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A SURVEY OF GRAPH BURNING

ANTHONY BONATO

Abstract. Graph burning is a deterministic, discrete-time process that
models how influence or contagion spreads in a graph. Associated to
each graph is its burning number, which is a parameter that quantifies
how quickly the influence spreads. We survey results on graph burning,
focusing on bounds, conjectures, and algorithms related to the burning
number. We will discuss state-of-the-art results on the burning number
conjecture, burning numbers of graph classes, and algorithmic complex-
ity. We include a list of conjectures, variants, and open problems on
graph burning.

1. Introduction

The spread of influence is a key topic in network science, focusing on
the propagation of emotion, members, or contagion in social networks; see
[26]. Internet memes, for example, appear and spread quickly across social
networks like Facebook, Twitter, and Instagram. An elementary rule is that
influence spreads from a vertex to each of its neighbors. While there is a
source vertex from which the influence originates, other sources appear over
time in various locations in the network.

Graph burning is a simplified model for the spread of influence in a net-
work. Associated with the process is a parameter, the burning number,
which quantifies the speed at which the influence spreads to every vertex.
The smaller the burning number is, the faster an influence can be spread in
the network. Graph burning is defined as follows. Given a finite, simple,
undirected graph G, the burning process on G is a discrete-time process.
Vertices may be either unburned or burned throughout the process. Ini-
tially, in round t = 0 all vertices are unburned. At each round t ≥ 1, one new
unburned vertex is chosen to burn, if such a vertex is available. We call such
a chosen vertex a source. If a vertex is burned, then it remains in that state
until the end of the process. Once a vertex is burned in round t, in round
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t+ 1 each of its unburned neighbors becomes burned. The process ends in a
given round when all vertices of G are burned. We emphasize that sources
are chosen in each round for which they are available.

Note that the burning process may be highly dependent on the choice of
sources. For example, in a path, burning spreads more slowly from a source
that is an end-vertex than from a central vertex. Hence, the strategic choice
of sources is critical when minimizing the length of the process.

The burning number corresponds to an optimal choice of sources through-
out the process. The burning number of a graph G, denoted by b(G), is the
minimum number of rounds needed for the process to end. The parameter
b(G) is well-defined, as in a finite graph, there are only finitely many choices
for the sources. The sources that are chosen over time are referred to as a
burning sequence; a shortest such sequence is called optimal. Hence, optimal
burning sequences have length b(G).

For an elementary example of graph burning, consider the path P4 with
vertices vi, where 1 ≤ i ≤ 4. In this example, the sequence (v2, v4) is an
optimal burning sequence; see Figure 1. We also observe in this example

Figure 1. Burning the path P4. The circled vertices are
sources.

that optimal burning sequences may not be unique. The sequence (v1, v3)
is the other optimal burning sequence for P4.

Graph burning is contained within the area of graph searching. For exam-
ple, graph burning is reminiscent but distinct from the Firefighter Problem,
where a set of firefighters block burned vertices from spreading; see [16] for
a survey.

Since graph burning was first introduced in [6, 7, 35], a number of results,
conjectures, and algorithms have been emerged on the topic in over two
dozen papers. The purpose of the present article is to survey the main results
on the topic, paying attention to the central topics and questions. While we
make an effort to be self-contained, as results appear in the literature, we do
not claim all current topics on graph burning are represented. We view the
survey as both an entry point to graph burning, and also a one-stop-shop
reference for experts on the topic.

The paper is organized as followed. In Section 2, we discuss one of the
main open problems in the field, the burning number conjecture. While the
conjecture is unresolved, we consider the best-known upper bounds on the
burning number. We discuss graphs families, such as spiders and caterpil-
lars, where the conjecture is known to hold. In Section 3, we consider the
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burning number in a variety of graph classes. We highlight the best-known
results on various graph products, grids, and hypercubes. We consider graph
burning on binomial random graphs, generalized Petersen graphs, and theta
graphs. Computational complexity results are presented in Section 4. While
computing the burning number was known to be NP-complete early on in its
formulation, a number of newer results have been discovered. We consider
NP-completeness for graph burning in a several, restrictive graph families,
and also consider research on approximation algorithms and heuristics. The
article finishes with a collection of open problems, conjectures, and variants
of the process.

All graphs we consider are simple, finite, and undirected, unless otherwise
stated. For a vertex v and a nonnegative integer k, the rth closed neighbor-
hood Nk[v] of v is defined as the set of all vertices within distance k of v,
including v itself. In the case k = 1, we write N1[v] = N[v]. The distance
between vertices u and v is denoted by d(u, v). If G is a graph and u is a
vertex of G, then the eccentricity of u is defined as max{d(u, v) ∶ v ∈ V (G)}.
The radius of G is the minimum eccentricity over the set of all vertices in
G. For background on graph theory, see [38]. For additional background on
graph searching, the reader is directed to [10, 11].

2. Burning number conjecture

The burning number conjecture is one of the main unanswered questions
on graph burning. Before we state the conjecture, we introduce alternative
characterizations of graph burning in terms of neighbor sets and trees.

We first consider a characterization via a certain set equation first derived
in [7]. If (x1, x2, . . . , xk) is a burning sequence for a given graph G, then a
source at xi, where 1 ≤ i ≤ k, will burn only all the vertices within distance
k − i from xi by the end of the kth step. Each vertex v ∈ V (G) must be
either a source or burned from at least one of the sources by the kth round.
Further, for each pair i and j, with 1 ≤ i < j ≤ k, we must have d(xi, xj) ≥ j−i;
otherwise, if d(xi, xj) = l < j − i, then xj will be burned at round l + i < j.
Therefore, (x1, x2, . . . , xk) is a burning sequence for G if and only if for each
pair i and j, with 1 ≤ i < j ≤ k, d(xi, xj) ≥ j−i, and the following set equation
holds:

Nk−1[x1] ∪Nk−2[x2] ∪ . . . ∪N0[xk] = V (G).

The following theorem provides another characterization of the burning
number, and connects it with a prescribed covering problem by trees. The
depth of a vertex in a rooted tree is the number of edges in a shortest path
from the vertex to the tree’s root. The height of a rooted tree T is the
greatest depth in T . A rooted tree partition of G is a collection of rooted
trees which are subgraphs of G, with the property that the vertex sets of
the trees partition V (G).

Theorem 2.1 ([7]). Burning a graph G in k steps is equivalent to finding
a rooted tree partition into k trees T1, T2, . . . , Tk, with heights at most (k −
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1), (k − 2), . . . ,0, respectively, such that for every 1 ≤ i, j ≤ k the distance
between the roots of Ti and Tj is at least ∣i − j∣.

The following theorem is a corollary of Theorem 2.1, and is useful for
determining the burning number of a graph, as it reduces the problem of
burning a graph to burning its spanning trees. Note that for a spanning
subgraph H of G, it is evident that b(G) ≤ b(H) (although this heredi-
tary property does not hold in general if we consider subgraphs or induced
subgraphs).

Theorem 2.2 (Tree Reduction Theorem, [7]). For a graph G we have that

b(G) = min{b(T ) ∶ T is a spanning subtree of G}.

Paths play an important role in graph burning.

Theorem 2.3 ([7]). For a path Pn on n vertices, we have that b(Pn) =

⌈n1/2⌉.

Note that for any graph G with radius r and diameter d, we have that

⌈(d + 1)1/2⌉ ≤ b(G) ≤ r + 1.

The bounds are tight, with the lower bound achieved by paths.
We say that a graph G of order n is well-burnable if b(G) ≤ ⌈n1/2⌉. Theo-

rem 2.3 tells us that paths are well-burnable, and as an immediate corollary,
so is a graph with a Hamiltonian path. The following conjecture, first ap-
pearing in [7], states that every graph is well-burnable.

Burning number conjecture. For a connected graph G of order n,

b(G) ≤ ⌈n1/2⌉.

If the burning number conjecture holds, then paths are examples of con-
nected graphs with largest burning number. By the Tree Reduction Theo-
rem, the conjecture holds if it holds for trees. Note that we require G to be
connected here, as otherwise, the burning number can be as large as ∣V (G)∣,
as in the case for a graph with no edges.

The conjecture has resisted attempts at its resolution, although various
upper bounds on the burning number are known. In [2], it was proved that
for every connected graph G of order n and every 0 < ε < 1,

b(G) ≤

√
32

19
⋅
n

1 − ε
+

√
27

19ε

and

b(G) ≤

√
12n

7
+ 3 ≈ 1.309

√
n + 3.

These bounds were improved in [28], who proved the best-known upper
bound:

b(G) ≤ ⌈
−3 +

√
24n + 33

4
⌉.
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While the burning number conjecture is open for general graphs, it known
to hold for a number of graph classes. We summarize results for such classes
here. A spider is a tree with at most one vertex of degree 3. A caterpillar
is a tree where deleting all vertices of degree 1 leaves a path.

Figure 2. A spider with an optimal burning sequence rep-
resented by circled vertices.

As proven in [9] and independently in [14], spiders are well-burnable. As
proven in [29] and independently in [21], caterpillars are well-burnable. For
p ≥ 1, a p-caterpillar is a tree where there is a path P , such that each vertex
is distance at most p to P . Note that a 1-caterpillar is a caterpillar. It was
showm in [21] that a 2-caterpillar is well-burnable, although the burning
number conjecture remains open for p-caterpillars with p ≥ 3. In [21], it was

shown that p-caterpillars with at least 2⌈n1/2⌉ − 1 vertices of degree one are
well-burnable. In [24], it was proven that for any graphs with minimum
degree δ ≥ 23 are well-burnable. Although this result encompasses a large
class of graphs, it omits the class of trees.

3. Burning graph classes

The burning number has been studied in a number of graph classes, such
as graph products, grids, random graphs, and certain trees. We highlight
results on burning in these classes in the present section.
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3.1. Graph products. Graph products form new graphs from existing
ones, and so it is natural to study their burning number. We first recall
several well-known graph products. Let G and H be graphs, which are
called factors. Define the Cartesian product of G and H, written G ◻H,
to have vertices V (G) × V (H), and vertices (a, b) and (c, d) are adjacent if
a = c and bd ∈ E(H) or ac ∈ E(G) and b = d. Define the strong product of
G and H, written G⊠H, to have vertices V (G) × V (H), and vertices (a, b)
and (c, d) are adjacent if a = c and bd ∈ E(H), ac ∈ E(G) and b = d, or
ac ∈ E(G) and bd ∈ E(H). The lexicographic product of G and H, written
G ○H, has vertices V (G)×V (H), and vertices (a, b) and (c, d) are adjacent
if ac ∈ E(G) or a = c and bd ∈ E(H).

The following theorem gives bounds on the burning number of Cartesian
and strong products of graphs in terms of the bounding number of their
factors. For a graph G, the radius of G is denoted by rad(G).

Theorem 3.1 ([32]). If G and H are connected graphs, then we have that

max{b(G), b(H)} ≤ b(G⊠H) ≤ b(G◻H) ≤ min{b(G)+rad(H), b(H)+rad(G)}.

An important class of graph products are grids, which are products of
paths. The m × n Cartesian grid, defined as Pm ◻ Pn, is denoted by Gm,n.
The value of b(Gm,n) for m a function of n was first studied in [31].

Theorem 3.2 ([31]). For m =m(n),

b(Gm,n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1 + o(1)) 3
√

3
2mn if n ≥m = ω(

√
n),

Θ(
√
n) if m = O(

√
n).

While Theorem 3.2 gives an asymptotically tight value for the burning
number of grids where n ≥m = ω(

√
n), only the growth rate is given in the

remaining case where m = O(
√
n). We refer to the family of grids b(Gc

√
n,n)

for constant c > 0 as fences, as they are by definition wider than they are
tall.

The following theorem from [4] improves on Theorem 3.2, giving explicit
lower and upper bounds on the burning number of fences.

Theorem 3.3 ([4]). Let c > 0. If ` = max{k ∈ N ∶ (k − 1)
√
kn + 1 ≤ c

√
n},

then we have that

b(c
√
n,n) ≥

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1 + o(1)) ( c
2 +

√

1 − c2

4 )
√
n , if 0 < c < 2,

√
`n , if c ≥ 2.

If ` = ⌈(c/2)2/3⌉, then we have that

b(Gc
√
n,n) ≤ 2

√
`n + ` − 1,
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and for 0 < c ≤ 2
√

2, we have that

b(Gc
√
n,n) ≤ (1 + o(1))

⎛

⎝

c

2
+

√

1 −
c2

16

⎞

⎠

√
n.

Another well-known graph formed from the Cartesian product are hyper-
cubes. The n-dimensional hypercube, written Qn, is the iterated Cartesian
product of n-copies of K2. In [32], it was shown that b(Qn) ∼ n/2.

A strong grid is a strong product of paths. For strong grids, we have the
following asymptotic results.

Theorem 3.4 ([32]).

b(Pm ⊠ Pn) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(1 + o(1)) 3
√

3
4mn if m = ω(

√
n),

Θ(
√
n) if m = O(

√
n).

As in the case for Cartesian grids, only the growth rate is provided here
if m = O(

√
n). Finding explicit bounds for such strong fences has not yet

been investigated.
For lexicographic products, we have the following bounds. Note that in

the case that G is a single vertex, then b(G ○H) = b(H).

Theorem 3.5 ([32]). Let G be a connected graph with order at least two
and H any graph. We then have that

b(G) ≤ b(G ○H) ≤ b(G) + 1.

3.2. Binomial Random Graphs. Let 0 ≤ p ≤ 1 and let Ω be the family of
all graphs on n vertices. To every graph G ∈ Ω we assign a probability

P({G}) = p∣E(G)∣(1 − p)(
n
2
)−∣E(G)∣.

We denote this probability space by G(n, p). The space G(n, p) is often
referred to as the binomial random graph or Erdős-Rényi random graph.
Note also that this probability space can informally be viewed as a result
of (

n
2
) independent coin flips, one for each pair of vertices u, v, where the

probability of adding an edge uv is equal to p. For background on random
graphs, see the books [3, 18, 22].

The burning number becomes a random variable on G(n, p). Results for
the burning number of G(n, p) were provided in [31], and are summarized
in the following theorem. We say that an event in a probability space holds
asymptotically almost surely (a.a.s.) if its probability tends to one as n goes
to infinity.

Theorem 3.6 ([31]). Let G ∈ G(n, p), ε > 0, and ω = ω(n) → ∞ as n → ∞

but ω = o(log logn). Suppose first that

d = d(n) = (n − 1)p≫ logn

and
p ≤ 1 − (logn + log logn + ω)/n.
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Let i ≥ 2 be the smallest integer such that

di/n − 2 logn→∞.

The following holds a.a.s.

b(G) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

i if di−1/n ≥ (1 + ε) logn

i or i + 1 if (1−ε) log d≤di−1/n<(1+ε) logn

i + 1 if di−1/n < (1 − ε) log d.

If

1 − (logn + log logn + ω)/n < p ≤ 1 − (logn + log logn − ω)/n,

then a.a.s. b(G) = 2 or 3. Finally, if

p > 1 − (logn + log logn − ω)/n,

then a.a.s. b(G) = 2.

3.3. Other graph classes. A path-forest is a disjoint union of paths. If
a path-forest G of order n has t components, then observe that b(G) ≥

max{⌈n1/2⌉, t}. Upper bounds on the burning number of path forests were
given in [9].

Theorem 3.7 ([9]). Let G be a path-forest of order n with t ≥ 1 components.
We then have the following bounds:

(1) b(G) ≤ ⌊ n
2t
⌋ + t.

(2) If t ≤ ⌈n1/2⌉, then b(G) ≤ ⌈n1/2 + t−1
2

⌉ .

Note that (2) improves on the bound (1) for smaller values of t. Results
on burning numbers of path forests were also considered in [14, 37].

The circulant graph on n vertices with distance set S has vertex set Zn

and edge set {xy ∶ x − y ∈ S}, where S ⊆ Zn and x ∈ S implies −x ∈ S, with
addition taken modulo n. In [17], exact values of the burning numbers of
3-regular circulants were found, along with bounds on the burning numbers
of 4-regular circulants.

Let n ≥ 3 and k be integers satisfying 1 ≤ k ≤ n − 1. The generalized
Petersen graph P (n, k) has vertices {ui, vi ∶ i = 0,1, . . . n − 1} and edges
(with subscripts modulo n) given by {uiui+1, uivi, vivi+k, i = 0,1, . . . n − 1}.
In [37], it was proven that

⎡
⎢
⎢
⎢
⎢
⎢

√

⌊
n

k
⌋

⎤
⎥
⎥
⎥
⎥
⎥

≤ b(P (n, k)) ≤

⎡
⎢
⎢
⎢
⎢
⎢

√

⌊
n

k
⌋

⎤
⎥
⎥
⎥
⎥
⎥

+ ⌊
k

2
⌋ + 2.

For positive integers a, b, c define the theta graph Θa,b,c(u, v) to be the
graph consisting of a pair of vertices {u, v} and three internally-disjoint
paths between them of lengths a + 1, b + 1, and c + 1. Note that Θa,b,c(u, v)

has order a+ b+ c+2. It was proven in [30] that theta graphs of order q2 + r,
where 1 ≤ r ≤ 2q + 1, satisfy q ≤ b(Θa,b,c(u, v)) ≤ q + 1. More detailed results
for various values of parameters may be found in [30].
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4. Complexity of graph burning

We provide a summary of what is known regarding the computational
complexity of the graph burning decision problem. For background on com-
plexity theory the reader is directed to [36], to [39] for approximation algo-
rithms, and [13] for a comprehensive list of complexity classes.

We formalize the graph burning decision problem as follows.

Problem: Graph Burning
Instance: A graph G of order n and an integer k ≥ 2.
Question: Is b(G) ≤ k? In particular, does G contain a burning sequence
(x1, x2, . . . , xk)?

While it will not come as a surprise that the Graph Burning problem
is NP-complete, it is interesting that it remains so for fairly restrictive
graph classes. The Graph Burning problem was shown to be NP-complete
when restricted to trees of maximum degree three in [1]. Further, it is
NP-complete when restricted to spider graphs, and also for disconnected
graphs such as path-forests. In [1], a polynomial time algorithm was given
for finding the burning number of path-forests and spider graphs, when the
number of arms and components is fixed.

In [29] and independently in [21], it was shown that the Graph Burning
problem is NP-complete for caterpillars of maximum degree 3. In [20], it
was shown that the Graph Burning problem is NP-complete when restricted
to any one of the classes of interval graphs, permutation graphs, or disk
graphs. Burning was considered for directed graphs in [23], where it was
proved that computing the burning number of a directed tree is NP-hard.
Further, the Graph Burning problem is W[2]-complete for directed acyclic
graphs. In [25], it was shown that the Graph Burning problem can be solved
in polynomial time on cographs and split graphs.

In [1], a polynomial time approximation algorithm with approximation
factor 3 was given for general graphs. In [9], a 3

2 -approximation algorithm
was given for burning path-forests. In [8], a polynomial time approxima-
tion algorithm with approximation factor 2 was given for trees. In case the
graph is a path-forest with a constant number of paths, the results of [8]
provide a dynamic programming algorithm that creates an optimal solution
in polynomial time. When the number of paths is not a constant, they
provided two approximation schemes. The first scheme works under a regu-
larity condition which implies the lengths of paths are asymptotically equal.
For this scheme, they reduced the problem to the bin covering problem to
achieve a fully polynomial time approximation scheme for the problem. For
the general setting, when there is no assumption on the length of the paths,
they found a polynomial time approximation scheme which runs in time
polynomial in the size of the graph.

A graph decision problem is in APX if it is in NP and allows a polyno-
mial time approximation algorithm with approximation ratio bounded by a
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constant. A graph decision problem is APX-hard if there is a polynomial
time approximation scheme reduction from every problem in APX to that
problem. In [34], it was proven that the Graph Burning problem is APX-
hard, answering a question from [8]. It was also proven in [34] that even if
the burning sources are given as an input, computing a burning sequence
itself is NP-hard.

In light of the approximation algorithms known for graph burning, heuris-
tics for the problem were considered in [19, 25]. For example, in [19],
the authors introduce three heuristics based on eigenvalue centrality for
graph burning: Backbone Based Greedy Heuristic, Improved Cutting Cor-
ners Heuristic, and Component Based Recursive Heuristic.

In [25], the parameterized complexity of graph burning was studied. Sev-
eral problems related to parameterized complexity of graph burning from
[25] were solved in [27]. For example, they proved in [27] that the Graph
Burning problem parameterized by k is W[2]-complete.

5. Future directions in graph burning

We finish by discussing conjectures and directions on graph burning. The
main conjecture in the area is the burning number conjecture, which states
that every connected graph G of order n, b(G) ≤ ⌈n1/2⌉. While the full
conjecture remains unresolved, it would be interesting to consider other
classes where it holds, such as prescribed classes of trees.

An interesting direction would be to find connections with the burning
number and other graph parameters. As stated earlier, an observation in
[7] was that for any graph G with radius r and diameter d, we have that

⌈(d+1)1/2⌉ ≤ b(G) ≤ r+1. Bounds on the burning number were also provided
in [7] utilizing the k-distance domination number. In recent work [12], the
burning number provides bounds on the graph throttling number, which
is a graph parameter related to the cop number in the game of Cops and
Robbers.

On the complexity side, a conjecture from [1] is that for a tree T of radius
r, we can recognize in polynomial time whether or not b(T ) = r + 1. In [24],
an algorithm with approximation factor of 2+o(1) was provided for burning
graphs of bounded tree-length; for more on tree-length, see [15]. An open
problem from [24] is to find algorithms with similar performance for graph
classes such as planar graphs.

We may consider variants of the graph burning process. In [33], the
concepts of fast and slow burning were introduced. In k-fast burning, given
a graph G and k ∈ N, burned vertices of G spread to all their k-neighbors.
This reduces to ordinary graph burning when k = 1. In k-slow burning, in
each round, burning spreads to k neighbors of our choosing. It would be
interesting to these variants of burning for graph classes such as trees and
hypercubes. A variant of potential interest referenced in [33, 34] would be
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edge burning, where sources are edges and spread to incident vertices or
edges.

Another variant is random graph burning, where sources are chosen via
a prescribed stochastic process; see [31]. For example, we may consider a
uniform choice of sources: at round i of the process, a source is selected
uniformly at random from V (with replacement). Let bR(G) be the random
variable associated with the first round all vertices of G are burned. In [31],

it was proven that a.a.s. bR(Pn) ∼
√
n logn/2. The analysis of bR is open for

other classes of graphs such as hypercubes. We may also consider nonuni-
form random processes for choosing sources such as preferential attachment,
where higher degree vertices are more likely chosen as sources.

A final direction we discuss is to consider graph burning in infinite graphs.
The burning number of an infinite graph may be an infinite cardinal. How-
ever, we may consider more finitary-type questions related to density consid-
erations. This approach was taken in [5], where densities of burned vertices
were considered in infinite Cartesian grids. In that approach, we consider
growing grids in the Cartesian plane, centered at the origin. If the grids
are of height and width 2cn + 1 at round n, then it was shown in [5] that
all values in the real number interval [ 1

2c2
,1] are possible densities for the

burned set. It would be interesting to consider this density approach for
burning other infinite grids, such as strong or hexagonal grids.
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