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FLAG VECTOR PAIRS, FATNESS, AND THEIR BOUNDS

FOR 4-POLYTOPES

JIN HONG KIM AND NARI PARK

Abstract. Recently Sjöberg and Ziegler showed a remarkable result
that completely characterizes the flag vector pair (f0, f03) of any 4-
dimensional polytope. Motivated by their results and techniques, in
this paper we show some necessary conditions for other remaining flag
vector pairs such as (f0, f02), (f02, f03), (f1, f02), and (f1, f03) to be flag
vector pairs of 4-dimensional convex polytopes. Results of this paper
give some partial answers to the questions posed by Sjöberg and Ziegler.
As an application of the bounds for flag vector pairs (f1, f03), in this
paper we also provide some bounds of the fatness function for certain
4-polytopes as well as 3-polytopes.

1. Introduction and Main Results

For a d-dimensional polytope P , let fi = fi(P ) denote the number of
i-dimensional faces of P . One of the fundamental combinatorial invariants
of P is its f -vector, which we are mainly concerned with in this paper. The
Euler–Poincaré formula gives the well-known restriction on the f -vectors of
polytopes. Another well-known restriction on the f -vectors for simplicial
polytopes is the so-called Dehn–Sommerville equations. In [14], McMullen
conjectured some characterization of the f -vectors of simplicial polytopes,
and then it has been verified by Stanley in [16], and Billera and Lee in
[6]. However, currently any complete characterization of the f -vectors of all
polytopes with arbitrary dimensions seems to be very much out of reach,
whereas Grünbaum, Barnette, and Reay completed the characterization of
the f -vector pairs (fi, fj) of 4-dimensional polytopes (see [10], [2], and [3]).

There is another combinatorial invariant for convex polytopes, called the
flag vector, which is not relatively well-known but obviously generalizes the
notion of the f -vector. That is, for any S ⊂ {0, 1, 2, . . . , d− 1}, let fS =
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fS(P ) denote the number of chains

F1 ⊂ F2 ⊂ · · · ⊂ Fr−1 ⊂ Fr

of faces of P with

{dimF1,dimF2, . . . ,dimFr} = S.

For the sake of simplicity, from now on we use the notation fi1i2...ik(P )
instead of f{i1,i2,...,ik}(P ) for any subset {i1, i2, . . . , ik} of {0, 1, 2, . . . , d −
1}. For instance, f03(P ) will mean f{0,3}(P ). Note that the f -vector of
P is then (f0, f1, . . . , fd−1), while the flag vector of P is defined to be
(fS)S⊂{0,1,2,...,d−1}.

The set of all f -vectors of d-dimensional polytopes will be denoted by
Fd. Clearly Fd is a subset of Zd. Let Πi,j(Fd) denote the projection of the

f -vector of P ∈ Fd onto the coordinates fi and fj . Then (n,m) ∈ Πi,j(Fd)
is called a polytopal pair if there is a d-polytope P with fi(P ) = n and
fj(P ) = m. If (n,m) ∈ Π0,d−1(Fd), then these pairs must satisfy the well-
known upper bound theorem saying

m ≤ fd−1(Cd(n)), n ≤ fd−1(Cd(m)),

where Cd(n) denotes a d-dimensional cyclic polytope with n vertices (see
[13], [7], and [18, Section 8.4]). For the moment curve in Rd defined by

α : R→ Rn, t 7→ (t, t2, . . . , td)

and for any n > d, the standard dth cyclic polytope with n vertices, denoted
by Cd(t1, t2, . . . , tn), is defined as the convex hull in Rn of n different points
α(t1), α(t2), . . ., α(tn) on the moment curve α such that t1 < t2 < · · · < tn.
Cyclic polytopes Cd(n) are precisely those which are combinatorial equiva-
lent to the standard cyclic polytope (see [10] for more details).

In a similar vein, for any two subsets S1 and S2 of {0, 1, 2, . . . , d − 1},
a pair (fS1(P ), fS2(P )), or simply (fS1 , fS2), of flag numbers of P will be
called a flag vector pair. More generally, for any k, not necessarily mutually
disjoint, subsets S1, S2, . . . , Sk of {0, 1, 2 . . . , d− 1}, a k-tuple

(fS1(P ), fS2(P ), . . . , fSk
(P ))

or simply (fS1 , fS2 , . . . , fSk
), of flag numbers of P will be called a flag vector

k-tuple.
As in the f -vectors, let us denote by ΠS1,S2,...,Sk

the projection of the
flag vector (fS)S⊂{0,1,2,...,d−1} onto its coordinates fS1 , fS2 , . . . , fSk

. We call
(fS1 , fS2 , . . . , fSk

) a polytopal flag vector k-tuple if (fS1 , fS2 , . . . , fSk
) belongs

to the image of the set of all flag vectors of d-dimensional polytopes under
the projection map ΠS1,S2,...,Sk

, that is, if there is a d-polytope P such that

(fS1(P ), fS2(P ), . . . , fSk
(P )) = (fS1 , fS2 , . . . , fSk

).

In [15], Sjöberg and Ziegler recently showed a remarkable result that com-
pletely determines the flag vector pair (f0, f03) of any 4-dimensional poly-
topes. In order to obtain such results, they crucially used the work [1] of
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Altshuler and Steinberg on 4-polytopes up to 8 vertices. Furthermore, they
used stacking, general stacking on cyclic polytopes, facet splitting, trun-
cating, and other techniques for the construction of specific 4-dimensional
polytopes.

Our first goal of this paper is to give some necessary conditions for other
remaining flag vector pairs such as (f0, f02), (f02, f03), (f1, f02), and (f1, f03)
to be flag vector pairs of 4-dimensional convex polytopes. We do not know
whether or not the necessary conditions (or their variants) for flag vector
pairs given in this paper are also sufficient. However, it can be shown by
a case-by-case analysis that there exist some 4-polytopes for certain flag
vector pairs satisfying the necessary conditions, which will not be pursued
further in this paper (see Remark 1.2 and Subsection 3.3 for some interesting
examples).

Recall that a convex polytope P is called neighborly (or 2-neighborly) if
any pair of vertices of P is connected by an edge, forming a complete graph.
So any nonneighborly polytope P should have at least one pair of vertices
of P which do not form an edge.

Our main results go as follows.

Theorem 1.1. The flag vector pair (f0, f02) = (f0(P ), f02(P )) of a 4-
polytope P satisfies the following two conditions:

(1) 30 ≤ 6f0 ≤ f02 ≤ 3f0(f0− 3). Here the lower (resp. upper) bound of
f02 can be achieved by simple (resp. neighborly) 4-polytopes.

(2) For each k ∈ {1, 2, 3, 4, 5, 7, 8, 10, 11}, we have

f02 6= 3f0(f0 − 3)− k.

Remark 1.2.

(a) The lower and upper bounds given in Theorem 1.1 (1) have been
observed by Sjöberg and Ziegler in [15, Subsection 2.7].

(b) We remark that the polytope P obtained by taking the bipyramid
over a tetrahedron satisfies

(f0(P ), f1(P ), f02(P ), f03(P )) = (6, 14, 48, 32),

so that we have

48 = f02(P ) = 3f0(P )(f0(P )− 3)− 6 = 3 · 6 · 3− 6.

Note also that there exists a 4-polytope P with its flag 4-tuple

(f0(P ), f1(P ), f02(P ), f03(P )) = (6, 14, 45, 29),

so that the flag number f02(P ) satisfies

45 = f02(P ) = 3f0(P )(f0(P )− 3)− 9 = 3 · 6 · 3− 9.

In fact, the pyramid over triangular bipyramid realizes those flag
numbers. See Subsection 3.3 for more details. Also, there exists a
4-polytope P with its flag 4-tuple

(f0(P ), f1(P ), f02(P ), f03(P )) = (7, 20, 75, 49),
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so that the flag number f02(P ) satisfies

75 = f02(P ) = 3f0(P )(f0(P )− 3)− 9 = 3 · 7 · 4− 9.

The polytope P has the Gale diagram which is the last diagram in
[10, Figure 6.3.4]. This polytope has the f -vector (7, 20, 25, 12), and
its facets consist of 11 simplices and one bipyramid. Thus every
2-face is a triangle, and f02 = 3f2 holds.

Theorem 1.3. The flag vector pair (f02, f03) = (f02(P ), f03(P )) of a non-
neighborly 4-polytope P satisfies the following inequalities

2

3

(
9 +

√
153 + 12f02

)
≤ f03 ≤

2

3
f02.

A 4-polytope is called 2-simple if each edge of the polytope is contained
in exactly 3 facets.

Theorem 1.4. The flag vector pair (f1, f02) = (f1(P ), f02(P )) of a 4-
polytope P satisfies the following inequalities

3f1 ≤ f02 ≤ 6f1 − 3
(

1 +
√

1 + 8f1

)
,

where the lower (resp. upper) bound of f02 can be achieved by 2-simple (resp.
neighborly) 4-polytopes.

Theorem 1.5. The flag vector pair (f1, f03) = (f1(P ), f03(P )) of a non-
neighborly 4-polytope P satisfies the following inequalities

f1 + 1 +
√

1 + 8f1 ≤ f03 ≤ 4f1 − 2
(

1 +
√

1 + 8f1

)
.

It would be interesting to find some explicit examples which achieve tight
lower and upper bounds given in Theorems 1.1, 1.3, 1.4, and 1.5. Note,
however, that for a 4-simplex ∆4, we have

f0(∆
4) = 5, f1(∆

4) = 10, f02(∆
4) = 30, f03(∆

4) = 20.

Hence, a 4-simplex, simple 4-polytopes, and neighborly 4-polytopes provide
some examples achieving the lower and upper bounds for the above The-
orems 1.1, 1.3, 1.4, and 1.5 in certain cases. Furthermore, the problem of
finding exceptional flag vector pairs currently seems to be widely open, and
we want to discuss the problem elsewhere (see [15, Subsection 2.7] for some
related discussion).

We also remark that some obstructions for flag vector pairs (f1, f04) of
5-polytopes have been proved in [8]. To be a little more precise, certain
bounds of the flag number f04 of a 5-polytope have been shown in terms of
a given flag number f1. The upper bounds given in [8] are not optimal, even
though the lower bounds are very sharp. On the other hand, recently very
sharp and optimal upper and lower bounds for f1 and f04 have been finally
obtained in [11].

As an application of the bounds for flag vector pairs (f1, f03), our second
goal of this paper is to partially answer the following question.
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Question. Are there positive constants c and C so that all 4-dimensional
convex polytopes P satisfy the inequality

0 < c ≤ f1(P ) + f2(P )

f0(P ) + f3(P )
≤ C?

In order to effectively answer the above question, we define the fatness
function φ4 by

φ4 : F4 → R, P 7→ f1(P ) + f2(P )

f0(P ) + f3(P )
.

Similarly, in the case of 3-polytopes, we define the fatness function φ3 by

φ3 : F3 → R, P 7→ f1(P )

f0(P ) + f2(P )
.

There are some known results for the values of the fatness function φ3
and φ4. For example, it is known that the 4-simplex has fatness 2, while the
4-cube and the 4-cross polytope have fatness 7/3. More generally, if P is a
simple 4-polytope, then by using the Dehn–Sommerville relations

f2(P ) = f1(P ) + f3(P )− f0(P ), f1(P ) = 2f0(P )

it is easy to obtain the formula for the fatness function φ4, as follows:

φ4(P ) =
f1(P ) + f2(P )

f0(P ) + f3(P )
=

3f0(P ) + f3(P )

f0(P ) + f3(P )
< 3.

Since every 4-polytope and its dual have the same fatness by its definition,
the same upper bound holds for simplicial 4-polytopes.

On the other hand, it is known that the neighborly cubical 4-polytopes
Pn defined by Joswig and Ziegler in [12] have f -vectors

(f0(Pn), f1(Pn), f2(Pn), f3(Pn))

= (2n, n× 2n−1, (3n− 6)2n−2, (n− 2)2n−2).

Hence we can obtain the fatness

φ4(Pn) =
5n− 6

n+ 2
< 5

which converges to 5 as n goes to ∞. Actually, by a result of Eppstein,
Kuperberg, and Ziegler in [9, Theorem 1] there are convex 4-polytopes whose
fatness φ4 is greater than 5.048.

In this paper, we want to provide some upper and lower bounds for the
fatness function φ4 as well as φ3. More precisely, we have the following

Theorem 1.6. Let P be a convex 3-polytope. Then the following inequalities
hold:

3

4
≤ φ3(P ) < 2.

Remark 1.7. The lower bound of Theorem 1.6 has been observed by the
referee of this paper, while our original lower bound was 1/2.
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Recall that any d-polytope P satisfies

(1.1)
d

2
f0(P ) ≤ f1(P ) ≤

(
f0(P )

2

)
.

This, in particular, implies that any 3-polytope P satisfies f1(P ) ≥ 6, while
any 4-polytope satisfies f1(P ) ≥ 10.

Theorem 1.8. Let P be a convex 4-polytope, and let f1 = f1(P ). Then the
following inequalities hold:

φ4(P ) ≥
2
(

3f1 + 3 +
√

13 + 4
√

1 + 8f1

)
7f1 − 3

(
1 +
√

1 + 8f1
) >

6

7
.

Theorem 1.9. Let P be a convex nonneighborly 4-polytope, and let f1 =
f1(P ). Then the following inequalities hold:

φ4(P ) ≥ (3f1 + 3 +
√

13 + 4
√

1 + 8f1)

3f1 − 1−
√

1 + 8f1
> 1.

As is mentioned in (1.1), in general, f0(P ) and f1(P ) of a d-polytope P
satisfy the inequality

f1(P ) ≤
(
f0(P )

2

)
.

This implies that if f1(P ) happens to be less than
(
f0(P )

2

)
, then there should

be at least one pair of vertices of P which does not form an edge. We call
such a pair of vertices a nonedge. In particular, any facet of a 4-polytope
which is not a simplex should contain at least one nonedge. This is because
the only 3-polytope in which every two vertices form an edge is the 3-simplex.

Theorem 1.10. Let P be a 4-polytope with a unique nonedge. Then the
following inequalities hold:

1 < φ4(P ) < 3.

This paper is organized as follows. In Section 2, we collect some notation,
definitions, and preliminary facts in order to prove our main theorems given
in Section 3. In Section 3, we give some necessary conditions for vector pairs
such as (f0, f02), (f02, f03), (f1, f02), and (f1, f03) to be flag vector pairs of
4-dimensional convex polytopes. To be more precise, in Section 3 we give
a proof of Theorem 1.1 for a flag vector pair (f0, f02). To do so, we use a
case-by-case analysis. Section 4 is devoted to giving a proof of Theorem 1.3
for a flag vector pair (f02, f03), while Section 5 deals with the case of a flag
vector pair (f1, f02) and there we provide a proof of Theorem 1.4. In Section
6, we give some bounds for a flag vector pair (f1, f03). Finally, in Section 7
we prove our main Theorems 1.6, 1.8, 1.9, and 1.10, in detail.
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2. Preliminaries

This section briefly describes some important theorems necessary for un-
derstanding the proofs of our main results given in Section 3. In addition,
in this section we set up some notation and definitions used later.

First, we begin with summarizing the well-known facts about the f -vector
of convex polytopes, in particular, 4-dimensional polytopes.

Theorem 2.1 ([10, Theorem 10.4.1]). The set of f -vector pairs (f0, f3) of
4-polytopes is equal to

Π0,3(F4) =

{
(f0, f3) ∈ Z2

∣∣∣ 5 ≤ f0 ≤ 1

2
f3(f3 − 3), 5 ≤ f3 ≤

1

2
f0(f0 − 3)

}
.

Theorem 2.2 ([10, Theorem 10.4.2]). The set of f -vector pairs (f0, f1) of
4-polytopes is equal to

Π0,1(F4) =

{
(f0, f1) ∈ Z2

∣∣∣ 10 ≤ 2f0 ≤ f1 ≤
1

2
f0(f0 − 1)

}
− {(6, 12), (7, 14), (8, 17), (10, 20)} .

Theorem 2.3 ([15, Theorem 2.5]). There exists a 4-polytope P with f0(P ) =
f0 and f03(P ) = f03 if and only if the following two conditions hold:

(1) f0 and f03 are integers satisfying

20 ≤ 4f0 ≤ f03 ≤ 2f0(f0 − 3),

and

f03 6= 2f0(f0 − 3)− k, k ∈ {1, 2, 3, 5, 6, 9, 13}.
(2) (f0, f03) is not one of the following 18 exceptional pairs

(6, 24), (6, 25), (6, 28),

(7, 28), (7, 30), (7, 31), (7, 33), (7, 34), (7, 37), (7, 40),

(8, 33), (8, 34), (8, 37), (8, 40),

(9, 37), (9, 40), (10, 40), (10, 43).

The following generalized Dehn–Sommerville equation plays an important
role in the proofs of our main theorems.

Theorem 2.4 ([5, Theorem 2.1]). Let P be a d-polytope, and let S be a
subset of {0, 1, 2, . . . , d− 1}. Let {i, k} be a subset of S ∪ {−1, d} such that
i < k− 1 and such that there does not exist an integer j ∈ S with i < j < k.
Then the following equation holds:

k−1∑
j=i+1

(−1)j−i−1fS∪{j}(P ) = fS(P )(1− (−1)k−i−1).

We also need the following theorem of Bayer in [4, Theorems 1.3 and 1.4].

Theorem 2.5. The flag vector of a 4-polytope P satisfies the inequalities:
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(1) f02(P )− 3f2(P ) + f1(P )− 4f0(P ) + 10 ≥ 0.
(2) −6f0(P ) + 6f1(P )− f02(P ) ≥ 0.

3. Proof of Theorem 1.1: flag vector pairs (f0, f02)

The aim of this section is to give a proof of our main Theorem 1.1. To do
so, we first prove a series of results in order to characterize the following set

Π0,02(F4) = {(f0(P ), f02(P )) ∈ Z2 |P is a 4-polytope}.

We first begin with the following lemma whose proof easily follows from
Theorem 2.4 (or [5, Theorem 2.1]) with S = {0}, i = 0, and k = 4. We leave
its proof to the reader.

Lemma 3.1. The flag vector of a 4-polytope P satisfies the following identity

2f0(P )− 2f1(P ) + f02(P )− f03(P ) = 0.

As an immediate consequence, we have the following result that is equiv-
alent to Theorem 1.1 (1).

Proposition 3.2. The flag vector of a 4-polytope P satisfies the following
inequalities

30 ≤ 6f0(P ) ≤ f02(P ) ≤ 3f0(P )(f0(P )− 3).

Proof. Recall that by a result of Sjöberg and Ziegler ([15, Theorem 2.5] or
Theorem 2.3 (1)) we have

20 ≤ 4f0 ≤ f03 ≤ 2f0(f0 − 3).

By combining the above inequalities with the identity given in Lemma 3.1,
it is easy to obtain

2f0(f0 − 3) ≥ f03 = 2f0 − 2f1 + f02.

Hence, by Theorem 2.2 we can show

f02 ≤ −2f0 + 2f1 + 2f0(f0 − 3)

≤ −2f0 + f0(f0 − 1) + 2f0(f0 − 3)

= 3f0(f0 − 3).

(3.1)

Also, it follows from f03 ≥ 4f0 and f1 ≥ 2f0 that the identity f03 = 2f0 −
2f1 + f02 implies

(3.2) f02 ≥ 2f0 + 2f1 ≥ 6f0 ≥ 30.

By (3.1) and (3.2), we now have

30 ≤ 6f0 ≤ f02 ≤ 3f0(f0 − 3),

which completes the proof. �
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As a consequence of Proposition 3.2, we have

Π0,02(F4) ⊂
{

(n,m) ∈ Z2 | 30 ≤ 6n ≤ m ≤ 3n(n− 3)
}
.

Note that f02(P ) = 3f0(P )(f0(P ) − 3) if and only if P is neighborly, while
f02(P ) = 4f0(P ) if and only if P is simple (see, e.g., [15, Lemma 2.6]). Thus,
if f02(P ) < 3f0(P )(f0(P )− 3), then P is not neighborly, i.e.,

(3.3) f1(P ) ≤ 1

2
f0(P )(f0(P )− 1)− 1 =

(
f0(P )

2

)
− 1.

We can complete the proof of Theorem 1.1 (2) by a case-by-case analysis
in the following subsections.

3.1. The case 1 ≤ k ≤ 5. We begin with the following lemma.

Lemma 3.3. Assume that f02 = 3f0(f0 − 3) − k for some positive integer
k. Then we have

(3.4)

(
f0
2

)
+

4− k
2
≤ f1 ≤

(
f0
2

)
− 1.

Proof. By Theorem 2.3 (or [15, Theorem 2.5]) and Lemma 3.1, we have

3f0(f0 − 3)− k = f02 = −2f0 + 2f1 + f03

≤ −2f0 + 2f1 + 2f0(f0 − 3)− 4.

This implies the following inequality

2f1 ≥ f0(f0 − 1) + 4− k.

That is, we should have

(3.5) f1 ≥
f0(f0 − 1)

2
+

4− k
2

=

(
f0
2

)
+

4− k
2

.

Note that, since f02(P ) is assumed to be equal to 3f0(P )(f0(P )− 3)− k for
a positive integer k, P is not neighborly. Thus, it follows from (3.3) that we
have

(3.6) f1(P ) ≤
(
f0(P )

2

)
− 1.

By (3.5) and (3.6), it is now immediate to obtain(
f0
2

)
+

4− k
2
≤ f1 ≤

(
f0
2

)
− 1,

as desired. �

Corollary 3.4. For each k ∈ {1, 2, 3, 4, 5}, we have

f02 6= 3f0(f0 − 3)− k.
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nonedges

Figure 1. Bipyramid over a triangle with one nonedge and
square pyramid with two nonedges.

Proof. We prove it by contradiction. So suppose

f02 = 3f0(f0 − 3)− k.

for some positive integer k with 1 ≤ k ≤ 5. Then it follows from (3.4) in
Lemma 3.3 that we have(

f0
2

)
− 1 <

(
f0
2

)
− 1

2
≤
(
f0
2

)
+

4− k
2
≤ f1 ≤

(
f0
2

)
− 1.

Clearly this is a contradiction. �

3.2. The case k = 7. Next we want to deal with the case of k = 7. In
order to exclude the case of k = 7 in Theorem 1.1 (2), we first need to recall
that if there is a pair of vertices of a polytope not forming an edge, then
such a pair of vertices is called a nonedge (See Figure 1). Recall that the
only 3-polytope in which every two vertices form an edge is the 3-simplex.
Hence any 3-polytope which is not a 3-simplex contains a nonedge.

If f1 =
(
f0
2

)
− 1, there is a unique pair of vertices v1, v2 of P which do

not form an edge. That is, there is a unique nonedge e in P . If P is not
simplicial, there is a facet F , not a 3-simplex, such that F should contain
the unique nonedge e. It then should have only five vertices. Further,
it is well-known from [10, Section 6.1] (or [15, Section 2]) that there are
only two combinatorial types of 3-polytopes with five vertices: the square
pyramid and the bipyramid over a triangle. Note that only the bipyramid
over a triangle contains a unique nonedge, while the square pyramid contains
exactly two nonedges (see Figure 1).

The following lemma holds.

Lemma 3.5. Let P be a 4-polytope with a unique nonedge, and let t be the
number of all tetrahedral facets of P . Then the following statements hold:

(1) If the polytope P is not simplicial, then P is a polytope with one
bipyramid facet and remaining tetrahedral facets, and f02 satisfies

f02 = 6t+ 9.
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(2) If the polytope P is simplicial, then f02 satisfies

f02 = 6t.

Proof. (1) The first statement follows immediately from the fact that among
all the 3-polytopes with five vertices only the bipyramid over a triangle
contains a unique nonedge. Since in this case every 2-dimensional face of P
is a triangle, it is easy to see that

f2 =
4t+ 6

2
= 2t+ 3, f02 = 3f2 = 6t+ 9.

(2) On the other hand, if the polytope P is simplicial, clearly we have
f2 = 2t, and thus f02 satisfies f02 = 6t. Hence we are done. �

Now we are ready to deal with the case of k = 7 in Theorem 1.1 (2).

Lemma 3.6. The following statement holds:

f02 6= 3f0(f0 − 3)− 7.

Proof. For the proof, suppose that f02 is equal to 3f0(f0 − 3) − 7. Then it
follows from (3.4) in Lemma 3.3 that we have(

f0
2

)
− 2 <

(
f0
2

)
− 3

2
≤ f1 ≤

(
f0
2

)
− 1.

Thus f1 =
(
f0
2

)
−1. That is, there is a unique nonedge in P . Thus, it follows

from Lemma 3.5 that f02 is always equal to 0 mod 3. But 3f0(f0 − 3) − 7
cannot be equal to 0 mod 3. Hence we have

f02 6= 3f0(f0 − 3)− 7.

This completes the proof of Lemma 3.6 �

3.3. The case k = 8, 9. In this subsection, we want to deal with the cases
of k = 8, 9 in Theorem 1.1 (2).

Lemma 3.7. The following statement holds:

f02 6= 3f0(f0 − 3)− 8.

Proof. We prove it by contradiction. So suppose that f02 = 3f0(f0− 3)− 8.
Then it follows from (3.4) in Lemma 3.3 that we have(

f0
2

)
− 2 =

(
f0
2

)
− 4

2
≤ f1 ≤

(
f0
2

)
− 1.

Thus we have f1 =
(
f0
2

)
− 1 or f1 =

(
f0
2

)
− 2.

If f1 =
(
f0
2

)
− 1, then it follows from Lemma 3.5 that f02 is equal to

0 mod 3, while 3f0(f0 − 3)− 8 is not equal to 0 mod 3. Thus we have

f02 6= 3f0(f0 − 3)− 8.
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On the other hand, if f1 =
(
f0
2

)
− 2, then P has exactly two nonedges.

Assume first that P is not simplicial. Let F be any 3-dimensional facet of
P . Then F has at most two nonedges. Thus in this case we should have(

f0(F )

2

)
− 2 ≤ f1(F ) ≤ 3f0(F )− 6,

which implies that 4 ≤ f0(F ) ≤ 5. So, if F is any nontetrahedral facet of P ,
then F is a 3-polytope with 5 vertices.

In fact, we can show that the case of f1 =
(
f0
2

)
− 2 cannot occur at all.

To see it, note first that if f02 = 3f0(f0 − 3)− 8 with f1 =
(
f0
2

)
− 2, then by

Lemma 3.1 we have

f03 = 2f0(f0 − 3) + 4− 8 ≡ 0 mod 4.

Since each tetrahedral facet has exactly four vertices and P is assumed to be
nonsimplicial, this implies that there must be at least four nontetrahedral
facets with five vertices in P . Thus P should contain at least four nonedges,
which contradicts the assumption that there are only two nonedges in P .

Consequently, in this case we have

f02 6= 3f0(f0 − 3)− 8.

Assume next that P is simplicial. As in Lemma 3.5, it is easy to see
that f02 = 6t. Thus f02 is equal to 0 mod 3, which contradicts the fact
that 3f0(f0 − 3) − 8 is not equal to 0 mod 3. Thus once again we have
f02 6= 3f0(f0 − 3)− 8.

This completes the proof of Lemma 3.7. �

If f1 =
(
f0
2

)
− 2, it can be also shown that

f02 6= 3f0(f0 − 3)− 9.

Indeed, suppose that f02 = 3f0(f0 − 3) − 9. Then it follows from Theorem

2.5 (2) and the condition f1 =
(
f0
2

)
− 2 that we have

−6f0 + 6f1 = −6f0 + 6

(
f0(f0 − 1)

2
− 2

)
= 3f0(f0 − 3)− 12

≥ f02 = 3f0(f0 − 3)− 9,

which is a contradiction.
As mentioned in Remark 1.2, there exists a 4-polytope P with its flag

3-tuple
(f0(P ), f1(P ), f03(P )) = (6, 14, 29),

so that we have

45 = f02(P ) = 3f0(P )(f0(P )− 3)− 9 = 3 · 6 · 3− 9,

as desired. In fact, the pyramid over a triangular bipyramid realizes the flag
4-tuple

(f0(P ), f1(P ), f02(P ), f03(P )) = (6, 14, 45, 29).

Refer to [15, Table 1] for more details.



FLAG VECTOR PAIRS, FATNESS, AND THEIR BOUNDS FOR 4-POLYTOPES 21

3.4. The case k = 10, 11. Finally, in this subsection we want to exclude
the cases of k = 10, 11 in Theorem 1.1 (2).

Lemma 3.8. For any k ∈ {10, 11}, we have

f02 6= 3f0(f0 − 3)− k.

Proof. For k = 10 or 11, suppose that f02 = 3f0(f0− 3)−k. Then it follows
from (3.4) in Lemma 3.3 that we have(

f0
2

)
− 4 <

(
f0
2

)
− 7

2
≤ f1 ≤

(
f0
2

)
− 1.

Thus f1 =
(
f0
2

)
− 1, or f1 =

(
f0
2

)
− 2, or f1 =

(
f0
2

)
− 3.

(1) If f1 =
(
f0
2

)
− 1, then, as in Subsection 3.2, f02 is equal to 0 mod 3.

Hence we have

f02 6= 3f0(f0 − 3)− 10, f02 6= 3f0(f0 − 3)− 11.

(2) If f1 =
(
f0
2

)
− 2, then it follows from Lemma 3.1 that we have

(3.7) f03 = 2f0(f0 − 3) + 4− k ≡ 2 mod 4, k = 10,

and

(3.8) f03 = 2f0(f0 − 3) + 4− k ≡ 1 mod 4, k = 11.

This, in particular, implies that P cannot be simplicial.
Assume first that f02 = 3f0(f0 − 3) − 10. Then, as in Subsection 3.3

it follows from (3.7) that there must be at least two nontetrahedral facets
with five vertices in P . Since there are only two nonedges in P , either there
are exactly two bipyramids with a triangle in P as facets such that each of
them contains a unique nonedge or there are exactly two square pyramids
as facets whose apices are connected by an edge.

As before, let t denote the number of tetrahedral facets of P . Then we
have

f02 = 3f2 = 6(t+ 3) or 6(t+ 2).

Thus f02 is equal to 0 mod 3, while 3f0(f0− 3)− 10 is not equal to 0 mod 3.
This implies that

f02 6= 3f0(f0 − 3)− 10.

Assume next that f02 = 3f0(f0 − 3) − 11. Then, once again as in Sub-
section 3.3 it follows from (3.8) that there must be at least one, but not
two, nontetrahedral facet with five vertices in P . Since there are only two
nonedges in P , there should be only one nontetrahedral facet of P which
is a bipyramid over a triangle such that one nonedge lies in the bipyramid
over a triangle, and the other nonedge does not lie in a facet.

For this case, we have

f02 = 3f2 = 6t+ 9 ≡ 0 mod 3.

Since 3f0(f0 − 3)− 11 is not equal to 0 mod 3, we have

f02 6= 3f0(f0 − 3)− 11.
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nonedges

Figure 2. Two 3-polytopes with 6 vertices and three
nonedges, where the second row shows their corresponding
Schlegel diagrams.

(3) It remains to deal with the case of f1 =
(
f0
2

)
− 3. Assume first that

P is not simplicial. Let F be any 3-dimensional facet of P . Then F has at
most three nonedges. Hence we have

(3.9)

(
f0(F )

2

)
− 3 ≤ f1(F ) ≤ 3f0(F )− 6,

which implies that 4 ≤ f0(F ) ≤ 6.
(i) Assume that there is a 3-dimensional facet F with f0(F ) = 6. Then

it follows from (3.9) that F should have 12 edges and three nonedges. Note
that there are only two such combinatorially different 3-polytopes F which
are both simplicial (see [15, Section 2] and Figure 2).

For this case, we have

f02 = 3f2 = 3(2t+ 4) = 6t+ 12 ≡ 0 mod 6.

Since 3f0(f0 − 3)− k is not equal to 0 mod 6 for k ∈ {10, 11}, we have

f02 6= 3f0(f0 − 3)− k, k ∈ {10, 11}.
(ii) Assume next that there is no facet with six vertices so that every

3-dimensional facet F satisfies 4 ≤ f0(F ) ≤ 5. Then any nontetrahedral
facet F should have 5 vertices. Since there are exactly three nonedges in P
and thus there are at most three nonedges in facets, it is also true that we
cannot have more than three nontetrahedral facets in P . Further, in this
case we have

f03 = 2f0(f0 − 3) + 6− k ≡ 0 mod 4, k = 10,
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and

f03 = 2f0(f0 − 3) + 6− k ≡ 3 mod 4, k = 11.

This, in particular, implies that the nontetrahedral facets of P cannot consist
of two square pyramids with two nonedges coming from their common square
and a third nonedge coming from their apices. So we have two cases to
consider:

(a) The nontetrahedral facets of P are three bipyramids over a triangle.
(b) The nontetrahedral facets of P are two square pyramids and one

bipyramid over a triangle.

In the case of (a), we have

f2 =
4t+ 18

2
= 2t+ 9.

Thus we have

f02 = 3f2 = 3(2t+ 9) = 6t+ 27 ≡ 3 mod 6.

This implies that

f02 6= 3f0(f0 − 3)− k, k ∈ {10, 11}.

Similarly, in the case of (b), we have

f2 =
4t+ 16

2
= 2t+ 8.

Thus we have

f02 = 3f2 = 3(2t+ 8) = 6t+ 24 ≡ 0 mod 6.

Once again this implies that

f02 6= 3f0(f0 − 3)− k, k ∈ {10, 11}.

Assume next that P is simplicial. Then we have f02 = 6t, which is equal
to 0 mod 6. Hence

f02 6= 3f0(f0 − 3)− k, k ∈ {10, 11}.

This completes the proof of Lemma 3.8. �

To sum up all of the previous results, we can obtain the following theorem
(Theorem 1.1).

Theorem 3.9. The flag vector pair (f0, f02) = (f0(P ), f02(P )) of a 4-
polytope P satisfies the following two conditions:

(1) 30 ≤ 6f0 ≤ f02 ≤ 3f0(f0− 3). Here the lower (resp. upper) bound of
f02 can be achieved by simple (resp. neighborly) 4-polytopes.

(2) For each k ∈ {1, 2, 3, 4, 5, 7, 8, 10, 11}, we have

f02 6= 3f0(f0 − 3)− k.
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4. Proof of Theorem 1.3: flag vector pairs (f02, f03)

The aim of this section is to give a proof of Theorem 1.3.

Theorem 4.1. The flag vector pair (f02, f03) = (f02(P ), f03(P )) of a non-
neighborly 4-polytope P satisfies the following inequalities

2

3

(
9 +

√
153 + 12f02

)
≤ f03 ≤

2

3
f02.

Proof. To see it, recall first from Theorem 2.5 (2) that we have

f0 − f1 ≤ −
1

6
f02.

By Lemma 3.1, it is easy to obtain

f02 = f03 − 2(f0 − f1) ≥ f03 +
1

3
f02.

Thus we have f03 ≤ 2
3f02.

On the other hand, if P is nonneighborly, then it follows from Theorem
1.1 that we have

f02 ≤ 3f0(f0 − 3)− 6.

That is, f20 − 3f0 − 2− 1
3f02 ≥ 0. Thus, it is not difficult to obtain

f0 ≥
1

6

(
9 +

√
153 + 12f02

)
.

Since f03 ≥ 4f0, this implies

f03 ≥
2

3

(
9 +

√
153 + 12f02

)
.

This completes the proof of Theorem 4.1. �

5. Proof of Theorem 1.4: flag vector pairs (f1, f02)

The aim of this section is to give a proof of our main Theorem 1.4. Recall
that a 4-polytope is 2-simple if each edge of the polytope is contained in
exactly 3 facets.

Theorem 5.1. The flag vector pair (f1, f02) = (f1(P ), f02(P )) of a 4-
polytope P satisfies the following inequalities

3f1 ≤ f02 ≤ 6f1 − 3
(

1 +
√

1 + 8f1

)
,

where the lower (resp. upper) bound of f02 can be achieved by 2-simple (resp.
neighborly) 4-polytopes.

Proof. For the proof, recall first from Theorem 2.2 that we have

2f1 ≤ f0(f0 − 1), i.e., f20 − f0 − 2f1 ≥ 0.

Thus it is easy to obtain

(5.1) f0 ≥
1

2

(
1 +

√
1 + 8f1

)
.
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Also, it follows from Theorem 2.5 (2) that we have

f02 ≤ −6f0 + 6f1 ≤ −3
(

1 +
√

1 + 8f1

)
+ 6f1.

Since each edge is contained in at least three facets for 4-polytopes, we
should have

(5.2) f12 ≥ 3f1.

Thus it follows from (5.2) and the identity f02 = f12 that we have f02 ≥ 3f1.
Consequently, we can obtain

3f1 ≤ f02 ≤ 6f1 − 3
(

1 +
√

1 + 8f1

)
,

where the lower (resp. upper) bound of f02 can be achieved by 2-simple
(resp. neighborly) 4-polytopes. This completes the proof of Theorem 5.1. �

6. Proof of Theorem 1.5: flag vector pairs (f1, f03)

The aim of this section is to give a proof of our main Theorem 1.5. To do
so, we first begin with the following theorem.

Theorem 6.1. The flag vector pair (f1, f03) = (f1(P ), f03(P )) of a 4-
polytope P satisfies the following inequalities

f1 + 1 +
√

1 + 8f1 ≤ f03 ≤ 5f1 − 3
(

1 +
√

1 + 8f1

)
,

where the lower (resp. upper) bound of f02 can be achieved by 2-simple
(resp. neighborly) 4-polytopes.

Proof. By the identity

f03 = 2f0 − 2f1 + f02,

it follows from (5.1) and Theorem 5.1 that we have

f03 = 2f0 − 2f1 + f02

≥ 1 +
√

1 + 8f1 − 2f1 + 3f1

= f1 + 1 +
√

1 + 8f1.

Moreover, it is also true that

f03 = 2f0 − 2f1 + f02

≤ f1 − 2f1 + 6f1 − 3(1 +
√

1 + 8f1)

= 5f1 − 3(1 +
√

1 + 8f1).

This completes the proof of Theorem 6.1. �

Finally we close this section with the following theorem which improves
the upper bound for f03 given in Theorem 6.1 in certain cases.
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Theorem 6.2. The flag vector pair (f1, f03) = (f1(P ), f03(P )) of a non-
neighborly 4-polytope P satisfies the following inequalities

f1 + 1 +
√

1 + 8f1 ≤ f03 ≤ 4f1 − 2
(

1 +
√

1 + 8f1

)
.

Proof. To show it, we crucially make use of Theorems 4.1 and 5.1. Indeed,
it follows from Theorems 4.1 and 5.1 that we have

f03 ≤
2

3
f02 ≤

2

3

(
6f1 − 3

(
1 +

√
1 + 8f1

))
= 4f1 − 2

(
1 +

√
1 + 8f1

)
.

This together with Theorem 6.1 completes the proof. �

Notice that for any f1 ≥ 10, which is always true for any 4-polytopes, we
have

4f1 − 2
(

1 +
√

1 + 8f1

)
≤ 5f1 − 3

(
1 +

√
1 + 8f1

)
.

Therefore, for any nonneighborly 4-polytope P (so, f1 ≥ 11) Theorem 6.2
gives better upper bound for f03 in terms of f1 than those given in Theorem
6.1.

7. Proofs of Theorems 1.6, 1.8, 1.9, and 1.10

The aim of this section is to give proofs of Theorems 1.6, 1.8, 1.9, and
1.10. For simplicity, as above we denote by (f0, f1, . . . , fd−1) the f -vector of
d-polytope unless there is any confusion.

To do so, we begin with the proof of Theorem 1.6.

Theorem 7.1. Let P be a convex 3-polytope. Then the following inequalities
hold:

3

4
≤ φ3(P ) < 2.

Proof. Since P is a convex 3-polytope, by a result of Steinitz in [17] it
satisfies the following relations:

• f1 = f0 + f2 − 2 (Euler–Poincaré equation).
• f2 ≤ 2f0−4 and f0 ≤ 2f2−4 with equality for simplicial and simple

3-polytopes, respectively.
• 3

2f0 ≤ f1 ≤ 3f0 − 6.

Hence we have

(7.1) φ3(P ) =
f1

f0 + f2
=
f0 + f2 − 2

f0 + f2
= 1− 2

f0 + f2
≥ 3

4
,

where we make use of the inequality f0 + f2 ≥ 8 in order to obtain the last
inequality.

On the other hand, it is also easy to obtain

(7.2) φ3(P ) =
f1

f0 + f2
≤ 6f0 − 12

3f0 + 4
= 2− 20

3f0 + 4
< 2.
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Therefore, it follows from (7.1) and (7.2) that we have

3

4
≤ φ3(P ) < 2,

as desired. �

Theorem 7.2. Let P be a convex 4-polytope. Then the following inequalities
hold:

φ4(P ) ≥
2
(

3f1 + 3 +
√

13 + 4
√

1 + 8f1

)
7f1 − 3

(
1 +
√

1 + 8f1
) >

6

7
.

Proof. For the proof, first note that by Euler–Poincaré equation we have

f2 = −f0 + f1 + f3.

Thus the fatness function φ4 satisfies

(7.3) φ4(P ) =
f1 + f2
f0 + f3

=
−f0 + 2f1 + f3

f0 + f3
.

Since each 3-dimensional face has at least four vertices and so f03 ≥ 4f3 (or
by the lower bound in Theorem 2.3 (1) and its duality), it follows from (7.3)
that we have

φ4(P ) ≥ −f0 + 2f1 + f3

f0 + 1
4f03

.

By using the inequality f03 ≤ 5f1−3
(
1 +
√

1 + 8f1
)

from Theorem 6.1 once
again, it is easy to obtain

f0 +
1

4
f03 ≤ f0 +

5

4
f1 −

3

4

(
1 +

√
1 + 8f1

)
.

This together with f1 ≥ 2f0 implies

(7.4) φ4(P ) ≥
3
2f1 + f3

7
4f1 −

3
4

(
1 +
√

1 + 8f1
) .

On the other hand, it follows from [10, Theorem 10.4.1] that we have

f23 − 3f3 − 2f0 ≥ 0 and f20 − f0 − 2f1 ≥ 0,

which implies

f3 ≥
3 +
√

9 + 8f0
2

and f0 ≥
1 +
√

1 + 8f1
2

.

Consequently, f3 satisfies

(7.5) f3 ≥
3 +

√
13 + 4

√
1 + 8f1

2
.

By combining (7.4) with (7.5), we can obtain

φ4(P ) ≥
2
(

3f1 + 3 +
√

13 + 4
√

1 + 8f1

)
7f1 − 3

(
1 +
√

1 + 8f1
) , f1 ≥ 10.
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Now, let f(x) be a function given by

f(x) =
(6x+ 6 + 2

√
13 + 4

√
1 + 8x)

7x− 3− 3
√

1 + 8x
, x ≥ 10.

Then f is a decreasing function and satisfies f(10) = 2 and 6/7 < f(x) ≤ 2.
So in this case the lower bound for the fatness function φ4 is bounded from
above by 2 and bounded from below by 6/7.

This completes the proof of Theorem 7.2. �

Theorem 7.3. Let P be a convex nonneighborly 4-polytope. Then the fol-
lowing inequalities hold:

φ4(P ) ≥ (3f1 + 3 +
√

13 + 4
√

1 + 8f1)

3f1 − 1−
√

1 + 8f1
> 1, f1 ≥ 10.

Proof. The proof of Theorem 7.3 is very similar to that of Theorem 7.2 with
the inequality

f03 ≤ 4f1 − 2(1 +
√

1 + 8f1)

stated in Theorem 6.2. So we leave its detailed proof to the reader. �

Remark 7.4. Let f(x) be a function given by

f(x) =
(3x+ 3 +

√
13 + 4

√
1 + 8x)

3x− 1−
√

1 + 8x
, x ≥ 10.

Then f is a decreasing function and satisfies f(10) = 2 and 1 < f(x) ≤ 2.
So in this case the lower bound for the fatness function φ4 is bounded from
above by 2 and bounded from below by 1.

Theorem 7.5. Let P be a 4-polytope with a unique nonedge. Then the
following inequalities hold:

1 < φ4(P ) < 3.

Proof. For the proof, we make use of the fact from Lemma 3.5 that if P is
not simplicial, then P should be a 4-polytope with only one bipyramid facet
and remaining tetrahedron facets. As before, let t denote the number of all
tetrahedral facets of P .

Assume first that P is not simplicial. Then we have

f3(P ) = 1 + t, f2(P ) = 2t+ 3, f03(P ) = 5 + 4t.

Thus it follows from the relation

6t+ 9 = f02(P ) = −2f0(P ) + 2f1(P ) + f03(P )

= −2f0(P ) + 2f1(P ) + 5 + 4t

that we have

f1(P ) = f0(P ) + t+ 2.
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Hence, since f0 ≥ 5 and t ≥ 5 by Theorem 2.1, it is straightforward to show
that

1 < φ4(P ) =
f1 + f2
f0 + f3

=
f0 + 3t+ 5

f0 + 1 + t

= 1 +
2t+ 4

f0 + 1 + t
≤ 1 +

2t+ 4

t+ 6
= 3− 8

t+ 6

< 3

Assume next that P is simplicial. Then, it is easy to obtain

f3(P ) = t, f2(P ) = 2t, f03(P ) = 4t, f1(P ) = f0(P ) + t.

Thus, since f0 ≥ 5 and t ≥ 5, once again we have

1 < φ4(P ) =
f1 + f2
f0 + f3

=
f0 + 3t

f0 + t

= 1 +
2t

f0 + t
≤ 1 +

2t

t+ 5

< 3

This completes the proof of Theorem 7.5. �
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