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MULTICOLOR COMPOSITIONS AND CONJUGATION OF

N-COLOR COMPOSITIONS

ABDULAZIZ M. ALANAZI, MARGARET ARCHIBALD,
AND AUGUSTINE O. MUNAGI

Abstract. We introduce n-multicolor compositions which generalize
the n-color compositions that Agarwal first defined twenty-two years
ago. A summand may bear a set of many integer-valued colors which it
bounds from above. We enumerate such multicolored compositions using
generating functions. Then we isolate the conjugable class of multicol-
ored compositions known as cracked compositions. A concise exposition
of the conjugation of n-color compositions is presented in the classical
tradition of Percy Alexander MacMahon (1854 - 1929). Our set of con-
jugable n-color compositions turn out to be considerably larger than
previously known ones.

1. Introduction

Colored compositions are generalized integer compositions in which a part
size may come in a prescribed number of types or colors which are denoted
with subscripts, 11, 12, . . . , 21, 22, . . ..

The number of standard compositions of a positive integer n, that is,
representations of n as sequences of positive integers that sum to n, is known
to be 2n−1 [4, 7].

(1.1) 1 +

∞∑
n=1

2n−1xn =
1− x

1− 2x
.

An n-color composition is a colored composition in which a part of size
m may come in m different colors: m1,m2, . . . ,mm, m = 1, 2, 3, . . ..

The ‘n-color’ notion first appeared in a paper of Agarwal and Andrews
[3] that investigated combinatorial identities for “partitions with n copies
of n”, that is, n-color partitions. Subsequently Agarwal [2] defined n-color
compositions and explored many of their enumeration and combinatorial
properties. For instance, he proved that the number of n-color compositions
of a positive integer ν is the Fibonacci number F2ν , where F1 = F2 = 1 and
Fν = Fν−1 + Fν−2, ν > 2.
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Many authors have since discovered further properties of n-color com-
positions, including their connections with other combinatorial objects (see
Agarwal’s survey [1], and [2, 6, 14, 15]).

In this paper we generalize n-color compositions to have parts that may
bear more than one color simultaneously.

Recall that an n-color composition has the form

((g1)c1 , (g2)c1 , . . . , (gk)ck),

where g = (g1, g2, . . . , gk) is the support (or underlying) standard composi-
tion with a sequence of integer valued colors, (c1, . . . , ck), 1 ≤ ci ≤ gi ∀ i.

We consider the situation where a part gj is assigned r distinct colors from
the set {ci | 1 ≤ ci ≤ gj} for any r ∈ [gj ] := {1, 2, . . . gj}. With this color
assignment we say that gj is n-multicolored. The resulting colored compo-
sition of ν, that is, a colored composition of ν consisting of n-multicolored
parts, will be called an n-multicolor composition of ν.

The notation for an n-multicolor composition with support composition g
and n-multicolor sequence L = (L1, . . . , Lk) is C(g, L) = ((g1)L1 , . . . , (gk)Lk

)
with Li ⊆ [gi]. We call Li the color set of gi. For example, an admissible
n-multicolor sequence for g = (5, 5, 9, 1, 3, 8) is

L = ({1, 3}, {2, 4, 5}, {1}, {1}, {1, 2, 3}, {1, 4, 7}).

Thus C(g, L) = (51,3, 52,4,5, 91, 11, 31,2,3, 81,4,7).
In particular an n-color composition is an n-multicolor composition in

which every part bears a singleton color set.
In Section 2 we give the generating function for the number of n-multicolor

compositions and provide a bijection with a class of single colored objects.
In Section 3 we study the enumeration of n-multicolor compositions under
certain restrictions by means of generating functions. In Section 4 we define
cracked compositions and show that they form the subclass of conjugable
n-multicolor compositions. Lastly, in Section 5 we discuss the conjugation of
n-color compositions in the classical MacMahon tradition, via the techniques
of tilings and manipulation of ternary sequences.

2. Preliminaries

For brevity we will denote n-multicolor compositions by n-mc composi-
tions. Let mc(n, k) be the number of unrestricted n-mc compositions of ν
into k parts, and let mc(ν) =

∑
k≥0

mc(ν, k).

Theorem 2.1. The generating function for the number of n-mc composi-
tions of ν is

(2.1)

∞∑
ν=0

mc(ν)xν = 1 +
x

1− 4x+ 2x2
=

1− 3x+ 2x2

1− 4x+ 2x2
,
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and hence the exact formula is

mc(ν) :=

(
2 +

√
2
)ν − (2−√

2
)ν

2
√
2

, ν > 0.

Proof. Since a part of size i may bear any non-empty color set A ⊆ [i], the
number of distinct color assignments for i is 2i − 1. If x marks the size of
the composition, its contribution to the generating function is xi. Since i is
arbitrary the generating function for the sequence mc(ν, k) is

(2.2)
∑
ν≥0

mc(ν, k)xn =

∑
i≥1

(2i − 1)xi

k

=

(
x

(1− 2x)(1− x)

)k

.

Summing on k gives∑
ν≥0

mc(ν)xν :=
∑
k≥0

(
x

(1− 2x)(1− x)

)k

=
1− 3x+ 2x2

1− 4x+ 2x2
.

The exact formula for mc(ν) is obtained by extracting coefficients of xν .

For example, mc(3) = 14, which gives the following n-mc compositions:

(31) (32) (33) (31,2) (31,3) (32,3) (31,2,3)
(21, 11) (22, 11) (21,2, 11)
(11, 21) (11, 22) (11, 21,2)

(11, 11, 11)

The first few values of the sequence mc(ν), ν ≥ 1 are as follows

1, 4, 14, 48, 164, 560, 1912, 6528, 22288, 76096, 259808, 887040, . . . .

We obtain a hit in the Online Encyclopedia of Integer Sequences [17, seq
A007070]. A comment also describes mc(ν) as “the number of generalized
compositions of ν when there are 2i − 1 different types of the part i, i =
1, 2, . . .”. We may distinguish the ‘types’ with subscripts and obtain (non-n-
) color compositions in which any part u bears a single (globally restricted)
color ∈ {1, 2, . . . , 2u − 1}.

Theorem 2.2. There is a bijection between the set of n-mc compositions of
ν and the set of (single-) colored compositions of ν in which a part m bears
one color r, where 1 ≤ r ≤ 2m − 1.

Proof. We describe a bijection between the two classes of compositions. Con-
sider an n-mc composition C(g, L) = ((g1)L1 , (g2)L2 , . . . , (gk)Lk

). Note that
Lj ⊆ [gj ] gives 2gj − 1 possible subsets Lj ̸= ∅ for all possible j, where Lj

is assumed to be totally ordered so as to be identified with the increasing
sequence of its elements. The latter notation will be adopted in this proof.

For each part gj sort the family of possible subscript sequences Lj in
lexicographic order, within clusters of increasing lengths. Thus the sorted
subscript sequences take the form

(2.3) (1, 2, . . . , gj , 12, 13, . . . , (gj − 1)gj , 123, 124, . . . , . . . , 12 · · · gj).
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Then associate the rth member of (2.3) with r ≡ rjij for j = 1, . . . , k, ij =
1, . . . , 2gj − 1. This produces a unique sequence of single colors

(r1i1 , r2i2 , . . . , rkik)

for C(g, L).
Thus a bijective map may be defined by associating C(g, L) with the

color composition obtained by assigning the subscripts r1i1 , r2i2 , . . . , rkik to
g1, g2, . . . , gk, in order.

This transformation is illustrated for parts of sizes 1, 3 and 4 below.

gj = 1 :(1) 7−→ (1)

gj = 3 :(1, 2, 3, 12, 13, 23, 123) 7−→ (1, 2, 3, 4, 5, 6, 7)

gj = 4 :(1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234)

7−→ (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Thus for instance,

(41,2, 32, 11) 7→ (45, 32, 11),

(31,2, 11, 42,3,4) 7→ (34, 11, 414),

and so forth. This map is clearly reversible.

Even though Theorem 2.2 gives a single-color-per-part enumerative equiv-
alence to n-mc compositions, we elect to study the latter because of the rich
structure of the associated color sets which often yields interesting connec-
tions with other combinatorial objects. (See for example, Sections 4 and
5).

3. Some Restricted n-mc compositions

We will denote by mc(ν | P ) the number of n-multicolor compositions of ν
satisfying property P , and by mc(ν, k | P ) the number of such compositions
with k parts.

3.1. Restricting part sizes. In order to enumerate n-mc compositions
with all parts of size at most m we adjust the generating function in the
proof of Theorem 2.1 to have an upper limit of m on the i sum (see the
second sum in (2.2)). Thus we obtain

Theorem 3.1. The generating function for the number of n-mc composi-
tions with part sizes at most m is∑

ν≥0

mc(ν | parts ≤ m)xν

=
1− 3x+ 2x2

1− 4x+ 2x2 + (2m+1 − 1)xm+1 − (2m+1 − 2)xm+2
.(3.1)
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In particular, the coefficients of xν when m = 1, and m = 2 follow:

mc(ν | parts ≤ 1) = 1;

mc(ν | parts ≤ 2) =
2−ν−1

((
1 +

√
13
)ν+1 −

(
1−

√
13
)ν+1

)
√
13

.

As an illustration of how this sequence grows for small m, see Table 1.

m\ν 1 2 3 4 5 6 7 8 9 20

1 1 1 1 1 1 1 1 1 1 1
2 1 4 7 19 40 97 217 508 1159 2683
3 1 4 14 33 103 300 840 2461 7081 20344

Table 1. Numbers of n-mc compositions with parts ≤ m

Theorem 3.2. The generating function for the number of n-mc composi-
tions with part sizes at least m is∑
ν≥0

mc(ν | parts ≥ m)xν =
(x− 1)(2x− 1)

(2m − 2)xm+1 − (2m − 1)xm + 2x2 − 3x+ 1

Note that for m = 1 this is the same sequence as mc(ν), while m = 2
accounts for n-mc compositions without 1’s:∑

ν≥0

mc(ν | parts ≥ 2)xν =
(x− 1)(2x− 1)

2x3 − x2 − 3x+ 1
.

3.2. Restricting color sizes. Here we consider the number of n-mc com-
positions C in which a part may bear colors of size at most t.

Since t may be larger than some parts of C the color set of a part gj is
{1, 2, . . . ,min(t, gj)}.

A part of size i ≤ t bears an unrestricted number of color assignments,
i.e., 2i − 1, and a part of size i > t bears a color set A ⊆ [t], i.e., 2t − 1
possible assignments. Therefore,

∑
ν≥0

mc(ν, k|color sets ⊆ [t])xν =

 t∑
i=1

(2i − 1)xi +
∑
i≥t+1

(2t − 1)xi

k

=

(
x(1− 2txt)

(1− 2x)(1− x)

)k

=⇒
∑
ν≥0

mc(ν|color sets ⊆ [t])xν =
1− 3x+ 2x2

1− 4x+ 2x2 + 2txt+1
.

It may be verified that lim
t→∞

mc(ν|color sets ⊆ [t]) = mc(ν), and the case

t = 1 enumerates all standard compositions, that is, gives (1.1).
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3.3. Restricting the number of colors. We compute the number of n-mc
compositions in which a part may bear at most t colors.

Note that this class contains the foregoing class. For example, mc(30 |
color sets ⊆ [3]) enumerates

(52, 51,2,3, 91,2, 21,2, 11, 83)

but not
(52, 51,2,4, 91,5, 21,2, 11, 88)

because, for instance, in 91,5, we have 5 > 3 = t. On the other hand
mc(30 | color sets have ≤ 3 colors) enumerates both objects.

A part of size i ≤ t bears an unrestricted number of color assignments,
and a part of size i > t bears a color set A ⊆ [i] such that |A| ≤ t, i.e.,(
i
1

)
+
(
i
2

)
+ · · ·+

(
i
t

)
possible assignments.

∑
ν≥0

mc(ν | color sets have ≤ t colors)xν =
∑
k≥0

∑
i≥1

t∑
j=1

(
i

j

)
xi

k

=
∑
k≥0

 t∑
j=1

xj

(1− x)j+1

k

=
(1− 2x)(1− x)t+1

xt+1 + (2x2 − 4x+ 1) (1− x)t
.

3.3.1. Exactly t colors. To enumerate n-mc compositions where a part must
bear exactly t colors (and necessarily be a part of size at least t), we compute

∑
ν≥0

mc(ν | exactly t colors)xν :=
∑
k≥0

∑
i≥t

(
i

t

)
xi

k

=
(1− x)t+1

(1− x)t+1 − xt
.

Note that, contrary to expectation, mc(ν | exactly t colors) is not equal to
the difference

mc(ν | color sets have ≤ t colors)−mc(ν | color sets have ≤ t− 1 colors).

For instance when t = 2, the composition (21,2, 11) is not counted by mc(ν |
exactly 2 colors) but is still counted by the difference.

4. Conjugation of n-mc Compositions

In this section we isolate a class of n-multicolor compositions that pos-
sess the conjugation involution property, in the classical tradition of Percy
Alexander MacMahon (1854 - 1929) (see for example, [11, 10, 12]). Given a
standard composition C there are several methods of obtaining the conju-
gate composition of C, denoted by C ′, including the zig-zag graph method
and the line graph method.

A bar graph representation of an ordinary composition g = (g1, g2, . . . , gk)
is a sequence of columns composed of unit squares, where column j has gj
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squares. For example, see Figure 1 for the bar graphs corresponding to the
compositions of n = 3.

Figure 1. Bar graphs of (3), (2, 1), (1, 2), (1, 1, 1).

Definition 4.1. A cracked composition is an n-mc composition in which a
part cannot bear the color 1 simultaneously with another color label.

The name ‘cracked composition’ was originally used to describe a com-
position with (potential) “cracks” between the squares in the bar graph
representation (see Heubach-Mansour [7, p. 77]). Thus cracks do not occur
at the top or bottom of a column. Figure 2 shows the bar graphs of the
cracked compositions of 3, where ‘×’ denotes a crack.

×
× ×

× × ×

Figure 2. Bar graphs of cracked compositions of n = 3.

It is easy to see that Definition 4.1 of a cracked composition C(g, L) =
((g1)L1 , . . . , (gk)Lk

) agrees with the graphical description. Indeed since each
gj corresponds to a column of gj unit squares containing gj + 1 horizontal
bars/levels, an occurrence of (gj)1 ∈ C(g, L) indicates that gj has no crack
at level 1, the bottom level, and elsewhere. An occurrence of (gj)v1,...,vs , 2 ≤
v1 ≤ · · · ≤ vs ≤ gj indicates that gj has cracks at levels v1, . . . , vs, s > 0.

Thus each part (d)L of a cracked composition is either ‘cracked’ (when
∅ ̸= L ⊆ {2, . . . , d}) or ‘uncracked’ (when the color is precisely 1, L = {1}),
and not both.

For example, the bar graphs in Figure 2 correspond to the following re-
spective n-mc compositions.

(4.1) (32,3), (33), (32), (31), (22, 11), (21, 11), (11, 22), (11, 21), (11, 11, 11).

So cracked compositions share the essential property of standard compo-
sitions of being representable both algebraically (as in (4.1)) and graphically
(as in Figure 2).

It will be demonstrated that the set of cracked compositions is closed
under the operation of conjugation, to be described below.
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4.1. Enumeration of Cracked Compositions. We exploit our previous
experience with general n-mc compositions to obtain the following essential
results.

Theorem 4.2. The number rc(n) of cracked compositions of n is given by
∞∑
n=0

rc(n)xn = 1 +

∞∑
n=1

3n−1xn = 1 +
x

1− 3x
=

1− 2x

1− 3x
.

Proof. The generating function for the number of cracked compositions with
k parts where each part can have no cracks (only color 1) or any subset
(including the empty set) of {2, 3, . . . , i} cracks (any i− 1 colors) is∑

n≥0

rc(n)xn =
∑
k≥0

(∑
i≥1

(
xi + (2i−1 − 1)xi

))k

=
∑
k≥0

(
1

2

2x

1− 2x

)k

=
1− 2x

1− 3x
.

4.1.1. Exactly m Cracks Per Part. Consider the number of cracked compo-
sitions of n when each part has exactly m cracks, where m ≥ 0 is fixed.
Then each part necessarily has size at least m+ 1.

∑
n≥0

rc(n | m cracks per part)xn =
∑
k≥1

 ∑
i≥m+1

(
i− 1

m

)
xi

k

=
xm+1

(1− x)m+1 − xm+1
.

We extend this idea by considering the number of cracked compositions
of n when each part has at most m cracks, where m ≥ 1 is fixed. The
generating function is∑

n≥0

rc(n | at most m cracks per part)xn

=
∑
k≥1

 ∞∑
i=1

xi +
m∑
j=1

(
i− 1

j

)
xi

k

=
∑
k≥1

 x

1− x
+

m∑
j=1

x
xj

(1− x)j+1

k

=
x(1− x)m+1 − xm+2

xm+2 + (1− 3x)(1− x)m+1
.(4.2)
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4.1.2. Exactly m cracks overall.

Theorem 4.3.
∞∑
n=0

rc(n | exactly m cracks)xn =
xm+1

(1− 2x)m+1
, m ≥ 0.

Proof. We introduce a variable q to track the cracks in a composition. The
generating function for a part of size i with j cracks is then

xi
i−1∑
j=0

qj
(
i− 1

j

)
=

((q + 1)x)i

q + 1
.

Consequently, (by considering the coefficient of qm),∑
n≥0

rc(n | exactly m cracks)xn = [qm]

∞∑
k=0

( ∞∑
i=1

((q + 1)x)i

q + 1

)k

= [qm]
qx+ x− 1

qx+ 2x− 1

=

(
x

1− 2x

)m+1

.

Our main result for this section is the following three-way identity.

Theorem 4.4. The following sets are equinumerous:

I. Cracked compositions of N with exactly m cracks.
II. Integer sequences obtained by concatenating m+ 1 non-empty com-

positions of sizes determined by compositions of N into m+1 parts.
III. Cracked compositions of N into m+ 1 parts.

Proof. We assume that the cracked compositions C(g, L) = R in the theorem
are non-empty, and give bijections between the sets in the order I ⇐⇒ III,
I ⇐⇒ II.

Proof of I ⇐⇒ III. Start with the bottom square of the first column in
the bar graph B(R) of R, and label it as follows: move from one square to
the next (first up, then right) and mark it with a 0 if you go up with no
crack, with c if you go up and there is a crack, and with p if you have a
new part (and hence cannot have a crack). Then the resulting sequence of
0’s, c’s and p’s will have as many c’s as there are cracks in B(R), and the
number of parts of R is 1 greater than the number of p’s (since the transition
into the first square is not included in the sequence). The proof consists of
interchanging the c’s and p’s.

Assume that R has exactly m cracks and obtain the labels for B(R)
in terms of the code {0, c, p}. This will give a sequence with exactly m
occurrences of c; the rest will be 0’s or p’s. Now replace every c by a p and
every p by a c. This will give a unique cracked composition whose sequence
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has exactly m occurrences of p, which implies m+1 parts. The reverse map,
III ⇒ I, follows naturally.

Figure 3 illustrates this bijection for two cracked compositions of n = 10
that map to/from each other, namely

(32,3, 11, 43,4, 22)

and

(11, 11, 42,3, 11, 22, 11).

×

× ×

×

×

sequence = c, c, p, p, 0, c, c, p, c;
m = 5 cracks.

×

×

×

sequence = p, p, c, c, 0, p, p, c, p;
m+ 1 = 6 parts.

Figure 3. Illustration of the bijection I ⇔ III

Proof of I ⇐⇒ II. We want a bijection between the cracked compositions
of n with exactly m cracks and sequences that are created by concatenating
m+1 non-empty compositions of weights k1, k2 . . . km+1 where

∑m+1
i=1 ki = n.

Our proof generalizes the case m = 1 given in [7, p. 78].
First label the sequence of non-empty compositions by C1, C2, . . . , Cm+1.

Then place the first part of Ci+1 on top of the last part of Ci and insert a
crack between the two squares. In this way a unique cracked composition
is formed by putting all of the m+ 1 non-empty compositions next to each
other, except that the first part of each successive non-empty composition
is not a new part but added to the top of the last part of the previous non-
empty composition (inducing a crack). See Figure 4 for an example with six
ordinary compositions and (32,3, 11, 43,4, 22).

This completes the proof of Theorem 4.4.

4.2. Conjugation. We note that the proof of I ⇔ III constitutes a descrip-
tion of conjugation of cracked compositions, exemplified by (32,3, 11, 43,4, 22)
and (11, 11, 42,3, 11, 22, 11). These are conjugates, one of the other, as de-
picted by the graphs in Figure 3. Thus if R = (32,3, 11, 43,4, 22), then
R′ = (11, 11, 42,3, 11, 22, 11). Using the more handy sequence transforma-
tion from the figure we have:

(4.3) R ≡ (c, c, p, p, 0, c, c, p, c) 7−→ (p, p, c, c, 0, p, p, c, p) ≡ R′.
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marked integer sequence = 1|1|112|1|11|1;
m+ 1 = 6 non-empty compositions.

×

× ×

×

×

sequence = c, c, p, p, 0, c, c, p, c;
m = 5 cracks.

Figure 4. Illustration of bijection I ⇔ II

We may use the same technique to arrange the cracked compositions of
n = 3 (see (4.1)) in conjugate pairs as follows:

(31) (32) (33) (32,3) (22, 11)

(11, 21) (21, 11) (11, 11, 11) (11, 22)

4.2.1. The Tiling Representation. The tiling representation of a cracked
composition C of n consists of a tiling of a 1× n board with n unit squares
in which the dividing lines have any of the three characteristics, c, 0 or p.
The latter are depicted as ×, nothing, or a longer vertical line, respectively.
For example, when C = (33, 11, 42,4, 22), we have:

0 c p p c 0 c p c
−→ × × × ×

Conjugation now involves interchanging the ×’s and longer vertical lines.
Thus the conjugate of C is given by C ′ = (21, 32,3, 21, 22, 11). As a further
illustration, note that Figure 5 gives an alternative depiction of the mutually
conjugate cracked compositions shown in Figure 3.

In the next section we provide a more detailed discussion of the conju-
gation of n-color compositions which form the simplest subclass of cracked
compositions.

5. Conjugation of n-Color Compositions

The n-color compositions are cracked compositions with at most one crack
per part.
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× × × × × (32,3, 11, 43,4, 22)

× × × (11, 11, 42,3, 11, 22, 11)

Figure 5. Tiling representation of conjugate cracked compositions.

In his seminal paper [2] Agarwal posed a problem regarding the graphical
representation of n-color compositions analogous to the MacMahon’s zig-
zag representation of ordinary compositions. Subsequently Narang-Agarwal
[13] solved the problem by depicting n-color compositions using weighted
lattice paths. Hopkins [9] introduced a zig-zag graph representation using
spotted tilings, and tackled the additional problem of conjugation of n-color
compositions.

In this paper we have introduced the tiling representation of n-color com-
positions as the simplest subclass of cracked compositions (see Subsection
4.2.1). Our diagrams are clearly analogous to the MacMahon’s line graph
representation of standard compositions [10, 11].

Let ℓ(ν) be the number of n-color compositions of ν.
When m = 1 Eqn (4.2) gives the familiar generating function (see [2])

(5.1)

∞∑
ν=1

ℓ(ν)xν =
x

1− 3x+ x2
= x+3x2+8x3+21x4+55x5+144x6+· · · .

We show that the conjugation of n-color compositions is fully realizable
as the conjugation of cracked compositions with at most one crack per part.
However, this class of cracked compositions is not conjugate-closed. In other
words, the conjugate of an n-color composition may contain a part with more
than one crack (i.e., a part size with multiple subscripts) thus violating the
definition of an n-color composition.

We will provide a complete description of the conjugate-closed subset of
n-color compositions, and show that they are considerably more numerous
than the only previously defined set of conjugable n-color compositions to
our knowledge.

Brian Hopkins [9] devised a conjugation involution based on zig-zag
graphs. However, the graphical conjugation operation he proposed yielded
conjugates for a very small number of n-color compositions. His findings are
summarized in the following theorem.

Theorem 5.1 (Hopkins). (i) Conjugable n-color compositions have the
form:

(2a1, 11, 2
b
2, (32, 2

a
1, 11, 2

b
2)

c),
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where exponents denote repetition, a, b, c ≥ 0, and a, b may vary in each
occurrence.
(ii) The number of conjugable n-color compositions of ν is 2(ν−1)/2 if ν is
odd, and 0 if ν is even.

Let CC(ν) denote the set of conjugate-closed n-color compositions of ν,
and let cc(ν) = |CC(ν)|. In our discussion here CC(ν) consists entirely of
conjugable n-color compositions.

Example 5.2. When n = 4, we have cc(4) = 15, where the enumerated
objects are

(41) (42) (43) (44) (11, 32) (11, 33) (21, 22) (22, 22)
(11, 31) (21, 21) (31, 11) (22, 21) (32, 11) (33, 11) (11, 22, 11)

We will prove the following enumeration result.

Theorem 5.3. The number cc(ν) of conjugable n-color compositions of ν
is given by

cc(ν) = 2ν − 1.

The generating function is given by

∞∑
ν=0

cc(ν)xν =

∞∑
ν=0

(2ν − 1)xν =
x

1− 3x+ 2x2
.

5.1. Background to the Conjugation Theory. In [10, Sec.IV, Ch.III,
p.181] MacMahon initiated a generalization of the concept of a composition
with the statement:

“If we think of the number n as a succession of n units arranged in a row,
we have n−1 spaces between them, which we may fill with a + sign or leave
blank. The 2n−1 different expressions so obtained are the compositions of
n.”

MacMahon then indicated that the n−1 spaces could, in general, be filled
with any desired number of symbols to give generalized compositions of any
prescribed order.

We first consider the classical case of two symbols which we denote with
0 and 1, with u’s denoting units. The correspondence is illustrated with
n = 4 in the first two columns of Table 2. The third column of the table
is obtained by deleting the units from the entries in the first column. The
correspondence of the objects in the last two columns then implies a generic
proof of the following assertion.

Proposition 5.4. There is a one-to-one correspondence between composi-
tions of n and all binary strings β ∈ {0, 1}n−1.

We remark that this proposition may also be established by first encoding
a composition of n as a set ∅ ̸= A ⊆ {1, . . . , n − 1} via partial sums (see
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[12, 18]). The corresponding binary sequence (b1, . . . , bn−1) is then obtained
using the characteristic function

bi =

{
1 if i ∈ A,

0 if i /∈ A.

MacMahon Standard Binary
u1u1u1u (1, 1, 1, 1) (1,1,1)
u0u1u1u (2, 1, 1) (0,1,1)
u1u0u1u (1, 2, 1) (1,0,1)
u0u0u1u (1, 1, 2) (0,0,1)
u1u0u0u (1, 3) (1,0,0)
u0u0u1u (3, 1) (0,0,1)
u0u1u0u (2, 2) (0,1,0)
u0u0u0u (4) (0,0,0)

Table 2. Representations of Compositions of 4

Observe that the conjugate C ′ of a composition C is obtained by swapping
0’s and 1’s in the binary representation of C, and converting back to a
composition. For example,

C = (2, 1, 1) ≡ (0, 1, 1) 7→ (1, 0, 0) ≡ (1, 3) = C ′.

If we extend the classical MacMahon model by using three symbols to
fill the n− 1 spaces, we would analogously obtain ternary sequences. Since
ternary sequences τ ∈ {0, 1, 2}n−1 are enumerated by 3n−1, we discover
from Theorem 4.2, that the corresponding type of compositions are cracked
compositions.

Theorem 5.5. There is a one-to-one correspondence between cracked com-
positions of n and all ternary sequences τ ∈ {0, 1, 2}n−1.

Remark: If we replace p by 1 and c by 2 in the sequence encodings in (4.3),
we notice that the conjugate R′ of a cracked composition R is obtained by
swapping 1’s and 2’s in the ternary representation of R, and converting back
to a cracked composition.

R ≡ (2, 2, 1, 1, 0, 2, 2, 1, 2) 7→ (1, 1, 2, 2, 0, 1, 1, 2, 1) ≡ R′.

We now show that n-color compositions may be identified with certain
restricted ternary sequences. Let t(n) be the number of all ternary sequences
T = (v1, v2, . . . , vn−1, vn) with the property that 1 occurs between any pair
of consecutive 2’s.

When vn = 0 or vn = 1, delete vn to obtain 2t(n− 1) objects T .
When vn = 2, delete vn to obtain t(n − 1) objects. But this num-

ber includes sequences E = (v1, v2, . . . , vn−1) with last terms of the form
2, 0r, r ≥ 0, even though the string 2, 0r, 2 is forbidden in T . So we subtract
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the number of such sequences. If we delete the last term of E, which is 0
or 2, we obtain a sequence enumerated by t(n− 2). Conversely, given a se-
quence enumerated by t(n− 2), we append 0 if the last terms have the form
2, 0r, r ≥ 0, and append 2 if the last terms have the form 1, 0r, to obtain
E. So there are exactly t(n− 2) forbidden sequences. Hence the number of
sequences T with vn = 2 is given by t(n− 1)− t(n− 2).

Combining the two cases, with obvious initial values, we obtain

t(0) = 1,

t(1) = 3,

t(n) = 3t(n− 1)− t(n− 2), n ≥ 2.

It may be verified that t(n) satisfies the same recurrence relation, with the
same initial conditions, as the number ℓ(ν + 1) of n-color compositions of
ν + 1, using Eqn (5.1). So we have proved the next result.

Theorem 5.7. The number of n-color compositions of ν is equal to the
number of ternary sequences ∈ {0, 1, 2}ν−1 in which 1 occurs between every
pair of consecutive 2’s.

This theorem is immediately justified graphically because 2 represents a
crack (see Remark 5.6) and 1 represents a demarcation between parts. So
the appearance of 1’s between every pair of consecutive 2’s means that each
cracked part has exactly one crack.

Theorem 5.7 may be compared with a different result in [5] in which n-
color compositions of ν are identified with ternary sequences of length ν− 1
avoiding 12.

5.2. Good Compositions and Proof of Theorem 5.3. Define a good
composition of n as any standard support composition of a member of
CC(n). For example (11, 32) has the support composition (1, 3), so (1, 3)
is good. Denote the set of good compositions of n by GC(n) with gc(n) =
|GC(n)|. Thus from Example 5.2 we see that gc(4) = 5, where

(5.2) GC(4) : (4), (1, 3), (2, 2), (3, 1), (1, 2, 1).

We found the following rather unexpected result.

Proposition 5.8. We have

gc(n) = Fn+1.

Proof. Let C be the good composition of n corresponding to a conjugable
n-color composition CC, and let t(CC) be the ternary sequence representa-
tion of CC. Then C has the following properties.
(i) C does not contain a pair of adjacent 1’s for all n > 2. Indeed two
adjacent 1’s connote a pair of adjacent 1’s in t(CC), “. . . , 1, 1, . . .”, which
conjugates into “. . . ,2,2,. . . ” in t(CC ′), and this entails a part ≥ 3 with
at least two subscripts. The only exception occurs when n = 2 since
C = (1, 1) → (1) ≡ (11, 11) = CC and CC ′ = (22) ∈ CC(2).
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(ii) C does not contain 1 between two big parts (i.e., parts > 1). A viola-
tion of this would also entail the presence of a part ≥ 3 with at least two
subscripts as in case (i).

Hence C contains at most two 1’s which may appear only as a first and/or
last part. Such compositions of n are equinumerous with standard compo-
sitions of n + 2 without 1’s. An easy bijection is obtained by adding 1 to
the first and last parts of C. (If C has only one part, add 2 to that part).

But it is well-known that compositions of n+2 without 1’s are enumerated
by Fn+1 (see for example, [8, 12]). Hence the result.

From the properties (i) and (ii) in the proof of Proposition 5.8 we deduce
that the ternary encoding t(CC) of a conjugable n-color composition CC
satisfies the following property.

“There is a 1 between any pair of consecutive 2’s in t(CC), and a 2
between any pair of consecutive 1’s, where the 0’s are ignored”.

Theorem 5.9. Every conjugable n-color composition of ν may be identified
with a ternary sequence τ ∈ {0, 1, 2}ν−1 in which 1 occurs between every
pair of consecutive 2’s, and 2 occurs between every pair of consecutive 1’s.

For example, let CC = (11, 63, 33, 32, 21) ∈ CC(15). Then

t(CC) = (1, 0, 2, 0, 0, 0, 1, 0, 2, 1, 2, 0, 1, 0).

Interchange 1’s with 2’s to obtain t(CC ′) = (2, 0, 1, 0, 0, 0, 2, 0, 1, 2, 1, 0, 2, 0)
which gives CC ′ = (32, 65, 22, 43) ∈ CC(15). Alternatively, one may use the
tiling representation of CC to obtain CC ′ as follows.

× × × CC

× × × × CC ′

Note, for example, that the n-color composition CC = (32, 11, 86, 22, 11) /∈
CC(15), that is, CC is not conjugable because CC ′ = (21, 72,3, 44, 22) /∈
CC(15), as one may verify.

Remark: Since (n1) corresponds to the sequence (0, . . . , 0) which has no 1’s
and no 2’s, it follows that (n1) is the only self-conjugate n-color composition.
See Example 5.2 for a pairing of members of CC(4) according to conjugacy.

Proof of Theorem 5.3. Every ternary sequence t(CC) satisfying Theorem
5.9 may be reduced to an alternating sequence of 1’s and 2’s by deleting
0’s. The length of the latter is then j, where 0 ≤ j ≤ ν − 1. The case
j = 0 corresponds to the unique sequence (0, . . . , 0), and the case j > 0
corresponds to a sequence of the form (1, 2, . . .) or (2, 1, . . .). When j > 0

there are exactly 2
(
ν−1
j

)
ways to fix the 1’s and 2’s in j positions, followed
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by one way of filling the remaining positions with 0’s, to give t(CC). Hence
with the case j = 0 we obtain

cc(ν) = 1 + 2
∑
j≥1

(
ν − 1

j

)
= 1 + 2 · (2ν−1 − 1) = 2ν − 1.

The following result is obtained by refining the proof of Theorem 5.3.

Theorem 5.11. Let cc(ν, k) be the number of conjugable n-color composi-
tions of ν into k parts. Then cc(ν, 1) = ν and

cc(ν, k) =

(
ν + 1

2k − 1

)
, ν ≥ 2(k − 1), k > 1.

Proof. If CC has k parts, k > 1, then t(CC) contains exactly k − 1 copies
of 1 with k − 2 copies of 2. Thus suppressing 0’s (which may be restored in
one way later) from t(CC) we first fix the terms of the sequence 1, 2, . . . , 2, 1

among ν − 1 available positions in
(
ν−1
2k−3

)
ways. Alternatively, we fix the

terms of 2, 1, 2, . . . , 2, 1 or 1, 2, . . . , 2, 1, 2 in 2
(
ν−1
2k−2

)
ways. A final possibility

is to fix the terms of 2, 1, . . . , 1, 2 in
(
ν−1
2k−1

)
ways. Therefore,

cc(ν, k) =

(
ν − 1

2k − 3

)
+ 2

(
ν − 1

2k − 2

)
+

(
ν − 1

2k − 1

)
=

(
ν + 1

2k − 1

)
.

Note that cc(ν, 1) = ν, where the enumerated objects are (ν1), . . . , (νν).
Hence the proof.

Remark: It may be verified that ν +
∑
k≥2

cc(ν, k) = 2ν − 1.

From Example 5.2 and (5.2) we observe that (4) contributes 4 objects in
CC(4), and (1, 3) contributes 3 objects, and so forth.

The following result is reminiscent of the known fact that the number of
n-color compositions contributed by an ordinary composition C is equal to
the product of all the parts of C (see for example, [1, 16]).

Corollary 5.13. The number nC of conjugable n-color compositions con-
tributed by a good composition C = (a1, . . . , ak) is obtained as follows:

(i) if k = 1, then nC = a1;

(ii) if k = 2, then nC = a1a2;

(iii) if k ≥ 3, then nC = a1(a2 − 1) · · · (ak−1 − 1)ak.

Proof. Let CC = ((a1)u1 , . . . , (ak)uk
), k > 2. Then from the proof of Propo-

sition 5.8 we have a2, . . . , ak−1 > 1. A key observation is that the color
sequence (u1, . . . , uk) also satisfies the properties of a good composition.
Hence (u1, . . . , uk) contains at most two 1’s which may appear only as a
first and/or last part. The rest of the proof follows straightforwardly.
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Lastly, the foregoing results imply the following easy test of conjugability
of an n-color composition.

Corollary 5.14. Let CC = ((g1)c1 , (g2)c2 , . . . , (gk)ck) be an n-color com-
position. Then CC is conjugable if and only if k = 1, or k > 1 and each
of (g1, g2, . . . , gk) and (c1, c2, . . . , ck) contains at most two 1’s which may
appear only as a first and/or last part.
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