Contributions to Discrete Mathematics

BAILEY AND DAUM'S q-KUMMER THEOREM AND EXTENSIONS

NADIA N. LI AND WENCHANG CHU

Abstract

By means of the linearization method, we establish four analytical formulae for the q-Kummer sum extended by two integer parameters. Ten closed formulae are presented as examples

1. Introduction and Motivation

For the classical hypergeometric series, Kummer's summation theorem (cf. Bailey [3, §2.3]) is well-known

$$
{ }_{2} F_{1}\left[\begin{array}{c|c}
a, c \\
1+a-c & -1
\end{array}\right]=\frac{\Gamma\left(1+\frac{a}{2}\right) \Gamma(1+a-c)}{\Gamma(1+a) \Gamma\left(1+\frac{a}{2}-c\right)} \quad \text { for } \quad \Re(c)<1 .
$$

When the well-poised condition is perturbed by an integer, Apagodu and Zeilberger [2], and Chu [7] found analytical formulae for the corresponding terminating ${ }_{2} F_{1}$-series. The q-analogue of Kummer's formula was established independently by Bailey [4] and Daum [8] (see also Gasper-Rahman [9, II.9]):

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{c|c}
a, c \tag{1.1}\\
q a / c
\end{array} \right\rvert\, q ;-q / c\right]=\frac{\left(q a ; q^{2}\right)_{\infty}}{\left(q a / c^{2} ; q^{2}\right)_{\infty}}\left[\left.\begin{array}{c}
q a / c^{2},-q \\
q a / c,-q / c
\end{array} \right\rvert\, q\right]_{\infty},
$$

where the notation related to the q-series will be given on the next page. By applying the Heine transformation (Gasper-Rahman [9, III.2])

$$
{ }_{2} \phi_{1}\left[\begin{array}{c|c}
a, b & q ; z \tag{1.2}\\
c
\end{array}\right]=\left[\left.\begin{array}{c}
c / b, b z \\
c, z
\end{array} \right\rvert\, q\right]_{\infty}{ }_{2} \phi_{1}\left[\begin{array}{c|c}
a b z / c, & b \\
b z & q ; c / b
\end{array}\right]
$$

and then the q-binomial series (Gasper-Rahman [9, II.3])

$$
{ }_{1} \phi_{0}\left[\left.\begin{array}{l}
a \\
-
\end{array} \right\rvert\, q ; z\right]=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}} .
$$

[^0]Andrews [1] gave an elementary proof of (1.1), that can be reproduced as follows:

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q a / c
\end{array} \right\rvert\, q ;-q / c\right] & =\left[\left.\begin{array}{c}
q a / c^{2},-q \\
q a / c,-q / c
\end{array} \right\rvert\, q\right]_{\infty} \times{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
c,-c \mid \\
-q
\end{array} \right\rvert\, q ; q a / c^{2}\right] \\
& =\left[\left.\begin{array}{c}
q a / c^{2},-q \\
q a / c,-q / c
\end{array} \right\rvert\, q\right]_{\infty} \times{ }_{1} \phi_{0}\left[\begin{array}{c}
c^{2} \\
-\mid q^{2} ; q a / c^{2}
\end{array}\right] \\
& =\left[\left.\begin{array}{c}
q a / c^{2},-q \\
q a / c,-q / c
\end{array} \right\rvert\, q\right]_{\infty} \times \frac{\left(q a ; q^{2}\right)_{\infty}}{\left(q a / c^{2} ; q^{2}\right)_{\infty}} .
\end{aligned}
$$

By making use of the q-integral representation, Kim et al. [10] derived two contiguous results of (1.1). The purpose of this short paper is to examine, for a given pair of integers λ and ρ, the following general series

$$
\Omega_{\lambda}^{\rho}:=\Omega_{\lambda}^{\rho}(a, c)={ }_{2} \phi_{1}\left[\left.\begin{array}{cc}
a, & c \tag{1.3}\\
q^{1+\rho} a / c
\end{array} \right\rvert\, q ;-q^{1+\lambda} / c\right],
$$

whose very special case $\lambda=\rho=0$ becomes the q-Kummer series (1.1). By means of the linearization method employed in $[5,6,7,11]$, we shall prove that (see Theorem 4.1) the $\Omega_{\lambda}^{\rho}(a, c)$-series for $\lambda, \rho \in \mathbb{Z}$ is always explicitly evaluable in the $\Omega_{0}^{0}\left(a^{\prime}, c^{\prime}\right)$-series with the number of terms at most $(1+|\rho|) \times(1+|\lambda|+|\rho|)$.

Throughout the paper, we shall utilize the following notation. Let \mathbb{Z} and \mathbb{N} be the sets of integers and natural numbers with $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. For two indeterminates x and q, define the shifted factorials by $(x ; q)_{0}=\langle x ; q\rangle_{0}=1$ and

$$
\left.\begin{array}{l}
(x ; q)_{n}=(1-x)(1-q x) \cdots\left(1-q^{n-1} x\right) \\
\langle x ; q\rangle_{n}=(1-x)(1-x / q) \cdots\left(1-q^{1-n} x\right)
\end{array}\right\} \quad \text { for } \quad n \in \mathbb{N} .
$$

The rising factorial of negative order can be expressed as

$$
(x ; q)_{-n}=\frac{1}{\left(q^{-n} x ; q\right)_{n}}=q^{\binom{n}{2}} \frac{(-q / x)^{n}}{(q / x ; q)_{n}} \quad \text { where } \quad n \in \mathbb{N} .
$$

The product and fraction of shifted factorials are abbreviated respectively to

$$
\begin{aligned}
{[\alpha, \beta, \cdots, \gamma ; q]_{n} } & =(\alpha ; q)_{n}(\beta ; q)_{n} \cdots(\gamma ; q)_{n} \\
{\left.\left[\begin{array}{l}
\alpha, \beta, \cdots, \gamma \\
A, B, \cdots, C
\end{array}\right) q\right]_{n} } & =\frac{(\alpha ; q)_{n}(\beta ; q)_{n} \cdots(\gamma ; q)_{n}}{(A ; q)_{n}(B ; q)_{n} \cdots(C ; q)_{n}} .
\end{aligned}
$$

Following Bailey [3] and Gasper-Rahman [9], the basic hypergeometric series (shortly as q-series) is defined by

$$
{ }_{1+p} \phi_{p}\left[\left.\begin{array}{c}
a_{0}, a_{1}, \cdots, a_{p} \\
b_{1}, \cdots, b_{p}
\end{array} \right\rvert\, q ; z\right]=\sum_{n=0}^{\infty}\left[\left.\begin{array}{c}
a_{0}, a_{1}, \cdots, a_{p} \\
q, b_{1}, \cdots, b_{p}
\end{array} \right\rvert\, q\right]_{n} z^{n} .
$$

This series terminates if one of its numerator parameters is of the form q^{-m} with $m \in \mathbb{N}_{0}$. Otherwise, the series is said to be nonterminating. In the latter case, the base q will be restricted, for convenience, to $|q|<1$.

We shall organize the paper in the following manner. In the next section, we prove two theorems that transform the Ω_{λ}^{ρ}-series into the Ω_{λ}^{0}-series. Then the Ω_{λ}^{0}-series will be explicitly evaluated in Section 3. Finally, the paper will end up with ten examples as applications.

2. Reduction Formulae from Ω_{λ}^{ρ} to Ω_{λ}^{0}

By applying the series rearrangement and the q-binomial theorem

$$
(x ; q)_{m}=\sum_{k=0}^{m} q^{\binom{k}{2}}\left[\begin{array}{c}
m \\
k
\end{array}\right](-x)^{k}
$$

we shall derive, in this section, two transformation formulae that express the Ω_{λ}^{ρ}-series in terms of the Ω_{λ}^{0}-series.
2.1. $\rho \geq 0$. By inserting the binomial relation in the Ω_{λ}^{ρ}-series

$$
\left(q^{n-\rho} c ; q\right)_{\rho}=\sum_{k=0}^{\rho}(-c)^{\rho-k}\left[\begin{array}{l}
\rho \\
k
\end{array}\right] q^{\left(\rho_{2}^{-k}\right)+(n-\rho)(\rho-k)}
$$

we can reformulate the following double series

$$
\begin{aligned}
\Omega_{\lambda}^{\rho}(a, c)= & \sum_{n=0}^{\infty} \frac{(a ; q)_{n}(c ; q)_{n}}{(q ; q)_{n}\left(q^{1+\rho} a / c ; q\right)_{n}}\left(\frac{q^{1+\lambda}}{-c}\right)^{n} \\
& \times \sum_{k=0}^{\rho} \frac{(-c)^{\rho-k}}{\left(q^{n-\rho} c ; q\right)_{\rho}}\left[\begin{array}{c}
\rho \\
k
\end{array}\right] q^{\left(\rho_{2}^{-k}\right)+(n-\rho)(\rho-k)} \\
= & \sum_{k=0}^{\rho} \frac{(-c)^{\rho-k}}{\left(q^{-\rho} c ; q\right)_{\rho}}\left[\begin{array}{l}
\rho \\
k
\end{array}\right] q^{\left(\rho_{2}^{-k}\right)-\rho(\rho-k)} \\
& \times \sum_{n=0}^{\infty} \frac{(a ; q)_{n}\left(q^{-\rho} c ; q\right)_{n}}{(q ; q)_{n}\left(q^{1+\rho} a / c ; q\right)_{n}}\left(\frac{q^{1+\lambda+\rho-k}}{-c}\right)^{n} .
\end{aligned}
$$

Writing the last sum as $\Omega_{\lambda-k}^{0}\left(a, q^{-\rho} c\right)$, we derive the following reduction formula.

Theorem $2.1(\lambda, \rho \in \mathbb{Z}$ with $\rho \geq 0)$.

$$
\Omega_{\lambda}^{\rho}(a, c)=\sum_{k=0}^{\rho} q^{\binom{k}{2}}\left[\begin{array}{l}
\rho \\
k
\end{array}\right] \frac{(-q / c)^{k}}{(q / c ; q)_{\rho}} \Omega_{\lambda-k}^{0}\left(a, q^{-\rho} c\right) .
$$

2.2. $\rho \leq 0$. Instead, by putting another binomial relation inside the $\Omega_{\lambda^{-}}^{\rho}$ series

$$
\left(q^{1+n+\rho} a / c ; q\right)_{-\rho}=\sum_{k=0}^{-\rho}\left(\frac{-a}{c}\right)^{k}\left[\begin{array}{c}
-\rho \\
k
\end{array}\right] q^{\binom{k+1}{2}+k \rho+k n}
$$

we can analogously manipulate the following double series

$$
\begin{aligned}
\Omega_{\lambda}^{\rho}(a, c)= & \sum_{n=0}^{\infty} \frac{(a ; q)_{n}(c ; q)_{n}}{(q ; q)_{n}\left(q^{1+\rho} a / c ; q\right)_{n}}\left(\frac{q^{1+\lambda}}{-c}\right)^{n} \\
& \times \sum_{k=0}^{-\rho}\left(\frac{-a}{c}\right)^{k}\left[\begin{array}{c}
-\rho \\
k
\end{array}\right] \frac{q^{(k+1} 2}{\left(q^{1+n+\rho} a / c ; q\right)_{-\rho}} \\
= & \sum_{k=0}^{-\rho}\left(\frac{-a}{c}\right)^{k}\left[\begin{array}{c}
-\rho \\
k
\end{array}\right] \frac{\left.q^{(k+1} 2\right)+k \rho}{\left(q^{1+\rho} a / c ; q\right)_{-\rho}} \sum_{n=0}^{\infty} \frac{(a ; q)_{n}(c ; q)_{n}}{(q ; q)_{n}(q a / c ; q)_{n}}\left(\frac{q^{1+\lambda+k}}{-c}\right)^{n} .
\end{aligned}
$$

Writing the last sum as $\Omega_{\lambda+k}^{0}(a, c)$, we derive another reduction formula.
Theorem $2.2(\lambda, \rho \in \mathbb{Z}$ with $\rho \leq 0)$.

$$
\Omega_{\lambda}^{\rho}(a, c)=\sum_{k=0}^{-\rho} q^{\binom{k}{2}}\left[\begin{array}{c}
-\rho \\
k
\end{array}\right] \frac{\left(-q^{1+\rho} a / c\right)^{k}}{\left(q^{1+\rho} a / c ; q\right)_{-\rho}} \Omega_{\lambda+k}^{0}(a, c) .
$$

3. Reduction Formulae from Ω_{λ}^{0} to Ω_{0}^{0}

To remove the λ-parameter, we start from the following linearization lemma, which is a reformulation of the q-Saalschütz summation formula (cf. [9, II.12])

$$
{ }_{3} \phi_{2}\left[\begin{array}{c|c}
q^{-m}, a, b \tag{3.1}\\
c, q^{1-m} a b / c & q ; q
\end{array}\right]=\left[\left.\begin{array}{c}
c / a, c / b \\
c, c / a b
\end{array} \right\rvert\, q\right]_{m} .
$$

Lemma 3.1 (Linear representation). Let x be a variable and m a natural number. Then for three indeterminates $\{u, v, w\}$, the following linear representation formula holds

$$
\begin{equation*}
(w x ; q)_{m}=\sum_{k=0}^{m}(u x ; q)_{m-k}\langle v x ; q\rangle_{k} \mathcal{E}_{m}^{k}(u, v, w), \tag{3.2}
\end{equation*}
$$

where the connection coefficients $\left\{\mathcal{E}_{m}^{k}(u, v, w)\right\}$ are independent of x and given by

$$
\mathcal{E}_{m}^{k}(u, v, w)=q^{\binom{k}{2}}\left[\begin{array}{c}
m \tag{3.3}\\
k
\end{array}\right] \frac{(w / u ; q)_{k}(w / v ; q)_{m}}{(w / v ; q)_{k}(u / v ; q)_{m}}\left(-\frac{u}{v}\right)^{k} .
$$

Proof. Recall the following three relations

$$
\begin{aligned}
{\left[\begin{array}{c}
m \\
k
\end{array}\right] } & =(-1)^{k} \frac{\left(q^{-m} ; q\right)_{k}}{(q ; q)_{k}} q^{m k-\binom{k}{2}}, \\
(u x ; q)_{m-k} & =\left(\frac{-q}{u x}\right)^{k} \frac{(u x ; q)_{m}}{\left(q^{1-m} / u x ; q\right)_{k}} q^{\binom{k}{2}-m k}, \\
\langle v x ; q\rangle_{k} & =(-v x)^{k}(1 / v x ; q)_{k} q^{-\binom{k}{2}} .
\end{aligned}
$$

Substituting (3.3) into (3.2), we confirm the lemma by simplifying the finite sum

$$
\begin{aligned}
& \sum_{k=0}^{m}(u x ; q)_{m-k}\langle v x ; q\rangle_{k}\left[\begin{array}{c}
m \\
k
\end{array}\right] q^{\binom{k}{2}} \frac{(w / u ; q)_{k}(w / v ; q)_{m}}{(w / v ; q)_{k}(u / v ; q)_{m}}\left(-\frac{u}{v}\right)^{k} \\
= & \frac{(u x ; q)_{m}(w / v ; q)_{m}}{(u / v ; q)_{m}} \sum_{k=0}^{m} q^{k}\left[\left.\begin{array}{c}
q^{-m}, 1 / v x, w / u, \\
q, q^{1-m} / u x, w / v
\end{array} \right\rvert\, q ; q\right]_{k}=(w x ; q)_{m}
\end{aligned}
$$

where the last sum has been evaluated by means of (3.1).
In addition, we have, according to (1.2), the expression

$$
\Omega_{\lambda}^{0}(a, c)=\left[\left.\begin{array}{c|c}
q / c,-q^{1+\lambda} a / c \tag{3.4}\\
q a / c,-q^{1+\lambda} / c
\end{array} \right\rvert\, q\right]_{\infty}{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a,-q^{\lambda} c \\
-q^{1+\lambda} a / c
\end{array} \right\rvert\, q ; q / c\right]
$$

Therefore, in order to evaluate $\Omega_{\lambda}^{0}(a, c)$, it suffices to find explicit formulae for the rightmost nonterminating ${ }_{2} \phi_{1}$-series.
3.1. $\lambda \geq 0$. Specifying in Lemma 3.1 by

$$
\left.\begin{array}{l}
m \rightarrow \lambda \\
x \rightarrow q^{n}
\end{array}\right\} \quad \text { and } \quad\left\{\begin{aligned}
u & \rightarrow a \\
v & \rightarrow-q^{\lambda} a / c \\
w & \rightarrow-c
\end{aligned}\right.
$$

we get the equation

$$
\left(-q^{n} c ; q\right)_{\lambda}=\sum_{k=0}^{\lambda}\left(q^{n} a ; q\right)_{k}\left\langle-q^{n+\lambda} a / c ; q\right\rangle_{\lambda-k} \mathcal{E}_{\lambda}^{\lambda-k}\left(a,-q^{\lambda} a / c,-c\right)
$$

By inserting this relation in the ${ }_{2} \phi_{1}$-series displayed in (3.4), we can reformulate the double sum

$$
\begin{aligned}
{ }_{2} \phi_{1} & {\left[\left.\begin{array}{c|c}
a,-q^{\lambda} c \\
-q^{1+\lambda} a / c
\end{array} \right\rvert\, q ; q / c\right]=\sum_{n=0}^{\infty}\left(\frac{q}{c}\right)^{n}\left[\left.\begin{array}{c}
a,-q^{\lambda} c \\
q,-q^{1+\lambda} a / c
\end{array} \right\rvert\, q\right]_{n} } \\
& \times \sum_{k=0}^{\lambda} \frac{\mathcal{E}_{\lambda}^{\lambda-k}\left(a,-q^{\lambda} a / c,-c\right)}{\left(-q^{n} c ; q\right)_{\lambda}}\left(q^{n} a ; q\right)_{k}\left\langle-q^{n+\lambda} a / c ; q\right\rangle_{\lambda-k}
\end{aligned}
$$

Interchanging the summation order and then applying the equalities

$$
\begin{aligned}
& \frac{\left(-q^{\lambda} c ; q\right)_{n}}{\left(-q^{n} c ; q\right)_{\lambda}}=\frac{(-c ; q)_{n}}{(-c ; q)_{\lambda}} \\
& (a ; q)_{n}\left(q^{n} a ; q\right)_{k}=(a ; q)_{k}\left(q^{k} a ; q\right)_{n} \\
& \frac{\left\langle-q^{n+\lambda} a / c ; q\right\rangle_{\lambda-k}}{\left(-q^{1+\lambda} a / c ; q\right)_{n}}=\frac{(-q a / c ; q)_{\lambda}}{(-q a / c ; q)_{k}\left(-q^{1+k} a / c ; q\right)_{n}}
\end{aligned}
$$

we can reformulate the double sum as

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a,-q^{\lambda} c \\
-q^{1+\lambda} a / c
\end{array} \right\rvert\, q ; q / c\right] & =\sum_{k=0}^{\lambda} \frac{(a ; q)_{k}(-q a / c ; q)_{\lambda}}{(-q a / c ; q)_{k}(-c ; q)_{\lambda}} \mathcal{E}_{\lambda}^{\lambda-k}\left(a,-q^{\lambda} a / c,-c\right) \\
& \times \sum_{n=0}^{\infty}\left[\left.\begin{array}{c}
q^{k} a,-c \\
q,-q^{1+k} a / c
\end{array} \right\rvert\, q\right]_{n}\left(\frac{q}{c}\right)^{n} .
\end{aligned}
$$

Writing the last series as $\Omega_{0}^{0}\left(q^{k} a,-c\right)$, we get the following expression:

$$
\begin{aligned}
\Omega_{\lambda}^{0}(a, c) & =\left[\left.\begin{array}{c}
q / c,-q a / c \\
q a / c,-q^{1+\lambda} / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times \sum_{k=0}^{\lambda} \mathcal{E}_{\lambda}^{\lambda-k}\left(a,-q^{\lambda} a / c,-c\right) \frac{(a ; q)_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{k}(-c ; q)_{\lambda}} .
\end{aligned}
$$

According to (3.3), the \mathcal{E}-coefficient can explicitly be restated as

$$
\begin{aligned}
\mathcal{E}_{\lambda}^{\lambda-k}\left(a,-q^{\lambda} a / c,-c\right) & =q^{\left(\begin{array}{c}
\lambda-k
\end{array}\right)}\left[\begin{array}{l}
\lambda \\
k
\end{array}\right] \frac{(-c / a ; q)_{\lambda-k}\left(q^{-\lambda} c^{2} / a ; q\right)_{\lambda}}{\left(q^{-\lambda} c^{2} / a ; q\right)_{\lambda-k}\left(-q^{-\lambda} c ; q\right)_{\lambda}}\left(q^{-\lambda} c\right)^{\lambda-k} \\
& =q^{\left(\begin{array}{c}
\lambda-k
\end{array}\right)}\left[\begin{array}{c}
\lambda \\
k
\end{array}\right] \frac{\left\langle q^{-1} c^{2} / a ; q\right\rangle_{k}(-c / a ; q)_{\lambda}}{\left\langle-q^{\lambda-1} c / a ; q\right\rangle_{k}\left(-q^{-\lambda} c ; q\right)_{\lambda}}\left(q^{-\lambda} c\right)^{\lambda-k} \\
& \left.=q^{k-\left({ }_{2}^{\lambda+1}\right.}{ }_{2}^{+1}\right) \frac{\left(q^{-\lambda} ; q\right)_{k}\left(q a / c^{2} ; q\right)_{k}(-c / a ; q)_{\lambda}}{\left.(q ; q)_{k}\right)\left(-q^{1-\lambda} a / c ; q\right)_{k}\left(-q^{-\lambda} c ; q\right)_{\lambda}} c^{\lambda} \\
& =q^{k+\binom{\lambda}{2}} \frac{\left(q^{-\lambda} ; q\right)_{k}\left(q a / c^{2} ; q\right)_{k}\left(-q^{1-\lambda} a / c ; q\right)_{\lambda}}{\left.(q ; q)_{k}\right)\left(-q^{1-\lambda} a / c ; q\right)_{k}(-q / c ; q)_{\lambda}}\left(\frac{c}{a}\right)^{\lambda} .
\end{aligned}
$$

This enables us to make further simplifications

$$
\begin{aligned}
\Omega_{\lambda}^{0}(a, c) & =\left[\left.\begin{array}{c}
q / c,-q a / c \\
q a / c,-q^{1+\lambda} / c
\end{array} \right\rvert\, q\right]_{\infty} \sum_{k=0}^{\lambda} \frac{(a ; q)_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{k}(-c ; q)_{\lambda}} \\
& \times q^{k+\left({ }_{2}^{\lambda}\right)} \frac{\left(q^{-\lambda} ; q\right)_{k}\left(q a / c^{2} ; q\right)_{k}\left(-q^{1-\lambda} a / c ; q\right)_{\lambda}}{\left.(q ; q)_{k}\right)\left(-q^{1-\lambda} a / c ; q\right)_{k}(-q / c ; q)_{\lambda}}\left(\frac{c}{a}\right)^{\lambda} \\
& =\left[\left.\begin{array}{c}
q / c,-q a / c \\
q a / c,-q^{1+\lambda} / c
\end{array} \right\rvert\, q\right]_{\infty} \frac{\left(-q^{1-\lambda} a / c ; q\right)_{\lambda}}{\left(-q^{1-\lambda} / c ; q\right)_{2 \lambda}} \\
& \times \sum_{k=0}^{\lambda} \frac{q^{k}}{a^{\lambda}} \frac{\left(q^{-\lambda} ; q\right)_{k}(a ; q)_{k}\left(q a / c^{2} ; q\right)_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)}{\left.(q ; q)_{k}\right)(-q a / c ; q)_{k}\left(-q^{1-\lambda} a / c ; q\right)_{k}} .
\end{aligned}
$$

The final expression is highlighted as the following theorem.
Theorem $3.2(\lambda \in \mathbb{Z}$ with $\lambda \geq 0)$.

$$
\begin{aligned}
\Omega_{\lambda}^{0}(a, c) & =\left[\left.\begin{array}{c}
q / c,-q^{1-\lambda} a / c \\
q a / c,-q^{1-\lambda} / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times \sum_{k=0}^{\lambda} \frac{q^{k}}{a^{\lambda}}\left[\left.\begin{array}{c}
q^{-\lambda}, a, q a / c^{2} \\
q,-q a / c,-q^{1-\lambda} a / c
\end{array} \right\rvert\, q\right]_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right) .
\end{aligned}
$$

The formula in this theorem is explicit because the $\Omega_{0}^{0}\left(q^{k} a,-c\right)$ series can be evaluated by (1.1) as

$$
\begin{aligned}
\Omega_{0}^{0}\left(q^{k} a,-c\right) & ={ }_{2} \phi_{1}\left[\left.\begin{array}{c}
q^{k} a,-c \\
-q^{1+k} a / c
\end{array} \right\rvert\, q ; q / c\right] \\
& =\frac{\left(q^{1+k} a ; q^{2}\right)_{\infty}}{\left(q^{1+k} a / c^{2} ; q^{2}\right)_{\infty}}\left[\left.\begin{array}{c}
q^{1+k} a / c^{2},-q \\
-q^{1+k} a / c, q / c
\end{array} \right\rvert\, q\right]_{\infty}
\end{aligned}
$$

3.2. $\lambda \leq 0$. Alternatively, specifying in Lemma 3.1 by

$$
\left.\begin{array}{l}
m \rightarrow-\lambda \\
x \rightarrow q^{n}
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{l}
u \rightarrow-q^{\lambda} c \\
v \rightarrow 1 \\
w \rightarrow-q^{1+\lambda} a / c
\end{array}\right.
$$

we have the following equation

$$
\left(-q^{1+n+\lambda} a / c ; q\right)_{-\lambda}=\sum_{k=0}^{-\lambda}\left\langle q^{n} ; q\right\rangle_{k}\left(-q^{n+\lambda} c ; q\right)_{-\lambda-k} \mathcal{E}_{-\lambda}^{k}\left(-q^{\lambda} c, 1,-q^{1+\lambda} a / c\right)
$$

By putting this relation inside the ${ }_{2} \phi_{1}$-series displayed in (3.4), we get the double sum

$$
\begin{aligned}
& { }_{2} \phi_{1}\left[\left.\begin{array}{c}
a,-q^{\lambda} c \mid l \\
-q^{1+\lambda} a / c
\end{array} \right\rvert\, q ; q / c\right]=\sum_{n=0}^{\infty}\left(\frac{q}{c}\right)^{n}\left[\left.\begin{array}{c}
a,-q^{\lambda} c \\
q,-q^{1+\lambda} a / c
\end{array} \right\rvert\, q\right]_{n} \\
& \quad \times \sum_{k=0}^{-\lambda} \frac{\mathcal{E}_{-\lambda}^{k}\left(-q^{\lambda} c, 1,-q^{1+\lambda} a / c\right)}{\left(-q^{1+n+\lambda} a / c ; q\right)_{-\lambda}}\left\langle q^{n} ; q\right\rangle_{k}\left(-q^{n+\lambda} c ; q\right)_{-\lambda-k}
\end{aligned}
$$

Exchanging the summation order first and then making use of the equalities

$$
\begin{aligned}
& \frac{\left\langle q^{n} ; q\right\rangle_{k}}{(q ; q)_{n}}=\frac{1}{(q ; q)_{n-k}}, \\
& \left(-q^{\lambda} c ; q\right)_{n}\left(-q^{n+\lambda} c ; q\right)_{-\lambda-k}=\frac{(-c ; q)_{n-k}}{(-c ; q)_{\lambda}} \\
& \frac{1}{\left(-q^{1+\lambda} a / c ; q\right)_{n}\left(-q^{1+n+\lambda} a / c ; q\right)_{-\lambda}}=\frac{1}{\left(-q^{1+\lambda} a / c ; q\right)_{-\lambda}(-q a / c ; q)_{n}}
\end{aligned}
$$

we can manipulate the double sum expression below

$$
\begin{aligned}
& { }_{2} \phi_{1}\left[\begin{array}{c|c}
a,-q^{\lambda} c & \mid c \\
-q^{1+\lambda} a / c & q ; q / c
\end{array}\right] \\
& =\sum_{k=0}^{-\lambda} \frac{\mathcal{E}_{-\lambda}^{k}\left(-q^{\lambda} c, 1,-q^{1+\lambda} a / c\right)}{(-c ; q)_{\lambda}\left(-q^{1+\lambda} a / c ; q\right)_{-\lambda}} \sum_{n=k}^{\infty} \frac{(a ; q)_{n}(-c ; q)_{n-k}}{(-q a / c ; q)_{n}(q ; q)_{n-k}}\left(\frac{q}{c}\right)^{n} \\
& =\sum_{k=0}^{-\lambda}\left(\frac{q}{c}\right)^{k} \frac{(a ; q)_{k}(-q a / c ; q)_{\lambda}}{(-c ; q)_{\lambda}(-q a / c ; q)_{k}} \mathcal{E}_{-\lambda}^{k}\left(-q^{\lambda} c, 1,-q^{1+\lambda} a / c\right) \\
& \times \sum_{n=0}^{\infty}\left[\left.\begin{array}{c}
q^{k} a,-c \\
q,-q^{1+k} a / c
\end{array} \right\rvert\, q\right]_{n}\left(\frac{q}{c}\right)^{n}
\end{aligned}
$$

where the last line is justified by the replacement $n \rightarrow n+k$. Observing that the last sum with respect to n is again $\Omega_{0}^{0}\left(q^{k} a,-c\right)$, we get the expression

$$
\left.\left.\begin{array}{rl}
\Omega_{\lambda}^{0}(a, c)=\left[\left.\begin{array}{c}
q / c,-q a / c \\
q a / c,-q^{1+\lambda} / c
\end{array} \right\rvert\, q\right.
\end{array}\right]_{\infty} \sum_{k=0}^{-\lambda}\left(\frac{q}{c}\right)^{k} \frac{(a ; q)_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{k}(-c ; q)_{\lambda}}\right)
$$

Replacing the \mathcal{E}-coefficient by (3.3), we can simplify further the above sum

$$
\begin{aligned}
& \sum_{k=0}^{-\lambda}\left(\frac{q}{c}\right)^{k} \frac{(a ; q)_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{k}(-c ; q)_{\lambda}} \mathcal{E}_{-\lambda}^{k}\left(-q^{\lambda} c, 1,-q^{1+\lambda} a / c\right) \\
= & \left.\sum_{k=0}^{-\lambda} \frac{(a ; q)_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{k}(-c ; q)_{\lambda}}\left[\begin{array}{c}
-\lambda \\
k
\end{array}\right] \frac{\left(q a / c^{2} ; q\right)_{k}\left(-q^{1+\lambda} a / c ; q\right)_{-\lambda}}{\left(-q^{1+\lambda} a / c ; q\right)_{k}\left(-q^{\lambda} c ; q\right)_{-\lambda}} q^{(k+1}{ }_{2}\right)+k \lambda \\
= & \sum_{k=0}^{-\lambda} \frac{\Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{\lambda}}\left[\begin{array}{c}
-\lambda \\
k
\end{array}\right] \frac{(a ; q)_{k}\left(q a / c^{2} ; q\right)_{k}}{(-q a / c ; q)_{k}\left(-q^{1+\lambda} a / c ; q\right)_{k}} q^{\binom{k+1}{2}+k \lambda} \\
= & \sum_{k=0}^{-\lambda} \frac{\Omega_{0}^{0}\left(q^{k} a,-c\right)}{(-q a / c ; q)_{\lambda}} \frac{\left(q^{\lambda} ; q\right)_{k}(a ; q)_{k}\left(q a / c^{2} ; q\right)_{k}}{(q ; q)_{k}(-q a / c ; q)_{k}\left(-q^{1+\lambda} a / c ; q\right)_{k}}(-q)^{k} .
\end{aligned}
$$

Consequently, we establish another explicit formula.
Theorem $3.3(\lambda \in \mathbb{Z}$ with $\lambda \leq 0)$.

$$
\begin{aligned}
\Omega_{\lambda}^{0}(a, c) & =\left[\left.\begin{array}{c}
q / c,-q^{1+\lambda} a / c \\
q a / c,-q^{1+\lambda} / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times \sum_{k=0}^{-\lambda}(-q)^{k}\left[\left.\begin{array}{c}
q^{\lambda}, a, q a / c^{2} \\
q,-q a / c,-q^{1+\lambda} a / c
\end{array} \right\rvert\, q\right]_{k} \Omega_{0}^{0}\left(q^{k} a,-c\right)
\end{aligned}
$$

4. Conclusive Theorem and Examples

Summing up the results shown in the previous two sections, we can evaluate the Ω_{λ}^{ρ}-series, for any given pair of integers λ and ρ, by carrying out the following procedure:

- Step A. If $\rho \neq 0$, we first transform the $\Omega_{\lambda^{\prime}}^{\rho}$-series into the $\Omega_{\lambda^{\prime}}^{0}$-series by making use of Theorems 2.1 and 2.2 and then go to Step B.
- Step B. If $\rho=0$, we evaluate the Ω_{λ}^{0}-series by means of Theorems 3.2 and 3.3.
Therefore, we have confirmed the following conclusive theorem.
Theorem 4.1. For any given pair of integers λ and ρ, the Ω_{λ}^{ρ}-series can be explicitly expressed as a linear combination of the Ω_{0}^{0}-series with the number of terms at most $(1+|\rho|)(1+|\lambda|+|\rho|)$.

The afore-described procedure is realized by appropriately devised Mathematica commands, that are executed to produce several closed formulae of the Ω_{λ}^{ρ}-series for small integers λ and ρ. Ten remarkable examples are recorded as follows.

Example $4.2(\lambda=1$ and $\rho=0)$.

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q a / c
\end{array} \right\rvert\, q ;-q^{2} / c\right] & =\left[\left.\begin{array}{c}
q a / c^{2},-q \\
q a / c,-1 / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times\left\{\frac{(1+a / c)\left(q a ; q^{2}\right)_{\infty}}{a\left(q a / c^{2} ; q^{2}\right)_{\infty}}-\frac{\left(a ; q^{2}\right)_{\infty}}{a\left(q^{2} a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example $4.3(\lambda=-1$ and $\rho=0)$.

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q a / c
\end{array} \right\rvert\, q ;-1 / c\right] & =\left[\left.\begin{array}{c}
q a / c^{2},-q \\
q a / c,-1 / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times\left\{\frac{(1+a / c)\left(q a ; q^{2}\right)_{\infty}}{\left(q a / c^{2} ; q^{2}\right)_{\infty}}+\frac{\left(a ; q^{2}\right)_{\infty}}{\left(q^{2} a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example $4.4(\lambda=0$ and $\rho=-1$: Kim et al. [10, eq. (3.2)]).

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{c|c}
a, c \\
a / c
\end{array} \right\rvert\, q ;-q / c\right]=\left[\left.\begin{array}{c}
a / c^{2},-q \\
a / c,-1 / c
\end{array} \right\rvert\, q\right]_{\infty}\left\{\frac{\left(q a ; q^{2}\right)_{\infty}}{\left(q a / c^{2} ; q^{2}\right)_{\infty}}+\frac{\left(a ; q^{2}\right)_{\infty}}{c\left(a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
$$

Example $4.5(\lambda=-1$ and $\rho=-1)$.

$$
{ }_{2} \phi_{1}\left[\left.\begin{array}{l}
a, c \\
a / c
\end{array} \right\rvert\, q ;-1 / c\right]=\left[\left.\begin{array}{c}
a / c^{2},-q \\
a / c,-1 / c
\end{array} \right\rvert\, q\right]_{\infty}\left\{\frac{\left(q a ; q^{2}\right)_{\infty}}{\left(q a / c^{2} ; q^{2}\right)_{\infty}}+\frac{\left(a ; q^{2}\right)_{\infty}}{\left(a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
$$

Example $4.6(\lambda=-1$ and $\rho=-2)$.

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
a / c q
\end{array} \right\rvert\, q ;-1 / c\right] & =\left[\left.\begin{array}{c}
a / c^{2} q,-q \\
a / c q,-1 / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times\left\{\frac{(1-a / c q)\left(q a ; q^{2}\right)_{\infty}}{\left(a / c^{2} q ; q^{2}\right)_{\infty}}+\frac{\left(a ; q^{2}\right)_{\infty}}{\left(a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example 4.7 ($\lambda=0$ and $\rho=1$: Kim et al. [10, eq. (3.1)]).

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q^{2} a / c
\end{array} \right\rvert\, q ;-q / c\right] & =\frac{1}{1-q / c}\left[\left.\begin{array}{c}
q^{2} a / c^{2},-q \\
q^{2} a / c,-q / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times\left\{\frac{\left(q a ; q^{2}\right)_{\infty}}{\left(q^{3} a / c^{2} ; q^{2}\right)_{\infty}}-\frac{q\left(a ; q^{2}\right)_{\infty}}{c\left(q^{2} a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example $4.8(\lambda=1$ and $\rho=1)$.

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q^{2} a / c
\end{array} \right\rvert\, q ;-q^{2} / c\right] & =\frac{a^{-1}}{1-q / c}\left[\left.\begin{array}{c}
q^{2} a / c^{2},-q \\
q^{2} a / c,-q / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times\left\{\frac{\left(q a ; q^{2}\right)_{\infty}}{\left(q^{3} a / c^{2} ; q^{2}\right)_{\infty}}-\frac{\left(a ; q^{2}\right)_{\infty}}{\left(q^{2} a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example $4.9(\lambda=1$ and $\rho=2)$.

$$
\begin{aligned}
{ }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
q^{3} a / c
\end{array} \right\rvert\, q ;-q^{2} / c\right] & =\frac{1}{a(q / c ; q)_{2}}\left[\left.\begin{array}{c}
q^{3} a / c^{2},-q \\
q^{3} a / c,-q^{2} / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \times\left\{\frac{(1-q a / c)\left(q a ; q^{2}\right)_{\infty}}{\left(q^{3} a / c^{2} ; q^{2}\right)_{\infty}}-\frac{\left(a ; q^{2}\right)_{\infty}}{\left(q^{4} a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example $4.10(\lambda=1$ and $\rho=-1)$.

$$
\begin{aligned}
& { }_{2} \phi_{1}\left[\left.\begin{array}{c}
a, c \\
a / c
\end{array} \right\rvert\, q ;-q^{2} / c\right]=\left[\left.\begin{array}{c}
a / c^{2},-q \\
a / c,-1 / c q
\end{array} \right\rvert\, q\right]_{\infty} \\
& \\
& \quad \times\left\{\frac{(q-q c+a / c+q a / c)\left(a ; q^{2}\right)_{\infty}}{q a c\left(a / c^{2} ; q^{2}\right)_{\infty}}-\frac{(q-q c-a-q a)\left(q a ; q^{2}\right)_{\infty}}{q a c\left(q a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

Example $4.11(\lambda=-1$ and $\rho=1)$.

$$
\begin{aligned}
& { }_{2} \phi_{1}\left[\left.\begin{array}{c}
a,{ }_{2} \\
q^{2} a / c
\end{array} \right\rvert\, q ;-1 / c\right]=\left[\left.\begin{array}{c}
q^{2} a / c^{2},-q \\
q^{2} a / c,-1 / c
\end{array} \right\rvert\, q\right]_{\infty} \\
& \quad \times\left\{\frac{(q-a-c-q a)\left(q a ; q^{2}\right)_{\infty}}{(q-c)\left(q^{3} a / c^{2} ; q^{2}\right)_{\infty}}+\frac{\left(q-c+q a / c+q^{2} a / c\right)\left(a ; q^{2}\right)_{\infty}}{(q-c)\left(q^{2} a / c^{2} ; q^{2}\right)_{\infty}}\right\} .
\end{aligned}
$$

References

1. G. E. Andrews, On the q-analog of Kummer's theorem and application, Duke Math. J. 40:3 (1973), 525-528.
2. M. Apagodu and D. Zeilberger, Searching for strange hypergeometric identities by sheer brute force, Integers 8 (2008), \#A36.
3. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
4. W. N. Bailey, A note on certain q-identities, Quart. J. Math. (Oxford) 12 (1941), 173-175.
5. X. Chen and W. Chu, Closed formulae for a class of terminating ${ }_{3} F_{2}(4)$ series, Integral Transforms Spec. Funct. 28:11 (2017), 825-837.
6. W. Chu, Analytical formulae for extended ${ }_{3} F_{2}$-series of Watson-Whipple-Dixon with two extra integer parameters, Math. Comp. 81:277 (2012), 467-479.
7. W. Chu, Terminating ${ }_{2} F_{1}(4)$-series perturbed by two integer parameters, Proc. Amer. Math. Soc. 145:3 (2017), 1031-1040.
8. J. A. Daum, The basic analog of Kummer's theorem, Bull. Amer. Math. Soc. 48 (1942), 711-713.
9. G. Gasper and M. Rahman, Basic Hypergeometric Series (2nd Edition), Cambridge University Press, Cambridge, 2004.
10. Y. S. Kim et al., On q-analog of Kummer's theorem and its contiguous results, Commun. Korean Math. Soc. 18:1 (2003), 151-157.
11. N. N. Li and W. Chu, Terminating balanced ${ }_{4} \phi_{3}$-series with two integer parameters, Proc. Amer. Math. Soc. 145:10 (2017), 4371-4383.

School of Mathematics and Statistics, Zhoukou Normal University, Henan, China
E-mail address: lina20190606@outlook.com
Department of Mathematics and Physics, University of Salento, Lecce 73100 Italy
E-mail address: chu.wenchang@unisalento.it

[^0]: Received by the editors October 1, 2020, and in revised form January 5, 2021. 2000 Mathematics Subject Classification. Primary 33D15, Secondary 05A30.
 Key words and phrases. Basic hypergeometric series; Linearization method; Heine transformation; q-Kummer theorem; q-binomial series; q-Saalschütz summation formula.

 The first author is partially supported, during this work, by the National Science foundation of China (Youth Grant No.11601543).
 Corresponding author: W. Chu: chu.wenchang@unisalento.it.

