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A DIFFERENT APPROACH TO GAUSS FIBONACCI

POLYNOMIALS

CAN KIZILATEŞ

Abstract. In this paper with the help of higher order Fibonacci poly-
nomials, we introduce higher order Gauss Fibonacci polynomials that
generalize the Gauss Fibonacci polynomials studied by Özkan and Taştan
[14]. We give a recurrence relation, Binet-like formula, generating and
exponential generating functions, summation formula for the higher or-
der Gauss Fibonacci polynomials. Moreover, we give two special matri-
ces that we call Q(s)(x) and P (s)(x), respectively. From these matrices,
we obtain a matrix representation and derive the Cassini’s identity of
higher order Gauss Fibonacci polynomials.

1. Introduction

Gaussian numbers were examined by C. F. Gauss in 1832. The Gaussian
integers are the set

Z [i] = {a+ ib : a, b ∈ Z} ,
where i2 = −1. Since the Gaussian integers are closed under addition and
multiplication, they form a commutative ring. Therefore, these numbers
have an important place in algebra [6]. Based on Gauss’ definition, Horadam
[8] defined and studied complex Fibonacci numbers (or Gauss Fibonacci
numbers) in 1963. There are several papers related to Gauss Fibonacci
numbers such as the works in [5, 7, 9, 17]. The Gaussian Fibonacci numbers
{GFn}∞n=0 are defined by the following recurrence relation

GFn+1 = GFn +GFn−1 n ≥ 1,

with the initial values GF0 = 0 and GF1 = 1. One can see that

GFn = Fn + iFn−1,
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where Fn is the n-th Fibonacci number is defined by

Fn+2 = Fn+1 + Fn n ≥ 0,

with F0 = 0, F1 = 1. Similarly, Lucas sequence is defined by the following
recurrence relation: for n ≥ 0,

Ln+2 = Ln+1 + Ln,

where L0 = 2 and L1 = 1. The Binet formulas for the Fibonacci numbers
and Lucas numbers have the following forms

(1.1) Fn =
αn − βn

α− β
,

and

(1.2) Ln = αn + βn,

respectively, where α and β are the roots of the characteristic equation
x2 − x− 1 = 0.

Fibonacci and Lucas numbers, their generalizations, and matrix repre-
sentations have been extensively studied by many mathematicians from the
past up to the present [4, 10, 11, 12, 19]. One of these generalizations is the
Fibonacci polynomials studied by Belgian mathematician Catalan and the
German mathematician E. Jacobsthal. For n ≥ 3, the Fibonacci polynomi-
als Fn(x) are defined by

Fn(x) = xFn−1(x) + Fn−2(x),

where F1(x) = 1 and F2(x) = x. Closed form expression of Fibonacci poly-
nomial, namely Binet-like formula is

(1.3) Fn(x) =
α(x)n − β(x)n

α(x)− β(x)
,

where α(x) = x+
√
x2+4
2 , β(x) = x−

√
x2+4
2 . For n ≥ 2, the Lucas polynomials

Ln(x), are defined by

Ln(x) = xLn−1(x) + Ln−2(x),

where L0(x) = 2 and L1(x) = x. Also, Binet-like formula for the Lucas
polynomial is

Ln(x) = α(x)n + β(x)n.

Higher order Fibonacci numbers (or Fibonacci divisor, conjugate to Fs)

were defined by Pashaev and Özvatan [15, 16]. These numbers are defined
for s ≥ 1 integer, as follows:

(1.4) F (s)
n =

Fns

Fs
=

(αs)n − (βs)n

αs − βs
.

Since Fns is divisible by Fs, the ratio
Fns
Fs

is an integer. So, all higher order
Fibonacci numbers are integers. Let us state here that for s = 1, the higher

order Fibonacci numbers F
(1)
n , turn into the ordinary Fibonacci numbers.
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The Fibonacci divisor numbers F
(s)
n give factorization of Fibonacci numbers

with factorized index ns :

(1.5) Fns = Fs · F (s)
n .

For s = 1, 2, 3, 4, 5 and n = 1, 2, 3, 4, . . . , the first few numbers of the Fi-

bonacci divisor F
(s)
n ; as follows:

s = 1; F (1)
n = Fn = 1, 1, 2, 3, . . .

s = 2; F (2)
n = F2n = 1, 3, 8, 21, . . .

s = 3; F (3)
n =

1

2
F3n = 1, 4, 17, 72, . . .

s = 4; F (4)
n =

1

3
F4n = 1, 7, 48, 329, . . .

s = 5; F (5)
n =

1

5
F5n = 1, 11, 122, 1353, . . . .

In [16], Pashaev gave some important properties of Fibonacci divisor num-
bers and also applied to some physical examples for these numbers. Similar
to equation (1.4), higher order Fibonacci polynomials can be written as
follows:

(1.6) F (s)
n (x) =

Fns(x)

Fs(x)
=

(α(x)s)n − (β(x)s)n

α(x)s − β(x)s
.

From Fns(x) is divisible by Fs(x), F
(s)
n (x) is a polynomial with respect to x

variable.
We now return to a recent investigation by Özkan and Taştan [14], who

defined the special polynomials which are related to Gauss Fibonacci poly-
nomials. The authors obtained the recurrence relation, the Binet formula
and the Cassini’s identity with a matrix similar to the Fibonacci Q-matrix.
Moreover, they obtained some determinant equations for this matrix.

Other articles on the generalizations of Gauss Fibonacci or Gauss Fi-
bonacci type polynomials and numbers are available in references (see Aşçı

and Gürel [1, 2, 3], Morales [13], Taştan and Özkan [18]).
Motivated by some of the above-cited recent papers, in the present paper,

we introduce new polynomials whose components are higher order Fibonacci
polynomials. We define the higher order Gauss Fibonacci polynomials and
derive some fundamental properties. We obtain recurrence relation, Binet
formula, summation formula, generating function and exponential generat-
ing function of higher order Fibonacci polynomials. Moreover we define two
special matrices that we call Q(s)(x) and P (s)(x), respectively. From these
matrices, we obtain a matrix whose entries are higher order Gauss Fibonacci
polynomials and derive the Cassini’s identity.
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2. Higher Order Gauss Fibonacci polynomials

In this section, we define the higher order Gauss Fibonacci polynomials
and derive some new identities concerning higher order Gauss Fibonacci
polynomials.

Definition 2.1. For n ≥ 1, the higher order Gauss Fibonacci polynomials,

GF
(s)
n (x), is defined by

(2.1) GF (s)
n (x) = F (s)

n (x) + iF
(s)
n−1(x),

where s ≥ 1 is an integer and F
(s)
n (x) is defined by (1.6).

If we take s = 1 in (2.1), we get the Gauss Fibonacci polynomials defined

and studied by Özkan and Taştan [14]. If we take s = x = 1 in (2.1), we
obtain the Gauss Fibonacci numbers defined and studied by Horadam and
Jordan [8, 9].

Now we give the Binet-like formula for the Gauss Fibonacci polynomials.

Theorem 2.2. Binet-like formula for higher order Gauss Fibonacci polyno-
mials is

(2.2) GF (s)
n (x) =

(αs(x))n−1 (i+ αs(x))− (βs(x))n−1 (i+ βs(x))

αs(x)− βs(x)
.

Proof. By using (2.1) and (1.4), we have

GF (s)
n (x) = F (s)

n (x) + iF
(s)
n−1(x)

=
(αs(x))n − (βs(x))n

αs(x)− βs(x)
+ i

(αs(x))n−1 − (βs(x))n−1

αs(x)− βs(x)

=
(αs(x))n−1 (i+ αs(x))− (βs(x))n−1 (i+ βs(x))

αs(x)− βs(x)
.

So the proof is completed. □

Corollary 2.3. ([14, Page 3]) The Binet-like formula for the Gauss Fi-
bonacci polynomials is

GFn(x) =
αn−1(x) (i+ α(x))− βn−1(x) (i+ β(x))

α(x)− β(x)
.

Proof. This follows from substituting s = 1 in the Equation (2.2). □

Theorem 2.4. For n ≥ 1, the recurrence relation for higher order Gauss
Fibonacci polynomials is given by

(2.3) GF
(s)
n+1(x) = Ls(x)GF (s)

n (x) + (−1)s+1GF
(s)
n−1(x),

where Ls(x) is Lucas polynomial.
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Proof. By using (2.2) and (1.2), we have

GF
(s)
n+1(x) =

(αs(x))n (i+ αs(x))− (βs(x))n (i+ βs(x))

αs(x)− βs(x)

=
1

αs(x)− βs(x)

×
(
(αs(x))n−1 (i+ αs(x))αs(x)− (βs(x))n−1 (i+ βs(x))βs(x)

)
=

1

αs(x)− βs(x)

×
(

(αs(x))n−1 (i+ αs(x))αs(x)− (βs(x))n−1 (i+ βs(x))αs(x)

+ (βs(x))n−1 (i+ βs(x))αs(x)− (βs(x))n−1 (i+ βs(x))βs(x)

)
.

Thus,

GF
(s)
n+1(x) = GF (s)

n (x) (αs(x) + βs(x))−GF (s)
n (x)βs(x)

+
1

αs(x)− βs(x)

×
(
(βs(x))n−1 (i+ βs(x))αs(x)− (βs(x))n−1 (i+ βs(x))βs(x)

)
= Ls(x)GF (s)

n (x)

+

(
− (αs(x))n−1 (i+ αs(x))βs(x) + (βs(x))n (i+ βs(x))

+ (βs(x))n−1 (i+ βs(x))αs(x)− (βs(x))n−1 (i+ βs(x))βs(x)

)
αs(x)− βs(x)

= Ls(x)GF (s)
n (x)

−αs(x)βs(x)

(
(αs(x))n−2 (i+ αs(x))− (βs(x))n−2 (i+ βs(x))

αs(x)− βs(x)

)
= Ls(x)GF (s)

n (x) + (−1)s+1GF
(s)
n−1(x).

and that gives us the desired recursion formula (2.3). □

Corollary 2.5. ([14, Definition 1]) Recurrence relation of the Gauss Fi-
bonacci polynomials is

GFn+1(x) = xGFn(x) +GFn−1(x) n ≥ 2.

Proof. This follows from substituting s = 1 in the Equation (2.3) and
L1(x) = x. □

We shall give the generating function and exponential generating function
for the higher order Gauss Fibonacci polynomials.

Theorem 2.6. The generating function of the higher order Gauss Fibonacci
polynomials is given by

(2.4) W (s) (x, t) =
(−1)s (−i+ (iLs (x) + (−1)s) t)

1− Ls (x) t+ (−1)s t2
.
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Proof. Let

W (s) (x, t) =

∞∑
n=0

GF (s)
n (x)tn

be the generating function of GF
(s)
n , then using (2.1) and (1.4), we have

∞∑
n=0

GF (s)
n (x)tn =

∞∑
n=0

(
F (s)
n (x) + iF

(s)
n−1(x)

)
tn

=
1

αs(x)− βs(x)

×

(
(i+ αs(x))

αs(x)

∞∑
n=0

(αs(x)t)n − (i+ βs(x))

βs(x)

∞∑
n=0

(βs(x)t)n
)

=
1

αs(x)− βs(x)

×
(

(i+ αs(x))

αs(x) (1− αs(x)t)
− (i+ βs(x))

βs(x) (1− βs(x)t)

)
.

After some calculations, we have

W (s) (x, t) =
(−1)s (−i+ (iLs (x) + (−1)s) t)

1− Ls (x) t+ (−1)s t2
.

□

Corollary 2.7. The generating function of the Gauss Fibonacci polynomial
is

∞∑
n=0

GFn(x)t
n =

i− (ix− 1) t

1− xt− t2
.

Proof. This follows from substituting s = 1 in the Equation (2.4) □

Theorem 2.8. Exponential generating function of the higher order Gauss
Fibonacci polynomials is

∞∑
n=0

GF (s)
n (x)

tn

n!
(2.5)

=
eα

s(x)t − eβ
s(x)t + (−1)s+1i

(
αs(x)eβ

s(x)t − βs(x)eα
s(x)t

)
αs(x)− βs(x)

.

Proof. Let

U (s)(x, t) =

∞∑
n=0

GF (s)
n (x)

tn

n!
,
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be the exponential generating function of GF
(s)
n (x), then using (2.2), we

have

U (s)(x, t) =
∞∑
n=0

GF (s)
n (x)

tn

n!

=

∞∑
n=0

(
(αs(x))n−1 (i+ αs(x))− (βs(x))n−1 (i+ βs(x))

αs(x)− βs(x)

)
tn

n!

=
1

αs(x)− βs(x)

×

(
(i+ αs(x))

αs(x)

∞∑
n=0

(αs(x)t)n

n!
− (i+ βs(x))

βs(x)

∞∑
n=0

(βs(x)t)n

n!

)

=
1

αs(x)− βs(x)

(
(i+ αs(x))

αs(x)
eα

s(x)t − (i+ βs(x))

βs(x)
eβ

s(x)t

)
=

eα
s(x)t − eβ

s(x)t + (−1)s+1i
(
αs(x)eβ

s(x)t − βs(x)eα
s(x)t

)
αs(x)− βs(x)

.

□

Corollary 2.9. Exponential generating function of the Gauss Fibonacci
polynomials GFn(x) is

∞∑
n=0

GFn(x)
tn

n!
=

eα(x)t − eβ(x)t + i
(
α(x)eβ(x)t − β(x)eα(x)t

)
α(x)− β(x)

.

Proof. This follows from substituting s = 1 in the Equation (2.5). □

Theorem 2.10. For n ≥ 0, the following equality holds:

(2.6)
n∑

k=0

GF
(s)
k (x) =

1 + (−1)sF
(s)
n (x)− F

(s)
n+1(x) + (−1)s+1iγn (x)

1− Ls(x) + (−1)s
,

where γn (x) = 1 + (−1)sF
(s)
n (x)− F

(s)
2 (x)− F

(s)
n−1(x).
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Proof. By virtue of (2.2), we get

n∑
i=0

(
(αs(x))k−1 (i+ αs(x))− (βs(x))k−1 (i+ βs(x))

αs(x)− βs(x)

)

=
1

αs(x)− βs(x)

×

(
(i+ αs(x))

αs(x)

n∑
k=0

(αs(x))k − (i+ βs(x))

βs(x)

n∑
k=0

(βs(x))k
)

=
1

αs(x)− βs(x)

×

(i+ αs(x))
(
1− (αs(x))n+1

)
αs(x) (1− αs(x))

−
(i+ βs(x))

(
1− (βs(x))n+1

)
βs(x) (1− βs(x))

 .

After some calculations, we arrive at the desired result (2.6). □

Corollary 2.11. For n ≥ 0, the following equality holds:

(2.7)

n∑
k=0

GFk(x) =
GFn+1(x) +GFn(x)− 1 + ix− i

x
.

Proof. This follows from substituting s = 1 in the Equation (2.6). □

If we take x = 1 in Equation (2.7), we obtain following result, which is
well known for Gaussian Fibonacci numbers.

n∑
k=0

GFk = GFn+2 − 1.

3. A matrix representation for higher order gauss fibonacci
polynomials

In this part of the our paper, we derive the matrix representation of the
higher order Gauss Fibonacci polynomials. We first introduce two matrices
Q(s)(x) and P (s)(x) as follows:

Q(s)(x) =

(
Ls(x) (−1)s+1

1 0

)
,

and

P (s)(x) =

(
Ls(x) + i 1

1 (−1)s−1 i

)
,

where Ls(x) are the Lucas polynomials. Now we give the following theorem
regarding our result.

Theorem 3.1. For n ≥ 0, the following equality holds:

(3.1)
(
Q(s)(x)

)n
P (s)(x) =

(
GF

(s)
n+2(x) GF

(s)
n+1(x)

GF
(s)
n+1(x) GF

(s)
n (x)

)
.
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Proof. For the proof, we use induction method on n. The equality holds for
n = 0. Assume that our assertion holds for n = k. Namely,(

Q(s)(x)
)k

P (s)(x) =

(
GF

(s)
k+2(x) GF

(s)
k+1(x)

GF
(s)
k+1(x) GF

(s)
k (x)

)
.

Then for n = k + 1, we have(
Q(s)(x)

)k+1
P (s)(x) =

(
Ls(x) (−1)s+1

1 0

)k+1(
Ls(x) + i 1

1 (−1)s−1 i

)
=

(
Ls(x) (−1)s+1

1 0

)(
GF

(s)
k+2(x) GF

(s)
k+1(x)

GF
(s)
k+1(x) GF

(s)
k (x)

)

=

(
GF

(s)
k+3(x) GF

(s)
k+2(x)

GF
(s)
k+2(x) GF

(s)
k+1(x)

)
.

So the proof is completed. □

We give the Cassini identity for higher order Gauss Fibonacci polynomials
in the following theorem.

Theorem 3.2. For n ≥ 1, we have
(3.2)

GF
(s)
n+1(x)GF

(s)
n−1(x)−

(
GF (s)

n (x)
)2

= (−1)sn−s
(
(−1)s−1i (Ls(x) + i)− 1

)
.

Proof. If we take the determinant of both sides of Equation (3.1), we find
that∣∣∣∣∣ GF

(s)
n+1(x) GF

(s)
n (x)

GF
(s)
n (x) GF

(s)
n−1(x)

∣∣∣∣∣ = det
((

Q(s)(x)
))n−1

det
(
P (s)(x)

)
=

∣∣∣∣ Ls(x) (−1)s+1

1 0

∣∣∣∣n−1 ∣∣∣∣ Ls(x) + i 1

1 (−1)s−1 i

∣∣∣∣
= (−1)sn−s

(
(−1)s−1i (Ls(x) + i)− 1

)
.

□

Corollary 3.3. ([14, Proposition 1]) For n ≥ 1, we have

GFn+1(x)GFn−1(x)− (GFn(x))
2 = (−1)n (2− xi) .

Proof. This follows from substituting s = 1 in the Equation (3.2). □

4. conclusion

In our present investigation, we have introduced and studied higher or-
der Gauss Fibonacci polynomials which are defined by means of the higher
order Fibonacci polynomials. Then we have derived several fundamental
properties of these higher order Gauss Fibonacci polynomials. All results
obtained in the article can be varied according to the different integer values
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of s. For example, in the main results we have obtained, the special case of
s = 1 gives various results about Gaussian Fibonacci polynomials defined
and studied by Özkan and Taştan [14]. With this method, various Fibonacci
type algebraic structures can be generalized.
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