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CANONICAL FUNCTIONS:

A PROOF VIA TOPOLOGICAL DYNAMICS

MANUEL BODIRSKY AND MICHAEL PINSKER

Abstract. Canonical functions are a powerful concept with numer-
ous applications in the study of groups, monoids, and clones on count-
able structures with Ramsey-type properties. In this short note, we
present a proof of the existence of canonical functions in certain sets
using topological dynamics, providing a shorter alternative to the origi-
nal combinatorial argument. We moreover present equivalent algebraic
characterisations of canonicity.

1. Introduction

When f : (Q;<) → (Q;<) is any function from the order of the rational
numbers to itself, then there are arbitrarily large finite subsets of Q on which
f “behaves regularly”; that is, it is either strictly increasing, strictly decreas-
ing, or constant. A direct (although arguably unnecessarily elaborate) way
to see this is by applying Ramsey’s theorem: two-element subsets of Q are
coloured with three colours according to the local behaviour of f on them
(this yields, by the infinite version of Ramsey’s theorem, even an infinite
set on which f behaves regularly, but this is beside the point for us). In
particular, it follows that the closure of the set {β f α | α, β ∈ Aut(Q;<)} in
QQ, equipped with the pointwise convergence topology, contains a function
which behaves regularly everywhere. This function of regular behaviour is
called canonical.

More generally, a function f : ∆ → Λ between two structures ∆,Λ is
called canonical if it behaves regularly in an analogous way, that is, if it
sends tuples in ∆ of the same type (in the sense of model theory, as in [23])
to tuples the same type in Λ [14,15,20]. Similarly as in the example above,
canonical functions can be obtained from f , in the fashion stated above, if ∆
has sufficient Ramsey-theoretic properties (for example, if it is a countable
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Ramsey structure in the sense of [24]) and if Λ is sufficiently small (for
example countable and ω-categorical) [14,15,20].

The concept of canonical functions has turned out useful in numerous
applications: for classifying first-order reducts they are used in [1,2,9,15,18,
29,31,32], for computing the model companion and the model-complete core
of such reducts [30], for complexity classification for constraint satisfaction
problems (CSPs) in [10, 12, 16, 21, 28], for decidability of meta-problems in
the context of the CSPs in [20], for lifting algorithmic results from finite-
domain CSPs to CSPs over infinite domains in [13], for lifting algorithmic
results from finite-domain CSPs to homomorphism problems from definable
infinite structures to finite structures [26], and for decidability questions in
computations with atoms in [27]. Most of these applications are covered by
a survey article published shortly after their invention [14].

As indicated above, the technique is available for a function f : ∆ → Λ,
in particular, whenever ∆ is a countable Ramsey structure and Λ is count-
able and ω-categorical, and the existence of canonical functions in the set
{β f α | α ∈ Aut(∆), β ∈ Aut(Λ)} ⊆ Λ∆ was originally shown under these
conditions by a combinatorial argument [14,15,20]. By the Kechris–Pestov–
Todorčević correspondence [24], a countable structure ∆ is Ramsey (with
respect to colourings of embeddings) if and only if its automorphism group
Aut(∆) is extremely amenable, meaning that every continuous action of it
on a compact Hausdorff space has a fixed point. Moreover, by the theorem
of Ryll-Nardzewski, Engeler, and Svenonius, two tuples in a countable ω-
categorical structure have the same type if and only if they lie in the same
orbit with respect to the componentwise action of its automorphism group
on tuples, and a countable structure is ω-categorical if and only if its auto-
morphism group is oligomorphic. Therefore both the definition of canonicity
as well as the above-mentioned conditions implying their existence in sets
of the form {β f α | α ∈ Aut(∆), β ∈ Aut(Λ)} can be formulated in the lan-
guage of permutation groups.

It is therefore natural to ask for a perhaps more elegant proof of the ex-
istence of canonical functions via topological dynamics, reminiscent of the
numerous proofs of combinatorial statements obtained in a similar fashion
(cf. the survey [8] for Ergodic Ramsey theory; [25] mentions some applica-
tions of extreme amenability). In this short note, we present such a proof.
The proof was discovered by the authors at the Workshop on Algebra and
CSPs at the Fields Institute in Toronto in 2011, where it was also pre-
sented (by the second author), but has so far not appeared in print. We
use the occasion of this note to present various equivalent characterisations
of canonicity of functions that facilitate their use and better explain their
significance.
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2. Canonicity

We use the notation G y X to denote a permutation group G acting
on a set X. We make the convention that if f : X → Y is a function and
t = (t1, . . . , tk) ∈ Xk, where k ≥ 1, then f(t) := (f(t1), . . . , f(tk)) ∈ Y k

denotes the k-tuple obtained by applying f to t componentwise.
The following is an algebraic formulation of Definition 6 in [20].

Definition 1. Let G y X and H y Y be permutation groups. A function
f : X → Y is called canonical with respect to G and H if for every finite
tuple t ∈ X<ω and every α ∈ G there exists β ∈ H such that f α(t) = β f(t).

Hence, functions that are canonical with respect to G and H induce for
each integer k ≥ 1 a function from the orbits of the componentwise action
of G of Xk to the orbits of the componentwise action of H on Y k.

In order to formulate properties equivalent to canonicity we require some
topological notions. We consider the set Y X of all functions from X to Y as a
topological space equipped with the topology of pointwise convergence, i.e.,
the product topology where Y is taken to be discrete. When S ⊆ Y X , then
we write S for the closure of S in this space. In particular, when G y X is a
permutation group, then G is the closure of G in XX . Note that G might no
longer be a group, but it is still a monoid with respect to the composition of
functions. For example, in the case of the full symmetric group G = Sym(X)
consisting of all permutations of X, G is the transformation monoid of all
injections in XX .

A permutation group G y X is called oligomorphic if for each k ≥ 1 the
componentwise action of G on Xk has finitely many orbits. For oligomorphic
permutation groups we have the following equivalent characterisations of
canonicity.

Proposition 1. Let G y X and H y Y be permutation groups, where
X,Y are countable and H y Y is oligomorphic. Then for any function
f : X → Y the following are equivalent.

(1) f is canonical with respect to G and H;

(2) for all α ∈ G we have fα ∈ Hf := {βf | β ∈ H};
(3) for all α ∈ G there are e1, e2 ∈ H such that e1fα = e2f .

A stronger condition would be to require that for all α ∈ G there is an
e ∈ H such that fα = ef . To illustrate that this is strictly stronger, already
when G = H, we give an explicit example.

Example 2 (Thanks to Trung Van Pham). Let G := H := Aut(Q;<).
Note that (Q;<) and (Q \ {0};<) are isomorphic, and let f be such an
isomorphism. Then f , viewed as a function from Q→ Q, is clearly canonical
with respect to G and H. But f does not satisfy the stronger condition
above. To see this, choose a ∈ Q such that f(a) < 0, and pick α ∈ G such
that fα(a) > 0. Since the image of fα equals the image of f , any e ∈ H
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such that fα = ef must fix 0. Since e must also preserve <, it cannot map
f(a) < 0 to fα(a) > 0. Hence, there is no e ∈ H such that fα = ef . �

In Proposition 1, the implications from (1) to (2) and from (3) to (1)
follow straightforwardly from the definitions. For the implication from (2)
to (3) we need a lift lemma, which is in essence from [19]. This lemma has
been applied frequently lately [6,7,10,13], in various slightly different forms.
We need yet another formulation here; since the lemma is a consequence
of a compactness argument which we need in any case for the canonisation
theorem in Section 3, we present its proof.

Let H y Y be a permutation group, and let f, g ∈ Y X , for some X. We
say that f = g holds locally modulo H if for all finite F ⊆ X there exist
β1, β2 ∈ H such that β1 f�F = β2 g�F . We say that f = g holds globally
modulo H (modulo H) if there exist e1, e2 ∈ H (e1, e2 ∈ H, respectively)
such that e1 f = e2 g.

Of course, if f = g holds globally modulo H, then it holds locally modulo
H. On the other hand, if f = g holds locally modulo H, then it need not hold
globally modulo H: an example are the functions f and fα in Example 2,
for the reasons explained above. However, there exist e1, e2 ∈ H such that
e1 f = e2 f α, so f = fα holds globally modulo H. This is true in general,
as we see in the following lift lemma.

Lemma 3. Let H y Y be an oligomorphic permutation group acting on a
countable set Y , let I be a countable index set, and let Xi be a countable set
for every i ∈ I. Let fi, gi be functions in Y Xi such that fi = gi holds locally
modulo H for all i ∈ I. Then fi = gi holds globally modulo H for all i ∈ I,
and in fact there exist e, ei ∈ H such that e fi = ei gi for all i ∈ I.

To prove Lemma 3, it is convenient to work with a certain compact Haus-
dorff space that we also use for the canonisation theorem in Section 3. Let
H y Y be a permutation group, and X be a set. On Y X , define an equiv-
alence relation ∼ by setting f ∼ g if f ∈ H g, i.e., if f = g holds locally
modulo H; here, transitivity and symmetry follow from the fact that H is
a group. The following has essentially been shown in [17] (though for the
finer equivalence relation of global equality modulo H), but we give an ar-
gument for the convenience of the reader since it is used so often (cf. for
example [3–5,11,19]).

Lemma 4. If H y Y is oligomorphic, and X is countable, then the space
Y X/∼ is a compact Hausdorff space.

Proof. We represent the space in such a way that this becomes obvious.
Extend the definition of the equivalence relation ∼ to all spaces Y F , where
F ⊆ X. When F is finite, then Y F /∼ is finite and discrete, because H is
oligomorphic. Hence, the space ∏

F∈[X]<ω

Y F /∼
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is compact. The mapping ξ from Y X/∼ into this space defined by

[g]∼ 7→
(
[g�F ]∼ | F ∈ [X]<ω

)
is well-defined. In fact, ξ is a homeomorphism onto a closed subspace thereof.
To see this, note that injectivity follows from the definition of the equivalence
relation ∼, and likewise continuity, since the topology on Y X/∼ is precisely
given by the behaviour of functions on finite sets, modulo the equivalence
∼. The fact that the image of ξ is closed follows from the fact that X is
countable: when we have, in the range of ξ, tuples ([gi�F ]∼ | F ∈ [X]<ω

)
for

each i ∈ ω, and the sequence of these tuples converges in
∏

F∈[X]<ω Y F /∼,

then a function g ∈ Y X such that ([g�F ]∼ | F ∈ [X]<ω
)

is the limit of
the sequence can be constructed by a standard argument using Kőnig’s tree
lemma. The openness of the mapping ξ is then also obvious. It follows that
Y X/∼ is indeed a compact Hausdorff space. �

We remark that when H is the automorphism group of an ω-categorical
first-order structure on Y , then the space Y X/∼ in Lemma 4 is nothing but
the type space for the theory of that structure with variables indexed by
the set X. Let us also mention that the condition of X being countable is
necessary; cf. Examples 4.5 and 4.7 in [33].

Proof of Lemma 3. First assume that I is finite, and write I = {0, . . . , n−1}.
For each 0 ≤ i ≤ n− 1, we have fi ∈ H gi; since Xi is countable, there is a

sequence (βji gi)j∈ω converging to fi. Now consider the set

S := {(id, βj0, . . . , β
j
n−1) | j ∈ ω} ,

viewed as a subset of the space H
n+1

, with id denoting the identity func-

tion in H. The space H
n+1

can be viewed naturally as a closed subspace

of (Y n+1)
(Y n+1)

, and the equivalence relation ∼ induced on the latter by

the componentwise, oligomorphic action of H on Y n+1 restricts to H
n+1

since this space is invariant under that action. Factoring H
n+1

by ∼, we
obtain a compact space by Lemma 4. The equivalence classes of the el-

ements of S have an accumulation point in (H
n+1

)∼, which we write as
[(e, e0, . . . , en−1)]∼, for some e, e0, . . . , en−1 ∈ H. Hence, there exist δj ∈
H, for j ∈ ω, such that (δj , δjβj0, . . . , δ

jβjn−1) converges to (e, e0, . . . , en−1).

Since for every 0 ≤ i ≤ n− 1 we have that (βji gi)j∈ω converges to fi, we

obtain that (δjβji gi)j∈ω converges to efi; on the other hand, it converges to
eigi, proving efi = eigi.

Now assume that I is countably infinite, and assume I = ω. By the above,
we obtain for every n ≥ 1 elements en, en0 , . . . , e

n
n−1 ∈ H such that enfi =

eni gi for all 0 ≤ i ≤ n− 1. We can embed the sequences (en, en0 , . . . , e
n
n−1) ∈

H
n+1

into the product space ∏
n≥1

H
n+1



CANONICAL FUNCTIONS: A PROOF VIA TOPOLOGICAL DYNAMICS 41

by first expanding them to a sequence in Hω by adding, an infinite number
of times, the identity function id ∈ H, and then via the identification of Hω

with a closed subspace of above product space, as in Lemma 4. Factoring

every component H
n+1

of the latter by the equivalence relation ∼ induced
by the action of H on the left, we obtain a compact space. There the
equivalence classes of the sequences (en, en0 , . . . , e

n
n−1) have an accumulation

point, namely the equivalence class induced by a sequence (e, e0, . . .) ∈ Hω.
Similarly as in the case where I was finite, we conclude efi = eigi for all
i ∈ ω. �

The implication from (2) to (3) in Proposition 1 now is a direct conse-
quence of Lemma 3.

3. Canonisation

The following is the canonisation theorem, first proved combinatorially
in [20] in a slightly more specialized context.

Theorem 5. Let G y X, H y Y be permutation groups, where X is
countable, G is extremely amenable, and H is oligomorphic. Let f : X → Y .
Then

H f G := {β f α | α ∈ G, β ∈ H}

contains a canonical function with respect to G and H.

Proof. The space H f G/∼ is a closed subspace of the compact Hausdorff
space Y X/∼ from Lemma 4, and hence is a compact Hausdorff space as well.
We define a continuous action of G on this space by

(α, [g]∼) 7→ [g α−1]∼ .

Clearly, this assignment is a function, it is a group action, and it is con-
tinuous. Since G is extremely amenable, the action has a fixed point [g]∼.
Any member g of this fixed point is canonical: whenever α ∈ G, then
[g α]∼ = [g]∼, which is the definition of canonicity. �

In applications of Theorem 5 (e.g., in [1, 2, 9, 10, 12–16, 18, 20, 21, 27–29,
31, 32]), one usually needs the following special case of the above situation.
It states, roughly, that whenever we have a finite arity function f on a
countable set, and an oligomorphic extremely amenable permutation group
G on the same set, then we can obtain from f and G, using composition and
topological closure, a canonical function whilst retaining finite information
about f .

In the following statement, for m ≥ 1 we write Gm for the natural action
of Gm onXm given by ((α1, . . . , αm), (x1, . . . , xm)) 7→ (α1(x1), . . . , αm(xm)).
Moreover, we denote the pointwise stabilizer of c1, . . . , cn ∈ Xm in Gm by
(Gm, c1, . . . , cn).
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Corollary 6. Let G y X be an oligomorphic extremely amenable permu-
tation group acting on a countable set X. Let f : Xm → X for some m ≥ 1,
and let c1, . . . , cn ∈ Xm for some n ≥ 1. Then there exists

g ∈ G f Gm

such that

• g agrees with f on {c1, . . . , cn}, and
• g is canonical with respect to the groups (Gm, c1, . . . , cn) and G.

Proof. The group Gm is obviously extremely amenable. Moreover, it is
known that so is any stabilizer of it (in fact, every open subgroup; cf. [20]).
The statement therefore follows from Theorem 5. �

4. An Open Problem

Is there a converse of Theorem 5 in the sense that extreme amenability of
G is equivalent to some form of the statement of the canonisation theorem?
More precisely, we ask the following question.

Question 7. Let G y X be a closed permutation group on a countable
domain X. Is it true that G is extremely amenable if and only if it has the
canonisation property of Theorem 5, i.e., for every oligomorphic permuta-
tion group H y Y and every f : X → Y the set H f G contains a function
that is canonical with respect to G and H?

We remark that the canonisation property above implies, for example,
that G preserves a linear order, as is the case when G is extremely amenable.
For when H y X is any oligomorphic extremely amenable permutation
group, and g ∈ H id G is canonical, then it is easy to see that the preimage
under g of any linear order preserved by H must be preserved by G.

After publication of a draft of the present article, Trung Van Pham pro-
vided a positive answer to the above question for the case that G has an
extremely amenable oligomorphic subgroup H. This is an important case,
since the first example of an oligomorphic group G not satisfying this con-
dition was discovered only recently [22]. Pham’s argument is combinatorial,
using the Ramsey property; the following proof in the language of groups is
the result of discussions with Antoine Mottet and Jakub Opršal.

Assuming that G is not extremely amenable, we show that H id G = G
does not contain any canonical function with respect to G and H. To this
end, let S be a compact Hausdorff space such that G acts continuously on S
without a fixed point. Since H is extremely amenable, the restriction of this
action G y S to H does have a fixed point s ∈ S. By restricting G y S
to the closure of the orbit of s in S, we may assume that the orbit of s is
dense in S.

As in the proof of Theorem 5, let G now act on G/∼ by (α, [g]∼) 7→
[g α−1]∼. Then the action G y S is a factor of the action G y G/∼ via the
mapping φ : G/∼ → S which sends every [g]∼ to the limit of (α−1

n (s))n∈ω,
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for any sequence (αn)n∈ω converging to g: it is well-defined since H fixes
s, and if (βn)n∈ω is another such sequence, then (β−1

n αn)n∈ω converges to
the identity, which fixes s, and so (α−1

n (s))n∈ω converges to the limit of
(β−1

n (s))n∈ω by continuity. Moreover, by definition φ is compatible with the
two actions, i.e., φ([g α−1]∼) = α(φ([g]∼) for all g ∈ G and all α ∈ G.

Since G y S does not have a fixed point, and since it is a factor of
G y G/∼, the latter cannot have a fixed point either. As in the proof
of Theorem 5, fixed points of G y G/∼ correspond precisely to canonical
functions with respect to G and H in G, and we conclude that G does not
contain any canonical function.
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32. A. Pongrácz, Reducts of the Henson graphs with a constant, Annals of Pure and
Applied Logic 168 (2017), no. 7, 1472–1489.



CANONICAL FUNCTIONS: A PROOF VIA TOPOLOGICAL DYNAMICS 45

33. F. M. Schneider, A uniform Birkhoff theorem, Algebra Universalis 78 (2017), no. 3,
337–354.

Institut für Algebra, TU Dresden, 01062 Dresden, Germany
E-mail address: Manuel.Bodirsky@tu-dresden.de

URL: http://www.math.tu-dresden.de/~bodirsky/

Institute of Discrete Mathematics and Geometry, Technische Universität
Wien, Austria, and Department of Algebra, Charles University in Prague,

Czech Republic
E-mail address: marula@gmx.at

URL: http://dmg.tuwien.ac.at/pinsker/


	1. Introduction
	2. Canonicity
	3. Canonisation
	4. An Open Problem
	References

