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ON THE REAL ROOTS OF DOMINATION POLYNOMIALS

IAIN BEATON AND JASON I. BROWN

Abstract. A dominating set S of a graph G of order n is a subset of
the vertices of G such that every vertex is either in S or adjacent to a
vertex of S. The domination polynomial is defined by D(G, x) =

∑
dkx

k

where dk is the number of dominating sets in G with cardinality k. In
this paper we show that the closure of the real roots of domination
polynomials is (−∞, 0].

1. Introduction

For many graph polynomials, the location and nature of the roots have
been (and continues to be) active areas of study. For example, the roots
of chromatic polynomials (usually referred to as chromatic roots) have been
of interest since the inception of chromatic polynomials, as the infamous
Four Color Conjecture (now the Four Color Theorem) was equivalent to
stating that 4 is never a chromatic root of a planar graph. While it is clear
that the real chromatic roots are nonnegative (as the polynomial has coef-
ficients that alternate in sign), it is not hard to show that (0, 1) is always a
root-free interval for chromatic roots. Were there others? In fact, a combi-
nation of results by Thomassen [13] and Jackson [9] proved that the closure
of real chromatic roots is exactly the set {0, 1} ∪ [32/27,∞) (and hence,
surprisingly, (1, 32/27) is chromatic root-free). For all-terminal reliability
polynomials (the probability that a graph is connected, given that the edges
are independently operational with probability p), the closure of their real
roots [5] is precisely {0} ∪ [1, 2]. We remark that, in contrast to the real
case, the closure of the complex chromatic roots is the entire complex plane
[12], while the closure of the complex all-terminal roots is not yet known
(while it contains the unit disk centered at z = 1 [5], there are some roots
just outside the disk [11, 6]).
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Here we investigate the real roots of domination polynomials, the gener-
ating function for the number of dominating sets in a (finite, undirected)
graph. For a graph G, a subset of vertices S is a dominating set of G if
and only if every vertex v of G is either in S or adjacent to a vertex in
S (equivalently, S is a dominating set if the closed neighbourhood N [v] of
every vertex v in G has a nonempty intersection with S). The domination
number of G, denoted γ(G), is the order of the smallest dominating set of
G. For a thorough discussion of dominating sets in graphs, see, for example,
[8]. Let D(G) denote the collection of dominating sets of G. Furthermore,
let dk(G) = |{S ∈ D(G) : |S| = k}|. The domination polynomial of G is
defined by

D(G, x) =
∑

S∈D(G)

x|S| =

|V (G)|∑
k=γ(G)

dk(G)xk.

The domination polynomials and their roots (domination roots) have been
of significant interest over the last 10 years(c.f. [3]). Alikhani characterized
graphs with two, three and four distinct domination roots [1, 2]. In [10]
Oboudi gave a degree and order dependent bound on the modulus of domi-
nation roots for a given graph ([4] provides for isolated-free graphs a purely
maximum degree dependent bound). While Brown and Tufts [7] showed
that domination roots are dense in the complex plane, what remains open
is what the closure of the real domination roots might be. Figure 1 shows a
plot of the real domination roots for all graphs of order 9.

Figure 1. The real domination roots for graphs of order 9

From the plot we see that the points seem to be filling in the interval (−4, 0),
but are more sparse to the left. Certainly, any real domination roots must
be nonpositive, as the polynomial has positive coefficients. Moreover, as
the domination polynomial is monic, all rational roots are integers. The
only known such roots are 0 and −2, both for D(K2, x), and 0 and −2 are
conjectured to be the only rational domination roots [1] (it is known that −1
is never a domination root [10]). With gaps at almost all rational numbers,
it is natural to ask whether there are any domination root-free intervals of
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(−∞, 0]. We shall show that there are no such intervals, so the closure of
the real domination roots are the entire nonpositive real axis.

2. Closure of Real Domination Roots

To prove our main result, we will need a graph operation, graph substi-
tution. Let G and H be graphs. The graph G[H], formed by substituting
a copy of H for every vertex of G, is constructed by taking a disjoint copy
of H, Hv, for each vertex v of G, and joining every vertex in Hu to every
vertex in Hv if and only if u is adjacent to v in G. For example, the complete
bipartite graph graph Kn,n is the same as K2[Kn]. Domination polynomials
are well-behaved with regards to graph substitution of complete graphs.

Lemma 2.1 ([7]). Let G be any graph and let Kn be the complete graph on
n vertices. Then

D(G[Kn], x) = D(G, (1 + x)n − 1).

We now proceed to prove that real domination roots are dense in the
negative real axis.

Theorem 2.2. The closure of the real domination roots is (−∞, 0].

Proof. Fix z ∈ (−∞, 0] and ε > 0; we need to show that there is a domi-
nation root z′ in the interval (z − ε, z + ε). Without loss, we can assume
that z 6= −2, 0. Our proof will essentially be in two parts— for z ∈ (−2, 0)
and for z ∈ (−∞,−2). In either case, note that from Lemma 2.1, if z1 is a
domination root of some graph G, then any solution of (z + 1)m − 1 = z1
is a domination root (of the graph G[Kn]). If m is an odd integer and

z1 < 0 is a domination root, then (z1 + 1)1/m − 1 will be a real domina-

tion roots as well. Finally, (z1 + 1)1/m − 1 ∈ (z − ε, z + ε) if and only if
z1 ∈ ((z− ε+ 1)m− 1, (z+ ε+ 1)m− 1), so it suffices to show that for some
m ≥ 1, the interval

(2.1) ((z − ε+ 1)m − 1, (z + ε+ 1)m − 1)

contains a domination root.
Case 1: z ∈ (−2, 0).

We shall consider two subcases that are similar in approach, splitting at
z = −1.
Subcase 1.1: z ∈ (−2,−1).

We can assume that z − ε > −2 and z + ε < −1 by decreasing ε, so that
both (z − ε + 1)m − 1 and (z + ε + 1)m − 1 are in (−2,−1). Observe that
if we set b = −(z − ε+ 1) and a = −(z + ε+ 1), then 1 > b > a > 0. Note
that interval (2.1) = (−bm − 1,−am − 1) approaches −1 from the left, that
is, the intervals all lie to the left of −1, and both end points approach −1
as m increases. Moreover, as

−bm+1 − 1 < −am − 1↔ b

(
b

a

)m
> 1,
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we conclude that if m is large enough, the left end point of the next interval
(−bm+1 − 1, am+1) lies inside the previous interval (−bm − 1,−am − 1). It
follows that the union of all the intervals,⋃

m

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1),

will contain an interval (w,−1), with w ∈ (−2,−1).
Now consider the domination polynomial of the complete bipartite graph

Kk,`, which is clearly given by

D(Kk,`, x) = ((1 + x)k − 1)((1 + x)` − 1) + xk + x`,

so that

D(K2,`, x) = (1 + x)`(x2 + 2x) + x` − 2x.

Now let ` be odd. Then D(K2,`,−1) = (−1)`+2 = 1 > 0. For any δ ∈ (0, 1),

D(K2,`,−1− δ) = −δ`(δ2 − 1)− (1 + δ)` + 2δ,

which is negative for ` sufficiently large. Thus for ` large enough, there
will be a real domination root in the interval (−1 − δ,−1). By choosing
δ = −w − 1 then there is a root in the interval

(w,−1) ⊆
⋃
m

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1),

so some interval ((z−ε+1)m−1, (z+ε+1)m−1) contains a real domination
root.
Subcase 1.2: z ∈ (−1, 0).

The proof of this subcase follows along that of the previous one. We can
assume that z − ε > −1 and z + ε < 0, so that both (z − ε + 1)m − 1 and
(z + ε + 1)m − 1 are in (−1, 0). Observe that if we set b = (z − ε + 1) and
a = (z+ε+1), then 1 > a > b > 0. Note that interval (2.1) = (bm−1, am−1)
approaches −1 from the right, that is, the intervals all lie to the right of −1,
and both end points approach −1 monotonically as m increases. Moreover,
as

bm − 1 < am+1 − 1↔ 1 < a
(a
b

)m
,

we conclude that if m is large enough, the right end point of the next interval
(bm+1 − 1, am+1 − 1) lies inside the previous interval (bm − 1, am − 1). It
follows that the union of all the intervals,⋃

m

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1),

contains an interval (−1, w), with w ∈ (−1, 0).
We again consider the domination polynomial of the complete bipartite

graphs Kk,`, but with equal parts:

D(Kk,k, x) = (1 + x)2k − 2(1 + x)k + 2xk + 1.



ON THE REAL ROOTS OF DOMINATION POLYNOMIALS 179

Then for k odd, D(Kk,k,−1) = 1 + 2(−1)k = −1 < 0. For any δ ∈ (0, 1),

D(Kk,k,−1 + δ) = δ2k − 2δk + 1 + 2(−1 + δ)k,

which is positive for k sufficiently large. Thus for k large enough, there will
be a real domination root in the interval (−1,−1+δ). By choosing δ = w+1
then there is a root in the interval

(−1, w) ⊆
⋃
m

((z − ε+ 1)m − 1, (z + ε+ 1)m − 1),

so some interval ((z−ε+1)m−1, (z+ε+1)m−1) contains a real domination
root.
Case 2: z ∈ (−∞,−2).

We can assume that z + ε < −2. Again, set a = −(z + ε + 1) and
b = −(z − ε + 1); note that b > a > 1. Note that the interval (2.1) =
(−bm − 1,−am − 1) has width

(z + ε+ 1)m − 1− ((z − ε+ 1)m − 1) = bm − am

= (b− a)

×
(
bm−1 + bm−2a+ · · ·+ am−1

)
≥ 2εmam,

which is unbounded. Thus the width of interval (2.1) can be arbitrarily
large. We are seeking a domination root in this interval. If we can show
that there is a sequence of real domination roots that tends to −∞ such
that the distance between successive roots is eventually bounded, then if m
is large enough, there will be a domination root in interval (2.1) and we are
done.

Now the domination polynomial of the star K1,k (yet another complete
bipartite graph!) is, as noted earlier,

D(K1,k, x) = x(x+ 1)k + xk.

Note that is we set x = −R, then

−R(1−R)k + (−R)k = (−1)k+1(R(R− 1)k −Rk).

Thus setting gk(R) = R(R − 1)k − Rk, we see that R is a root of gk if and
only if −R is a root of D(K1,k, x), so we turn our attention to gk for the
time being. Note that gk(R) = 0 if and only if(

R

R− 1

)k
= R.(2.2)

Clearly on (1,∞), the left side of (2.2), (R/(R−1))k, is a decreasing function
of R while the right side, R is obviously increasing, there is exactly one
solution to (2.2), and hence exactly one root, say rk, of gk, in (1,∞) (it is
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the unique place where gk changes sign from negative to positive). Moreover,
rk+1 > rk, as

gk+1(rk) = rk(rk − 1)k+1 − rk+1
k

= (rk − 1)rk(rk − 1)k − rk+1
k

= (rk − 1)rkk − rk+1
k

= −rkk
< 0.

What about the differences between successive roots rk? First of all, the
derivative of gk+1(x) = x(x− 1)k+1 − xk+1 is

g′k+1(x) = (x− 1)k+1 + (k + 1)x(x− 1)k − (k + 1)xk

= (x− 1)k+1 + (k + 1)gk(x),

and so

g′′k+1(x) = (k + 1)(x− 1)k + (k + 1)g′k(x)

= (k + 1)(x− 1)k + (k + 1)((x− 1)k + kgk−1(x)).

As rk−1 > 1, the second derivative of gk+1(x) is clearly nonnegative on the
interval [rk−1,∞). Noting from above that gk+1(rk) = −rkk , it follows that

rkk = gk+1(rk+1)− gk+1(rk)

=

∫ rk+1

rk

g′k+1(x) dx

≥ (rk+1 − rk)g′k+1(rk)

= (rk+1 − rk)(rk − 1)k+1.

Since (rk − 1)k+1 = (rk − 1)(rk − 1)k = (rk − 1)rk−1k , we find that

rk+1 − rk ≤
rk

rk − 1
≤ r1
r1 − 1

= 2.

Thus, returning back to the domination polynomial of stars, it follows that
−r1,−r2, . . . , is a decreasing sequence of negative domination roots (of stars)
that tend to −∞, and that have distance bounded between successive terms.
It follows that any sufficiently large subinterval of the negative real axis will
contain such a term, and thus we see that for large enough m, interval (2.1)
will contain (at least) one of these, and we have completed this case as well.

In all cases, there is always a real domination root in the interval (2.1) so
we conclude that the real domination roots are dense in (−∞, 0]. �

3. Conclusion

It may be interesting to further study the location of domination roots
for various families of graphs. In particular, are the real domination roots
of trees dense in (−∞, 0]? We have already seen in the proof of our main
theorem that there are real domination roots of trees (namely stars) that
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are unbounded, but we do not know if the closure is the entire nonpositive
real axis.

Beyond the closure of domination roots, for each order n it is natural
to ask which graph has the smallest real domination root? It appears (see
Table 1) that stars, which we used in case 2, have the extremal roots (and
indeed the roots of largest modulus). The known approximations for the
Lambert W function show that these roots of K1,n are roughly at n/ lnn.

n Smallest real domination root (and root of maximum modulus) Graph
1 0 K1

2 2 K1,1

3 -2.618033989 K1,2

4 -3.147899036 K1,3

5 -3.629658127 K1,4

6 -4.079595623 K1,5

7 -4.506323246 K1,6

8 -4.915076186 K1,7

9 -5.309330065 K1,8

Table 1. Smallest domination roots for n ≤ 9
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