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BAILEY AND DAUM’S ¢-KUMMER
THEOREM AND EXTENSIONS

NADIA N. LI AND WENCHANG CHU

ABSTRACT. By means of the linearization method, we establish four
analytical formulae for the g-Kummer sum extended by two integer pa-
rameters. Ten closed formulae are presented as examples.

1. INTRODUCTION AND MOTIVATION

For the classical hypergeometric series, Kummer’s summation theorem
(cf. Bailey [3, §2.3]) is well-known

a, c ‘_ ] F1+$)r(l4+a-c

= for R(c) < 1.
l4+a—c Tl+al(l+5-0c (c)
When the well-poised condition is perturbed by an integer, Apagodu and
Zeilberger [2], and Chu [7] found analytical formulae for the corresponding
terminating oFj-series. The g-analogue of Kummer’s formula was estab-
lished independently by Bailey [4] and Daum [8] (see also Gasper—Rahman [9,
11.9]):

(1.1) 201 [;é/cc ) a —q/C] = m [qqaa//cci;/qc QLO,

o [

where the notation related to the g-series will be given on the next page.
By applying the Heine transformation (Gasper—-Rahman [9, 111.2])

(1.2) 201 [a’ g ‘ @ Z} = [c/b’ b® ‘qul [abz/c’ bbz ‘ a C/b]

c,z

and then the g-binomial series (Gasper—-Rahman [9, 11.3])
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Andrews [1] gave an elementary proof of (1.1), that can be reproduced as
follows:

201 [

a, c
qa/c

i 2

a/c*, — c, —¢C

E —q/C] = qqa//c _q/qc q ><2¢1[ _q)q;qa/cz]
L ? Jd oo

r 2 2
qa/c*, —q C 2 2
= q ><1¢0[ IQ'QCL/C]
|qa/c,—q/c oo — ’

ooy )
[aafe,—a/c 17|~ (qa/c% %)’

By making use of the g-integral representation, Kim et al. [10] derived two
contiguous results of (1.1). The purpose of this short paper is to examine,

for a given pair of integers A and p, the following general series
— — a, € 14X
(13) Qé\) T Qg(a7c) - 2¢1 |:q1+pa/c q; —q /C:| )

whose very special case A = p = 0 becomes the ¢-Kummer series (1.1).
By means of the linearization method employed in [5, 6, 7, 11], we shall
prove that (see Theorem 4.1) the Qf(a,c)-series for A, p € Z is always
explicitly evaluable in the Q9(a/, ¢’)-series with the number of terms at most
(L+ [pl) x (1+ [\ + [ol).

Throughout the paper, we shall utilize the following notation. Let Z and
N be the sets of integers and natural numbers with Ny := NU {0}. For two
indeterminates = and ¢, define the shifted factorials by (z;q)o = (x;¢)o =1
and

(#50)n =(1 = 2)(1 = gz) -~ (1 - ¢" ')

(@ g =(1L —2)(1 —z/q) - (1 - ¢' ")

The rising factorial of negative order can be expressed as

1 () (=a/=)"

T3q)n = e =

(50 = (a/2;9)n

The product and fraction of shifted factorials are abbreviated respectively
to

} for n e N.

where n € N.

(o, By vial, = (0, B50), (),
[a, By, ‘q] _ (@9, (819 (110)a
A B,-- Ol (4;9), (B;q),, - (C59),,

Following Bailey [3] and Gasper—Rahman [9], the basic hypergeometric series
(shortly as g-series) is defined by
o
CLO)alv""ap’ :|_ |:a0,a17"'7ap’ :| n
14+p® Gzl =) ql ="
+p p[ bi, -, by ~ |4 bi, -, by n

This series terminates if one of its numerator parameters is of the form ¢=™

with m € Npy. Otherwise, the series is said to be nonterminating. In the
latter case, the base ¢ will be restricted, for convenience, to |g| < 1.
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We shall organize the paper in the following manner. In the next section,
we prove two theorems that transform the Qp -series into the 09 y-series. Then

the QO -series will be explicitly evaluated in Sectlon 3. Finally, the paper will
end up with ten examples as applications.

2. REDUCTION FORMULAE FROM Q‘; TO Qg

By applying the series rearrangement and the g-binomial theorem
m & m
=3 ) { ] (=)t
k
k=0

we shall derive, in this section, two transformation formulae that express
the Qf\)—series in terms of the Qg—series.

2.1. p > 0. By inserting the binomial relation in the Qf-series

p

(@)= Do (e a0 0o

k=0

we can reformulate the following double series

p v @@nlaa)n  gn
Al _nz% (4:)n(q 1+”Ub/c On ( —c )

p _
735 )Hn=p)(p—k)

X Z n pc q |: :|q( 2 ) ( p) P

k=
p _
Z (*55)—plp—k)
k=0 q Pc q q
y Z a pc. q) (q1+/\+pk)n

(4 On 1J”’a/c o\ —C '

Writing the last sum as Qg)\fk(a,q_pc), we derive the following reduction
formula.

Theorem 2.1 (A, p € Z with p > 0).

ti0.0- 300 [ S0t o

=0

2.2. p < 0. Instead, by putting another binomial relation inside the Q’j\—
series

(q" " Pa)e;q) -, i( ) [ }q(kgl)“”*k"

k=0
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we can analogously manipulate the following double series

1+

Qi(a, c) :i ( (a;9)n(c;q)n - (q_c )n

= (G)n(qg"Pa/ciq

(3" thptn

PN
x Z (c)k[ k‘p] (qi]+"+Pa/c; q—p

k=0

") ke (a;@)n(c; Qn (q”“’“ )”
n —C .

P ok (
:kz—o (?) { kp] (ql(ipa/c; @)-p = (@ @)nlga/c; q)

Writing the last sum as Q3 (a, ¢), we derive another reduction formula.

Theorem 2.2 (A, p € Z with p <0).

Ay [—p] (=g tPajc)k
Qi(mc) = Zq(2) [ kp:| WQO (a,c).
k=0

g'trafe;q)-,

3. REDUCTION FORMULAE FROM 2} TO )

To remove the A\-parameter, we start from the following linearization
lemma, which is a reformulation of the ¢-Saalschiitz summation formula

(cf. [9, I1.12])
g™ a,b ‘ 1 le/a,e/b
(31) 3¢2 |:C, ql—mab/c Q7Q:| - |:C, C/(Ib q m'
Lemma 3.1 (Linear representation). Let x be a variable and m a natu-

ral number. Then for three indeterminates {u,v,w}, the following linear
representation formula holds

m

(32) (W23 QJm = > _ (U3 Q)i (05 Q)1 Epy (1,0, ),
k=0

where the connection coefficients {EF (u,v,w)} are independent of x and
given by

: . k
3.3 £ (u, v, w) = ¢(2) [m} (w/u; QJ(w/v; @ (_ u\*
) wee) =49 | o antafsaim (o)

Proof. Recall the following three relations

2

[m] () Dk k()

k (¢ Dk ’
_ (N (uri g 5 —m
(u:c,q)m,k_(a) mq() k

(vx; )k :(—’Ux)k(l/vx; q)kq_(g),
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Substituting (3.3) into (3.2), we confirm the lemma by simplifying the finite
sum

f:(um; Qi (025 Q)1 [m] q(’;) (w/u; @) p(w/v; @)m ( B E)k

k=0 k (w/v; Q)r(u/v; @)m v

_(uz ) w/vq Z { ™1 vz, w/u,

(w/V; @) m ¢, ¢ 7™ Juz,w/v

‘ 4 q] o (wz; @)m

where the last sum has been evaluated by means of (3.1). U
In addition, we have, according to (1.2), the expression

} 2¢1[ 1+Aa/C‘QQ/C]-

Therefore, in order to evaluate Q(/)\ (a, ), it suffices to find explicit formulae
for the rightmost nonterminating o¢;-series.

q/c, — H')‘a/c

(3.4) Qg(a,c) = [qa/c N H)‘/c

3.1. A > 0. Specifying in Lemma 3.1 by
u—a
m —A N
. and v— —qajc
w— —c

we get the equation

A
—q"c;)x =Y (0" Q)(=¢"a/c;)r k€3 (a, g a /e, ).
k=0

By inserting this relation in the 2¢1-series displayed in (3.4), we can refor-
mulate the double sum
:| n

a/c;q)a—

& Q/C] - i (%)n [q a—q;chf/c

n=0

2¢1 [ 1+>(\Ja/c

n+A

A— k
ng (0.~ 04/0.=0) (1ni g1 (g

nc q>

Interchanging the summation order and then applying the equalities

(—c@n _ (= 0n

(=q"c;)x (=@’

(a5 )n(q"a: )k = (a:Q)k(q"a; q)n,
(—¢"aje;d)ak (—qa/c;q)x

(—¢"tra/c;q)n  (—qa/c;q)k(—q'Fa/c;q)n’
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we can reformulate the double sum as
A

—q’c qa/c DN er—ky A .

2<Z51{ ¢ Hafe q;q } Z;) qa/cq Z60) 5/\ (a,—q"a/c,—c)
— [ dka, —c q\"
Xg[q,—qlﬂ"'a/c‘q]n(c) '

Writing the last series as Q9(¢*

0 _ | 4/, —qa/c
Q)\(a, C) - [qa/c, _q1+>\/c

a, —c), we get the following expression:

1.

A
X Z Ei‘_k(a, —qta/e, —c)

k=0

(a;q) 29(¢%a, —c)
(—qa/c; Qe(=c;@n

According to (3.3), the E-coefficient can explicitly be restated as

B 0y [A] (—¢/a;@)r—k(g7 P /as ) |, _\ \A—k

&y " (a,—q*aje, —c) = (X2k){ } 7 7 Yo

Az (e, —d"afe,—c)=¢q k] (g2 /a; )a—k(—q7 2 0)a (a7%)

-1.27/ . —ela
:q()\;k) {)\:| <q}\701 Ja; @) ( C/fl)\aQ)/\ (7>\C)>\—k
k] (=g te/a; q)i(—q=c; q)a
(5@ arlaa/c*gk(=c/aax -

1 (4 Dr) (=" a/c; k(=g e )
_ #0000/ n(—a /e ) (g)A
(G Dr)(—¢*a/c; Or(=q/c;q)x \a/ ~

This enables us to make further simplifications

0 _ | a/e, —qajc
(a,e) = [qa/c,—ql“/c

] ﬁ: (a;Q)k 2)(¢"a, —c)

o i (—qa/c;q)i(—c; )
() (N Dilga/* )r(=a"*a/c;q) (g)A

2

xXq
(¢ Dr)(—a'Pa/c;a)e(—a/c;a)x
_ [ q/c, —qa/c ‘ ] (—¢'a/c; )
qa/c, — 1H/C o (—ql_’\/C; q)2x
A
Z 4" (a7 9)k(a; Q)rlga/c*; @r (g a, —c)
ar Qk)(—qa/c;Q)k(—q*Pa/c; )y,
The final expression is hlghhghted as the following theorem.
Theorem 3.2 (A € Z with A > 0).
¢, —¢*a/c
0 (a,¢) = [q/ Y ‘ q}

qa/c,—q' /e

Xz)\:qk _Aaa qa/c ’ QO( k:a —C)
OaA q,—qa/c, — gt ’\a/c i olq a, .
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The formula in this theorem is explicit because the Qg(qka, —c) series can
be evaluated by (1.1) as

1+k

0(q"a, —c) = 2¢n { ¢ a/c’%Q/C}

(@*a;¢) o0 [ ¢'Fa/e?, —q
oo | —a"**a/c,q/c

" o/t g

1.

3.2. A < 0. Alternatively, specifying in Lemma 3.1 by

u— —qc
m—— A
" } and {’U—>1
T —q
w— — ¢ Pafe

we have the following equation
-

a/c;q)-x = (0" r(—q"c;q)awE5\(—q e, 1, =" Pa/c).
k=0

(— gt

By putting this relation inside the 9¢;-series displayed in (3.4), we get the
double sum

201 [ 1*’\a/c ‘ & q/c] - ni.; <%>n [qachl_f;\;/c ’ q]n

X £, (—gre, 1,—ga /o)

XZ (=g a/c; q)_a (@ 0)k(—q

k=0

Exchanging the summation order first and then making use of the equalities

("o 1
(@G D)n (¢ Dn—k
- A _ 8@k
(=@ G On(=¢"" @) r-k = Ceay
1 1

(~aa/c;q)n(~q1 T ajeiq)x — (g a/eiq)a(~qa/ei)n
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we can manipulate the double sum expression below
201 [ H')‘a/c ‘ q; Q/C]

= ( q e, 1, —¢""afe) N (@5Q)n(—¢ Dok (q\"
= P s 2 Caafes gl s be)

qa/c;q)n(q;q

S a)(—ga/c; ) s
—23() €N (—a'e, 1, —g /o)
k=0

Q)r(—qa/c;q)k
- [qﬁ_ ;ag;k q}n(g)”,

n=0
where the last line is justified by the replacement n — n+k. Observing that
the last sum with respect to n is again Qg(qka, —c), we get the expression

0 (a,c) = [ q/c, —qa/c M i (g)’“ (a: @) 2 (¢*a, —c)
© k=0

qa/c,—q" /e ¢/ (—qa/c;q)r(—c;@)x

<8\ (=qPe, 1, —¢* T a/c).

Replacing the E-coefficient by (3.3), we can simplify further the above sum

—A
q k(a;Q)kQS(qka,—C) ko(_ite 1. —at /e
> (&) CanfeghCapneoata'el=d e
N~ (a9)x 9(ga, —0) [—A} (qa/ @r(=q"Pa/e;q)x (v+1)4hn
— (—qa/c;qu(=c;x [ k | (=¢"a/c;q)(—q e q)-x

7

 Q(d*a, —o) [_)‘} (a; q)r(qa/c?; q)y g("3") kA
— (- (

qa/c;q)x | k| (—qa/c;Qr(—g'ra/c; @)

Q(q*a,—c) (" Qr(a;Q)rlqa/c?; @ (—q)F
— (—qa/c; ) (¢ Dr(—qa/c; @)x(—q*ra/c; )k '

o
O

Plﬂy

??‘
O

Consequently, we establish another explicit formula.

Theorem 3.3 (A € Z with A <0).

_ 14X /C
0 (a,0) = {q/ panar]
qa/c,—q'™/c ‘ -

g Z [%_QCZ/CCL qal/f)‘a/c‘ ]ng(qka, —c).
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4. CONCLUSIVE THEOREM AND EXAMPLES

Summing up the results shown in the previous two sections, we can eval-
uate the Qi-series, for any given pair of integers A and p, by carrying out
the following procedure:

o Step A.If p # 0, we first transform the Qf-series into the Qg,—series
by making use of Theorems 2.1 and 2.2 and then go to Step B.

e Step B. If p = 0, we evaluate the Qg—series by means of Theorems 3.2
and 3.3.

Therefore, we have confirmed the following conclusive theorem.

Theorem 4.1. For any given pair of integers X and p, the QX -series can be
explicitly expressed as a linear combination of the Qg-sem’es with the number
of terms at most (1 + |p])(1 + |\l + |p|).

The afore-described procedure is realized by appropriately devised Math-
ematica commands, that are executed to produce several closed formulae
of the Qf-series for small integers A and p. Ten remarkable examples are
Example 4.2 (A =1 and p =0).

recorded as follows.
201 [qa/c‘ ¢4 /] [qqa//cc—l/c ‘JL
y {(1+a/0)(qa;q2)oo L (4¢%) }
a(ga/c?; ¢?)oo a(g*a/c*;¢%) oo

Example 4.3 (A = —1 and p =0).
]

_ [aa/c®,—q
201 [qa/c‘ 1/6] o {qa/c,—l/c
(1+a/c)(qa:¢)) . (3:6°)
S R s
Example 4.4 (A =0 and p = —1: Kim et al. [10, eq. (3.2)]).

oo oy o] = ofe =3l o (e e
Example 4.5 (A= —1 and p = —1).
son s | a10e] = [t o] { e * et
Example 4.6 (A\ = —1 and p = —2).
sin | aioe J=1se] = | ||
y {(1 —a/cq)(9a;¢*) oo L@ q2)o;>00}.

(a/cq; %) o (a/c*; q?
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Example 4.7 (A =0 and p = 1: Kim et al. [10, eq. (3.1)]).

201 [q 20,/ ‘ 4 —C]/C] =1_1q/c [qq;;z//ccfi;/qc q}

O N LY S [ (Y
(¢®a/c* *)oe c(dPa/c® %) )
Example 4.8 (A\=1and p=1).

201 [q 2a/c |4 ’ '/ ] _C,II/C {qq aa//cc ;/qc }

A 0 (46
(Pa/c*¢®)  (Pa/C% ¢ )
Example 4.9 (A =1 and p = 2).

o el 0] =z el

daje,—?/c |
x{ (1-qga/c)(qa:6%)00  (a36°)oo }
(¢*a/c*; ¢%)oo (¢*a/c? %) )

Example 4.10 (A =1 and p = —1).

a, c| [ a/?—q
2¢1 [a/c q; —QZ/C:| - |:a/C,—1/CC] ’ Q:|OO
" { (¢ —gc+aje+qa/c)(a;¢*) e (g —gc—a—qa)(ga; ¢*)o }
qac(a/c?; ¢*)oo qac(qa/c*; q*)oo '
Example 4.11 (A= —1and p=1).

201 [q 2a/c ’ & /c] - [qqaa//cc I/qc ]
R =)
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