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SPIRALS IN PERIODIC TILINGS

JESSA CAMILLE DUERO*, BERNHARD KLAASSEN, AND ROVIN SANTOS

Abstract. Spiral tilings, as appealing as they are for their aesthetics,
have not been studied well mathematically. One of the difficulties in
this area of tiling theory is providing a mathematical definition of spiral
tilings. A recently published attempt at providing a formal definition
distinguishes a so-called L-spiral tiling (L-tiling) and an S-spiral tiling
(S-tiling), with the two types being characterized by special properties
of tile set partitions. Based on these existing definitions, we investigate
the spiral structure in periodic tilings. Unlike spiral tilings, periodic
tilings lend themselves easily to a definition and have been well studied.
We first prove that it is not possible for periodic tilings to be S-tilings.
We then study a subset of periodic tilings that can be L-tilings. In
particular, we demonstrate that there exist examples for each type of
isohedral tilings (a subset of periodic monohedral tilings) that are L-
spirable.

1. Introduction

Spirals have been known since antiquity; they are a prominent feature in
nature as well as in the arts. However, of the numerous studies done on
spirals, only a few of them considered spirals as tilings rather than curves.
A possible reason for this could be the difficulty in providing a mathematical
definition for spiral tilings. This study takes advantage of a recently formu-
lated definition to investigate spiral structures in periodic tilings. Before we
proceed, we first clarify some basic terms that are used in this paper.

A plane tiling T (or tessellation) is a countable family of closed sets,
called tiles, that cover the plane without gaps or overlaps of nonzero area.
If the intersection of three or more tiles is nonempty, then this intersection
is called a vertex of T. An edge is (part of) the intersection of two tiles that
connects two distinct vertices. All tiles considered in this research are closed
topological disks and all tilings are k-hedral tilings, that is, tilings in which
every tile is congruent to one of k different prototiles [3]. If k = 1, we call
the tiling a monohedral tiling. Note that all the tiles in a k-hedral tiling are
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uniformly bounded. By uniformly bounded, we mean that there exist r > 0
and R > 0 such that it is possible for each tile in the tiling to completely
contain a circle of radius r and be completely contained in a circle of radius
R [3].

For a given plane tiling T, one can look at the different isometries that
leave T unchanged. These isometries are called symmetries of T and the
group of all symmetries of T is called the symmetry group of T denoted
by S(T). If the symmetry group S(T) contains two linearly independent
translations, the tiling T is said to be periodic. Translations, rotations, and
their compositions are called direct isometries [3].

Figure 1. The Voderberg spiral [6].

The aim of this research is to examine the existence of spiral structures
in periodic tilings. Spiral tilings were first studied with the discovery of
the Voderberg Spiral in 1936. In 1987, Grünbaum and Shephard first at-
tempted to define a spiral tiling as a monohedral tiling with a prototile T
for which it is possible to mark T by one or several arcs so that the union
of the corresponding arcs on all the tiles in the tiling consists of a finite
number of unbounded simple curves ([3], see exercises of section 9.5). They
admitted that their definition had several drawbacks, primarily its inability
to capture the psychological aspect of spiral tilings. Since then, there have
only been a relatively small number of papers published on this topic. As
of this writing, the latest development in this field is a study [4] published
in 2017; the succeeding mathematical definitions of spiral tilings are from
that paper1. During the formulation of these definitions, the second author

1The second author posted a preprint which can be accessed in the following link
https://arxiv.org/abs/2106.02827 in which, among other results, a further refinement of
definitions from 2017 is discussed.
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discussed them extensively with Branko Grünbaum. In the course of this
correspondence, Grünbaum posed several mathematical questions, such as
which general types of tilings would allow (or disallow) partitions in the
sense of these definitions. This paper contains the first steps towards an-
swering these questions.

Definition L. A partition of a plane tiling into two or more separate classes,
called arms, is called a spiral-like partition or L-partition under the
following conditions. (The plane is identified with the complex plane C,
where the origin is represented by a selected point of the tiling.)

L1: For each arm A (as a union of tiles from one class), there exists
a curve θ : [0,∞) −→ A ⊂ C with θ(t) = r(t)exp(iϕ(t)), called a
thread, where both r and ϕ are continuous and unbounded and ϕ is
monotone. The curve θ must not meet or cross itself or any thread
from another arm of the tiling.
L2: For each tile T in A, the intersection of the interior of T with
the image of θ is nonempty and connected.

Let A be an arm of an L-partition. Two tiles T1, T2 ∈ A are said to be
direct neighbors if T1∩T2 is cut by the thread of A or contains more than
a finite number of points. When T1 ∩ T2 is a single point P , we say that
T1 ∩ T2 is “cut by a thread” if that thread intersects P . Figure 2 shows a
few ways this can happen. In both Figures 2A and 2B, we have these pairs
of direct neighbors in which each pair’s intersection is an edge: T1 and T2,
T2 and T3, and T3 and T4. The pair T5 and T1 in Figure 2A illustrates the
case where T1 ∩ T5 is a single point that is cut by a thread. The concept of
direct neighbors is needed in proceeding from L-partitions to S-partitions,
defined as follows:

Definition S. A partition of a plane tiling is defined as a spiral partition
or S-partition under the following conditions.

S1: It is an L-partition.
S2: If any two tiles T1, T2 ∈ A are direct neighbors and can be
respectively mapped by a direct isometry τ onto another pair of tiles
τ(T1) and τ(T2), these must also be direct neighbors within an arm.
This rule can be ignored if the image pair contains the beginning of
an arm, i.e., contains θ(0).

A plane tiling (with uniformly bounded tiles) for which it is possible to
create an L-partition is L-spirable and an L-partitioned tiling is called an L-
tiling. An L-tiling that satisfies S2 is called an S-tiling. Similarly, a tiling
for which it is possible to create an S-partition is S-spirable. It can easily
be verified that the Voderberg tiling (Figure 1) is S-spirable with two arms.
More examples of S-tilings can be found in [1, 4, 5] and in Brian Wichmann’s
collection at www.tilingsearch.org/tree/t22.htm. In Wichmann’s collection,
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none of the definitions in [4] apply to the tiling data129/F19 since the indi-
cated spiral arms are not path-connected.

(a) (b)

Figure 2. Some ways a thread may run through a set of
tiles.

Note that every arm in an S-tiling consists of tiles that are joined together
in a way that creates a path through which a thread must run to meet every
single tile of the arm. Whenever a thread runs from one tile to another,
these two tiles are automatically direct neighbors by definition. Thus, a
thread naturally defines a sequence of tiles in which the order is determined
by the said path and every succeeding pair of tiles are direct neighbors. This
observation is stated in the following remark.

Remark: Suppose θ∗ is a nonempty connected subset of a thread2 that in-
tersects finitely many tiles in an arm A. Then one can always construct a
sequence of tiles T containing all the tiles in A that are intersected by θ∗

such that each pair of successive tiles in T are direct neighbors.

Proof. Define M∗ to be the nonempty finite set of tiles in A intersected by
θ∗. The existence of such a set is guaranteed since all tiles considered are
uniformly bounded and θ∗ is nonempty.

One can construct a sequence of tiles T containing all the tiles in M∗,
where the order of the tiles is determined by the order in which the thread
intersects the tiles in M∗. If there exists a point θ(p) on θ∗ in which it meets
two or more tiles at the same time, then sequence T may not be unique.
Suppose T1, . . . , Tn are the tiles that are met by θ∗ at θ(p), then:

(i) If some of these tiles do not contain θ(p±ε) for any arbitrarily small
ε > 0 (see Figure 3A), then they can follow an arbitrary order in T
since they all are direct neighbors.

(ii) If for some arbitrarily small ε, θ(p+ ε) lies on the edge Ti ∩Tj , then
the order of these two tiles in T depends on the next tile intersected
by θ∗. If the next tile is a direct neighbor of only one of those tiles,
say Tj , then Ti must precede Tj in T (see Figure 3B). If both are

2In the following, “subset of a thread” means “subset of a thread’s image” in the sense
of a restriction to an interval of its domain.
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direct neighbors of the next tile, then Ti and Tj may appear in any
order.

□

To further illustrate this remark, consider Figures 2A and 2B again. If
θ∗ is the red curve in each of the figures, then M∗ consists of tiles T1 to
T5. In Figure 2A, T1, T2, and T5 are met by θ∗ at the same point θ(p).
However, among these three tiles, only T2 does not contain θ(p± ε), for any
arbitrarily small ε > 0. This means that T2 should appear between T5 and
T1 in the sequence. Assuming θ∗ runs clockwise through the tiles of M∗,
the sequence T described in remark 1.1 is the same for Figures 2A and 2B,
which is T5, T2, T1, T2, T3, T4. Note that all successive pairs of tiles in this
sequence are direct neighbors.

(a) (b)

Figure 3. Let θ∗ be the red curve that runs from left to
right. If

⋂4
i=1 Ti = θ(p) in (A), then the sequence T is either

T1, T2, T3, T4 or T1, T3, T2, T4 (case i). In (B), if θ∗ ∩ (T7 ∩
T8) contains more than a single point, then in the sequence
T , tiles T3, T4, T5 and T6 can appear in any order (case i),
followed by T7 and T8 (case ii).

2. S-spirability

In this section, we investigate whether or not a periodic tiling can be an
S-tiling. The defining property of periodic tilings is that their symmetry
groups have linearly independent translations and this particular property
is our main tool in determining if periodic tilings can be S-tilings. Although
it is not forbidden by Definition L or S that tilings possess infinitely many
spiral arms, we restrict ourselves to spirals with a finite number of arms,
noting that the existence of spiral tilings with infinitely many arms remains
an open question [5].

Let A be a spiral arm with thread θA. The tile that contains θA(0) is called
the beginning tile of A. In an S-tilingT, each arm is separated from the other
arms by curves that are called arm boundaries. The arm boundaries are the
topological boundaries of the spiral arms, thus separating the unions of the
tiles in each arm. The thread θA, which is a continuous and unbounded
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curve, can meet these arm boundaries but cannot cross them. Hence, the
arm boundaries of A are also continuous and unbounded curves.

Lemma 2.1. Let T1 and T2 be tiles in an S-tiling, neither of which is a
beginning tile. If T1 ∩ T2 is an edge that lies on an arm boundary and
T1 ∪ T2 can be mapped by a direct isometry onto another pair of tiles, then
the intersection of the tiles’ images is also an edge that lies on an arm
boundary.

Proof. Suppose T1 and T2 are direct neighbors and can be mapped by a
direct isometry onto another pair, say T3 and T4. Hence, T3 ∩ T4 is also
an edge. Suppose that T3 and T4 belong to the same arm, which means
that these tiles must be direct neighbors (by definition). This contradicts
Condition S2 since T1 and T2 (to which they could be mapped back) are
not direct neighbors. Consequently, T3 and T4 belong to different arms and
share an edge, which must then lie on an arm boundary. □

Let T be an S-tiling. Fix a circle CT such that all beginning tiles in T
lie in the interior of CT . This is possible since we are only considering an
S-tiling with a finite number of arms.

Lemma 2.2. Let A be an arm of an S-tiling T with symmetry group S(T).
Suppose that θ∗ is a connected subset of θA and M∗ is the set of tiles in A
that are intersected by θ∗. If both M∗ and τ(M∗) lie outside the circle CT

(as defined above), where τ is a direct isometry in S(T), then τ(M∗) is also
a subset of an arm in T.

Proof. Since M∗ contains all tiles in A intersected by the connected path
θ∗, then by remark 1.1, we can construct a sequence containing all the tiles
in M∗ in which each pair of successive tiles are direct neighbors. Each of
these pairs is mapped (via τ) to another pair of tiles that must also be direct
neighbors. The set τ(M∗) must therefore be a subset of a single arm. □

The set containing the edges of arm boundaries that are disjoint with any
beginning tile shall be called true arm boundaries. This means that the edges
in the arm boundaries that lie outside CT are part of true arm boundaries.
True arm boundaries still have the properties of arm boundaries, but an
additional property holds.

Corollary 2.3. For a set of edges in an S-tiling T, the property of belonging
to a true arm boundary is invariant under a direct isometry, provided that
the image lies outside of a circle CT which contains all arms’ beginning tiles.

This corollary follows directly from Lemmas 2.1, and the definition of the
term true arm boundary.

We are now in a position to prove one of the main results of this paper.
Note that the direct isometries mentioned in Condition S2 are not necessarily
elements of the tiling’s symmetry group. However, since periodic tilings,
by definition, have translations in their symmetry group, we can use these
translations to show that no S-partition can be induced from periodic tilings.
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Proposition 2.4. S-tilings with finitely many arms cannot be periodic.

Proof. The idea of the proof is the following: Consider a 360◦ turn of (a part
of) a spiral arm and translate it according to the assumed tiling’s periodicity.
We already know that this image is also a part of a spiral arm. However, it is
impossible for the thread that is running through the image to be monotonic
(with respect to the thread’s angular coordinate), provided that this image
is far enough from the original region. We now present the technical details.

Let T be a periodic S-tiling with only finitely many arms and let θA be a
thread of an arm A in T. Draw a straight line l passing through the origin of
the complex plane that is parallel to a (nontrivial) translational symmetry
t in S(T), the symmetry group of T. Since T has a finite number of arms,

Figure 4

there exists a circle CT such that all beginning tiles lie inside CT . Let us
choose θ∗ as a part of θA running 360◦ from line l to line l such that (i) M∗,
the set of tiles in A that are intersected by θ∗, is outside CT ; and (ii) region
M∗ is large enough such that there are at least two tiles in M∗ fully lying on
each side of l within the 360◦ turn. Here, we use the fact that the tiles are
uniformly bounded. (In Figure 4, θA and l are represented by the red-gray
curve and the blue straight line, respectively. The region M∗ ⊂ A is the
yellow shaded region, which is outside CT and θ∗ is the red curve revolving
360◦ from line l to line l.)

Note that the arm boundaries in M∗ are part of true arm boundaries.
By Corollary 2.3, true arm boundaries are mapped (via a direct isometry)
to true arm boundaries provided that both regions lie outside of CT . Now,
since the tiling is infinite, we can take m ∈ N to be large enough such
that M∗ and tm(M∗) are both outside CT . By Lemma 2.2, tm(M∗) is also
part of an arm, say A′, with a corresponding thread θA′ . By Condition
L1, a thread must be monotonic in its angular coordinate. The thread θA′

may not coincide with tm(θA), but θA′ must reach the interior of all of the
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tiles in the image region tm(M∗). Hence, it has to enter tm(M∗) at line l
and afterward must be found on both sides of line l, which means that it
cannot be monotonic with respect to the rotational angle. This results in a
contradiction and completes the proof. □

3. L-spirability of isohedral tilings

We devote the rest of the paper to investigating whether some periodic
tilings can satisfy Definition L. In particular, we explore the L-spirability
of isohedral tilings (a subset of monohedral periodic tilings) and show each
type is L-spirable. We have seen in the previous section that periodic tilings
can never be S-tilings. However, the questions of whether every monohedral
(or every periodic) tiling admits an L-partition and under which conditions
periodic tilings can be L-tilings [4] remain open.

In a tiling T, the transitivity class of a tile T ∈ T is the collection of
all tiles in T to which T can be mapped by an element of the tiling’s sym-
metry group S(T). T is said to be isohedral if all tiles in T belong to the
same transitivity class. There are 81 types of isohedral tilings in the Eu-
clidean plane, as enumerated by Grünbaum and Shephard in [2], where an
IH number is used to classify each isohedral tiling. Monohedral tilings with
regular vertices are also isohedral. A vertex is said the be a regular vertex if
whenever v edges meet at a vertex of a tiling, then the angle between each
consecutive pair of edges is 2π/v. These monohedral tilings with regular
vertices are called Laves tilings [2]. If the prototile of a Laves tiling is an
n-gon whose vertices are of valence v1, v2, . . . , vn, then the Laves tiling is
denoted by [v1.v2. · · · .vn] (see Figure 5).

In this section, we first show that the 11 Laves tilings are L-spirable by
creating L-partitions for each Laves tiling as shown in Table 1. These L-
partitions are chosen based on the symmetry group of each Laves tiling.
In particular, L-partitions are formed by considering an n-fold rotational
symmetry in the tiling’s symmetry group and then creating n arms that are
transitive under the chosen rotational symmetry. For instance, a four-armed
L-tiling with a four-fold rotational symmetry can be formed from [32.4.3.4],
a Laves tiling whose symmetry group is of type p4g. The four tiles joined at
a vertex (that is a center of a four-fold rotation) are beginning tiles and form
an orbit under the four-fold rotation centered at the said vertex. One can
form the spiral structure in a clockwise or counterclockwise manner. Figure 6
illustrates the former. Each tile of the tiling is assigned to an arm so that
the arms are invariant under the described (clockwise) four-fold rotation. In
the case where the center of an n-fold rotation lies in the center of a tile T ,
it needs to be divided into n congruent parts to create an L-tiling with an
n-fold rotational symmetry. However, the resulting tiling is no longer the
original tiling. Take note that one can create other n-armed L-tilings that
still preserve some rotational symmetries using different partitions.
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(a) [36] (b) [34.6] (c) [33.42] (d) [32.4.3.4]

(e) [3.4.6.4] (f) [3.6.3.6] (g) [3.122] (h) [44]

(i) [4.6.12] (j) [4.82] (k) [63]

Figure 5. The 11 Laves tilings.

(a) (b)

Figure 6. Creating a four-armed L-tiling for [32.4.3.4].

As we can see in Table 1, the spiral is more prominent if the tiles in an
arm are connected at the edges all throughout the arm since one can more
easily see how the arms partition the tilings into spirals. The red curve in
each L-tiling in the table is the corresponding thread for the yellow arm.
For the threads of the other arms, one may rotate this red curve under the
rotational symmetries under which the arms are invariant. Note that L-
partitions of the Laves tilings are not limited to the partitions shown in the
table.

Table 1 demonstrates the L-spirability of the Laves tilings. In each of the
arms in a partition lies a thread by Definition L. Additionally, we are able
to establish the following result:
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Proposition 3.1. Let T be a Laves tiling. If an n-fold rotational symmetry
is centered at a vertex of T or at the midpoint of an edge of T, then T
can be L-partitioned with n arms such that the resulting spiral-like tiling has
symmetry group Cn.

Laves tiling Partitions

[36]

(IH1-IH20)

[34.6]

(IH21)

[33.42]

(IH22-IH26)

[32.4.3.4]

(IH27-IH29)
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[3.4.6.4]

(IH30-IH32)

[3.6.3.6]

(IH33-IH37)

[3.122]

(IH38-IH40)
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[44]

(IH41-IH76)

[4.6.12]

(IH77)

[4.82]

(IH78-IH82)
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[63]

(IH83-IH93)

Table 1: L-partitions of Laves tilings with rotational symme-
tries.

Now, we proceed with our goal of showing that there are L-spirable exam-
ples for each type of isohedral tiling. Up to topological equivalence, the 81
types of isohedral tilings in the Euclidean plane can be grouped into 11 fam-
ilies and every family is represented by a Laves tiling. Thus, each isohedral
tiling corresponds to the Laves tiling to which it is topologically equivalent.

Grünbaum and Shephard introduced the concept of incidence symbols and
adjacency diagrams in [3] to characterize and enumerate all types of isohedral
tilings. Incidence symbols indicate the symmetries in each prototile and
how these prototiles make up the tiling while adjacency diagrams represent
incidence symbols visually by utilizing the prototiles of the Laves tilings3.
The authors of [3] illustrated the adjacency diagram of each type of isohedral
tiling by marking the edges of the prototile of the Laves tiling to which it is
topologically equivalent. These marked edges allow edge reshaping to come
up with the IH type one wants to generate. In this paper, we modify one
or several edges of a prototile of a Laves tiling into C-curves, J-curves, or
S-curves (not to be confused with S-tilings) depending on the symmetries
of the new prototile as done in [3] (see page 279). These modified curves
can be made arbitrarily close to the original straight edges such that no
curved edge is allowed which would increase the number of intersections
between edges and threads compared to the L-partitioned Laves tiling. In
this way, we made sure that we can produce isohedral tilings of every type
that can be L-partitioned in the same manner, using the same threads, as
the corresponding Laves tiling in Table 1. While we are not guaranteed that

3The reader may also refer to https://www.jaapsch.net/tilings/mclean/index.html in
which the author used an alternative approach to uniquely characterize each type of iso-
hedral tilings in a visually informative way.
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all isohedral tilings can be made into L-tilings, these L-partitions created
from Laves tilings are sufficient to conclude that examples for each type of
isohedral tiling exist that are L-spirable.

(a) (b)

Figure 7. Tiling T of type IH41 constructed from [44].

For example, the isohedral tiling T in Figure 7B of type IH41 can be cre-
ated from [44] (Figure 5H). As we can see, the two pairs of opposite edges of
the square prototile in [44] are reshaped into J-curves in line with the char-
acterization of IH41 in [3]. From this characterization, the opposite edges
are images of one another under some translations in S(T), as illustrated by
the pair of red edges and the pair of green edges in Figure 7A. In this exam-
ple, the adjusted edges do not increase the number of intersections between
edges and threads compared to the L-partitioned Laves tiling.

We see in Figure 8 the L-partitions of T in accordance with the L-tilings
obtained from [44]. Clearly, all these L-tilings have trivial rotational sym-
metries even if the corresponding L-tilings for [44] have two- and four-fold
rotational symmetries. The rotational symmetries found in the L-partitions
of a Laves tiling may be lost when the same partitions are used in the isohe-
dral tilings from the family represented by the Laves tiling. This is certain
to happen if the symmetry group of the generated isohedral tiling is of type
p1 (as is the case for T), pg, pm, and cm.

The example shown above illustrates that one can always generate at least
one example from each of the 81 types of isohedral tilings such that each
generated tiling adapts the thread of its corresponding Laves tiling. In this
way, these generated isohedral tilings can be partitioned into L-tilings in the
same way as their corresponding Laves tiling, in line with Table 1.

Remark: One can modify the edges of a Laves tiling to construct an L-tiling
for at least one example of each type of isohedral tiling using the same
partition as that of the corresponding Laves tiling according to Table 1.

4. Discussion and conclusion

The motivation behind the definitions from [4] for spiral tilings is to
capture, with mathematical rigor, the psychological effect alluded to by
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(a) (b) (c)

Figure 8. L-partitions of T in line with the partitions of
[44] in Table 1.

Grünbaum and Shephard in their 1987 work. Intuitively, we can see that
there are no inherent spiral structures in any periodic tiling. In this work,
we have provided mathematical support, using these definitions, for that
intuitive result.

If a periodic tiling is S-spirable with finite number of arms, then the S-
partitioning of the arms can be translated through the (at least two) linearly
independent translations in S(T) which, intuitively, should not be possible
in a spiral tiling. In fact, the proof of Proposition 2.4 holds even when the
tiling has only one translational symmetry in its symmetry group. Hence,
only tilings with no translational symmetry can be S-tilings.

This work is the first step towards answering Branko Grünbaum’s ques-
tion about general properties of tilings that may admit L-partitions which
was already mentioned as an open problem in [4]. Although we have not
yet completely characterized the L-spirability of monohedral (or periodic)
tilings, we have shown that we can find at least one example of an L-spirable
tiling for each of the 81 types of isohedral tilings. In fact, we conjecture that
all periodic monohedral tilings are L-spirable.

The authors are working on a separate paper to demonstrate the existence
of periodic dihedral tilings that are not L-spirable. For now, we propose
that not all periodic tilings are L-spirable. Moreover, one-armed spirals are
also introduced in [4] and we present proof that one-armed spiral tilings
(according to Definition O in [4]) cannot be periodic in a separate paper.
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