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ON THE HOMOTOPY TYPE OF COMPLEXES OF

GRAPHS WITH BOUNDED DOMINATION NUMBER

JESÚS GONZÁLEZ AND TERESA I. HOEKSTRA-MENDOZA

Abstract. Let Dn,γ be the complex of graphs on n vertices and dom-
ination number at least γ. We prove that Dn,n−2 has the homotopy
type of a finite wedge of 2-spheres. This is done by using discrete Morse
theory techniques. Acyclicity of the needed matching is proved by in-
troducing a relativized form of a well-known method for constructing
acyclic matchings on suitable chunks of simplices. Our approach allows
us to extend our results to the realm of infinite graphs. In addition, we
give evidence supporting the assertion that the homotopy equivalences
Dn,n−1 '

∨
S0 and Dn,n−2 '

∨
S2 do not seem to generalize for Dn,γ

with γ ≤ n− 3.

1. Introduction

For an integer n ≥ 2, let Gn stand for the family of simple, undirected
graphs on vertices n = {1, 2, . . . , n}, and let P be a graph property in Gn, i.e.,
P is a subset of Gn that is closed under isomorphism classes. It is customary
to use the expression “σ satisfies P” as a replacement for “σ ∈ P”. The
property P is said to be monotone provided it is satisfied by any graph in
Gn that is obtained by removing an edge from a graph already satisfying P.
Since the vertex set is fixed, we may identify each graph σ ∈ Gn with its
edge set. In these terms, a monotone property P gives rise to an abstract
simplicial complex K(P). Explicitly, d-dimensional simplices of K(P) are
given by the graphs having d+ 1 edges that satisfy P.
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Complexes of graphs, i.e., the geometric realizations of abstract simpli-
cial complexes arising from monotone graph properties, is the subject of an
active and fruitful line of research in combinatorial topology. For one, com-
plexes of graphs have deep connections to developments in other fields. For
instance, the complex defined by the family of n-vertex matchings plays a
subtle role in Ksontini’s investigation ([11, 12]) of the homotopy type of the
Quillen complex associated to the lattice of subgroups (at a given prime) of
the n-symmetric group. Likewise, complexes of (not i-) connected graphs ap-
pear in Vassiliev’s study of the cohomology groups of spaces of knots ([17]),
while complexes of bounded-degree graphs can be used in the analysis of
homological properties of free two-step nilpotent Lie algebras ([9, 15]). In
addition, complexes of graphs are intrinsically rich objects whose properties
have been investigated by a number of authors. The reader is referred to
Jonsson’s book [8] for details and a complete list of references.

In this paper we focus on the complex Dn,γ defined by n-vertex graphs
whose domination number is at least γ (see Section 2 for background details).
Our main result shows that Dn,n−2 is homotopy equivalent to a wedge of
2-spheres:

Theorem 1.1. For n ≥ 4, let

(1.1) Nn =
1

12
(n− 2)(n− 3)(3n2 − 7n− 2).

Then Dn,n−2 has the homotopy type of
∨
Nn
S2, a wedge of Nn 2-dimensional

spheres.

The situation for n = 3 could be thought of as a special instance in
Theorem 1.1: as observed in the next section, D3,1 is contractible (and
N3 = 0). On the other hand, our proof method (discrete Morse theory,
reviewed in Section 2) allows us to show that the homotopy equivalences
Dn,n−2 '

∨
Nn
S2 fit together as n varies:

Theorem 1.2. The union D2 :=
⋃
n≥3Dn,n−2 has the homotopy type of a

countable wedge of 2-spheres.

A combinatorial interpretation of D2 as a complex of graphs on countably-
many vertices, as well as the description of inclusions Dn,n−2 ↪→ Dn+1,n−1,
are deferred to Section 7 where Theorems 1.1 and 1.2 are proved.

Our methods allow us to identify (in Section 8) the homotopy type of
D5,2:

Proposition 1.3. The graph complex D5,2 is homotopy equivalent to a
wedge of four spheres of dimension 5.

Theorem 1.1, Corollary 1.2 and Proposition 1.3 are similar to results in
the literature where particular families of complexes of graphs are shown to
be homotopy equivalent to wedges of copies of some fixed sphere (see for
instance [2]). It would thus be reasonable to ask whether the three state-
ments above are special cases of a result on the same vein that applies to
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any Dn,n−k. However, the statement of such a result —if it exists— cannot
be a straightforward extension of Theorem 1.1 and Proposition 1.3. For in-
stance, D6,3 does not have the homotopy type of a wedge of odd dimensional
spheres (not even if we allow odd spheres of different dimensions). Indeed,
computer calculations report that the Euler characteristic of D6,3 is 92. So,
if this space splits up to homotopy as a wedge of spheres, then many of
the splitting wedge sphere summands would have to be even-dimensional
(to allow for a positive Euler characteristic). This motivates the following
questions:

Problem 1.4. Is it true that all complexes Dn,k have the homotopy type of
a wedge of spheres? Is there a complex Dn,k which has the homotopy type
of a wedge of spheres not all of which have the same dimension?

We express our most sincere acknowledgement to the anonymous referee
of this paper; her/his comments led to a considerable improvement in the
exposition and readability of this work.

2. Graph theoretic preliminaries

We start by reviewing standard material about domination in graphs. For
details, the reader is referred to the comprehensive treatment [6].

Recall n ≥ 2. A set D ⊆ n dominates a graph σ ∈ Gn if every vertex
in n − D is σ-adjacent to some vertex in D (thus, such a D must be non-
empty). The domination number of σ ∈ Gn, denoted by γ(σ), is the minimal
cardinality of vertex sets that dominate σ. Thus 1 ≤ γ(σ) ≤ n.

Remark: The following observations follow directly from the definition: The
graph ∅ ∈ Gn with no edges has γ(∅) = n, while any other graph σ ∈ Gn has
1 ≤ γ(σ) ≤ n−1. In fact, a graph with a single edge has domination number
equal to n−1, while the condition γ(σ) ≤ n−2 is forced as soon as σ has at
least two edges. Actually the equality γ(σ) = n−2 holds if σ has exactly two
edges. (The relationship between domination number and edge cardinality
is much subtler than what is apparent from the last two observations. For
instance, the graph σ ∈ Gn with the three edges {1, 2}, {2, 3} and {3, 4} has
γ(σ) = n− 2.)

Fix k ∈ {1, 2, . . . , n}. Any vertex set dominating a graph τ will also
dominate any graph σ containing τ as a subgraph, so that γ(τ) ≥ γ(σ).
Consequently, the family Pk of graphs σ ∈ Gn satisfying γ(σ) ≥ k is a
monotone property. We are interested in the homotopy properties of the
(geometric realization of the) associated graph complex

Dn,k := K(Pk).

Explicitly, d-dimensional simplices of Dn,k are given by the graphs in Gn
having d+ 1 edges and domination number at least k. By Remark 2.1, Dn,n

is empty, while

Dn,1 = ∆(n2)−1,
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the full complex on
(
n
2

)
vertices (i.e., the complex where any subset of ver-

tices forms a simplex). So, to avoid trivial cases, we restrict attention to
Dn,k for 1 < k < n, in which case (again by Remark 2.1) the vertex set of
Dn,k is the family of

(
n
2

)
edges of the complete graph Kn. Then, a family E

of d + 1 edges forms a d-simplex of Dn,k provided the graph σ ∈ Gn with
edge set E has γ(σ) ≥ k. In particular, the facets of Dn,k (i.e., the simplices
of Dn,k that are maximal with respect to inclusion) are the graphs σ ∈ Gn
which are maximal with respect to the condition γ(σ) ≥ k. For instance,
D4,2 has two types of facets: (i) cycles on four vertices and (ii) graphs of G4

with two components, one of which is an isolated vertex and the other is a
complete graph on three vertices (see Example 4.2 in the next section). The
latter facets are 2-dimensional while the former ones have maximal possible
dimension 3. More generally, facets of Dn,k of maximal possible dimension
were described by Vizing in terms of minimal edge covers:

Definition 2.2. An edge cover of a graph G is a set C of edges of G such
that each vertex of G is incident with at least one edge of C. A minimal
edge cover is an edge cover of smallest possible cardinality.

Theorem 2.3 (Vizing [18]). Let 1 < k < n. The dimension of the complex
Dn,k is one less than the integral part of

1

2
(n− k + 2)(n− k).

Facets of Dn,k of dimension dim(Dn,k) are the graphs of the form

K ′n−k+2 + (k − 2).

Here and below the notation G + (m) stands for the graph obtained by
adding m isolated vertices to a graph G, and K ′m stands for a graph ob-
tained from the complete graph on m vertices Km by removing the edges in
some minimal edge cover of Km.

By Remark 2.1, Dn,n−1 is a wedge of 0-spheres —the zero-th skeleton of

∆(n2)−1. Our main result, Theorem 1.1, gives a similar description of the
homotopy type of the first interesting case in the filtration of subcomplexes

(2.1) Dn,n−1 ↪→ Dn,n−2 ↪→ Dn,n−3 ↪→ · · · ↪→ Dn,2 ↪→ Dn,1 = ∆(n2)−1.

On the other hand, as far as we are aware of, the homotopy type of Dn,k is
unknown for n − 3 ≥ k ≥ 2. In the introduction, we have made a point in
this regard in the case of Dn,n−3. Here we address the case of Dn,2, which
turns out to be an instance of a family of much studied complexes associated
to a different (but related) graph property. Namely, consider the complex
Dd
n associated to the monotone property on Gn consisting of the graphs σ

all whose vertices have degree at most d (i.e., no vertex of σ is adjacent to
more than d edges). The reader is referred to [19] for a review of the known
properties of these complexes. Here we start by noting that Dn,k ⊆ Dn−k

n .

Indeed, a graph σ ∈ Gn not representing a simplex of Dn−k
d must have a
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vertex v of degree deg(v) > n − k. Then v and the n − deg(v) − 1 vertices
not adjacent to v form a set of cardinality n − deg(v) that dominate σ, so
that γ(σ) ≤ n − deg(v) < k, and σ does not represent a simplex of Dn,k

either. Therefore (2.1) extends to
(2.2)

Dn,n−1
� � //

� _

��

Dn,n−2
� � //

� _

��

· · · �
� // Dn,2

� � //
� _

��

Dn,1� _

��

∆(n2)−1

D1
n
� � // D2

n
� � // · · · �

� // Dn−2
n

� � // Dn−1
n .

Now, by definition, Dn−1
n = ∆(n2)−1 = Dn,1, the largest complex in (2.1).

Our point is that the next-to-the-right-most vertical inclusion in (2.2) is an
equality too. Indeed, if τ ∈ Gn is a simplex of Dn−2

n , then no vertex of τ
can have degree n − 1, so that γ(τ) ≥ 2 and, thus, τ is a simplex of Dn,2.1

We remark that Dn−2
n has been studied by Jonsson (see Section 18.3 in [8],

particularly Corollary 18.20) via its Alexander dual, which is the complex
associated to graphs in Gn having an isolated vertex.

3. Discrete Morse theory

Theorem 1.1 will be a direct consequence of the main theorem in discrete
Morse theory (Theorem 3.1 below) once we construct an acyclic matching on
Dn,n−2 with Nn critical 2-simplices, 1 critical 0-simplex, and no other critical
simplices. This section is intended to record the needed basic background
material. Details can be found in standard references such as [5, 10].

Let X be an abstract simplicial complex with face poset F , i.e., F is the
set of simplicies of X partially ordered by inclusion. Here and below, for a
simplex α ∈ F , we will write α(p) to indicate that α is p-dimensional. The
Hasse diagram of F , denoted by HF , is the directed graph with vertex set
F and edges given by the family of ordered pairs (α(p+1), β(p)) with β ⊂ α.
Such an edge will also be denoted as

α(p+1) ↘ β(p).

For a matching P on HF (i.e. a directed subgraph of HF whose vertices
have degree at most 1), the modified Hasse diagram HF (P) is the directed
graph obtained from HF by reversing all the the matching edges, i.e., the
edges of P. A matching edge will be denoted as

β(p) ↗ α(p+1)

and, in such a case, α is said to be P-collapsible, while β is said to be P-
redundant. In these terms, a directed path in HF (P) is spelled out by an

1The agreement between Dn,k and Dn−k
n for k = 1, 2 fades away as k grows. For

instance, Dn,n−1 is 0-dimensional, while the reduced homology groups H̃∗(D1
n;Q) are

non-zero in a range of dimensions that grows with n (see [3]).
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alternate sequence of up-going and down-going arrows:

(3.1) τ0 ↗ σ1 ↘ τ1 ↗ · · · ↗ σk ↘ τk.

The path in (3.1) is said to

(a) have length k;
(b) be simple if τi 6= τj for i 6= j;
(c) be a cycle if k > 0, τ0 = τk and the set {τ` : 1 ≤ ` ≤ k} has cardinality

k.

Items (a) and (b) make sense (with k =∞) for infinite paths

τ0 ↗ σ1 ↘ τ1 ↗ · · · .
The matching P is said to be acyclic if HF (P) has no directed cycles. Sim-
plices of X that are neither P-redundant nor P-collapsible are said to be
P-critical.

Theorem 3.1 (See [5, Corollary 3.5]). The geometric realization of a finite
simplicial complex X with an acyclic matching P has the homotopy type of
a CW complex having one cell of dimension d for each P-critical d-simplex
of X.

Acyclic matchings on a simplicial complex X can be constructed by di-
viding the family of simplices of X into smaller families on each of which
(typically more manageable) matchings are to be defined. The formulation
we need, Proposition 3.2 below, is a special instance of [7, Lemma 4.1].

Proposition 3.2. Let the simplices of a finite simplicial complex X be parti-
tioned into pairwise disjoint families of simplices X`, ` = 1, . . . , k. Assume:

(i) X1 ∪ · · · ∪X` is a subcomplex of X, for ` = 1, 2, . . . , k − 1.
(ii) There is an acyclic matching P` on X`, for ` = 1, 2, . . . , k.

Then P :=
⋃

1≤`≤k P` is an acyclic matching on X.

We will also need the following relativized form of Proposition 3.2:

Proposition 3.3. Let X, X` and P` be as in Proposition 3.2. Assume X
is a subcomplex of a larger complex Y whose simplices are also partitioned
into pairwise disjoint families of simplices Y`, ` = 1, . . . , k, satisfying the
following three conditions:

(i) Y` ∩X = X`, for ` = 1, 2, . . . , k.
(ii) Y1 ∪ · · · ∪ Y` is a subcomplex of Y , for ` = 1, 2, . . . , k − 1.
(iii) For ` = 1, 2, . . . , k, there is a matching Q` on Y` (no assumption

is made about acyclicity of Q`) which restricts to P` on X`, in the
sense that ( a) two simplices of X` form a P`-matched pair if and
only if they form a Q`-matched pair, and that ( b) no simplex of X`

can be Q`-matched to a simplex of Y` −X`.

Assume in addition that, for each ` = 1, 2, . . . , k, there are no directed Q`-
cycles in Y`−X`. Then each Q` is in fact acyclic, so that (by Proposition 3.2)
Q :=

⋃
1≤`≤kQ` is an acyclic matching on Y .
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Proof. Let FX and FY stand for the face posets of X and Y , respectively.
Consider a directed edge β ↗ α of HFY (Q). Condition (iii) means that, if
either α or β belongs to FX , then in fact both α and β belong to FX , so
that in fact β ↗ α is a directed edge of HFX (P). Since X is a subcomplex
of Y , condition (i) now yields that any directed Q`-cycle would have to
either be a directed P`-cycle or, else, remain entirely outside X`. Since both
alternatives are ruled out by hypothesis, the proof is complete. �

The proof of Theorem 1.2 (given in Section 7) uses the following extension
of Theorem 3.1 to infinite complexes:

Theorem 3.4 ([13, Theorem 20]). Let P be an acyclic matching on a (pos-
sibly infinite) simplicial complex X with face poset F . If the modified Hasse
diagram HF (P) contains no infinite directed simple paths, then the geomet-
ric realization of X has the homotopy type of a CW complex having one cell
of dimension d for each P-critical d-simplex of X.

4. Structure of Dn,n−2

The hypothesis n ≥ 4 will be in force from this point on. By Remark 2.1,
Dn,n−2 has all possible simplices in dimensions 0 and 1. On the other hand,
by Theorem 2.3, Dn,n−2 has dimension 3, with 3-dimensional facets given
by all 4-cycles with n − 4 additional isolated vertices. In particular, the
2-dimensional simplices of Dn,n−2 that are not facets are the graphs of the
form

(4.1)
• • • •• • + (n− 4),

The remaining simplices of Dn,n−2 are described next.

Lemma 4.1. The 2-dimensional facets of Dn,n−2 are the graphs of the form
K3 + (n− 3), where K3 stands for a complete graph on three vertices.

Proof. As noted in Remark 2.1, a graph of the form K3+(n−3) has domina-
tion number n−2; furthermore, it is maximal with respect to the latter con-
dition. The only other (not yet considered) possibilities for a 2-dimensional
graph are

•

•

•

•
• • + (n− 6),

•

•

• •

•
+ (n− 5),

•• •

•
+ (n− 4),

but they have domination number n− 3. �

In what follows, the edge between vertices i and j (i, j ∈ n) is denoted
by ij (no distinction is made between ij and ji). In addition, for edges
a, b, c, . . ., we write a|b|c| · · · as a shorthand for the graph of Gn whose edge
set is {a, b, c, . . .}.

Example 4.2. Facets of D4,2 are given by the 3-simplexes 12|13|24|34,
12|14|23|34 and 13|14|23|24, and the 2-simplexes 12|13|23, 12|14|24, 13|14|34
and 23|24|34.
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5. The matching

Recall Dn,1 = ∆(n2)−1. Let:

• P ′12 be the matching on Dn,1 given by inclusion-exclusion of the edge
12;
• P12 be the restriction of P ′12 to Dn,n−2;
• X12 be the subset of Dn,n−2 consisting of

(i) the graph with the single edge 12, and
(ii) the graphs with a P12-matching pair.

In what follows, for σ ∈ Gn, we write σ + ij as a substitute for σ ∪ {ij}.
The following follows directly from the construction:

Proposition 5.1. X12 = {σ ∈ Dn,n−2 : σ + 12 ∈ Dn,n−2}, which is a
subcomplex of Dn,n−2.

Note that P12 is an acyclic matching in X12 (because P ′12 is so in Dn,1)
with the simplex in (i) above as its only critical simplex in dimension 0, and
with no critical simplices in positive dimensions. The rest of the section is
devoted to prove:

Proposition 5.2. There is a matching Q on the simplices

(5.1) R12 := Dn,n−2 −X12 = {σ ∈ Dn,n−2 : σ + 12 6∈ Dn,n−2}
whose critical (i.e. unpaired) simplices are 2-dimensional.

Corollary 5.3. Dn,n−2 := P12 ∪ Q is a matching in Dn,n−2 with a sin-
gle critical simplex in dimension 0, and all other critical simplices being
2-dimensional.

Remark: Note that 12 6∈ σ, for all σ ∈ R12. Further, by Remark 2.1, X12

contains the 0-skeleton of Dn,n−2, so that R12 contains simplices only in
dimensions in between 1 and 3.

The portion of Q that matches simplices of dimension 1 with simplices of
dimension 2, denoted by Q2

1, is specified in Definition 5.6 below using:

Proposition 5.5. Let σ be a 1-dimensional cell in R12. The set Mσ con-
sisting of the edges ij satisfying i < j < n and σ + ij ∈ R12 is nonempty.

Definition 5.6. Taking the (i, j)-lexicographic order on edges ij with i < j,
Q2

1 matches a 1-dimensional cell σ ∈ R12 with σ + ij, where ij is the first
edge in Mσ.

Example 5.7. For n = 4, the only 1-dimensional simplices in R12 are

•1

•3

• 2

• 4

•1

•3

• 2

• 4

and their respective Q2
1 pairs are

•1

•3

• 2

• 4

•1

•3

• 2

• 4
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The graphs in Example 5.7 are linear, a situation that holds in general:

Proof of Proposition 5.5. We consider the only two possible forms the sim-
plex σ can have.
Case 1: Assume σ has the form (5.2) and ab 6= 12 6= cd.

(5.2)

•
b

•

a

•
c

•

d

+ (n− 4)

Without loss of generality, we can assume a < b, c < d and a < c.
By (4.1) and (5.1), we have σ + ac ∈ Dn,n−2 with ac 6= 12. (The latter
condition explains why this case is not part of Example 5.7.) Further,
the characterization of 3-dimensional simplices in Dn,n−2 coming from
Vizig’s Theorem 2.3 gives σ + ac + 12 /∈ Dn,n−2, so that (5.1) gives
σ+ac ∈ R12. Thus ac ∈Mσ. In fact, ac is the first element in Mσ, for the
characterization of 2-dimensional simplices in Dn,n−2 coming from (4.1)
and Lemma 4.1 yields Mσ ⊆ {ac, ad, bc, bd}. Thus, in this case we have
the Q2

1 matching

(5.3)
•
b

•

a

•
c

•

d

+ (n− 4)
•
b

•

a

•
c

•

d

+ (n− 4).

Case 2: Assume σ has the form (5.4) and ab 6= 12 6= bc.

(5.4)
•
a

•
b

•
c

•
+ (n− 3)

Without loss of generality we can assume a < c. If a = 1 (so b 6= 2),
then c 6= 2 (in view of (5.1) and Lemma 4.1), so σ + 12 ∈ Dn,n−2 in
view of (4.1), which contradicts (5.1). Likewise, the equality a = 2
cannot hold, and we actually have 3 ≤ a < c. Let d = 2 (d = 1) if
b = 1 (b > 1). Using once again (5.1) and the characterization of 2-
dimensional simplices in Dn,n−2 coming from (4.1) and Lemma 4.1, we
see that σ+ da ∈ R12 and, in fact, that da is the first element in Mσ. So
we have the Q2

1 matching

(5.5)
•
b

•

a
•

c

+ (n− 4)
•
b

•

a

•
d

•

c

+ (n− 4)

In both cases above, the condition “i < j < n” in the statement of the
proposition holds by construction. �

The previous proof makes use of the characterization of d-dimensional
simplices of Dn,n−2 discussed in Section 4, and we have carefully pinpointed
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the characterization case (either d = 2 or d = 3) needed at each step of
the argument. Some of the arguments below will also make use of these
characterizations, and we will make free use of them.

Next, we define Q3
2, the pairing Q we need in R12 between simplices of

dimension 2 and simplices of dimension 3. This time we define the matching
pair of any 3-simplex σ ∈ R12. In short, the rule (in Definition 5.9 below) is
that the Q3

2 matching pair of a 3-simplex σ ∈ R12 is obtained by removing
the first edge of σ (in the lexicographic order). We need:

Proposition 5.8. Let σ = a0b0|a1b1|a2b2|a3b3 be a 3-simplex in R12, with
ai < bi for 0 ≤ i ≤ 3, and (a0, b0) < (a1, b1) < (a2, b2) < (a3, b3) ordered
lexicographically. Then a1b1|a2b2|a3b3 :

(1) is a 2-simplex in R12 which is not paired under Q2
1;

(2) determines σ; indeed, the latter is the only 3-cell in R12 (actually in
Dn,n−2) having the former as a face, i.e. a1b1|a2b2|a3b3 is a free face
of a0b0|a1b1|a2b2|a3b3.

Definition 5.9. Under the conditions in Proposition 5.8, the Q3
2 matching

pair of σ is defined to be the simplex a1b1|a2b2|a3b3.

Proof of Proposition 5.8. By Vizing’s Theorem 2.3, σ has the form

•
b

•

a

•
c

•

d

+ (n− 4),

where we can safely assume a < min{b, c, d} and b < c. Under these con-
ditions ab plays the role of a0b0 in the statement of the proposition, and
a1b1|a2b2|a3b3 becomes

(5.6)
•
b

•

a

•
c

•

d

+ (n− 4).

Note that the latter 2-simplex lies in R12 and determines σ (as indicated
in the statement of the proposition) in view of Vizing’s theorem and Re-
mark 5.4. To complete the proof, it suffices to check that (5.6) cannot
appear as the higher dimensional simplex in (5.3) or in (5.5). For this, note
that the degree of the vertex with the smallest label in the non-trivial com-
ponent of (5.6) —i.e., vertex a— equals 1. This immediately rules out the
case of (5.3), as well as the case of (5.5) when b = 1 (this “b” is used in the
context of the notation of (5.5)). To rule out the remaining case, i.e. the
case of (5.5) where (its) vertex b is greater than 1 (so the corresponding
label d is 1), it suffices to compare the labels of the two vertices:

(i) vertex of degree 1 with the higher label (this is vertex b in (5.6), and
vertex c in (5.5));

(ii) vertex of degree 2 which is adjacent to the vertex of degree 1 with
the smaller label (this is vertex c in (5.6), and vertex a in (5.5)).
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For, in the case of (5.6), the label of the vertex in (i) is smaller than the label
of the vertex in (ii), whereas the opposite inequality holds in the remaining
case of (5.5). �

Proof of Proposition 5.2. In view of Proposition 5.8, it only remains to prove
that if two 1-dimensional cells σ, σ′ ∈ R12 are Q-paired to a common 2-
dimensional cell in R12, then in fact σ = σ′. We consider all possible cases
arising from the combination of the forms ((5.2) or (5.4)) of σ and σ′.

Case 1: Assume σ and σ′ have, respectively, the forms

ba

c

• •

•
+ (n− 3) and

•

•

•

•

a′ b′

c′ d′

+ (n− 4)

with 3 ≤ a < c, a′ < b′, a′ < c′ < d′ and, additionally, b = 1. Then the
common Q-matched pair would be

1a

c2

•

•

•

•
+ (n− 4) =

•

•

•

•

a′ b′

c′ d′

+ (n− 4),

giving:

• {1, a} = {a′, c′}, which is possible only with a′ = 1 and a = c′ (as
a′ < c′);
• {2, c} = {b′, d′}, which is possible only with 2 = d′ and c = b′ (as
a′ = 1 and 12 6∈ σ′).

But then 1 = a′ < c′ < d′ = 2, which is impossible.

Case 2: Assume σ and σ′ have, respectively, the forms

ba

c

• •

•
+ (n− 3) and

•

•

•

•

a′ b′

c′ d′

+ (n− 4)

with 3 ≤ a < c, a′ < b′, a′ < c′ < d′ and, additionally, b > 1. Then the
common Q-matched pair would be

ba

c1

•

•

•

•
+ (n− 4) =

•

•

•

•

a′ b′

c′ d′

+ (n− 4),

giving 1 ∈ {1, c} = {b′, d′}, which is impossible as both b′ and d′ are at least
2.
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Case 3: Assume σ and σ′ have, respectively, the forms

ba

c d

•

•

•

•
+ (n− 4) and

•

•

•

•

a′ b′

c′ d′

+ (n− 4)

with a < b, a < c < d and a′ < b′, a′ < c′ < d′. Then the common
Q-matched pair would be

ba

dc

•

•

•

•
+ (n− 4) =

•

•

•

•

a′ b′

c′ d′

+ (n− 4),

giving b = b′ or b = d′. Either way we get σ = σ′, for

• b = b′ ⇒ (a = a′, c = c′ and d = d′ )⇒ σ = σ′.
• b = d′ ⇒ (a = c′, c = a′ and d = b′ )⇒ σ = σ′.

Case 4: Assume σ and σ′ have, respectively, the forms

ba

c

• •

•
+ (n− 3) and

• •

•

a′ b′

c′

+ (n− 3)

with 3 ≤ a < c, 3 ≤ a′ < c′ and, additionally, b = b′. Then the common
Q-matched pair would be

ba

cd

•

•

•

•
+ (n− 4) =

•

•

•

•

a′ b′

d′ c′

+ (n− 4),

with d = d′ ∈ {1, 2}, which implies σ = σ′.

Case 5: Assume σ and σ′ have, respectively, the forms

ba

c

• •

•
+ (n− 3) and

• •

•

a′ b′

c′

+ (n− 3)

with 3 ≤ a < c, 3 ≤ a′ < c′ and, additionally, b > 1 = b′. Then the common
Q-matched pair would be

ba

c1

•

•

•

•
+ (n− 4) =

•

•

•

•

a′ b′

2 c′

+ (n− 4),

which is impossible, as both c and c′ are greater than 3. �
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6. Acyclicity

This section is devoted to the proof of:

Proposition 6.1. The matching Dn,n−2 in Corollary 5.3 is acyclic.

We have noted that P12 is an acyclic matching in X12 so, by Proposi-
tions 3.2 and 5.1, the proof of Proposition 6.1 will follow once we check
acyclicity of Q in R12. The acyclicity of Q3

2 follows directly from item 2
in Proposition 5.8, whereas the acyclicity of Q2

1 is proved below by an in-
ductive argument based on Proposition 3.3 and the following preliminary
considerations.

Remark: The rule σ 7→ σ + (1), where the added vertex has label n, sets
a simplicial complex inclusion Dn−1,n−3 ↪→ Dn,n−2. In order to distinguish
the referent complex, we will use a superindex “m” for objects defined within
the context of Dm,m−2. For instance, by definition (alternatively, in view of
Proposition 5.1), the intersection of Dn−1,n−3 with the subcomplex Xn

12 of

Dn,n−2 is the corresponding subcomplex Xn−1
12 of Dn−1,n−3. In particular the

family Rn−1
12 is the intersection of Dn−1,n−3 and the family Rn12. Likewise,

(P12)n−1 is the restriction to Xn−1
12 of (P12)n, and from the explicit form of

the Q2
1 matching (see (5.3) and (5.5)), we see that

(
Q2

1

)n−1
is the restriction

of
(
Q2

1

)n
. Thus, in view of Proposition 3.3, the goal of this section reduces

to proving Propositions 6.3 and 6.4 below.

Proposition 6.3. For n ≥ 5, there are no
(
Q2

1

)n
-cycles in Rn12−Dn−1,n−3.

Proposition 6.4.
(
Q2

1

)4
is acyclic.

Proof of Proposition 6.3. Recall from Section 3 the notation (3.1) for di-
rected paths in the modified Hasse diagram coming from a matching. We
make a thorough analysis of the possibilities for a directed

(
Q2

1

)n
-path in

Rn12 −Dn−1,n−3, showing that none of those paths can be a cycle and, as a
byproduct, that all of them have in fact length at most three.

In detail, let α be a
(
Q2

1

)n
-path in Rn12 − Dn−1,n−3 starting at node τ0.

Since τ0 lies outside Dn−1,n−3, the vertex n cannot be an isolated vertex
of τ0. Therefore, the only possibilities for τ0 are shown below where, for
simplicity, we omit the part “+(m)” in the graph notation and, as discussed
in the proof of Proposition 5.5, we are assuming without loss of generality
3 ≤ a < c (a < b and a < c < d) in the first four (last three) instances:

(i)

b = 1a

c = n

• •

•
(ii)

b = 2a

c = n

• •

•
(iii)

b ≥ 3a

c = n

• •

•
(iv)

b = na

c

• •

•

(v)

b = n1 = a

dc

•

•

•

•
(vi)

b = n1 < a

dc

•

•

•

•
(vii)

ba

d = nc

•

•

•

•



166 JESÚS GONZÁLEZ AND TERESA I. HOEKSTRA-MENDOZA

We consider in full detail the case2 where τ0 has the form in (i): By (5.5),
α starts with the matching edge

1a

n

• •

•
↗

1a

n2

•

•

•

•

After this initial “step”, there are two options for α: either taking the face
that deletes the edge 1a or the face that deletes the edge 1n. However, in
the latter instance, we arrive at

1a

n2

•

•

•

•

which is a simplex of Dn−1,n−3 (as n is isolated). This instance is forbidden
since α is a path in Rn12 −Dn−1,n−3. Therefore α is forced to continue as

1a

n

• •

•
↗

1a

n2

•

•

•

•
↘

1a

n2

•

•

•

•

A 13|23|24, 14|23|24, 13|23|24, 14|23|24 ordering to (5.3), the next match-
ing edge in α is

1a

n2

•

•

•

•
↗

1a

n2

•

•

•

•

However, the latter 2-dimensional simplex lies outside Rn12 due to the 12-
edge (recall Remark 5.4). Putting everything together, we have shown that,
in case (i) above, the directed path α is forced to be

(6.1)

1a

n

• •

•
↗

1a

n2

•

•

•

•
↘

1a

n2

•

•

•

•

where the dotted edge indicates the reason why α stops (before leaving Rn12).
As promised, this is a non-cycle of length at most 3 (actually length 1).

The above analysis goes through in all other six cases. Namely, in each
case the path α in Rn12 −Dn−1,n−3 is forced to be the one indicated below.
The only exception is reflected by the two items with label “(iv)” below, due
to the two corresponding options for the path α. As above, all of the paths
stop at the indicated node just before leaving Rn12 due to the matching edge
suggested by the dotted 12-edge (just as in (6.1) above). As in the detailed
explanation above, the reader should keep in mind that, since α is a path

2This is a simple but representative instance that will help the reader follow the argu-
ment. For the rest of the instances we will simply describe the forced path, from which
the reader will have no trouble seeing the corresponding proof details.
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in Rn12 − Dn−1,n−3, the vertex with label n must be part of an edge at all
nodes of α —thus forcing the indicated behaviour of the path. Also worth
remarking is the fact that the equality symbol in item (vi) below is meant
to highlight that the condition 2 < a is forced, for otherwise the node would
lie outside Rn12. A similar situation holds in item (vii) below.

(ii)

2a

n

• •

•
↗

2a

n1

•

•

•

•
↘

2a

n1

•

•

•

•

(iii)

b ≥ 3a

n

• •

•
↗

b ≥ 3a

n1

•

•

•

•
↘

b ≥ 3a

n1

•

•

•

•
↗

b ≥ 3a

n1

•

•

•

•
↘

b ≥ 32

n1

◦

•

•

•

(iv)

na

c

• •

•
↗

na

c1

•

•

•

•
↘

na

21

•

•

•

◦

(iv)

na

c

• •

•
↗

na

c1

•

•

•

•
↘

na

c1

•

•

•

•
↗

na

c1

•

•

•

•
↘

n2

c1

◦

•

•

•

(v)

n1

dc

•

•

•

•
↗

n1

dc

•

•

•

•
↘

n1

c

•

•

•
↗

n1

2c

•

•

•

•
↘

n1

2c

•

•

•

•

(vi)

n1 < a

dc

•

•

•

•
↗

n1 < a

dc

•

•

•

•
↘

n1 < a

c

•

•

•
↗

n1 < a

1c

•

•

•

•
↘

n1 < a

1c

•

•

•

•

=

n2 < a

1c

•

•

•

•
↗

n2 < a

1c

•

•

•

•
↘

n2 < a

12

•

◦

•

•

(vii)

ba

nc

•

•

•

•
↗

ba

nc

•

•

•

•
↘

a

nc

•

• •
=

2 < a

nc

•

• •
↗

12 < a

nc

•

•

•

•

↘
12 < a

nc

•

•

•

•
↗

12 < a

nc

•

•

•

•
↘

12

nc

•

•

◦

•

What is relevant for us is that all of these paths are non-cycles of length at
most 3. �

Proof of Proposition 6.4. This is a strightforward calculation. Recall from
Example 4.2 that D4,2 is the complex with 2-dimensional facets (i.e., max-
imal faces) 12|13|23, 12|14|24, 13|14|34 and 23|24|34, and 3-dimensional
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facets 12|13|24|34, 12|14|23|34 and 13|14|23|24. Four of these seven facets
contain the edge 12 and, therefore, (together with their faces) lie in X12.
Thus, R12 consists of (some) faces of the facets 13|14|34, 23|24|34 and
13|14|23|24, and such faces have dimensions in between 1 and 3, in view
of Remark 5.4. Explicitly, and by direct inspection (keeping in mind Equa-
tion (5.1) in Proposition 5.2), R12 consists of the nine simplices indicated in
the following table, where rows indicate the facet giving rise to the shown
face of R12:

facet dim = 1 dim = 2 dim = 3
13|14|34 13|14 13|14|34
23|24|34 23|24 23|24|34

13|14|23|24 13|14, 23|24 13|14|23, 13|14|24, 13|14|23|24
13|23|24, 14|23|24

The acyclicity of Q2
1 is now evident from its modified Hasse diagram:

13|14|34 23|24|34 13|14|23 13|14|24 13|23|24 14|23|24

13|14 23|24

�

7. Proof of the main theorems

This short section is devoted to the proof of Theorems 1.1 and 1.2. All of
the hard work has been accounted for in the previous sections; here we put
the pieces together.

Proof of Theorem 1.1. The fact that Dn,n−2 has the homotopy type of a
wedge of 2-dimensional spheres follows from Theorem 3.1, Corollary 5.3 and
Proposition 6.1. It remains to count the number Nn of S2 wedge summands
in the homotopy type of Dn,n−2. This is computed in terms of the Euler
characteristic of Dn,n−2, namely

Nn + 1 = χ(Dn,n−2) = c0 − c1 + c2 − c3,

where ci stands for the number of i-dimensional faces in Dn,n−2. Remark 2.1
and the characterization of d-dimensional simplices of Dn,n−2 discussed in
Section 4 give

c0 =
(
n
2

)
, c1 =

(
c0
2

)
, c2 =

(
n
3

)
+ 12

(
n
4

)
and c3 = 3

(
n
4

)
,

from which the expression for Nn in (1.1) follows after a little arithmetic. �

The proof of Theorem 1.2 is identical, except that the use of Theorem 3.1
has to be replaced by Theorem 3.4. We start by identifying D2 as a graph
complex.
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Lemma 7.1. D2 is the complex of graphs on an infinite number of vertices,
almost all being isolated, and the rest forming a subgraph of either a 3-cycle
or a 4-cycle.

Proof. As explained in Remark 6.2, Dn−1,n−3 is a subcomplex of Dn,n−2,
namley, we think of (the simplex determined by) a graph σ ∈ Dn−1,n−3 as
(the simplex determined by) the graph σ + (1) ∈ Dn,n−2, where the added
vertex has label n. Since D2 is the limit complex of the sequence D3,1 ↪→
D4,2 ↪→ · · · , the lemma follows from Theorem 2.3 and Lemma 4.1. �

Proof of Theorem 1.2. Recall from Remark 6.2 that the acyclic matching
Dn,n−2 in Corollary 5.3 restricts (in the sense of item (iii) of Proposition 3.3)
to the matching Dn−1,n−3. Consequently the modified Hasse diagram of
Dn−1,n−3 is contained in that for Dn,n−2. The union of all these directed
graphs (as n grows) yields the modified Hasse diagram of the union D2 =⋃
nDn,n−2. Since the directed paths of D2 are the union of the directed

paths on the several Dn,n−2, D2 inherits being acyclic and having no infinite
directed simple paths. Likewise, the critical simplices of D2 are given by the
union of the critical simplices of the several Dn,n−2. Thus D2 has a countable
number of critical 2-simplexes, together with a single 0-dimensional simplex
—the graph with vertices given by the natural numbers {1, 2, 3, . . .}, and a
single edge 12. Theorem 3.4 applies to complete the proof of Theorem 1.2.

�

8. The case of Dn,n−3

This final section is devoted to the proof of Proposition 1.3. The argument
is by direct computation, as in the proof of Proposition 6.4. We provide a
complete roadmap that simplifies the task of verifying details.

Proof of Proposition 1.3. Note that D5,2 has facets in dimensions 5 and 6;
the latter ones are given by Vizing’s Theorem 2.3, and the former ones are
of the form K4 + (1), where K4 stands for a complete graph on four vertices

(taken from the set {1, 2, 3, 4, 5}). There are
(

5
4

)
= 5 possibilities for the

graph K4, three of which have the edge 12 and, therefore, lie (together with
their faces) in X12. The other two possibilities for K4 are

(8.1) 1 •
•

• •

•
and 2 •

•

• •

• ,

some of whose faces belong to R12. Explicitly, and by direct inspection
(keeping in mind Equation (5.1) in Proposition 5.2), the simplices in R12

that come from these two facets are indicated in Tables 1 and 2.
On the other hand, the 6-dimensional facets of D5,2 have the form K ′5

where, as described in Vizing’s Theorem, K ′5 is the complement (in the
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dim = 2 dim = 3 dim = 4 dim = 5
23|24|25 23|24|25|34 23|24|25|34|35 23|24|25|34|35|45

23|24|25|35 23|24|25|34|45
23|24|25|45 23|24|25|35|45

Table 1. Simplices in R12 coming from the first facet in (8.1)

dim = 2 dim = 3 dim = 4 dim = 5
13|14|15 13|14|15|34 13|14|15|34|35 13|14|15|34|35|45

13|14|15|35 13|14|15|34|45
13|14|15|45 13|14|15|35|45

Table 2. Simplices in R12 coming from the second facet in (8.1)

complete graph on vertices {1, 2, 3, 4, 5}) of a graph K ′′5 of the form

•

• • •

•

There are 3
(

5
3

)
= 30 possibilities for K ′′5 , and 21 of them do not contain the

edge 12, so that the corresponding facet in D5,2 (which contains the edge
12) does not contribute to R12. The nine 6-dimensional facets of D5,2 that
contribute to R12, together with the corresponding simplices in R12, come
from the cases where K ′′5 contains the edge 12 (in view of (5.1)), and are
indicated in Tables 3–11. We omit writing an element that should appear
in Table i, if the element has been listed in Table j for some j < i.

dim = 3 dim = 4 dim = 5 dim = 6
14|23|24|25 14|15|23|24|25 14|15|23|24|25|34 14|15|23|24|25|34|35
15|23|24|25 14|23|24|25|34 14|15|23|24|25|35

14|23|24|25|35 14|23|24|25|34|35
15|23|24|25|34 15|23|24|25|34|35
15|23|24|25|35

Table 3. Simplices in R12 coming from K ′′5 =
2• 1• 3• 4• 5•

dim = 3 dim = 4 dim = 5 dim = 6
13|23|24|25 13|15|23|24|25 13|15|23|24|25|34 13|15|23|24|25|34|45

13|23|24|25|34 13|15|23|24|25|45
13|23|24|25|45 13|23|24|25|34|45
15|23|24|25|45 15|23|24|25|34|45

Table 4. Simplices in R12 coming from K ′′5 =
2• 1• 4• 3• 5•
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dim = 4 dim = 5 dim = 6
13|14|23|24|25 13|14|23|24|25|35 13|14|23|24|25|35|45
13|23|24|25|35 13|14|23|24|25|45
14|23|24|25|45 13|23|24|25|35|45

14|23|24|25|35|45

Table 5. Simplices in R12 coming from K ′′5 =
2• 1• 5• 3• 4•

dim = 3 dim = 4 dim = 5 dim = 6
13|14|15|24 13|14|15|24|25 13|14|15|24|25|34 13|14|15|24|25|34|35
13|14|15|25 13|14|15|24|34 13|14|15|24|25|35

13|14|15|24|35 13|14|15|24|34|35
13|14|15|25|34 13|14|15|25|34|35
13|14|15|25|35

Table 6. Simplices in R12 coming from K ′′5 =
1• 2• 3• 4• 5•

dim = 3 dim = 4 dim = 5 dim = 6
13|14|15|23 13|14|15|23|25 13|14|15|23|25|34 13|14|15|23|25|34|45

13|14|15|23|34 13|14|15|23|25|45
13|14|15|23|45 13|14|15|23|34|45
13|14|15|25|45 13|14|15|25|34|45

Table 7. Simplices in R12 coming from K ′′5 =
1• 2• 4• 3• 5•

dim = 4 dim = 5 dim = 6
13|14|15|23|24 13|14|15|23|24|35 13|14|15|23|24|35|45
13|14|15|23|35 13|14|15|23|24|45
13|14|15|24|45 13|14|15|23|35|45

13|14|15|24|35|45

Table 8. Simplices in R12 coming from K ′′5 =
1• 2• 5• 3• 4•

As discussed in Section 5, X12 is a subcomplex of D5,2 with an acyclic
pairing that has a single critical cell (in dimension 0). So we can focus on
constructing an acyclic pairing on R12, i.e., the family of 86 simplices in
Tables 1–11. The construction differs from the one we used in Section 5
(where we defined a pairing Q whose acyclicity was proved by an inductive
argument based on Proposition 3.3). This time we apply one further round
of an inclusion-exclusion pairing. Let:

• P ′34 be the (acyclic) matching on Dn,1 given by inclusion-exclusion
of the edge 34;

• P34 be the restriction of P ′34 to R12 (P34 is automatically acyclic);
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dim = 5 dim = 6
13|14|15|23|24|25 13|14|15|23|24|25|45
13|14|15|24|25|45
14|15|23|24|25|45

Table 9. Simplices in R12 coming from K ′′5 =
4• 3• 5• 1• 2•

dim = 5 dim = 6
13|14|15|23|24|34 13|14|15|23|24|25|34
13|14|23|24|25|34

Table 10. Simplices in R12 coming from K ′′5 =
3• 4• 5• 1• 2•

dim = 5 dim = 6
13|14|15|23|25|35 13|14|15|23|24|25|35
13|15|23|24|25|35

Table 11. Simplices in R12 coming from K ′′5 =
3• 5• 4• 1• 2•

dim = 4 dim = 5 dim = 6
a = 13|14|15|23|35 e = 13|14|15|23|24|35 r = 13|14|15|23|24|25|35
b = 13|14|15|24|45 f = 13|14|15|23|24|45 s = 13|14|15|23|24|25|45
c = 13|23|24|25|35 g = 13|14|15|23|25|35 t = 13|14|15|23|24|35|45
d = 14|23|24|25|45 h = 13|14|15|23|35|45 u = 13|14|23|24|25|35|45

i = 13|14|15|24|25|45
j = 13|14|15|24|35|45
k = 13|14|23|24|25|35
` = 13|14|23|24|25|45
m = 13|15|23|24|25|35
n = 13|23|24|25|35|45
p = 14|15|23|24|25|45
q = 14|23|24|25|35|45

Table 12. Simplices in R34

• R34 := R12 − X34, where X34 is the family of graphs in R12 with
a P34-matching pair (of course, the matching pair should also lie in
R12). Table 12 describes R34.

The key point is that X12 ∪ X34 is a subcomplex of D5,2. This fol-
lows from checking that no simplex in R34 is a face of some simplex in
X34. So, a new application of Proposition 3.2 allows us to reduce fur-
ther the problem, namely, we construct an acyclic matching R34 on R34.
As indicated in Table 12, R34 consists of (4,12,4) simplices in dimension
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e f g h i j k ` m n p q

a b c d

r s t u

Figure 1. Modified Hasse diagram for R34 with thick lines
standing for matched pairs

(4,5,6). The resulting face poset structure is simple enough (see Figure 1)
to construct, from scratch, the required acyclic matching. There are 16
different pairings in R34 working for our purposes. One such instance is
R34 := {(a, e), (b, f), (c, k), (d, `), (g, r), (i, s), (j, t), (n, u)}, which is acyclic
and has only four critical simplices all in dimension 5, as can be easily seen
from its modified Hasse diagram in Figure 1. Putting everything together:
P12 ∪ P34 ∪ R34 is an acyclic matching on D5,2 with a single critical 0-cell
(coming from P12) and four additional critical cells in dimension 5 (coming
from R34). The result follows. �

References
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