14].
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Theorem 3.2. The volume of a three-dimensional hyperbolic complete or-
thoscheme (except Lambert cube cases) S is expressed with the essential an-
gles α01, α12, α23, (0 ≤ αij ≤ π/2) in the following form:

V ol3(S) =
1

4
{L(α01 + θ)− L(α01 − θ) + L(π

2
+ α12 − θ)+

+ L(π
2
− α12 − θ) + L(α23 + θ)− L(α23 − θ) + 2L(π

2
− θ)},

where θ ∈ [0, π2 ) is defined by the following formula:

tan(θ) =

√
cos2 α12 − sin2 α01 sin2 α23

cosα01 cosα23

and where

L(x) := −
x∫

0

log |2 sin t|dt

denotes the Lobachevsky function.

3.2. Hyperball coverings. Consider in 3-dimensional hyperbolic space
H3 a doubly truncated Coxeter orthoscheme, with Coxeter-Schläfli symbol
{u, v, w}. Its Coxeter-Schläfli matrix (cij) and its inverse are described in
(4) and (5).

Set the A0A1A2A3 orthoscheme in the model centered at O = (1, 0, 0, 0),
so the Ak[ak] (k = 1, 2) vertices are proper points, i.e. hkk = ⟨ak,ak⟩ < 0
if (k = 1, 2), and we can check easily that it’s always fulfilled. On the
other hand Ak[ak] (k = 0, 3) principal vertices are outer points, i.e. hkk =
⟨ak,ak⟩ > 0 if (k = 0, 3), and from this we get the conditions

sin2
π

w
− cos2

π

v
< 0 and sin2

π

u
− cos2

π

v
< 0,

or equivalently
1

w
+

1

v
<

1

2
and

1

u
+

1

v
<

1

2
.

It means, that we have the following infinite series of F (v,w)
u Coxeter or-

thoschemes with two outer vertices (see [21] for details):

- {u, v, w}, where u ≥ 3, v ≥ 7 and w ≥ 3,
- {u, v, w}, where u ≥ 4, v = 5, 6 and w ≥ 4,
- {u, v, w}, where u ≥ 5, v = 4 and w ≥ 5,
- {u, v, w}, where u ≥ 7, v = 3 and w ≥ 7.

We truncate the orthoscheme with the polar planes π0 = pol(A0)[a
0] and

π3 = pol(A3)[a
3] of the vertices A0 and A3 (see Fig. 1), so

J = π3 ∩A0A3, Q = π3 ∩A2A3, E = π3 ∩A1A3, and

H = π0 ∩A0A3, L = π0 ∩A0A2, C = π0 ∩A0A1
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are proper points. Q lies on edge A2A3 so we can write q ∼ c · a3 + a2 for
some c real number. The corresponding Q point lies on a3 if and only if
their scalar product is 0:

c · a3a3 + a2a
3 = 0 ⇔ c = −a2a

3

a3a3
,

q ∼ −a2a
3

a3a3
a3 + a2 ∼ a2(a3a

3)− a3(a2a
3) = a2h33 − a3h23.(3.3)

Similarly for the other vertices on π3 and π0 polar planes,

(3.4)

j ∼ a0(a3a
3)− a3(a0a

3) = a0h33 − a3h03,

e ∼ a1(a3a
3)− a3(a1a

3) = a1h33 − a3h13,

h ∼ a3(a0a
0)− a0(a3a

0) = a3h0 − a0h03,

l ∼ a2(a0a
0)− a0(a2a

0) = a2h00 − a0h02,

c ∼ a1(a0a
0)− a0(a1a

0) = a1h0 − a0h01.

Set the orthoscheme in the model with coordinates

Q = (1, 0, 0, 0), E = (1, 0, y, 0), J = (1, x, y, 0),

A0 = (1, x, y,−z0), A1 = (1, 0, y,−z1), A2 = (1, 0, 0,−z2),

H = (1, x, y,−zH), L = (t1x, t1y,−t1z0 − (1− t1)z2),

C = (t2x, y,−t2z0 − (1− t2)z1),

for some t1, t2 ∈ [0, 1] (see Fig. 2), and using formulas (2.1) and (3.3-4):

cosh(d(Q,E)) =
−⟨q, e⟩√
⟨q,q⟩ ⟨e, e⟩

=
h13h23 − h12h33√

(h22h33 − h223)(h11h33 − h213)
,

cosh(d(Q, J)) =
−⟨q, j⟩√
⟨q,q⟩ ⟨j, j⟩

=
h03h23 − h02h33√

(h22h33 − h223)(h0h33 − h203)
,

cosh(d(E,A1)) =
−⟨a1, e⟩√
⟨e, e⟩ ⟨a1,a1⟩

=

√
h11h33 − h213

h11h33
,

cosh(d(Q,A2)) =
−⟨a2,q⟩√

⟨q,q⟩ ⟨a2,a2⟩
=

√
h22h33 − h223

h22h33
,

cosh(d(J,H)) =
−⟨j,h⟩√
⟨j, j⟩ ⟨h,h⟩

=
−h02h03h33 + h203h23√

h00h33(h22h33 − h223)(h00h33 − h203)
.

We know furthermore, that 0 = ⟨h,a0⟩ = ⟨c,a0⟩ = ⟨l,a0⟩, hence we can

determine the coordinates of the vertices of a certain F (v,w)
u .

The images of this F (v,w)
u doubly truncated orthoscheme under reflections

on its facets provide the Coxeter tiling T (v,w)
u with fundamental domain

F (v,w)
u . We construct hyperball coverings as follows (see Fig. 4):
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Figure 2. {7, 3, 7} Coxeter orthoscheme: A0 vertex
truncated with HLC, A3 vertex truncated with QEJ polar

plane.

- Let QEJ the base hyperplane of a hyperball, and consider its piece
bounded with QEJ plane, the planes perpendicular to this base hy-
perplane, and contain the edges QE,QJ, JE. Denote this hyperball-
piece with H1, and its height parameter with h1.

- Let HLC the base hyperplane of the other hyperball, and consider
its piece bounded with HLC plane, the planes perpendicular to this
base hyperplane, and contain the edges HL,HC,CL. Denote this
hyperball-piece with H2, and its height parameter with h2.

It is obvious, that these hyperballs cover the orthoscheme if and only if
they cover all of its edges, that is what we will check in the different cases.

So if the hyperballs cover the edges of F (v,w)
u , the images of H1 and H1 under

the reflections on the orthoschemes facets will provide a C(v,w)
u covering of

H3.
Here we remark, that the density cannot be optimal if we use only one

hyperball to cover the orthoscheme, i.e. hi = 0 for the other one.
A necessary condition for optimality is that there is a certain point of

one of the QA2, EA1, JH,LA2, CA1, A1A2 edges lying on surfaces of both
hyperballs. Therefore, the optimal covering density will be realized if the
above conditions stand. According to this, we distinguish 6 cases.
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Definition 3.3. The density of C(v,w)
u covering:

δ(C(v,w)
u ) =

V ol(H1) + V ol(H2)

V ol(F (v,w)
u )

.

3.3. To cover, or not to cover? In order to decide whether a covering
can be realized or not, we define the distance functions of the edges re-
lated to polar hyperplanes π0 = pol(A0)[a

0] and π3 = pol(A3)[a
3] of the

orthoscheme. For example consider HLC plane, JH edge (see Fig. 2), and
parametrize JH by the following way: let T a general point of JH, where
T (1, x, y,−tzH), t ∈ [0, 1]. Hence the distance function of JH from HLC
at t, is the distance of T and H, so by (2.1):

dJHHLC(t) = arccos

 1− x2 − y2 − tz2H√
(1− x2 − y2 − z2H)(1− x2 − y2 − t2z2H)

 .

Similarly we get functions dLA2
HLC(t), d

CA1
HLC(t), d

QA2

HLC(t), d
EA1
HLC(t), d

A1A2
HLC (t). In

the other case consider QEJ plane, and JH edge for example. Here the
function is given by the distance of T (1, x, y,−tzH), t ∈ [0, 1], and J :

dJHQEJ(t) = arccos

(√
1− x2 − y2

1− x2 − y2 − (tzH)2

)
.

And similarly for functions dQA2

QEJ(t), d
EA1
QEJ(t), d

LA2
QEJ(t), d

CA1
QEJ(t), d

A1A2
QEJ (t).

As we saw at the end of the previous section, we get optimal covering
density, only if the surfaces of the two hyperballs intersect each other on an
edge. So we choose an edge e (which is not on one of the polar planes), and
one of its points T (t) (parameterized with t ∈ [0, 1]), and say, that the T lies
on the surface of both hyperballs. Hence we know the h1, h2 heights of the
hyperballs, and we have to check, whether the distance of the points of the
other edges from one of the hyperplanes are smaller than the corresponding
hi or not. We can determine the intersection points of a hyperball and an
edge by using (2.2), and solving equations. If all of the points of an edge
are closer to QEJ than h1 or to HLC than h2, than the covering is realized
at T , and if this stands for all T in e, than the covering is realized at edge
e (e ∈ {QA2, EA1, JH,LA2, CA1, A1A2}).

By the careful analysis of the above distance functions, using the help of
a computer, we can say the following:

- The covering is realized at A1A2 edge (see Fig. 4).
- The covering is realized at QA2 edge.
- The covering is realized at CA1 edge.
- The covering isn’t realized at EA1 edge (the hyperballs don’t cover
QA2 or A1A2 edge).

- The covering isn’t realized at LA2 edge (the hyperballs don’t cover
CA1 or A1A2 edge).

- The covering isn’t realized at HJ edge.
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3.4. Non-congruent coverings. In this subsection, we consider the non-
congruent coverings for the possible cases described in the previous subsec-
tion.

We can determine the areas of QEJ and HLC triangles, and if we settle
T (t) on the edge QA2, then the heights of the hyperballs are

h1(t) = dQA2

QEJ(t) and h2(t) = dQA2

HLC(t),

thus we can compute the density of the covering using (2.3), Theorem 3.2,
and Definition 3.3. The covering density will be a function with variable t,
and we can determine its minimum precisely by real analysis (see Fig. 3).
The following table shows the minimal covering densities at QA2 for different
types of orthoschemes.

There are infinitely many types of doubly truncated orthoschemes, as we
saw previously. Here we listed only some of the first elements of the four
infinite sequences described in section 3. With the further increase of the
parameters u, v, w, the density grows as we obtain it after careful analysis
of the density function.

Type of orthoscheme δmin h1 h2

F (7,3)
3 1.28943 0.92295 1.55521

F (8,3)
3 1.34248 0.67445 1.35737

F (5,4)
4 1.54311 0.73337 1.51710

F (6,4)
4 1.66605 0.52867 1.37017

F (4,5)
5 1.79576 0.77124 1.66724

F (5,4)
5 2.00292 0.42347 1.79770

F (4,5)
6 2.23585 0.53126 1.87500

F (5,4)
6 2.60090 0.31440 2.00574

F (3,7)
7 2.31671 1.08534 2.14790

F (4,5)
7 2.77700 0.42041 2.04284

The case of covering at CA1 is the same, because of the symmetry of the
orthoscheme. And see the optimal densities of the covering at the edge A1A2

in the following table.

Type of orthoscheme δmin h1 h2

F (7,3)
3 1.38712 1.36405 1.36405

F (8,3)
3 1.45345 1.15039 1.15039

F (5,4)
4 1.36411 1.16974 1.16974

F (5,5)
4 1.41055 1.29237 0.85103

F (4,5)
5 1.31751 1.19095 1.19095

F (4,6)
5 1.34255 1.26048 0.95234

F (4,5)
6 1.34255 0.95234 1.26048

F (4,6)
6 1.35938 1.01481 1.01481

F (3,7)
7 1.26829 1.49903 1.49903

F (3,8)
7 1.28228 1.53709 1.22995
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(a) δ(C(7,3)
3 )(t), when T lies

on the QA2 edge.
(b) δ(C(3,8)

7 )(t), when T lies
on the A1A2 edge.

Figure 3

Notice that if u = w, than the optimal configuration belongs to congruent
covering (h1 = h2).

3.4.1. On non-extendable congruent and non-congruent hyperball coverings
to parameters {u, 3, 7}, (6 < u < 7, u ∈ R). We can investigate the coverings

related to orthoschemes F (3,7)
u , (6 < u < 7, u ∈ R), and here we consider the

coverings in general, i.e. both congruent and non-congruent cases.
In this case, the images of the orthoschemes under reflections on their

facets do not fill the hyperbolic space, but it provides a thinner, local cover-
ing, which can not be extended to the entire H3. Here the previous computa-
tions are the same, and the density function is two-variable, whose minimum
can be determined numerically after accurate analysis.

Theorem 3.4. The non-congruent hypersphere coverings in C(3,7)
u , (6 <

u < 7, u ∈ R) attain their minimum density at u ≈ 6.45953 with density ≈
1.26454 where the heights of hypersperes are h1 ≈ 1.50377, and h2 ≈ 1.26423
and their common point lies on A1A2 edge.

Remark:

(1) Notice, that the parameter u, where the minimum is attained ≈
6.45953, is very close to the corresponding parameter in [8], where
it was ≈ 6.45962.

(2) The above covering density is smaller than the ≈ 1.280 density be-
longing to Fejes Tóth László, Böröczky Károly, but this hyperball
covering can not be extended to the entire space.

3.5. Congruent coverings. In this subsection, we consider the congruent
coverings for the possible cases described in Subsection 3.3.

In this case, we are looking for the T point on A1A2, CA1, QA2 edges,
which is equal distance from HLC and QEJ . Investigating the above dis-
tance function, this point doesn’t exists on CA1 and QA2, and on the third
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edge, we can find it by solving the equation dA1A2
HLC (t) = dA1A2

QEJ (t), see Fig. 4
for visualization. In view of T , we can determine the data of the covering
as above. Here we listed just finitely many types of orthoschemes as well,
but as above, the further types can’t provide smaller densities as we obtain
it after careful analysis of the density function.

Type of orthoscheme δmin h1 h2

F (7,3)
3 1.38712 1.36405 1.36405

F (8,3)
3 1.45345 1.15039 1.15039

F (5,4)
4 1.36411 1.16974 1.16974

F (6,4)
4 1.45714 0.99583 0.99583

F (4,5)
5 1.31751 1.19095 1.19095

F (4,6)
5 1.45345 1.13375 1.13375

F (4,5)
6 1.45345 1.13375 1.13375

F (4,6)
6 1.35938 1.01481 1.01481

F (3,7)
7 1.26829 1.49903 1.49903

F (3,8)
7 1.36586 1.39916 1.39916

Figure 4. Visualization of C(3,7)
7 with density ≈ 1.26829

We summarized our results in the following theorem.

Theorem 3.6. In the hyperbolic space H3, between the congruent and non-
congruent hyperball coverings generated by doubly truncated Coxeter or-

thoschemes, the C(3,7)
7 congruent hyperball configuration provides the thinnest

covering with density ≈ 1.26829, which is the so far known smallest ball co-
vering density in H3.



COVERINGS WITH CONGRUENT AND NONCONGRUENT HYPERBALLS . . . 37

4. Hypercycle covering in hyperbolic plane

In the hyperbolic plane (n = 2) I. Vermes proved, that the lower bound
for congruent hypercycle covering density is

√
12/π [36]. However, there are

no results related to the thinnest hypercycle coverings with non-congruent
hypercycles. The investigation of the density of non-congruent hypersphere
coverings is generally not easy.

Here we will prove, using the results of our paper [8], that the theoretic
lower bound

√
12/π for congruent hypercycle coverings can be arbitrary

approximated with non-congruent hypercycle coverings related to doubly
truncated orthoschemes.

Theorem 4.1. Let A(1, 0, a) and B(1, b, 0) outer points related to the
Beltrami-Cayley-Klein circle model (see Fig. 5), and the AB line intersects
the model circle. Let the base lines of two hypercycles be OE and FC, and the
corresponding hypercycles through the midpoint J of segment CD generate
a covering configuration Ca,b (1/2) in truncated orthosceme FCDEO. Then

lim
(a,b)→(1,∞)

δ

(
Ca,b

(
1

2

))
=

√
12

π
.

Figure 5.
FCDEO doubly truncated Coxeter orthoscheme

Proof. Here let the base hyperlines of the two hypercycles OE and FC,
and both hypercycles pass through the point J that is the midpoint of CD.
This yields obviously a covering, denote it with Ca,b (1/2). If a → 1 then
A → H, CD → HI, and the K point on HI arises as the limit of the J
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midpoints of CD. Hence the orthoscheme tends to HIEO that is a simple
asymptotic, simple truncated orthoscheme. The hypercycle, whose base line
is CF , tends to a horocycle centered at H. The hypercycle is produced as
the images of a point under reflections on lines perpendicular to a certain
line CF , i.e. lines passing through the polar point (A) of a certain line CF .
The horocycle is produced as images of a point under reflections on parallel
lines, i.e. lines passing through a point at infinity (H). It means, that if A
tends to H, then the hypercycle tends to a horocycle.

So if a → 1, we get a hyp-hor covering, investigated in [8]. We recall
Theorem 3.2 of [8] using the denotation of the present paper:

Theorem 4.2 (Eper and Szirmai [8]). Let B(1, b, 0) outer point of the sim-
ple truncated orthoscheme, and Cb (1/2) denote the hyp-hor covering of sim-
ple truncated orthoscheme HIEO, with cycles passing through the point K.
Then

lim
b→∞

δ

(
C1
b

(
1

2

))
=

√
12

π
.

and δ
(
C1
b (1/2)

)
>

√
12/π for parameter b > 1.

And now according to the results of this theorem, we obtain the following:

lim
(a,b)→(1,∞)

δ

(
Ca,b

(
1

2

))
= lim

b→∞
lim
a→1

δ

(
Ca,b

(
1

2

))
= lim

b→∞
δ

(
C1
b

(
1

2

))
=

√
12

π
,

that means that density
√
12/π can be arbitrarily approximated with

hypercycle coverings related to doubly truncated orthoschemes. □

Remark: The general investigation of planar non-congruent hypersphere
packings and coverings related to the doubly truncated orthoschemes is dis-
cussed in a forthcoming paper.
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(1975), 67–90.
6. , Packing of spheres in spaces of constant curvature, Acta Math. Acad.

Sci. Hungar., 32 (1978), 243–261.
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Mathématique, 103(117) (2018), 129–146, DOI: 10.2298/PIM1817129M.

22. J. Szirmai, Congruent and non-congruent hyperball packings related to doubly
truncated Coxeter orthoschemes in hyperbolic 3-space, Acta Univ. Sapientiae,
Mathematica, 11, 2 (2019), 437–459.

23. , Horoball packings to the totally assymptotic regular simplex
in the hyperbolic n-space, Aequat. Math., 85, (2013), 471–482, DOI:
10.1007/s00010.012-0158-6.

24. , Horoball packings and their densities by generalized simplicial density
function in the hyperbolic space, Acta Math. Hung., 136/1-2, (2012), 39–55,
DOI: 10.1007/s10474-012-0205-8.

25. , Horoball packings related to the 4-dimensional hyperbolic 24
cell honeycomb {3, 4, 3, 4}, Filomat, 32/1, (2018), 87–100, DOI:
10.2298/FIL1801087S, arXiv:1502.02107.

26. , Hyperball packings related to cube and octahedron tilings in hyperbolic
space, Contributions to Discrete Mathematics, 15/2, (2020), 42–59.

27. , The p-gonal prism tilings and their optimal hypersphere packings in
the hyperbolic 3-space, Acta Math. Hungar. 111 (1-2) (2006), 65–76.

28. , The regular prism tilings and their optimal hyperball packings in the
hyperbolic n-space, Publ. Math. Debrecen 69 (1-2) (2006), 195–207.
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