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GEOMETRIC POLYNOMIALS AND INTEGER

PARTITIONS

MIRCEA MERCA

Abstract. In this paper, we show that the geometric polynomials can
be expressed as sums over integer partitions in two different ways. New
formulas involving geometric numbers, Bernoulli numbers, and Genocchi
numbers are derived in this context.

1. Introduction

The geometric polynomials (also known as Fubini polynomials) are de-
fined as follows (see [22, 24, 26]):

(1.1) ωn(x) =

n∑
k=0

{
n
k

}
k!xk,

where
{
n
k

}
are the Stirling numbers of the second kind. Recall that the

Stirling numbers of the second kind count the number of ways to partition
a set of n objects into k nonempty subsets. In terms of partitions of an
n-set,

{
n
k

}
k! is the number of distinct ordered partitions with k subsets.

For example,
{
3
2

}
= 3 because the set {1, 2, 3} can be partitioned into two

subsets in three ways:
{
{1, 2}, {3}

}
,
{
{1, 3}, {2}

}
and

{
{1}, {2, 3}

}
. The

ordered partitions
{
{1, 2}, {3}

}
,
{
{3}, {1, 2}

}
,
{
{1, 3}, {2}

}
,
{
{2}, {1, 3}

}
,{

{1}, {2, 3}
}

, and
{
{2, 3}, {1}

}
are counted by

{
3
2

}
2! = 6. The first few

geometric polynomials are:

ω0(x) = 1,

ω1(x) = x,

ω2(x) = x+ 2x2,

ω3(x) = x+ 6x2 + 6x3,

ω4(x) = x+ 14x2 + 36x3 + 24x4.
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The geometric polynomials first appeared in Euler’s book [13, Part 2,

§172]. They describe the action of the derivative operator
(
x d
dx

)m
, m =

0, 1, 2, . . . on the function 1/(1− x),(
x
d

dx

)m 1

1− x
=

∞∑
k=0

kmxk =
1

1− x
Fm

(
1

1− x

)
, |x| < 1.

The use of geometric polynomials by Euler was pointed out by K. Boyadzhiev
in [6] and H. Gould mentions these polynomials in [14]. Gould refers to the
book of I. J. Schwatt [24].

In the last two decades, the geometric polynomials have received consid-
erable attention as an effective tool in different topics in analysis, combina-
torics and number theory [4, 5, 7, 8, 10, 12, 11, 16, 17, 19, 20, 22]. In [10]
the authors considered Euler–Seidel matrices method and obtained some
fundamental properties of the geometric polynomials as the following linear
recurrence relations:

ωn+1(x) = x
n∑
k=0

(
n+ 1

k

)
ωk(x),(1.2)

ωn+1(x) =
x

1 + x

n∑
k=0

(
n+ 1

k

)(
ωk(x) + ωk+1(x)

)
,

ωn+1(x) = x
d

dx

(
ωn(x) + xωn(x)

)
.

In this paper, using the exponential generating functions of the geometric
polynomials [4], i.e.,

(1.3)

∞∑
n=0

ωn(x)
zn

n!
=

1

1− x(ez − 1)
,

we shall establish formulas for ωn(x) or ωn−1(x) as sums over all the un-
restricted integer partitions of n. Recall [1] that a partition of a positive
integer n is a weakly decreasing sequence of positive integers

λ1 > λ2 > · · · > λk > 0

whose sum is n,

λ1 + λ2 + · · ·+ λk = n.

The positive integers in the sequence are called parts. To make formulas
more concise, we pad the sequence of parts with zeros to obtain n nonneg-
ative parts.

Theorem 1.1. For n > 0,

ωn(x) =
∑

λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
n!

1λ12λ2 · · ·nλn
xλ1 .
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For example, the case n = 4 of this theorem reads as follows

ω4(x) =

(
4
0

)
4!

14
x4 +

(
3
1

)(
1
0

)
4!

1321
x3 +

(
2
2

)(
2
0

)
4!

1222
x2

+

(
2
1

)(
1
1

)(
1
0

)
4!

122131
x2 +

(
1
1

)(
1
1

)(
1
1

)(
1
0

)
4!

11213141
x

= 24x4 + 36x3 + 6x2 + 8x2 + x

= 24x4 + 36x3 + 14x2 + x,

because the partitions in question are:

(1.4) 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Theorem 1.2. For n > 1,

ωn−1(x) =
1

x+ 1
·

∑
λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
n!

1λ12λ2 · · ·nλn
xλ1

λ1
.

For example, using (1.4) and Theorem 1.2, we can write:

ω3(x) =
1

x+ 1

((
4
0

)
4!

14
x4

4
+

(
3
1

)(
1
0

)
4!

1321
x3

3
+

(
2
2

)(
2
0

)
4!

1222
x2

2

+

(
2
1

)(
1
1

)(
1
0

)
4!

122131
x2

2
+

(
1
1

)(
1
1

)(
1
1

)(
1
0

)
4!

11213141
x

)

=
6x4 + 12x3 + 7x2 + x

x+ 1

=
(x+ 1)(6x3 + 6x2 + x)

x+ 1

= 6x3 + 6x2 + x.

Related to Theorems 1.1 and 1.2, we remark that the coefficient(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
n!

1λ12λ2 · · ·nλn
is the number of preferential arrangements associated with an integer parti-
tion of n and can be seen in the On-Line Encyclopedia of Integer Sequence
[25, A049019].

For x = 1 in (1.1), we get nth geometric number (ordered Bell number or
Fubini number):

ωn = ωn(1) =
n∑
k=0

{
n
k

}
k!.

These numbers were called Fubini numbers by Louis Comtet, because they
count the number of different ways to rearrange the ordering of sums or
integrals in Fubini’s theorem [22]. On the other hand, the nth geometric
number counts the distinct ordered partitions of an n-set. These numbers
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have been studied by many authors. Various characterizations of these num-
bers can be found in the literature [2, 3, 9, 10, 15, 18, 21, 23, 27]. Taking into
account Theorems 1.1 and 1.2, we can write the following decompositions of
the geometric numbers.

Corollary 1.3. For n > 0,

ωn =
∑

λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

· n!.

Corollary 1.4. For n > 1,

ωn−1 =
∑

λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

n!

2λ1
.

Using (1.1) and Theorem 1.1, we easily deduce the following formula for
the Stirling numbers of the second kind as a sum over the partitions of n in
which the largest part has size k.

Corollary 1.5. For n, k > 0,{
n
k

}
=

∑
k+λ2+···+λn=n
k>λ2>...>λn>0

(
k
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1k2λ2 · · ·nλn

· n!

k!
.

According to [17, Theorem 1.2] and [4, eq. (3.29)], we have the following
relations for n > 0:

(1.5)

∫ 0

−1
ωn(x)dx = Bn

and

(1.6) ωn

(
−1

2

)
=
Gn+1

n+ 1
,

where Bn is the nth Bernoulli number and Gn is the nth Genocchi num-
ber. Recall that these numbers are defined by the exponential generating
functions

∞∑
n=0

Bn
zn

n!
=

z

ez − 1
, |z| < 2π

and
∞∑
n=0

Gn
zn

n!
=

2z

ez + 1
, |z| < π.

Over the years, the works of Bernoulli numbers and Genocchi numbers and
their combinatorial relations have received much attention. Using (1.5),
(1.6), and Theorem 1.1, we derive new formulas for Bn and Gn+1 as sums
over all the integer partitions of n.
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Corollary 1.6. For n > 0,

Bn =
∑

λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(−1)λ1
n!

λ1 + 1

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

and

Gn+1 =
∑

λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(−1)λ1
(n+ 1)!

2λ1

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

.

The case n = 4 of this corollary reads as follows:

B4 =
4!

5
· 1

14
− 4!

4
· 3

1321
+

4!

3
· 1

1222
+

4!

4
· 2

122131
− 4!

2
· 1

11213141

=
24

5
− 9 + 2 +

8

3
− 1

2

= − 1

30

and

G5 =
5!

24
· 1

14
− 5!

23
· 3

1321
+

5!

22
· 1

1222
+

5!

22
· 2

122131
− 5!

21
· 1

11213141

=
15

2
− 45

2
+

15

2
+ 10− 5

2
= 0.

Another decomposition for the nth Genocchi number can be easily ob-
tained if we consider Theorem 1.2 and the relation (1.6).

Corollary 1.7. For n > 1,

Gn =
∑

λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

(−1)λ1
n · n!

2λ1−1 · λ1

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

.

For example, the case n = 4 of Corollary 1.7 can be written as:

G4 =
4 · 4!

23 · 4
· 1

14
− 4 · 4!

22 · 3
· 3

1321
+

4 · 4!

21 · 2
· 1

1222

+
4 · 4!

21 · 2
· 2

122131
− 4 · 4!

20 · 1
· 1

11213141

= 3− 12 + 6 + 8− 4

= 1.

The rest of this paper is organized as follows. In the next two sections
we will prove Theorems 1.1 and 1.2. In Section 4 we will provide a de-
composition of the geometric polynomial ωn+1(x) as a sum over the weak
compositions of n into exactly 3 parts.



122 MIRCEA MERCA

2. Proof of Theorem 1.1

Using the generating functions for the geometric polynomials (1.3) and
the exponential series

(2.1) ez =

∞∑
n=0

zn

n!
, |z| < 1,

we can write
∞∑
n=0

ωn(x)
zn

n!

=
1

1− x(ez − 1)

=

(
1− x

∞∑
n=1

zn

n!

)−1

= 1 +
∞∑
j=1

(
x
∞∑
n=1

zn

n!

)j

= 1 +
∞∑
j=1

xj
∞∑
n=1

 ∑
t1+2t2+···+ntn=n
t1+t2+···+tn=j

(
t1 + t2 + · · ·+ tn
t1, t2, . . . , tn

) n∏
i=1

1

i!ti

 zn

= 1 +
∞∑
n=1

( ∑
t1+2t2+···+ntn=n

xt1+t2+···+tn
(
t1 + t2 + · · ·+ tn
t1, t2, . . . , tn

)
×

×
n∏
i=1

1

iti+t2+···+tn

)
zn.

Thus we deduce that

ωn(x)

n!
=

∑
t1+2t2+···+ntn=n

xt1+t2+···+tn
(
t1 + t2 + · · ·+ tn
t1, t2, . . . , tn

) n∏
i=1

1

iti+t2+···+tn
.

We see that this decomposition of ωn(x)/(n!) is a sum over all the partitions
of n. Let λ = (λ1, λ2, . . . , λn) be the conjugate partition of the partition

t1 + 2t2 + · · ·+ ntn = n.

It is clear that λi = ti + ti+1 + · · ·+ tn. In this way, we obtain

ωn(x)

n!
=

∑
λ1+λ2+···+λn=n
λ1>λ2>···>λn>0

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

xλ1 .

This concludes the proof.
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3. Proof of Theorem 1.2

Taking into account the exponential series (2.1) and the logarithmic series

ln(1 + z) =
∞∑
n=1

(−1)n−1

n
zn, |z| < 1,

we can write

d

dz
ln
(
1− x(ez − 1)

)
=

d

dz
ln

(
1− x

∞∑
n=1

zn

n!

)

= − d

dz

∞∑
j=1

xj

j

( ∞∑
n=1

zn

n!

)j

= − d

dz

∞∑
j=1

xj

j

∞∑
n=1

 ∑
t1+t2+···+tn=j
t1+2t2+···+ntn=n

(
t1 + t2 + · · ·+ tn
t1, t2, . . . , tn

) n∏
i=1

(
1

i!

)ti zn

= − d

dz

∞∑
n=1

( ∑
t1+2t2+···+ntn=n

xt1+t2+···+tn

t1 + t2 + · · ·+ tn

(
t1 + t2 + · · ·+ tn
t1, t2, . . . , tn

)
×

×
n∏
i=1

(
1

i

)ti+ti+1+···+tn
)
zn

= − d

dz

∞∑
n=1

 ∑
λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

xλ1

λ1

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

 zn

= −
∞∑
n=1

 ∑
λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

n · xλ1
λ1

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

 zn−1

and

d

dz
ln
(
1− x(ez − 1)

)
= − xez

1− x(ez − 1)

= −x

( ∞∑
n=0

zn

n!

)( ∞∑
n=0

ωn(x)
zn

n!

)

= −x
∞∑
n=0

(
n∑
k=0

ωk(x)

k!(n− k)!

)
zn
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= −x
∞∑
n=0

(
n∑
k=0

(
n

k

)
ωk(x)

)
zn

n!

= −x−
∞∑
n=1

(
x

n−1∑
k=0

(
n

k

)
ωk(x) + xωn(x)

)
zn

n!

= −x−
∞∑
n=1

(
ωn(x) + xωn(x)

)zn
n!
,(3.1)

where we have invoked (1.2). Thus we deduce that

(1 + x)ωn−1(x)

(n− 1)!
=

∑
λ1+λ2+···+λn=n
λ1>λ2>...>λn>0

n · xλ1
λ1

(
λ1
λ2

)(
λ2
λ3

)
· · ·
(
λn
0

)
1λ12λ2 · · ·nλn

and the theorem is proved.

4. Convolutions over weak compositions

Recall that a composition of an integer n is a way of writing n as the sum
of a sequence of positive integers. A weak composition of an integer n is
similar to a composition of n, but allowing terms of the sequence to be zero.
In this section, we show that the geometric polynomials ωn(x) and ωn+1(x)
can be written as a summation over all weak compositions of n into exactly
3 parts.

Theorem 4.1. For n > 0,

ωn+1(x) = x
∑

a+b+c=n

(
n

a, b, c

)
ωa(x)ωb(x),

where a, b, c are nonnegative integers.

Proof. Using the Cauchy product of two power series, we obtain(
1− x

∞∑
n=1

zn

n!

)( ∞∑
n=0

ωn(x)
zn

n!

)
= 1 +

∞∑
n=1

(
ωn(x)

n!
− x

n−1∑
k=0

ωk(x)

k!(n− k!)

)
zn

= 1 +

∞∑
n=1

(
ωn(x)− x

n−1∑
k=0

(
n

k

)
ωk(x)

)
zn

n!

= 1,

where we have invoked (1.2). According to the proof of Theorem 1.2, we
can write

x+
∞∑
n=1

(1 + x)ωn(x)
zn

n!
=

d

dz
ln

(
1− x

∞∑
n=1

zn

n!

)−1

=
d

dz
ln

( ∞∑
n=0

ωn(x)
zn

n!

)
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=

( ∞∑
n=1

ωn(x)
zn−1

(n− 1)!

)( ∞∑
n=0

ωn(x)
zn

n!

)−1
and
∞∑
n=0

ωn+1(x)
zn

n!
=

(
x+

∞∑
n=1

(1 + x)ωn(x)
zn

n!

)( ∞∑
n=0

ωn(x)
zn

n!

)

=

(
−1 +

∞∑
n=0

(1 + x)ωn(x)
zn

n!

)( ∞∑
n=0

ωn(x)
zn

n!

)

= −
∞∑
n=0

ωn(x)
zn

n!
+ (1 + x)

∞∑
n=0

(
n∑
k=0

ωk(x)ωn−k(x)

k!(n− k)!

)
zn.

Thus we deduce that

ωn(x)

(n− 1)!
= −ωn−1(x)

(n− 1)!
+ (1 + x)

n−1∑
k=0

ωk(x)ωn−1−k(x)

k!(n− 1− k)!

or
nωn(x)

n!
= −ωn−1(x)

(n− 1)!
+ (1 + x)

n∑
k=1

ωk−1(x)ωn−k(x)

(k − 1)!(n− k)!

or

(4.1)
nωn(x)

n!
= x

ωn−1(x)

(n− 1)!
+

n∑
k=2

(1 + x)ωk−1(x)

(k − 1)!

ωn−k(x)

(n− k)!
.

On the other hand, by (3.1) we see that

(4.2)

n∑
k=1

x

(k − 1)!

ωn−k(x)

(n− k)!
=


(1 + x)ωn−1(x)

(n− 1)!
, for n > 1,

x, for n = 1.

Taking into account (4.1) and (4.2), we obtain

nωn(x)

n!
=

n∑
k=1

k∑
j=1

x

(j − 1)!

ωk−j(x)

(k − j)!
ωn−k(x)

(n− k)!
.

After a little manipulation we arrive at our identity. �

For example, the weak compositions of 3 are:

0+0+3, 0+1+2, 0+2+1, 1+1+1,
0+3+0, 1+0+2, 2+0+1,
3+0+0, 1+2+0, 2+1+0.

Thus the case n = 3 of Theorem 4.1 reads as follows:

ω4(x) = x

((
3

0, 0, 3

)
ω0(x)ω0(x) + 2

(
3

0, 1, 2

)
ω0(x)ω1(x)

+ 2

(
3

0, 2, 1

)
ω0(x)ω2(x) + 2

(
3

0, 3, 0

)
ω0(x)ω3(x)
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+

(
3

1, 1, 1

)
ω1(x)ω1(x) + 2

(
3

1, 2, 0

)
ω1(x)ω2(x)

)
= x

(
1 + 6x+ 6(x+ 2x2) + 2(x+ 6x2 + 6x3) + 6x2 + 6x(x+ 2x2)

)
= x+ 14x2 + 36x3 + 24x4.

Remark: Theorem 4.1 can be written in the following equivalent form: for
n > 0,

nωn(x) = x
∑

a+b+c=n

(
n

a, b, c

)
aωb(x)ωc(x),

where a, b, c are nonnegative integers.

As consequences of Theorem 4.1, we remark the following convolution
identities involving geometric numbers and Genocchi numbers. These iden-
tities seem to be new.

Corollary 4.3. For n > 0,

ωn+1 =
∑

a+b+c=n

(
n

a, b, c

)
ωaωb,

where a, b, c are nonnegative integers.

Corollary 4.4. For n > 1,

Gn =
1

2− 2n

∑
a+b+c=n

(
n

a, b, c

)
GaGb,

where a, b, c are nonnegative integers.

Remark: Taking into account that Gn = 2(1− 2n)Bn, the last corollary can
be rewritten in terms of the Bernoulli numbers as follows: for n > 1,

Bn =
1

1− n
∑

a+b+c=n

(
n

a, b, c

)
(1− 2a)(1− 2b)

1− 2n
BaBb,

where a, b, c are nonnegative integers.
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