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THE LOCALIZATION NUMBER AND METRIC

DIMENSION OF GRAPHS OF DIAMETER 2

ANTHONY BONATO, MELISSA A. HUGGAN, AND TRENT MARBACH

Abstract. We consider the localization number and metric dimension
of certain graphs of diameter 2, focusing on families of Kneser graphs
and graphs without 4-cycles. For the Kneser graphs with a diameter
of 2, we find upper and lower bounds for the localization number and
metric dimension, and in many cases these parameters differ only by an
additive constant. Our results on the metric dimension of Kneser graphs
improve on earlier ones, yielding exact values in infinitely many cases.
We determine bounds on the localization number and metric dimension
of Moore graphs of diameter 2 and polarity graphs.

1. Introduction

Graph searching considers combinatorial models for the detection or neu-
tralization of an adversary’s activity on a graph. Such models often focus
on vertex-pursuit games, where agents or cops are attempting to capture
an adversary or robber loose on the vertices of a graph. The players move
at alternating ticks of the clock and have restrictions on their movements
or relative speed depending on the game played. The most studied such
game is Cops and Robbers, where the cops and robber can only move to
vertices with which they share an edge. The cop number is the minimum
number of cops needed to guarantee the robber’s capture. How the players
move and the rules of capture depend on which variant is studied. These
variants are motivated by problems in practice or inspired by foundational
issues in computer science, discrete mathematics, and artificial intelligence,
such as robotics and network security. For a survey of graph searching,
see [10, 11, 20], and see [9] for more background on Cops and Robbers.

We investigate the localization game and metric dimension in the present
work. In the localization game, two players operate on a connected graph,
with one player controlling a set of k cops, where k is a positive integer,
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and the second controlling a single robber. Unlike in Cops and Robbers, the
cops play with imperfect information: the robber is invisible to the cops
during gameplay. The game is played over a sequence of discrete time steps;
a round is a cop move and a subsequent robber move. The robber occupies
a vertex of the graph, and when the robber is ready to move during a round,
he may move to a neighboring vertex or remain on his current vertex. A
move for the cops is a placement of cops on a set of vertices. Note that the
cops are not limited to moving to neighboring vertices. At the beginning
of the game, the robber chooses his starting vertex. After this, the cops
move first, followed by the robber; thereafter, they move on alternate time
steps. Observe that any subset of cops may move in a given round. In
each round, the cops occupy a set of vertices u1, u2, . . . , uk and each cop
sends out a cop probe, which gives their distance di, from ui to the robber,
where 1 ≤ i ≤ k. Hence, in each round, the cops determine a distance vector
(d1, d2, . . . , dk) of cop probes, which is unique up to the ordering of the cops.
Note that relative to the placement of the cops, there may be more than one
vertex with the same distance vector. For example, in an n-vertex clique
with a single cop, so long as the cop is not on the robber’s vertex, there
are n− 1 such vertices. The cops win if they have a strategy to determine,
after finitely many rounds, the vertex the robber occupies, at which time
we say that the cops capture the robber. If the robber is not located, then
the robber may move in the next round, and the cops may move to other
vertices resulting in an updated distance vector. The robber wins if he is
never captured.

For a connected graph G, define the localization number of G, written
ζ(G), to be the least integer k for which k cops have a winning strategy
over any possible strategy of the robber (that is, we consider the worst case
for the cops in that the robber a priori knows the entire strategy of the
cops). As placing a cop on each vertex gives a distance vector containing a
0, which corresponds to the location of the robber, ζ(G) is at most n and
so is well-defined. The localization game was first introduced for one cop by
Seager [29, 30] and was further studied in, for example, [7, 8, 13, 14, 16, 17,
23].

In [13], Bosek et al. showed that ζ(G) is bounded above by the pathwidth
of G and that the localization number is unbounded even on graphs obtained
by adding a universal vertex to a tree. They also proved that computing ζ(G)
is NP-hard for graphs with diameter 2, and they studied the localization
game for geometric graphs. In [17], the localization number was studied for
binomial random graphs with diameter 2. Bonato and Kinnersley [8] studied
the localization number for graphs based on their degeneracy. In [8], they
resolved a conjecture of Bosek et al. [13] relating ζ(G) and the chromatic
number; further, they proved that the localization number of outerplanar
graphs is at most 2, and they proved an asymptotically tight upper bound
on the localization number of the hypercube. The localization number of
the incidence graphs of designs was studied in [7]. In particular, they gave
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exact values for the localization number of the incidence graphs of projective
and affine planes, and bounds for the incidence graphs of Steiner systems
and transversal designs. The capture time for the localization number was
introduced and studied in [4].

The metric dimension of a graph G, written β(G) (also referred to as
µ(G) and dim(G) in the literature), is the minimum number of cops needed
in the localization game so that the cops can win in one round. Hence,
ζ(G) ≤ β(G), but in many cases this inequality is far from tight. Metric
dimension was introduced in the 1970s by Slater [31] and, independently, by
Harary and Melter [22]. A resolving set is a set of β(G) vertices that the cops
can play on to win the localization game in one round. A survey on metric
dimension and related concepts may be found in [3]. Graphs of diameter
2 with metric dimension 2 were characterized in [25]. The minimum and
maximum orders of a graph with a given diameter and metric dimension
were studied in [24].

For a complete graph of order n (that is, a graph of diameter 1), the
metric dimension and localization numbers are equal to n−1. For graphs of
diameter 2, where distance probes return either 0, 1, or 2, the determination
of these parameters is a much more elusive problem. In this paper, we focus
on the localization number of certain graphs of diameter 2; in particular,
the Kneser graphs of diameter 2 and diameter 2 graphs without 4-cycles.

The first family we consider are Kneser graphs, which are a well-known
family of nonintersection graphs. For integers k, n ≥ 1 with n > k, the
Kneser graph K(k, n) has vertices labeled by the k-tuples taken from

[n] = {1, 2, . . . , n},

with two vertices adjacent if and only if their vertex labels are disjoint.
Kneser graphs were introduced by Lovász [26] to resolve Kneser’s conjecture
on their chromatic number. In section 2, we study the Kneser graphs that
have diameter 2 and find upper and lower bounds for the localization number
and metric dimension of these graphs, which in many cases differ only by
an additive constant; see Theorem 2.9. While the work on the localization
number of these graphs is new, the metric dimension for Kneser graphs was
previously studied in [2, 3]. Before this work, no asymptotically tight results
were known for Kneser graphs for infinite families when k is a fixed constant.
For each fixed even k ≥ 4, the results of this paper give the exact value of
the metric dimension and localization number up to an additive constant of
an infinite subclass of Kneser graphs. In particular, for a fixed even k ≥ 6,
Corollary 2.4 and Lemma 2.8 provide that β(K(k, n)) = n/2 + n/k for an
infinite number of values of n.

In section 3, we consider graphs of diameter 2 with no 4-cycles as sub-
graphs. As proven in [12], there are three subclasses of graphs that have
diameter 2 and contain no 4-cycle: graphs with maximum degree n − 1,
the Moore graphs, and the polarity graphs. We define the latter two graph
families in section 3. The family of graphs with maximum degree n− 1 and
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no 4-cycles are the graphs with a universal vertex u, which when removed
leaves isolated vertices (that is, vertices of degree 0) or paths of length two.
The localization number of this graph will be 1 if removing the universal
vertex leaves n − 1 isolated vertices and 2 otherwise. If k is the number of
connected components remaining when the universal vertex is deleted, then
the metric dimension of this graph will be k, except in the case of 3-vertex
clique where it is 2. We consider the remaining two graph families. In sec-
tion 3, we bound the metric dimension and localization number of the Moore
graphs of diameter 2, including the Hoffman–Singleton graph. In particular,
we show in Theorem 3.1 that a k-regular Moore graph G of diameter 2 has
metric dimension k ≤ β(G) ≤ 2k − 3 when k ≥ 3, and in Theorem 3.3 that
G’s localization number is either k − 1 or k when k ≥ 5. We finish with
Theorems 3.4 and 3.5, which together provide that if G is a polarity graph
of order q2 + q + 1, where q is a prime power, then 2q − 5 ≤ β(G) ≤ 2q − 1
and (2q − 5)/3 ≤ ζ(G) ≤ 2q − 1.

Throughout, all graphs considered are simple, undirected, connected, and
finite. For a general reference for graph theory, see [32]. The closed neigh-
borhood of u, written N [u], consists of a vertex u along with neighbors of
u. The second neighborhood of u, written N2(u), are the vertices of distance
2 to u. We refer to vertices in N2(u) as second neighbors. The distance
between vertices u and v is denoted by d(u, v).

2. Kneser graphs

A Kneser graph has a diameter of 2 if and only if n ≥ 3k, and we focus
on this case. The Kneser graph K(2, 6), which is of diameter 2, is depicted
Figure 1.

The metric dimension of Kneser graphs has been studied previously [2, 3],
and upper bounds were given for a variety of parameter sets. When k is
fixed and n ≥ 3k, the best asymptotic result of these used a partitioning
technique, which yielded an upper bound:

β(K(k, n)) ≤
⌈

n

2k − 1

⌉((
2k − 1

k

)
− 1

)
∼ n

22k

k
√
πk

.

We provide an upper and lower bound that differs from n/2 + n/k by an
additive constant for both the localization number and metric dimension of
Kneser graphs in infinitely many cases, and represents an improvement for
all cases where n is sufficiently large and k ≥ 3. Our proofs rely on the new
notion of hypergraph detection, which we define next.

2.1. Hypergraph detection. A hypergraph H = (V,E) is a set of ver-
tices V along with a collection E of subsets of V . The elements of E are
called hyperedges. We write V (H) and E(H) to represent the vertex set and
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hyperedge set associated with the hypergraph H. If all hyperedges have car-
dinality k, we say that the hypergraph is k-uniform. If each vertex in V is
contained in exactly r hyperedges, we say that the hypergraph is r-regular.
We consider the notions of a cycle and girth originally due to Berge [5], in
which a cycle of length ℓ is defined as a sequence of ℓ vertices (v1, v2, . . . , vℓ)
such that {vi, vi+1} occur in some hyperedge for all 1 ≤ i ≤ ℓ − 1, as do
{v1, vℓ}. The girth is the length of the smallest cycle in the hypergraph.
The degree of a vertex u, written d(u), is the number of hyperedges that
contain u. The neighborhood of u, written N(u), is the set of vertices
{v | {u, v} ∈ h for some h ∈ E(H)}.

Consider the following hypergraph detection problem. Let H = (V,E)
be a hypergraph with n vertices and g hyperedges with each hyperedge of
maximum cardinality k. For any set of k′ vertices B, where k′ ≤ k, define the
detection vector (p1, p2, . . . , pg) by setting pi to be 0, 1, or k if the hyperedge
hi contain zero, at least one (but not k), or k vertices in B, respectively. If
any two such selections of B will always produce a different detection vector
on H, then we call the hypergraph k′-detectable. We note that if k′ < k,
then pi will only be 0 or 1 for each i ∈ [g].

When n ≥ 3k, constructing a k-detectable, k-uniform hypergraph on n
vertices is equivalent to constructing a resolving set for K(k, n). This is
shown in the following two lemmas. The reason for using this conversion
to hypergraphs is twofold: first, it simplifies the discussion significantly,
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Figure 1. The Kneser graph K(2, 6) with a resolving set as
shaded circles.
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and second, it allows us to apply theorems that were written for hyper-
graphs more readily. We first construct a resolving set for K(k, n) from a
k-detectable, k-uniform hypergraph on n vertices.

Lemma 2.1. Let n ≥ 3k. If H is a k-detectable, k-uniform hypergraph on
n vertices and g hyperedges, then there exists a resolving set for K(k, n) of
cardinality g.

Proof. We write the hyperedges of H as E(H) = {h1, h2, . . . , hg}. Each
hyperedge of H is a k-tuple of [n]. We then take si ∈ V (K(k, n)) with
si = hi, for each i ∈ [g]. We claim that S = {s1, s2, . . . , sg} is a resolving
set of K(k, n). Note that the only difference between si and hi is that we
consider si to be a vertex of K(k, n) and hi to be a hyperedge of H.

For the sake of contradiction, assume that S is not a resolving set of
K(k, n). There exists vertices v1, v2 ∈ V (K(k, n)) such that d(s, v1) =
d(s, v2) for all s ∈ S. If d(si, v1) = 0 for any si ∈ S, then v1 and v2 can
be distinguished, so we assume d(si, v1) > 0 and similarly d(si, v2) > 0.
Consider the two selections of k vertices, B1 = v1 and B2 = v2, in the
hypergraph detection problem on H. Note that the only difference between
Bi and vi is that the first is a selection of k vertices in a hypergraph, and
the second is a vertex of K(k, n). We will show that B1 and B2 cannot be
distinguished using their detection vectors, and so we will have the required
contradiction.

For each si ∈ S, if d(si, v1) = d(si, v2) = 1, then si ∩ v1 = si ∩ v2 = ∅.
This implies that the hyperedge hi does not contain any vertices in common
with B1 and B2, and so pi of the detection vector will return 0 for both B1

and B2.
For each si ∈ S, if d(si, v1) = d(si, v2) = 2, then si∩v1 ̸= ∅ and si∩v2 ̸= ∅.

Also, note that both si ∩ v1 and si ∩ v2 have cardinality strictly less than
k. This implies that the hyperedge hi does contain some vertex (but not k
vertices) in common with B1 and B2, and so pi = 1 for both B1 and B2.

In both cases, each pi is the same in both of the detection vectors for
B1 and B2. However, B1 ̸= B2, so the hypergraph is not k-detectable,
which forms the contradiction. Therefore, S is a resolving set of K(k, n) of
cardinality g, and we are done. □

Likewise, we may construct a k-detectable, k-uniform hypergraph on n
vertices from a resolving set for K(k, n).

Lemma 2.2. Let n ≥ 3k. If there exists a resolving set S for K(k, n) of
cardinality g, then there exists a k-detectable, k-uniform hypergraph on n
vertices and g hyperedges.

Proof. We write S = {s1, s2, . . . , sg}. Each element of the resolving set S
is a k-tuple of [n]. We define a k-uniform hypergraph H on vertices [n]
by defining the edges of H as hi = si for i ∈ [g]. We claim that H is k-
detectable. The only difference between si and hi is that we consider si to
be a vertex of K(k, n) and hi to be a hyperedge of H.
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For the sake of contradiction, assume that H is not k-detectable. As
a result, there exist two sets of vertices B1 and B2 of cardinality k on the
hypergraph that cannot be distinguished by a detection vector. This implies
that for each pi in the detection vector, pi = 0 for both B1 and B2, or pi = 1
for both B1 and B2. We cannot have pi = k, or else the detection vector
instantly distinguishes B1 and B2. We let v1 = B1 and v2 = B2 be two
vertices of K(k, n). To complete the contradiction, we will show that v1 and
v2 are not resolved by S.

If pi = 0 on both B1 and B2, then hi has no elements in common with
B1 or B2, and as a result, si has no elements in common with v1 or v2, and
so si has distance 1 to v1 and v2. If pi = 1 on both B1 and B2, then hi has
some elements (but less than k elements) in common with B1 or B2, and as
a result, si has some elements (but less than k elements) in common with
v1 or v2, and so si has distance 2 to v1 and v2.

But then every element of S has the same distance to both v1 and v2
in K(k, n), and so v1 and v2 cannot be resolved by S, which forms the
contradiction. Therefore, H is a k-detectable, k-uniform hypergraph on n
vertices and g hyperedges, as required. □

As an example, we take the 6-cycle considered as a 2-uniform, 2-regular
hypergraph with vertices {1, 2, 3, 4, 5, 6} and edge set

E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {1, 6}}.

The reader may verify that this hypergraph is 2-detectable. This edge set
E also forms a resolving set of K(2, 6), which is the resolving set provided
in Figure 1.

In the following, we provide a lower bound on the number of hyperedges
in a k-detectable hypergraph with hyperedges of cardinality at most k.

Lemma 2.3. Let k ≥ 3, n ≥ 3k, and if k = 3, then let n ≥ 18. If H is a
k-detectable hypergraph of n vertices with each hyperedge having cardinality
at most k such that no hyperedge occurs twice, then H has at least n/2+n/k
hyperedges if k ̸= 4, and at least (3n− 1)/4 if k = 4.

Proof. We assume first thatH is a k-detectable hypergraph of n vertices with
no isolated hyperedges such that H has the smallest number of hyperedges
possible. We will deal with the case that H contains isolated hyperedges at
the end of the proof. We first prove two properties.

Property 1. If u, v ∈ V (H) such that v /∈ N(u), then d(u) + d(v) ≥ k.

To prove the property, assume for the sake of contradiction that

d(u) + d(v) < k.

This will imply that there are two k-sets B1 and B2 of vertices that are
indistinguishable, contradicting H being k-detectable. We may assume that
d(u) < d(v) without loss of generality. As a result, if d(u) ≥ k/2 we are
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done, so we assume d(u) ≤ ⌊k/2⌋. Note that by assumption, {u, v} does not
occur in a hyperedge of H.

We select a set of k − 1 vertices T ⊆ V (H) \ {u, v} that contains at
least one vertex from each hyperedge in Iu and Iv, where Iu is the set of
hyperedges incident to vertex u. This is always possible, as first, we have
assumed d(u) + d(v) < k so T has enough vertices to cover each hyperedge
incident with u and v, and second that there are at least k − 1 vertices in
V (H) \ {u, v} since n− 2 ≥ 3k − 2 ≥ k − 1, meaning that there are enough
unique vertices to define T . Note that while T contains one vertex from each
edge incident to u and v, T may also contain other vertices of V (H)\{u, v},
even if they are not incident to u or v.

We also select T such that there is no hyperedge h ∈ E(H) of cardinality
k such that h ⊆ T ∪ {u, v}. To see this is possible, suppose we have chosen
T containing some hyperedge h1 ∈ E(H) of cardinality k such that

h1 ⊆ T ∪ {u, v}.

If we remove any vertex from T , then h1 will still intersect T as h1 intersects
T in k− 1 vertices. Also, there are k− 2 hyperedges in (Iu ∪ Iv) \ {h1} that
intersect T . Therefore, some vertex x1 can be removed from T such that
T \ {x1} intersects all hyperedges in Iu ∪ Iv. We can then add a vertex
x2 ∈ V (H) \ {u, v, x1} to T \ {x1} to form T ′. If some hyperedge

h2 ∈ E(H) \ {h1}

of cardinality k has h2 ⊆ T ′ ∪ {u, v}, then we can instead add some other
vertex x3 ∈ V (H) \ {u, v, x1, x2}, and so on. There can be at most k − 1
points {x1, x2, . . . , xk−1} constructed in this way, as there are at most k− 1
hyperedges in Iu ∪ Iv by our assumption. As n ≥ 3k, there are n − 2k ≥ k
vertices in V (H) \ {u, v} that are not in T or in {x1, x2, . . . , xk−1}. Adding
one of these vertices to T \{x1} then results in the set of vertices required. As
a result, we can assume that T was chosen such that there is no hyperedge
h ∈ E(H) of cardinality k such that h ⊆ T ∪ {u, v}.

We may choose either the k vertices in B1 = T ∪ {u} or the k vertices in
B2 = T ∪ {v}. In both B1 and B2, the value of pi in the detection vector
will be the same for each i, in that all hyperedges hi that contain a vertex
in T ∪ {u, v} will yield pi = 1 (no pi = k due to the construction of T ) and
that all hyperedges hi that do not contain a vertex in T ∪ {u, v} will yield
pi = 0, independent of whether u or v is added to T . This contradicts the
assumption that H is k-detectable. Thus, the claim that d(u) + d(v) ≥ k
must be true and Property 1 holds.

Property 2. If u, v ∈ V (H) with v ∈ N(u), then d(u) + d(v) ≥ k + 2.

To prove Property 2, assume for the sake of contradiction that

d(u) + d(v) < k + 2.
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Say that {u, v} occurs in some hyperedge h. There may be many such
hyperedges, and we can pick any one except when {u, v} is a hyperedge in
E(H), in which case we must have h = {u, v}.

Select a set of k− 1 vertices T ⊆ V (H) \ {u, v} that contains at least one
vertex from each hyperedge in Iu\{h} and in Iv\{h}. This is always possible
for two reasons. First, because we have assumed d(u) − 1 + d(v) − 1 < k,
and so there are enough vertices in T to intersect each of these hyperedges.
Second, there are at least n−k > k−1 vertices V (H) that are not contained
in h; thus, there are a sufficient number of vertices in V (H) \ h from which
to choose T.

Let E′ be the set of hyperedges that intersect u or v, but not both. Note
that |E′| ≤ d(u) − 1 + d(v) − 1 ≤ k − 1. We also select T such that there
is no hyperedge h′ ∈ E′ of cardinality k such that h′ ⊆ T ∪ {u, v}. To see
this is possible, suppose we have chosen T containing hyperedge h1 ∈ E′

of cardinality k such that h1 ⊆ T ∪ {u, v}. If we remove any vertex from
T , then h1 will still intersect T as h1 intersects T in k − 1 vertices. Also,
there are at most k− 2 hyperedges in (Iu ∪ Iv) \ {h, h1}, each of which must
intersect T . Therefore, some vertex x1 can be removed from T such that
T \ {x1} intersects all hyperedges in (Iu ∪ Iv) \ {h}. We can then add a
vertex x2 ∈ V (H) \ {u, v, x1} to T \ {x1} to form T ′. If some hyperedge
h2 ∈ E′ \ {h1} of cardinality k has h2 ⊆ T ′ ∪ {u, v}, then we can instead
add some other vertex x3 ∈ V (H) \ {u, v, x1, x2}, and so on. There can
be at most |E′| points {x1, x2, . . . , x|E′|} constructed in this way, as there
are at most |E′| hyperedges in E′. As n ≥ 3k and |E′| ≤ k − 1, there are
n− 2− (k− 1)− |E′| ≥ n− 2k ≥ k vertex in V (H) \ {u, v} that are not in T
or in {x1, x2, . . . , x|E′|}. Adding one of these vertices to T \{x1} then results
in the set of vertices required. As a consequence, we can assume that T was
originally chosen such that there is no hyperedge h ∈ E′ of cardinality k
such that h ⊆ T ∪ {u, v}.

Let B1 = T ∪ {u} and B2 = T ∪ {v}. In either case, each pi is identical
in the detection vectors for both B1 and B2, in that all hyperedges hi that
contain a vertex in T ∪{u, v} yield pi = 1 (pi ̸= k due to the construction of
T ) and that all hyperedges hi that do not contain a vertex in T ∪{u, v} yield
pi = 0, independent of whether u or v is added to T . This contradicts the
assumption that H is k-detectable. Thus, the claim that d(u)+d(v) ≥ k+2
must be true and Property 2 holds.

Let u be a vertex of minimum degree δ and let S be the set of vertices of
degree k/2 or (k + 1)/2. We consider five cases, and in each, show that the
number of hyperedges is at least n/2 + n/k if k ̸= 4 and at least (3n− 1)/4
if k = 4. For ease of notation, we define m = n/2 + n/k, and so

3n− 1

4
= m− 1

4
.
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Case 1: δ < k/2− 1.
In this case, there is one vertex that obtains the minimum degree of at
most k/2 − 3/2, and the remaining n − 1 vertices have a degree of at
least k/2 + 3/2, by Properties 1 and 2. The number of hyperedges can
be calculated as ∑

u∈V (H)

d(u)

k
≥ δ + (n− 1)(k/2 + 3/2)

k

≥ (n− 1)

(
1

2
+

3

2k

)
=

n

2
+

n

k
+

n

2k
− 1

2
− 3

2k
≥ m.

Note that the inequality holds for all k ≥ 3.
Case 2: δ = k/2− 1.

We then have that S is empty by Properties 1 and 2 as all vertices
V (H) \ {u} will have degree at least k/2+1. Let u be the unique vertex
of degree δ, and let S′ denote the vertices of degree exactly k/2+1. Note
that the vertices in S′ cannot be neighbors of u, by Property 2. As there
are no repeated hyperedges, there must be at least ⌊log2(δ)+ 1⌋ vertices
in the hyperedges from u. We say that S′′ is the set of vertices of degree
at least k/2+2, so |S′′| ≥ ⌊log2(δ)+1⌋. We have that |S′| = n−1−|S′′|.
The number of hyperedges may be calculated as

∑
u∈V (H)

d(u)

k
≥ (k/2− 1) + |S′|(k/2 + 1) + |S′′|(k/2 + 2)

k

=
n

2
+

n

k
− 2

k
+

|S′′|
k

≥ n

2
+

n

k
+

⌊log2(δ)⌋ − 1

k
.

When k ≥ 6, this value is greater than or equal to m. Otherwise, k = 4
since δ = k/2− 1 implies that k is even, and the number of hyperedges
is greater than or equal to m− 1/4.

Case 3: δ = (k − 1)/2.
In this case, S is potentially nonempty. We investigate the cardinality of
S. By Property 2, any pair of vertices in S∪{u} cannot occur together in
a hyperedge. There are at least (k+1)/2 hyperedges incident with each
vertex in S (as k is odd in this case) and at least (k − 1)/2 hyperedges
incident with u. Each of these hyperedges are unique, giving

|S|k + 1

2
+

k − 1

2
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hyperedges that intersect S ∪ {u}. We assume

|S| ≤ n

k + 1
+

2n

k(k + 1)
− k − 1

k + 1
,

or else the number of hyperedges that intersect S ∪ {u} is larger than
n/2 + n/k, and so we would be finished. As each vertex not in S ∪ {u}
has degree at least (k + 1)/2 + 1, we have the number of hyperedges as∑

u∈V (H)

d(u)

k
≥ δ + |S|(k + 1)/2 + (n− |S| − 1)((k + 1)/2 + 1)

k

=
n

2
+

n

k
+

n

2k
− 2

k
− |S|

k

≥ n

2
+

n

k
+

n

2k
− 2

k
−
(

n

k(k + 1)
+

2n

k2(k + 1)
− k − 1

k(k + 1)

)
.

By direct calculation, it may be verified that this last value is greater
than or equal to m when n ≥ (2k2 + 6k)/(k2 − k − 4), which is always
true for k ≥ 4 and n ≥ 3k, and is true for k = 3 when n ≥ 18.

Case 4: δ = k/2.
We then have that S is nonempty. In this case, we also investigate the
set S′ of vertices of degree k/2 + 1. The number of hyperedges in H is
then∑

u∈V (H)

d(u)

k
≥ k

2
|S|+

(
k

2
+ 1

)
|S′|+

(
k

2
+ 2

)
(n− |S| − |S′|)

=
n

2
+

n

k
+

n

k
− 2|S|

k
− |S′|

k
.

We are done, unless n/k−2|S|/k−|S′|/k < 0. This can only be the case
if |S′| > n− 2|S|. As such, we suppose that this is the case, and we will
show that the number of hyperedges is larger than m. We note that any
hyperedge containing a vertex in S cannot contain a vertex in S or S′

by Property 2. There are k|S|/2 hyperedges that contain a vertex in S.
There are at least a further (k/2+1)|S′|/k = (1/2+1/k)|S′| hyperedges
that contain a vertex in S′. This implies that there are at least

k

2
|S|+

(
1

2
+

1

k

)
|S′| > k

2
|S|+

(
1

2
+

1

k

)
(n− 2|S|)

=
n

2
+

n

k
+ |S|

(
k

2
− 2

(
1

2
+

1

k

))
≥ m

hyperedges in H, where this last inequality holds as δ = k/2 implies k is
even and so k ≥ 4 in this case.

Case 5: δ = (k + 1)/2.
We then have that S is nonempty. We investigate the cardinality of
S. By Property 2, any pair of vertices in S cannot occur together in a
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hyperedge. There are at least (k + 1)/2 hyperedges incident with each
vertex in S. Each of these hyperedges are unique, giving (k + 1)|S|/2
hyperedges that intersect S. We assume

|S| ≤ n

k + 1
+

2n

k(k + 1)
,

or else the number of hyperedges that intersect S is larger than n/2+n/k,
and so we would be finished. As each vertex not in S has degree at least
(k + 3)/2, we have the number of hyperedges as∑

u∈V (H)

d(u)

k
≥ |S|(k + 1)/2 + (n− |S|)(k + 3)/2

k

=
n

2
+

n

k
+

n

2k
− |S|

k

≥ n

2
+

n

k
+

n

2k
− n

k(k + 1)
− 2n

k2(k + 1)

≥ m,

where the last inequality follows as k ≥ 3.
Hence, in all cases with no isolated hyperedges, we have that the hyper-

graph has the desired number of hyperedges. Now consider the final case,
where H contains an isolated hyperedge, say {u}. Form the hypergraph H ′

by removing u from all hyperedges in H except for hyperedge {u}. Note
that H and H ′ contain the same number of vertices and hyperedges. If H
is k-detectable, then so is H ′. However, if H ′ is k-detectable, H may not
be. It is then always beneficial to restrict to hypergraphs where any vertex
that is contained in an isolated hyperedge will have degree 1. Suppose H ′

contains p isolated hyperedges. We construct a hypergraph H ′′ by removing
these p isolated hyperedges from H ′. Observe that H ′′ has n − p vertices
and no isolated hyperedges, and as our work above shows, H ′′ has at least
(n−p)/2+(n−p)/k hyperedges if k ̸= 4 and at least (n−p)/2+(n−p)/4−1/4
if k = 4. We can then conclude that H ′ has at least

n− p

2
+

n− p

k
+ p ≥ n

2
+

n

k

hyperedges if k ̸= 4 and at least

n− p

2
+

n− p

4
− 1

4
+ p ≥ n

2
+

n

4
− 1

4

if k = 4. As a result, the proof is complete. □

An immediate consequence of Lemmas 2.1, 2.2, and 2.3 is the following.

Corollary 2.4. If n ≥ 3k and k ≥ 3, then β(K(k, n)) ≥ n/2 + n/k. If
k = 4, then β(K(4, n)) ≥ (3n− 1)/4.

Perhaps surprisingly, we may use Lemma 2.3 to provide a lower bound
on the localization number of Kneser graphs.
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Lemma 2.5. If n ≥ 3k and k ≥ 3, then

ζ(K(k, n)) ≥ n

2
+

n

k
− k

2
− 1.

If k = 4, then

ζ(K(4, n)) ≥ 3n− 13

4
.

Proof. If we have g = ζ(K(k, n)) cops, then there is some time during play
when the robber moves from a vertex u to a vertex in N(u), and is then
captured by the cops. An observation to make here is that N(u) contains
all the vertices of K(k, n) that contain no elements of u. (Recall that u is
a k-tuple of [n].) As a result, the vertices in N(u) will be labeled by each
k-tuple of [n] \ {u}, and the induced subgraph of K(k, n) on the vertex set
N(u), which we write as K(k, n) |N(u) for the rest of the proof, is isomorphic
to K(k, n− k).

Suppose that during the final play, the cops were on vertices given by
X = {s1, s2, . . . , sg}. Define the hyperedges hi = si \ {u}, and consider the
set X ′ = {h1, h2, . . . , hg}. Observe that X ′ can be considered as a set of
hyperedges with cardinality at most k from a hypergraph H on the n − k
vertices V (K(k, n)) \ {u}. We remove any repeated hyperedges from H and
adjust g accordingly. We now show that H is k-detectable.

For the sake of contradiction, assume that H is not k-detectable. There
exists two k-sets B1 and B2 of vertices (selected from V (H) = V (K(k, n)) \
{u}) on the hypergraph with identical detection vectors. This implies that
each hyperedge hi will yield pi = 0 for both B1 and B2, or pi = 1 for both
B1 and B2. Note that a hyperedge hi will not yield pi = k, or else B1 and B2

are instantly distinguishable. We let v1 = B1 and v2 = B2 be two vertices
of K(k, n) |N(u). To complete the contradiction, we will show that v1 and
v2 are not resolved by S.

If hyperedge hi yields pi = 0 for both B1 and B2, then hi has no elements
in common with B1 or B2, and as a result, si has no elements in common
with v1 or v2, and so si has distance 1 to v1 and v2. If hyperedge hi yields
pi = 1 for both B1 and B2, then hi has some elements (but not k elements)
in common with B1 and with B2, and as a result si has some elements (but
not k elements) in common with v1 and v2, and so si has distance 2 to v1
and v2.

But then every element of X has the same distance to v1 and v2, and so v1
and v2 cannot be resolved by S, which forms the contradiction. Therefore,
we have that H must be k-detectable. We then have that H is a k-detectable
hypergraph with each hyperedge having cardinality at most k such that
no hyperedge occurs twice. The result then follows from Lemma 2.3 by
substituting n− k for n. □

This completes our discussion of the lower bounds for both the metric
dimension and localization number for Kneser graphs. Next, we consider an
upper bound of the metric dimension for the Kneser graphs. Upper bounds



42 A. BONATO, M. A. HUGGAN, AND T. MARBACH

are given on the minimum number of hyperedges required in a k′-detectable,
k-uniform hypergraph, obtained by showing that any k-uniform hypergraph
with a sufficiently large minimum degree and girth implies the hypergraph
is k′-detectable. We then utilize an example of a k-uniform hypergraph with
a sufficiently large minimum degree and girth.

Lemma 2.6. If H is a k-uniform hypergraph with minimum degree at least
k′/2 + 1 and girth at least 5, where k′ ≤ k, then H is k′-detectable.

Proof. Suppose that B is a selection of a set of k′ vertices. Let E′ be the
subset of hyperedges in E = H(E) containing a vertex of B. That is, E′

contains those hyperedges hi that yield pi = 1. Note that if v ∈ B, then
every hyperedge in E that intersects v must be in E′. Said in another way, if
some vertex v occurs in less than d(v) hyperedges of E′, then it implies that
v /∈ B. Define S as the collection of vertices v such that every hyperedge in
E that intersects v is in E′.

We note that B ⊆ S. However, we assert that either

S = B or S = B ∪ {v1}
for some vertex v1. To see this, suppose for the sake of contradiction that a
second vertex v2 /∈ B ∪ {v1} is in S. Each hyperedge adjacent to v1 must
contain a vertex of B, and so at least k′/2 + 1 vertices in B have distance
1 from v1. Similarly, at least k′/2 + 1 vertices in B have distance 1 from
v2. As the hypergraph’s girth is at least 5, there can only be one vertex
of B that is distance 1 from both v1 and v2. But then there are at least
k′ + 1 distinct vertices in B of distance 1 from either v1 or v2, which gives
the contradiction.

Now we must show that given S, the cop player may deduce B. If S
has cardinality k′, then the cop player can immediately deduce that B = S.
Otherwise, suppose that S has cardinality k′ + 1. There is precisely one
vertex v in S such that every hyperedge that contains v also contains another
vertex of S. To see that there is at least one such vertex, note that the one
vertex in S \ B must have this property. To see that there cannot be two
such vertices, suppose for the sake of contradiction that there is another
vertex v′ ∈ S with this property. As the girth of the hypergraph is at least
5, there can only be one vertex of B that is distance 1 from both v and v′.
But then there are at least k′ + 1 vertices in B of distance 1 from either
v or v′, which gives the contradiction. As a result, the cops identify that
B = S \ {v}. □

Note that if the minimum degree is large, then the hypergraph is k′-
detectable for many values of k′.

Corollary 2.7. If H is a k-uniform hypergraph with minimum degree at
least k/2 + 1 and girth at least 5, then H is k′-detectable for all k′ ≤ k.

In the following lemma, we provide a hypergraph with the properties re-
quired by the antecedent of Corollary 2.7, and hence we can construct a
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resolving set of K(k, n), giving an upper bound on the metric dimension
of the Kneser graphs. The existence of a k-uniform, ⌈k/2 + 1⌉-regular hy-
pergraph with girth 5 was shown in [18]. We label such a hypergraph as
H(k, 5). This construction was probabilistic, and so the number of vertices
is not explicitly known. Let m be the number of vertices in H(k, 5). With

w = k⌈k/2+1⌉, we have that m is bounded above by w2w(w−1)/2.

Lemma 2.8. For k ≥ 4 a fixed even integer,

β(K(k, n)) ≤
(
1

2
+

1

k

)
n+

(
1

2
+

1

k

)
m

⌈
n′

m

⌉
=

(
1

2
+

1

k

)
n+O(1),

and for k ≥ 3 a fixed odd integer,

β(K(k, n)) ≤
(
1

2
+

1

k

)
n+

(
1

2k

)
n+

(
1

2
+

1

k
+

1

2k

)
m

⌈
n′

m

⌉
=

(
1

2
+

1

k
+

1

2k

)
n+O(1),

where n′ is the smallest nonnegative integer n′ ≡ n (mod m), and m is the
number of vertices in H(k, 5).

Proof. For any set of m vertices V , we may place a H(k, 5), and we label
such a hypergraph as HV . Consider the partition of V (H) = [n] into parts
P1, P2, . . . , Pr of cardinality m, where we allow the last part to cover some
elements of a previous part (so strictly speaking, this is a cover). Define the
hypergraph H =

⋃r
i=1HPi . The subset of vertices V (HPi) along with corre-

sponding hyperedges E(HPi) form a k-uniform hypergraph with minimum
degree ⌈k/2+ 1⌉, and due to Corollary 2.7, this hypergraph is k′-detectable
for all k′ ≤ k, implying that the set B ∩Pi can be accurately detected. As a
result, B can be accurately detected, since B =

⋃r
i=1(B ∩ Pi). As a conse-

quence, H can be used to form a resolving set of K(k, n) by Lemma 2.1. By
calculating the number of hyperedges in H as

∑
v d(v)/k = rm⌈k/2+ 1⌉/k,

we have the upper bound given in the statement of the lemma. □

We summarize these results as follows. Note that in the next theorem,
the upper bound follows as ζ(G) ≤ β(G) for all graphs G.

Theorem 2.9. For the localization number and metric dimension of Kneser
graphs, we have the following.

(1) For a fixed even integer k ≥ 4 and n with n ≥ 3k, we have that

ζ(K(k, n)) =
n

2
+

n

k
+O(1)

and

β(K(k, n)) =
n

2
+

n

k
+O(1).



44 A. BONATO, M. A. HUGGAN, AND T. MARBACH

(2) For a fixed odd integer k ≥ 3 and n with n ≥ 3k, we have that

n

2
+

n

k
− k

2
− 1 ≤ ζ(K(k, n)) ≤ n

2
+

n

k
+

n

2k
+O(1)

and
n

2
+

n

k
≤ β(K(k, n)) ≤ n

2
+

n

k
+

n

2k
+O(1).

We note that for fixed even k ≥ 6, Corollary 2.4 and Lemma 2.8 give that
β(K(k, n)) = n/2+n/k for an infinite number of values of n. We conjecture
that this equality holds for all k ≥ 3 and all n sufficiently large.

3. Graphs of diameter 2 with no 4-cycle

As referenced in the introduction, there are three subclasses of graphs
that have diameter 2 and contain no 4-cycle: graphs with maximum degree
n − 1, the Moore graphs, and the polarity graphs [12]. In this section, we
determine the localization number of the Moore graphs of diameter 2 and
give bounds on the metric dimension. We conclude by giving bounds on the
metric dimension and the localization number of polarity graphs.

3.1. Moore graphs of diameter 2. A Moore graph is a graph of diameter
d and girth 2d + 1. We give bounds on the localization number for Moore
graphs with diameter 2 that differ by 1. Note these are girth 5 graphs, which
are k-regular and with k2+1 vertices for some positive integer k. The known
Moore graphs of diameter 2 are the 5-cycle, the Petersen graph, and the
Hoffman-Singleton graph. The Hoffman-Singleton graph is 7-regular with
order 50 and 175 edges; see Figure 2. The only remaining possible Moore
graph of diameter 2 is a hypothetical one that is 57-regular and order 3,250.
For a survey of the theory of Moore graphs, see [27].

Figure 2. The Hoffman-Singleton graph.

We begin by analyzing the metric dimension of the Moore graphs. It is
straightforward to see that β(C5) = 2. We provide bounds for the metric
dimension of the larger Moore graphs as follows.
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Theorem 3.1. For k ≥ 3, a Moore graph G of diameter 2 and girth 5 that
is k-regular has

k ≤ β(G) ≤ 2k − 3.

Proof. We frame the metric dimension in terms of the localization game
where the cops must capture the robber on their first move. For the lower
bound, suppose that some vertex u contains a robber. All but one of the
vertices in N(u) must be distance 0 or 1 from any fixed cop, or else there
are two vertices in N(u) that have the same distance to all cops. However,
any other cop can have distance 0 or 1 to at most one vertex in N(u). As
a result, we need an additional k − 1 cops, and so require at least k cops in
total.

For the upper bound, we play with 2k− 3 cops and show that the robber
can be caught on the first play. Let u be any vertex in G, v ∈ N(u),
and w ∈ N(v) \ {u}. The cops place themselves on the 2k − 3 vertices in
(N(u) ∪ N(v)) \ {u, v, w}. If the robber is on u, then there are at least
2 cops on vertices in N(u) that probe a distance of 1, and so the robber
is found. If the robber is on a vertex of N(u) \ {v}, then a cop probes a
distance of 0, and the robber is found. If the robber is on w, then all the
cops probe a distance of 2, and it is straightforward to see that no other
vertex has a distance of 2 to each cop. If the robber is on N(v) \ {u,w},
then a cop probes a distance of 0, and the robber is found. If the robber
is on the second neighborhood of u but not on N(v), then exactly one cop
C1 in N(u) probes one. If in addition to this, there is a cop C2 on N(v)
that probes a distance of 1, then the robber is found on the single vertex in
N(C1)∩N(C2). If there is no cop on N(v) that probes a distance of 1, then
the robber is found on N(C1)∩N(w). If any cop in N(v) probes a distance
of 1 and none of the cops in N(u) probe a distance of 1, then the robber is
located on v. This is a complete case analysis, that shows that each vertex
can be resolved by the cops immediately, so we are done. □

In the case that k = 3, which is the Petersen graph, this gives the exact
value. Note that Theorem 3.1 gives that the Petersen graph has metric
dimension 3.

It is straightforward to see that ζ(C5) = 2. The localization number of
the Petersen graph is 3, as derived in the next theorem.

Theorem 3.2. The localization number of the Petersen graph is 3.

Proof. The upper bound follows from Theorem 3.1, so we focus on the lower
bound. We play with two cops and show that this is insufficient to capture
the robber. Suppose that the cops could find that the robber was on either
vertex x or y, but did not know which one. During the robber’s turn, the
robber moves to some vertex in N [x] ∪ N [y]. If we suppose that the cops
will be able to capture the robber on the next turn, then x and y must be
adjacent. To see this, if we suppose that x and y are not adjacent, then
|N [x]∪N [y]| = 7 and there are at most six distinct distance vectors that the
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cops may use to distinguish them, and so at least two vertices in N [x]∪N [y]
cannot be distinguished using distance vectors. So suppose that x and y are
adjacent. As |N [x] ∪ N [y]| = 6 and there are six distinct distance vectors,
the cops must be placed so that each of the six possible distance vectors
occur within the vertices of N [x]∪N [y]. This means that the cops must be
placed on vertices in N [x] ∪ N [y], so that two distance vectors containing
0’s will occur. It also means that the cops must be distance 2 from each
other, so the distance vector (1, 1) occurs. Up to symmetry, there is only
one way to place the cops to have these two properties. However, under this
placement, there are two vertices in N [x] ∪N [y] that are indistinguishable.
As such, the robber is not caught during the next turn and can continue to
evade capture indefinitely. □

The following theorem determines the localization number of the remain-
ing cases.

Theorem 3.3. If G is a Moore graph of diameter 2 that is k-regular with
k ≥ 5, then ζ(G) is one of k − 1 or k.

Proof. We show that ζ(G) ≤ k by giving a winning strategy with k cops.
To initialize, we show that in a small number of moves, the cops are able

to identify that the robber is either on a set of k − 1 vertices that are in
N(v), for some vertex v. Let x ∈ V (G) and y, z ∈ N(x). We place k − 1
cops on the vertices of N(x) \ {y} and one cop on a vertex w ∈ N(z) \ {x}.
If all cops on N(x) probe 1, then the robber is identified to be on x. If only
one cop on v ∈ N(x) probes 1 and the cop on w probes 2, then the robber is
identified to be on a set of k− 1 vertices of N(v). If no cop on N(x) probes
one and the cop on w probes 2, then the robber is identified to be on a set
of k − 1 vertices of N(y) or on y. In all other cases, the robber’s location is
found exactly.

Assuming that the robber is identified to be on either vertex y or in a
set of k − 1 vertices that are in N(y), the cops play on the k − 1 vertices
of N(y) \ {u}, where u is the unique vertex of N(y) that is known to not
contain the robber. We also place a cop on a vertex in N(z) \ {y}, where
z ∈ N(y) \ {u}. By an identical analysis to what was just performed above,
we can find that the cops are able to identify that the robber is on a set of
k − 1 vertices that are in a N(v), for some v ∈ N(y), or is caught.

We work inductively on α, starting from α = 1 and increasing until α =
k − 3. See Figure 3 for a figure depicting this situation, with most of the
edges between the second neighbors of u omitted. Suppose that the cops
discover that for some u ∈ V (G), the robber is on a subset A ⊆ N(u) of
cardinality k − α. The robber moves. Let v ∈ A. Select α + 1 vertices in
N(v) \ {u}, which we label as B. The cops place k − 1− α ≥ 2 cops on the
k−1−α vertices of A\{v}, and α+1 ≥ 2 cops on B. The cops can identify
the exact robber location if the robber moved to u (all cops on A probe a
distance of 1, which is at least two distinct cops). The cops can identify
the exact robber location if the robber stayed on v (all cops in B probe a
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N(u)v
A

B
N2(u)

u

Figure 3. The depiction of a (hypothetical) 5-regular graph
with diameter 2 and girth 5, with most of u’s second neigh-
bors’ edges omitted.

distance of 1, which is at least two distinct cops). The cops can identify the
exact robber location if the robber stayed on A \ {v} (a cop in A probes
a distance of 0). The cops can identify if the robber moved to the set of
k−1−α vertices of B that does not contain a cop (all cops probe a distance
of 2). If a cop C1 on A probes a distance of 1 and another cop on A probes
a distance of 2, then the robber is on N(C1) \ {u}. Further, if another cop
C2 on B probes a distance of 1, then the exact location of the robber is the
unique vertex in the intersection N(C1) ∩N(C2). If instead all α + 1 cops
on B probe a distance of 2, then the robber is on the set of k−2−α vertices
of N(C1) \ {u} not adjacent to the α cops on B. Hence in all cases, if the
robber is not found, then the cops discover that for some u′ ∈ V (G), the
robber is on a subset A′ ⊆ N(u′) of cardinality at most k − 1− α.

Applying the induction yields a situation where, if the robber is not yet
captured, the cops discover that for some u ∈ V (G), the robber is on a
subset {a1, a2} ⊆ N(u). The cop player places two cops on N(a1) \ {u}
and k − 3 cops on N(a2) \ {u}, such that none of the cops are adjacent.
We may place the cops such that they are not adjacent, as the two cops
on N(a1) \ {u} are adjacent to exactly two vertices of N(a2) \ {u}, leaving
k − 3 vertices in N(a2) \ {u} not adjacent to the two cops. There is one
as-yet unplaced cop and we place the final cop on u. If the cop on u probes
a distance of 0, then the robber is on u. If both cops on N(a1) \ {u} probe
a distance of 1, then the robber is on a1. If all cops on N(a2) \ {u} probe
a distance of 1, then the robber is on a2. If only one cop C in N(a2) \ {u}
probes a distance of 1, then the robber is on the unique vertex of N(a1)\{u}
that is adjacent to C. If only one cop C in N(a1) \ {u} probes a distance of
1, then the robber is on the unique vertex of N(a2) \ {u} that is adjacent to
C. All situations are covered; otherwise, it would imply the existence of a
4-cycle, so the robber’s exact location is found. The upper bound follows.

To complete the proof, we derive the lower bound. We play with k−2 cops
and show that the robber can evade capture. Suppose that the robber was
on some vertex u, and then the robber took his turn by moving or remaining
on u. We show that N(u) contains two vertices that are indistinguishable
by the cops, and hence, the robber has a starting move. Every cop that will
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be played is either on u, on N(u), or on a neighbor of N(u). If a cop is on
u, then they cannot distinguish between the points on N(u). If a cop is on
N(u), then the cop has distance 0 from one vertex in N(u) and distance 2
from all other vertices in N(u). Finally, if a cop is on a neighbor of some
v ∈ N(u), then that cop has distance 1 from one vertex in N(u) and distance
2 from all other vertices in N(u). Hence, no matter how we place the k − 2
cops, only k − 2 vertices of N(u) can be uniquely distinguished from each
other, leaving two vertices that cannot be distinguished by the cops, and
the robber chooses one of these two to move to. As long as the robber can
play an initial move, then this implies that the robber may avoid capture
indefinitely. During the initial move, the robber chooses a vertex u that
cannot be distinguished by the cops. □

By Theorem 3.3, the localization number of the Hoffman-Singleton graph
is either 6 or 7.

3.2. Polarity Graphs. Fix q a prime power. For a given projective plane
PG(2, q) with points P and lines L, a polarity π : P → L is a bijection
mapping points to lines such that v ∈ π(u) whenever u ∈ π(v). The polarity
graphs are formed on vertex set P by joining distinct vertices u and v if
u ∈ π(v) and u ̸= v. Polarity graphs have q2 + q + 1 vertices. The vertices
u with u ∈ π(u) are called absolute vertices, and have degree q, while all
other points have degree q + 1. Baer [1] showed that there must be at
least q+1 absolute vertices. Polarity graphs are without 4-cycles [12], have
q(q+1)2/2 edges, have diameter 2, and possess unbounded chromatic number
as q → ∞ [21].

Those polarity graphs with exactly q + 1 absolute vertices arise from
an orthogonal polarity (which exists for all PG(2, q)), and such graphs are
known as the Erdős–Rényi graphs, written ER(q). The Erdős–Rényi graphs,
have vertices as the points of PG(2, q), and u is adjacent to v if uT v = 0,
where we identify vertices with 1-dimensional subspaces of GF(q)3. These
are well-known examples of graphs which are C4-free extremal, in the sense
that they have the largest possible number of edges in a C4-free graph on
q2 + q + 1 vertices; see [15, 19]. For more on polarity graphs, see [28].

Polarity graphs were studied for the game of Cops and Robbers in [6],
where bounds were given on the cop number. We provide lower and upper
bounds on the metric dimension and localization number of polarity graphs.

Theorem 3.4. If G is a polarity graph with order q2 + q + 1, then

2q − 5 ≤ β(G) ≤ 2q − 1.

Proof. We first show the lower bound. Let α = β(G). We aim to show that
2q−6 cops are insufficient to capture the robber on the first round of play in
the localization game. We will assume that the cops pick a minimum sized
resolving set of G, and analyze the distance vector for each v ∈ V (G). To
each vertex in the graph, we assign the distance vector that would result if
the robber chose this vertex. Note that these distance vectors will contain
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only the symbols 0, 1, and 2. Exactly α vertices will have a distance vector
that contains the symbol 0, which are those vertices in the resolving set.
There are q2 + q + 1 − α remaining vertices that must be resolved by the
resolving set. At most one vertex will have a distance of 2 to all cops in the
resolving set, as if there were two, they would be indistinguishable. Each
vertex of the resolving set will have a distance of 1 to at most q+1 vertices
in V (G). The total number of occurrences of 1 within all of the distance
vectors must be exactly (q + 1)α.

At most α vertices will have a distance of 1 to one cop and a distance
of 2 to all other cops. We may assume that exactly α vertices will have
a distance of 1 to one cop and a distance of 2 to all other cops, as this is
strictly beneficial to the cops under this argument. There are qα occurrences
of 1 within the remaining distance vectors; that is, the distance vectors for
vertices that have distance 1 to at least two vertices in the resolving set.
As a result, there can be at most qα/2 vertices with distance 1 to at least
two vertices. This implies that there are at most 1 + α + qα/2 vertices
distinguished by the α cops. As we found before, there are q2 + q + 1 − α
vertices still to be distinguished, and so we must have

q2 + q + 1− α ≤ 1 + α+
qα

2
.

We find after rearranging that 2q−6+24/(q+4) ≤ α, from which the lower
bound of the result follows.

To show the upper bound, let u be a vertex of degree q. There must be
q2 vertices in the second neighborhood of u. For this reason, each vertex in
N(u) must have degree q + 1 and no C3 can contain u, as each vertex in
N(u) must correspond to a set of q vertices in the second neighborhood. An
equivalent way to say that u is not contained in a C3 is that N [v1]∩N [v2] =
{u} for any v1, v2 ∈ N(u). Let v ∈ N(u). We place a cop on each of the
vertices (N(u) ∪ N(v)) \ {u, v}. We claim that the cops can identify the
robber’s location during the first probe. If the robber is on u, then all cops
on N(u)\{v} probe a distance of 1 to the robber. If the robber is on v, then
all cops on N(v) \ {u} probe a distance of 1 to the robber. If the robber is
located on (N(u) ∪N(v)) \ {u, v}, then some cop probes a distance of 0 to
the robber. Otherwise, the robber has a distance of 2 to u and a distance of
2 to v. Note that there are q2 − q vertices in A = V \ (N(u) ∪N(v)).

There are q2−q = q(q−1) paths of length two from vertices in N(u)\{v}
to vertices in N(v) \ {u}, and these cannot intersect u or v. As such, all
such paths will intersect with a vertex in A. Further, if some vertex in A
is contained in two such paths, then a 4-cycle exists in the graph. So by
a pigeon-hole argument, each vertex in A is contained in exactly one path
of length two from N(u) \ {v} to N(v) \ {u}, say from vertex b1 to vertex
b2. The cops on b1 and b2 are the only ones that probe a distance of 1 from
the robber if the robber is on the vertex in N(b1) ∩N(b2). Hence, the cops
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can uniquely identify the robber’s position if the robber is on A. The upper
bound now follows. □

Theorem 3.4 provides us with an upper bound for the localization number
of a polarity graph. We also derive a lower bound.

Theorem 3.5. If G is a polarity graph with order q2 + q + 1, then

2q − 5

3
≤ ζ(G) ≤ 2q − 1.

Proof. For the lower bound, suppose for a contradiction that

ζ(G) <
2q − 5

3

and that the cops can capture the robber. We first show the inductive step.
To show that the robber always has a move that he can make during each
turn, suppose that there are two vertices that the cops cannot distinguish
while probing on their previous turn, u1 and u2. Let A1 = N(u1) \ N [u2]
and A2 = N(u2) \ N [u1]. We will assume that the robber only moves to a
vertex in A1∪A2, which only serves to weaken the robber’s strategy. As the
graph contains no 4-cycle, |N(u1) ∩ N(u2)| ≤ 1. As a result, |A1| ≥ q − 2
and |A2| ≥ q − 2 and so |A1 ∪A2| ≥ 2q − 4.

If a cop is placed on u1 or u2, then the cops will have distance 1 to all
vertices in A1 and distance 2 to all vertices in A2, or vice versa. Any cop
that is not on u1 or u2 will have distance 1 to at most one vertex of A1 and
at most one vertex of A2, and distance 2 to all other vertices of A1 ∪ A2.
In addition to this, any cop on A1 ∪ A2 will have distance 0 to exactly one
vertex of A1 ∪A2.

For now, we suppose that there is a cop on u1. In this case, placing a cop
on u2 provides no additional information. If a cop that is placed on a vertex
u3 ∈ A1 ∪ A2 directly helps to capture the robber, then either the cop on
u3 probed 0 and the robber is identified to be on u3; or the cops on u1 and
u3 probed 1 and the robber is identified to be on the unique vertex of A1 of
distance 1 from u3; or the cop on u3 probed 1 and the cop on u1 probed 2,
and so the robber is identified to be on the unique vertex of A2 of distance
1 from u3.

As a result, if we have α cops not in {u1, u2}, then there are α vertices of
A1∪A2 that can be immediately resolved as they each have a cop of distance
0 from them, and up to a further 2α vertices that can be resolved as they
have distance 1 to a cop, and at most one vertex that can be resolved as it
has distance 2 to all cops not on u1 or u2. This implies that at most 3α+1
vertices of A1∪A2 can be resolved. We must then have that 3α+1 ≥ 2q−4,
which is a contradiction as we have assumed there are less than (2q − 5)/3
cops, and we have just shown that we require at least α + 1 cops. Now
note that if we do not have a cop on u1 (or likewise u2), then we likewise
require more than α cops, and obtain the same contradiction. For the initial
case, the robber considers two arbitrary vertices u1 and u2. By the above
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analysis, there is a vertex in N [u1] ∪N [u2] that cannot be distinguished by
the cops. □
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