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BAILEY AND DAUM’S q-KUMMER

THEOREM AND EXTENSIONS

NADIA N. LI AND WENCHANG CHU

Abstract. By means of the linearization method, we establish four
analytical formulae for the q-Kummer sum extended by two integer pa-
rameters. Ten closed formulae are presented as examples.

1. Introduction and Motivation

For the classical hypergeometric series, Kummer’s summation theorem
(cf. Bailey [3, §2.3]) is well–known

2F1

[
a, c

1 + a− c

∣∣∣ − 1

]
=

Γ(1 + a
2 )Γ(1 + a− c)

Γ(1 + a)Γ(1 + a
2 − c)

for <(c) < 1.

When the well–poised condition is perturbed by an integer, Apagodu and
Zeilberger [2], and Chu [7] found analytical formulae for the corresponding
terminating 2F1-series. The q-analogue of Kummer’s formula was estab-
lished independently by Bailey [4] and Daum [8] (see also Gasper–Rahman [9,
II.9]):

(1.1) 2φ1

[
a, c
qa/c

∣∣∣ q;−q/c] =
(qa; q2)∞

(qa/c2; q2)∞

[
qa/c2,−q
qa/c,−q/c

∣∣∣ q]
∞
,

where the notation related to the q-series will be given on the next page.
By applying the Heine transformation (Gasper–Rahman [9, III.2])

(1.2) 2φ1

[
a, b
c

∣∣∣ q; z] =

[
c/b, bz
c, z

∣∣∣ q]
∞

2φ1

[
abz/c, b

bz

∣∣∣ q; c/b]
and then the q-binomial series (Gasper–Rahman [9, II.3])

1φ0

[
a
−

∣∣∣ q; z] =
(az; q)∞
(z; q)∞

.
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Andrews [1] gave an elementary proof of (1.1), that can be reproduced as
follows:

2φ1

[
a, c
qa/c

∣∣∣ q;−q/c] =

[
qa/c2,−q
qa/c,−q/c

∣∣∣ q]
∞
× 2φ1

[
c, −c
−q

∣∣∣ q; qa/c2]
=

[
qa/c2,−q
qa/c,−q/c

∣∣∣ q]
∞
× 1φ0

[
c2

−

∣∣∣ q2; qa/c2]
=

[
qa/c2,−q
qa/c,−q/c

∣∣∣ q]
∞
× (qa; q2)∞

(qa/c2; q2)∞
.

By making use of the q-integral representation, Kim et al. [10] derived two
contiguous results of (1.1). The purpose of this short paper is to examine,
for a given pair of integers λ and ρ, the following general series

(1.3) Ωρ
λ := Ωρ

λ(a, c) = 2φ1

[
a, c
q1+ρa/c

∣∣∣ q;−q1+λ/c] ,
whose very special case λ = ρ = 0 becomes the q-Kummer series (1.1).
By means of the linearization method employed in [5, 6, 7, 11], we shall
prove that (see Theorem 4.1) the Ωρ

λ(a, c)-series for λ, ρ ∈ Z is always
explicitly evaluable in the Ω0

0(a
′, c′)-series with the number of terms at most

(1 + |ρ|)×
(
1 + |λ|+ |ρ|

)
.

Throughout the paper, we shall utilize the following notation. Let Z and
N be the sets of integers and natural numbers with N0 := N ∪ {0}. For two
indeterminates x and q, define the shifted factorials by (x; q)0 = 〈x; q〉0 = 1
and

(x; q)n =(1− x)(1− qx) · · · (1− qn−1x)

〈x; q〉n =(1− x)(1− x/q) · · · (1− q1−nx)

}
for n ∈ N.

The rising factorial of negative order can be expressed as

(x; q)−n =
1

(q−nx; q)n
= q(

n
2)

(−q/x)n

(q/x; q)n
where n ∈ N.

The product and fraction of shifted factorials are abbreviated respectively
to

[ α, β, · · · , γ; q ]n = (α; q)n (β; q)n · · · (γ; q)n ,[
α, β, · · · , γ
A, B, · · · , C

∣∣∣ q]
n

=
(α; q)n (β; q)n · · · (γ; q)n
(A; q)n (B; q)n · · · (C; q)n

.

Following Bailey [3] and Gasper–Rahman [9], the basic hypergeometric series
(shortly as q-series) is defined by

1+pφp

[
a0, a1, · · · , ap

b1, · · · , bp

∣∣∣ q; z] =
∞∑
n=0

[
a0, a1, · · · , ap
q, b1, · · · , bp

∣∣∣ q]
n

zn.

This series terminates if one of its numerator parameters is of the form q−m

with m ∈ N0. Otherwise, the series is said to be nonterminating. In the
latter case, the base q will be restricted, for convenience, to |q| < 1.
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We shall organize the paper in the following manner. In the next section,
we prove two theorems that transform the Ωρ

λ-series into the Ω0
λ-series. Then

the Ω0
λ-series will be explicitly evaluated in Section 3. Finally, the paper will

end up with ten examples as applications.

2. Reduction Formulae from Ωρ
λ to Ω0

λ

By applying the series rearrangement and the q-binomial theorem

(x; q)m =

m∑
k=0

q(
k
2)
[
m

k

]
(−x)k

we shall derive, in this section, two transformation formulae that express
the Ωρ

λ-series in terms of the Ω0
λ-series.

2.1. ρ ≥ 0. By inserting the binomial relation in the Ωρ
λ-series

(qn−ρc; q)ρ =

ρ∑
k=0

(−c)ρ−k
[
ρ

k

]
q(
ρ−k
2 )+(n−ρ)(ρ−k)

we can reformulate the following double series

Ωρ
λ(a, c) =

∞∑
n=0

(a; q)n(c; q)n
(q; q)n(q1+ρa/c; q)n

(q1+λ
−c

)n
×

ρ∑
k=0

(−c)ρ−k

(qn−ρc; q)ρ

[
ρ

k

]
q(
ρ−k
2 )+(n−ρ)(ρ−k)

=

ρ∑
k=0

(−c)ρ−k

(q−ρc; q)ρ

[
ρ

k

]
q(
ρ−k
2 )−ρ(ρ−k)

×
∞∑
n=0

(a; q)n(q−ρc; q)n
(q; q)n(q1+ρa/c; q)n

(q1+λ+ρ−k
−c

)n
.

Writing the last sum as Ω0
λ−k(a, q

−ρc), we derive the following reduction
formula.

Theorem 2.1 (λ, ρ ∈ Z with ρ ≥ 0).

Ωρ
λ(a, c) =

ρ∑
k=0

q(
k
2)
[
ρ

k

]
(−q/c)k

(q/c; q)ρ
Ω0
λ−k(a, q

−ρc).

2.2. ρ ≤ 0. Instead, by putting another binomial relation inside the Ωρ
λ-

series

(q1+n+ρa/c; q)−ρ =

−ρ∑
k=0

(−a
c

)k[−ρ
k

]
q(
k+1
2 )+kρ+kn
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we can analogously manipulate the following double series

Ωρ
λ(a, c) =

∞∑
n=0

(a; q)n(c; q)n
(q; q)n(q1+ρa/c; q)n

(q1+λ
−c

)n
×
−ρ∑
k=0

(−a
c

)k[−ρ
k

]
q(
k+1
2 )+kρ+kn

(q1+n+ρa/c; q)−ρ

=

−ρ∑
k=0

(−a
c

)k[−ρ
k

]
q(
k+1
2 )+kρ

(q1+ρa/c; q)−ρ

∞∑
n=0

(a; q)n(c; q)n
(q; q)n(qa/c; q)n

(q1+λ+k
−c

)n
.

Writing the last sum as Ω0
λ+k(a, c), we derive another reduction formula.

Theorem 2.2 (λ, ρ ∈ Z with ρ ≤ 0).

Ωρ
λ(a, c) =

−ρ∑
k=0

q(
k
2)
[
−ρ
k

]
(−q1+ρa/c)k

(q1+ρa/c; q)−ρ
Ω0
λ+k(a, c).

3. Reduction Formulae from Ω0
λ to Ω0

0

To remove the λ-parameter, we start from the following linearization
lemma, which is a reformulation of the q-Saalschütz summation formula
(cf. [9, II.12])

(3.1) 3φ2

[
q−m, a, b
c, q1−mab/c

∣∣∣ q; q] =

[
c/a, c/b
c, c/ab

∣∣∣ q]
m

.

Lemma 3.1 (Linear representation). Let x be a variable and m a natu-
ral number. Then for three indeterminates {u, v, w}, the following linear
representation formula holds

(3.2) (wx; q)m =

m∑
k=0

(ux; q)m−k〈vx; q〉k Ekm(u, v, w),

where the connection coefficients {Ekm(u, v, w)} are independent of x and
given by

(3.3) Ekm(u, v, w) = q(
k
2)
[
m

k

]
(w/u; q)k(w/v; q)m
(w/v; q)k(u/v; q)m

(
− u

v

)k
.

Proof. Recall the following three relations[
m

k

]
=(−1)k

(q−m; q)k
(q; q)k

qmk−(k2),

(ux; q)m−k =
(−q
ux

)k (ux; q)m
(q1−m/ux; q)k

q(
k
2)−mk,

〈vx; q〉k =(−vx)k(1/vx; q)kq
−(k2).
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Substituting (3.3) into (3.2), we confirm the lemma by simplifying the finite
sum

m∑
k=0

(ux; q)m−k〈vx; q〉k
[
m

k

]
q(
k
2)

(w/u; q)k(w/v; q)m
(w/v; q)k(u/v; q)m

(
− u

v

)k
=

(ux; q)m(w/v; q)m
(u/v; q)m

m∑
k=0

qk
[
q−m, 1/vx,w/u,
q, q1−m/ux,w/v

∣∣∣ q; q]
k

= (wx; q)m,

where the last sum has been evaluated by means of (3.1). �
In addition, we have, according to (1.2), the expression

(3.4) Ω0
λ(a, c) =

[
q/c,−q1+λa/c
qa/c,−q1+λ/c

∣∣∣ q]
∞

2φ1

[
a, −qλc
−q1+λa/c

∣∣∣ q; q/c] .
Therefore, in order to evaluate Ω0

λ(a, c), it suffices to find explicit formulae
for the rightmost nonterminating 2φ1-series.

3.1. λ ≥ 0. Specifying in Lemma 3.1 by

m→λ
x →qn

}
and

{u→ a

v → − qλa/c
w → − c

we get the equation

(−qnc; q)λ =
λ∑
k=0

(qna; q)k〈−qn+λa/c; q〉λ−kEλ−kλ (a,−qλa/c,−c).

By inserting this relation in the 2φ1-series displayed in (3.4), we can refor-
mulate the double sum

2φ1

[
a, −qλc
−q1+λa/c

∣∣∣ q; q/c] =
∞∑
n=0

(q
c

)n [ a, −qλc
q,−q1+λa/c

∣∣∣ q]
n

×
λ∑
k=0

Eλ−kλ (a,−qλa/c,−c)
(−qnc; q)λ

(qna; q)k〈−qn+λa/c; q〉λ−k.

Interchanging the summation order and then applying the equalities

(−qλc; q)n
(−qnc; q)λ

=
(−c; q)n
(−c; q)λ

,

(a; q)n(qna; q)k = (a; q)k(q
ka; q)n,

〈−qn+λa/c; q〉λ−k
(−q1+λa/c; q)n

=
(−qa/c; q)λ

(−qa/c; q)k(−q1+ka/c; q)n
;
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we can reformulate the double sum as

2φ1

[
a, −qλc
−q1+λa/c

∣∣∣ q; q/c] =

λ∑
k=0

(a; q)k(−qa/c; q)λ
(−qa/c; q)k(−c; q)λ

Eλ−kλ (a,−qλa/c,−c)

×
∞∑
n=0

[
qka, −c

q,−q1+ka/c

∣∣∣ q]
n

(q
c

)n
.

Writing the last series as Ω0
0(q

ka,−c), we get the following expression:

Ω0
λ(a, c) =

[
q/c, −qa/c
qa/c,−q1+λ/c

∣∣∣ q]
∞

×
λ∑
k=0

Eλ−kλ (a,−qλa/c,−c) (a; q)k Ω0
0(q

ka,−c)
(−qa/c; q)k(−c; q)λ

.

According to (3.3), the E-coefficient can explicitly be restated as

Eλ−kλ (a,−qλa/c,−c) = q(
λ−k
2 )
[
λ

k

]
(−c/a; q)λ−k(q

−λc2/a; q)λ
(q−λc2/a; q)λ−k(−q−λc; q)λ

(
q−λc

)λ−k
= q(

λ−k
2 )
[
λ

k

]
〈q−1c2/a; q〉k(−c/a; q)λ
〈−qλ−1c/a; q〉k(−q−λc; q)λ

(
q−λc

)λ−k
= qk−(λ+1

2 ) (q−λ; q)k(qa/c
2; q)k(−c/a; q)λ

(q; q)k)(−q1−λa/c; q)k(−q−λc; q)λ
cλ

= qk+(λ2)
(q−λ; q)k(qa/c

2; q)k(−q1−λa/c; q)λ
(q; q)k)(−q1−λa/c; q)k(−q/c; q)λ

( c
a

)λ
.

This enables us to make further simplifications

Ω0
λ(a, c) =

[
q/c, −qa/c
qa/c,−q1+λ/c

∣∣∣ q]
∞

λ∑
k=0

(a; q)k Ω0
0(q

ka,−c)
(−qa/c; q)k(−c; q)λ

× qk+(λ2)
(q−λ; q)k(qa/c

2; q)k(−q1−λa/c; q)λ
(q; q)k)(−q1−λa/c; q)k(−q/c; q)λ

( c
a

)λ
=

[
q/c, −qa/c
qa/c,−q1+λ/c

∣∣∣ q]
∞

(−q1−λa/c; q)λ
(−q1−λ/c; q)2λ

×
λ∑
k=0

qk

aλ
(q−λ; q)k(a; q)k(qa/c

2; q)k Ω0
0(q

ka,−c)
(q; q)k)(−qa/c; q)k(−q1−λa/c; q)k

.

The final expression is highlighted as the following theorem.

Theorem 3.2 (λ ∈ Z with λ ≥ 0).

Ω0
λ(a, c) =

[
q/c, −q1−λa/c
qa/c,−q1−λ/c

∣∣∣ q]
∞

×
λ∑
k=0

qk

aλ

[
q−λ, a, qa/c2

q,−qa/c,−q1−λa/c

∣∣∣ q]
k

Ω0
0(q

ka,−c).
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The formula in this theorem is explicit because the Ω0
0(q

ka,−c) series can
be evaluated by (1.1) as

Ω0
0(q

ka,−c) = 2φ1

[
qka, −c
−q1+ka/c

∣∣∣ q; q/c]
=

(q1+ka; q2)∞
(q1+ka/c2; q2)∞

[
q1+ka/c2,−q
−q1+ka/c, q/c

∣∣∣ q]
∞
.

3.2. λ ≤ 0. Alternatively, specifying in Lemma 3.1 by

m→− λ
x →qn

}
and

{u→ − qλc
v → 1

w → − q1+λa/c

we have the following equation

(−q1+n+λa/c; q)−λ =

−λ∑
k=0

〈qn; q〉k(−qn+λc; q)−λ−kEk−λ(−qλc, 1,−q1+λa/c).

By putting this relation inside the 2φ1-series displayed in (3.4), we get the
double sum

2φ1

[
a, −qλc
−q1+λa/c

∣∣∣ q; q/c] =
∞∑
n=0

(q
c

)n [ a, −qλc
q,−q1+λa/c

∣∣∣ q]
n

×
−λ∑
k=0

Ek−λ(−qλc, 1,−q1+λa/c)
(−q1+n+λa/c; q)−λ

〈qn; q〉k(−qn+λc; q)−λ−k.

Exchanging the summation order first and then making use of the equalities

〈qn; q〉k
(q; q)n

=
1

(q; q)n−k
,

(−qλc; q)n(−qn+λc; q)−λ−k =
(−c; q)n−k
(−c; q)λ

,

1

(−q1+λa/c; q)n(−q1+n+λa/c; q)−λ
=

1

(−q1+λa/c; q)−λ(−qa/c; q)n
;
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we can manipulate the double sum expression below

2φ1

[
a, −qλc
−q1+λa/c

∣∣∣ q; q/c]
=
−λ∑
k=0

Ek−λ(−qλc, 1,−q1+λa/c)
(−c; q)λ(−q1+λa/c; q)−λ

∞∑
n=k

(a; q)n(−c; q)n−k
(−qa/c; q)n(q; q)n−k

(q
c

)n
=

−λ∑
k=0

(q
c

)k (a; q)k(−qa/c; q)λ
(−c; q)λ(−qa/c; q)k

Ek−λ(−qλc, 1,−q1+λa/c)

×
∞∑
n=0

[
qka, −c

q,−q1+ka/c

∣∣∣ q]
n

(q
c

)n
,

where the last line is justified by the replacement n→ n+k. Observing that
the last sum with respect to n is again Ω0

0(q
ka,−c), we get the expression

Ω0
λ(a, c) =

[
q/c, −qa/c
qa/c,−q1+λ/c

∣∣∣ q]
∞

−λ∑
k=0

(q
c

)k (a; q)k Ω0
0(q

ka,−c)
(−qa/c; q)k(−c; q)λ

×Ek−λ(−qλc, 1,−q1+λa/c).

Replacing the E-coefficient by (3.3), we can simplify further the above sum

−λ∑
k=0

(q
c

)k (a; q)k Ω0
0(q

ka,−c)
(−qa/c; q)k(−c; q)λ

Ek−λ(−qλc, 1,−q1+λa/c)

=

−λ∑
k=0

(a; q)k Ω0
0(q

ka,−c)
(−qa/c; q)k(−c; q)λ

[
−λ
k

]
(qa/c2; q)k(−q1+λa/c; q)−λ
(−q1+λa/c; q)k(−qλc; q)−λ

q(
k+1
2 )+kλ

=

−λ∑
k=0

Ω0
0(q

ka,−c)
(−qa/c; q)λ

[
−λ
k

]
(a; q)k(qa/c

2; q)k
(−qa/c; q)k(−q1+λa/c; q)k

q(
k+1
2 )+kλ

=

−λ∑
k=0

Ω0
0(q

ka,−c)
(−qa/c; q)λ

(qλ; q)k(a; q)k(qa/c
2; q)k

(q; q)k(−qa/c; q)k(−q1+λa/c; q)k
(−q)k.

Consequently, we establish another explicit formula.

Theorem 3.3 (λ ∈ Z with λ ≤ 0).

Ω0
λ(a, c) =

[
q/c, −q1+λa/c
qa/c,−q1+λ/c

∣∣∣ q]
∞

×
−λ∑
k=0

(−q)k
[

qλ, a, qa/c2

q,−qa/c,−q1+λa/c

∣∣∣ q]
k

Ω0
0(q

ka,−c).
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4. Conclusive Theorem and Examples

Summing up the results shown in the previous two sections, we can eval-
uate the Ωρ

λ-series, for any given pair of integers λ and ρ, by carrying out
the following procedure:

• Step A. If ρ 6= 0, we first transform the Ωρ
λ-series into the Ω0

λ′-series
by making use of Theorems 2.1 and 2.2 and then go to Step B.
• Step B. If ρ = 0, we evaluate the Ω0

λ-series by means of Theorems 3.2
and 3.3.

Therefore, we have confirmed the following conclusive theorem.

Theorem 4.1. For any given pair of integers λ and ρ, the Ωρ
λ-series can be

explicitly expressed as a linear combination of the Ω0
0-series with the number

of terms at most (1 + |ρ|)(1 + |λ|+ |ρ|).

The afore-described procedure is realized by appropriately devised Math-
ematica commands, that are executed to produce several closed formulae
of the Ωρ

λ-series for small integers λ and ρ. Ten remarkable examples are
recorded as follows.

Example 4.2 (λ = 1 and ρ = 0).

2φ1

[
a, c
qa/c

∣∣∣ q;−q2/c] =

[
qa/c2,−q
qa/c,−1/c

∣∣∣ q]
∞

×
{

(1 + a/c)(qa; q2)∞
a(qa/c2; q2)∞

− (a; q2)∞
a(q2a/c2; q2)∞

}
.

Example 4.3 (λ = −1 and ρ = 0).

2φ1

[
a, c
qa/c

∣∣∣ q;−1/c

]
=

[
qa/c2,−q
qa/c,−1/c

∣∣∣ q]
∞

×
{

(1 + a/c)(qa; q2)∞
(qa/c2; q2)∞

+
(a; q2)∞

(q2a/c2; q2)∞

}
.

Example 4.4 (λ = 0 and ρ = −1: Kim et al. [10, eq. (3.2)]).

2φ1

[
a, c
a/c

∣∣∣ q;−q/c] =

[
a/c2,−q
a/c,−1/c

∣∣∣ q]
∞

{
(qa; q2)∞

(qa/c2; q2)∞
+

(a; q2)∞
c(a/c2; q2)∞

}
.

Example 4.5 (λ = −1 and ρ = −1).

2φ1

[
a, c
a/c

∣∣∣ q;−1/c

]
=

[
a/c2,−q
a/c,−1/c

∣∣∣ q]
∞

{
(qa; q2)∞

(qa/c2; q2)∞
+

(a; q2)∞
(a/c2; q2)∞

}
.

Example 4.6 (λ = −1 and ρ = −2).

2φ1

[
a, c
a/cq

∣∣∣ q;−1/c

]
=

[
a/c2q,−q
a/cq,−1/c

∣∣∣ q]
∞

×
{

(1− a/cq)(qa; q2)∞
(a/c2q; q2)∞

+
(a; q2)∞

(a/c2; q2)∞

}
.
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Example 4.7 (λ = 0 and ρ = 1: Kim et al. [10, eq. (3.1)]).

2φ1

[
a, c
q2a/c

∣∣∣ q;−q/c] =
1

1− q/c

[
q2a/c2,−q
q2a/c,−q/c

∣∣∣ q]
∞

×
{

(qa; q2)∞
(q3a/c2; q2)∞

− q(a; q2)∞
c(q2a/c2; q2)∞

}
.

Example 4.8 (λ = 1 and ρ = 1).

2φ1

[
a, c
q2a/c

∣∣∣ q;−q2/c] =
a−1

1− q/c

[
q2a/c2,−q
q2a/c,−q/c

∣∣∣ q]
∞

×
{

(qa; q2)∞
(q3a/c2; q2)∞

− (a; q2)∞
(q2a/c2; q2)∞

}
.

Example 4.9 (λ = 1 and ρ = 2).

2φ1

[
a, c
q3a/c

∣∣∣ q;−q2/c] =
1

a(q/c; q)2

[
q3a/c2,−q
q3a/c,−q2/c

∣∣∣ q]
∞

×
{

(1− qa/c)(qa; q2)∞
(q3a/c2; q2)∞

− (a; q2)∞
(q4a/c2; q2)∞

}
.

Example 4.10 (λ = 1 and ρ = −1).

2φ1

[
a, c
a/c

∣∣∣ q;−q2/c] =

[
a/c2,−q
a/c,−1/cq

∣∣∣ q]
∞

×
{

(q − qc+ a/c+ qa/c)(a; q2)∞
qac(a/c2; q2)∞

− (q − qc− a− qa)(qa; q2)∞
qac(qa/c2; q2)∞

}
.

Example 4.11 (λ = −1 and ρ = 1).

2φ1

[
a, c
q2a/c

∣∣∣ q;−1/c

]
=

[
q2a/c2,−q
q2a/c,−1/c

∣∣∣ q]
∞

×
{

(q − a− c− qa)(qa; q2)∞
(q − c)(q3a/c2; q2)∞

+
(q − c+ qa/c+ q2a/c)(a; q2)∞

(q − c)(q2a/c2; q2)∞

}
.
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