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A NOTE ON THE FULLY DEGENERATE BELL

POLYNOMIALS OF THE SECOND KIND

DONGKYU LIM*

Abstract. In this paper, the authors study a new degenerating ap-
proach to the Bell polynomials which are called fully degenerate Bell
polynomials of the second kind. We establish some identities from the
fully degenerate Bell polynomials of the second kind and give explicit
relations to special numbers and polynomials.

1. Introduction

In combinatorial mathematics, the Bell polynomials are used in the study
of partitions (see [1, 2, 4, 5, 8]). The Bell polynomials Beln(x) are defined
by the generating function to be [7, 8, 12, 14, 21, 24, 25]

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
.

When x = 1, Beln = Beln(1) are called the n-th Bell numbers.
For λ ∈ R, the degenerate exponential function is defined by (see [3, 6, 9,

13])

exλ(t) = (1 + λt)
x
λ =

∞∑
n=0

(x)n,λ
tn

n!
, eλ(t) = e1λ(t),

where (x)0,λ = 1, (x)n,λ = x(x− λ) · · · (x− (n− 1)λ), for n ≥ 1.
In [9], the first works on the degenerate Bell numbers and polynomials

are done by Kim and Kim

e
x(eλ(t)−1)
λ (1) =

∞∑
n=0

Beln,λ(x)
tn

n!
.
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Later in [14], Kim et al. introduced the partially degenerate Bell polyno-
mials beln,λ(x), which are given by the generating function

ex(eλ(t)−1) =
∞∑
n=0

beln,λ(x)
tn

n!
.

In [6], Dolgy et al. defined and studied the fully degenerate Bell polyno-
mials Bn,λ(x) by the generating function

eλ(x(eλ(t)− 1)) = (1 + λx((1 + λt)1/λ − 1))
1
λ =

∞∑
n=0

Bn,λ(x)
tn

n!
.

Kim et al. defined in [18, 19] the new type degenerate Bell polynomials,
Bn(x|λ), n ≥ 0 by

exλ(e
t − 1) =

(
1 + λ(et − 1)

) x
λ =

∞∑
n=0

Bn(x|λ)
tn

n!
.

When x = 1, Bn(1|λ) are called the new type degenerate Bell numbers.
The authors obtain several expressions of identities on those numbers and
polynomials, (see [18, 19]). Recently in [23], authors considered a new de-
generating approach to the Bell polynomials which were called the fully
degenerate Bell polynomials of the second kind. We gave some identities
from the generating function and especially by using the differential equa-
tions on those polynomials. In this paper, we continuously study a new
degenerating approach to the Bell polynomials which are called fully degen-
erate Bell polynomials of the second kind. We give explicit identities from
the generating function and relate our polynomials to special numbers and
polynomials.

As is well known, for k ≥ 0, the Stirling numbers of the first kind S1(n, k),
the Stirling numbers of the second kind S2(n, k) and the central factorial
numbers of the second kind T (n, k) are defined by the generating functions
(see [6, 7, 8, 11, 13])

1

k!
(log(1 + t))k =

∞∑
n=k

S1(n, k)
tn

n!
,

1

k!
(et − 1)k =

n∑
k=0

S2(n, k)
tn

n!
,

1

k!
(e

1
2 − e−

1
2 )k =

∞∑
n=k

T (n, k)
tn

n!
.

Recall from [6, 10, 11, 15, 17, 22] that the degenerate Stirling numbers of the
first kind S1,λ(n, k), the degenerate λ-Stirling numbers of the second kind
S2,λ(n, k) and the degenerate central factorial numbers of the second kind
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T2,λ(n, k) are generated by

1

k!
(logλ(1 + t))k =

∞∑
n=k

S1,λ(n, k)
tn

n!
,(1.1)

1

k!
(eλ(t)− 1)k =

n∑
k=0

S2,λ(n, k)
tn

n!
,(1.2)

1

k!
(e

1
2
λ (t)− e

− 1
2

λ (t))k =
∞∑
n=k

T2,λ(n, k)
tn

n!
,(1.3)

where k is a nonnegative integer. It is clear that

lim
λ→0

S1,λ(n, k) = S1(n, k), lim
λ→0

S2,λ(n, k) = S2(n, k),

lim
λ→0

T2,λ(n, k) = T (n, k).

It is common knowledge that the Bernoulli polynomials Bn(x), the Euler
polynomials En(x) and the Cauchy polynomials Cn(x) are given by

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
,

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
,

t

log(1 + t)
(1 + t)x =

∞∑
n=0

Cn(x)
tn

n!
.

In view of these, for any nonzero λ ∈ R, the degenerate polynomials are
given by the generating functions

t

eλ(t)− 1
exλ(t) =

∞∑
n=0

βn,λ(x)
tn

n!
,(1.4)

2

eλ(t) + 1
exλ(t) =

∞∑
n=0

En,λ(x)
tn

n!
,(1.5)

t

logλ(1 + t)
(1 + t)x =

∞∑
n=0

Cn,λ(x)
tn

n!
.(1.6)

Among them, the polynomials βn,λ(x), En,λ(x), and Cn,λ(x) are called the
Carlitz’s degenerate Bernoulli polynomials, the degenerate Euler polyno-
mials and the degenerate Cauchy polynomials, respectively. The Carlitz’s
degenerate Bernoulli numbers βn,λ, the degenerate Euler numbers En,λ and
the degenerate Cauchy numbers Cn,λ are expressed by means of these poly-
nomials, as follows:

βn,λ = βn,λ(0), En,λ = En,λ(0), Cn,λ = Cn,λ(0).
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We obtain identities involving the fully degenerate Bell polynomials of
the second kind, the Carlitz’s degenerate Bernoulli polynomials, and the λ-
Stirling numbers of the second kind. We also have two identities involving
those fully degenerate Bell polynomials of the second kind, the degener-
ate Euler polynomials and the λ-Stirling numbers of the second kind. In
addition, we can find an identity involving those fully degenerate Bell poly-
nomials of the second kind, the Cauchy polynomials, and the degenerate
λ-Stirling numbers of the second kind. As an application, we can express
some identities involving the degenerate Bell polynomials of the second kind,
the degenerate Fubini polynomials, the degenerate Stirling numbers of the
first and the second kind, and the degenerate derangement numbers and
polynomials.

2. Some identities of fully degenerate Bell polynomials of the
second kind

In this section, we establish some identities of the degenerate Bell poly-
nomials of the second kind. Specially we relate our polynomials to the
Carlitz’s degenerate Bernoulli polynomials, the degenerate Euler polynomi-
als, and the degenerate Stirling numbers of the first kind and the second
kind.

We recall the fully degenerate Bell polynomials of the second kind in [23],
denoted by B∗

n,λ(x), by the generating function

(2.1)

exλ(eλ(t)− 1) = (1 + λ(eλ(t)− 1))
x
λ

=

∞∑
n=0

B∗
n,λ(x)

tn

n!
.

When x = 1, B∗
n,λ = B∗

n,λ(1) are called the fully degenerate Bell numbers of

the second kind, which are the same as the degenerate Bell numbers in [6].
In [23], it is listed that for n ≥ 0

(2.2) B∗
n,λ(x) =

n∑
l=0

(x)l,λS2,λ(n, l)

and

(x)n,λ =
n∑

m=0

B∗
m,λ(x)S1,λ(n,m).

In [15, 22], we have an identity on the λ-Stirling numbers of the second
kind, which are defined in (1.2).

(2.3) S2,λ(n,m) =
n∑

k=0

λn−kS1(n, k)S2(k,m).
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We can rewrite the right hand side of (2.3) as follows:

(2.4) S2,λ(n,m) =
n−1∑
k=0

λn−kS1(n, k)S2(k,m) + S2(n,m).

It follows that
(2.5)

S2,λ(n,m) = λ

n−1∑
k=0

−(n− 1)λ(n−1)−kS1(n− 1, k)S2(k,m)

+

n−1∑
k=1

λn−kS1(n− 1, k − 1)mS2(k − 1,m)

+
n−1∑
k=1

(λn−kS1(n− 1, k − 1)S2(k − 1,m− 1)) + S2(n,m)

= λ
n−1∑
k=0

−(n− 1)λ(n−1)−kS1(n− 1, k)S2(k,m)

+

n−1∑
k=0

(mλn−1−kS1(n− 1, k)mS2(k,m))−mS2(n− 1,m)

+
n−1∑
k=0

λn−1−k+1(S1(n− 1, k − 1)S2(k − 1,m))

− S2(n− 1,m− 1) + S2(n,m)

= −λ(n− 1)S2,λ(n− 1,m) +mS2,λ(n− 1,m)−mS2(n− 1,m)

+ S2,λ(n− 1,m− 1)− S2(n− 1,m− 1) + S2(n,m).

Using the recurrence relation of the Stirling numbers of the second kind in
(2.5), we have the recurrence relation of the λ-Stirling numbers of the second
kind, which is proved in the [17, Theorem 1].

Theorem 2.1. For n ≥ 0, we have

S2,λ(n,m) = (−λ(n− 1) +m)S2,λ(n− 1,m) + S2,λ(n− 1,m− 1).

Applying (2.4) in (2.2) for n ≥ 1, we have

(2.6)

B∗
n,λ(x) =

n∑
m=0

(x)m,λS2,λ(n,m)

=
n∑

m=0

(x)m,λS2(n,m) +
n∑

m=0

n−1∑
k=0

(x)m,λλ
n−kS1(n, k)S2(k,m)

= Beln,λ(x|λ) +
n−1∑
k=0

n∑
m=0

λn−kS1(n, k)S2(k,m)(x)m,λ.
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So we describe the differences between degenerate Bell polynomials in [18,
19] and fully degenerate Bell polynomials of the second kind.

Remark: The identity (2.6) can be written

B∗
n,λ(x) = Beln,λ(x|λ) +

n∑
j=1

λjgj(x),

where

gj(x) =

n−j∑
m=0

S1(n, n− j)S2(n− j,m)(x)m,λ

and

deg gj(x) = n− j.

Now we apply the ideas in [9] to our degenerate Bell polynomials of the
second kind. We can give some explicit expressions for those polynomials to
special numbers and polynomials.

Replacing t by eλ(t)− 1 in (1.4) gives

(2.7)

eλ(t)− 1

eλ(eλ(t)− 1)− 1
exλ(eλ(t)− 1) =

∞∑
m=0

βm,λ(x)
1

m!
(eλ(t)− 1)m

=
∞∑

m=0

βm,λ(x)
∞∑

n=m

S2,λ(n,m)
tn

n!

=
∞∑
n=0

(
n∑

m=0

βm,λ(x)S2,λ(n,m)

)
tn

n!
.

From (2.1) it can be deduced that
(2.8)

eλ(t)− 1

eλ(eλ(t)− 1)− 1
exλ(eλ(t)− 1) =

∞∑
m=0

βm,λ
1

m!
(eλ(t)− 1)m

∞∑
l=0

B∗
l,λ(x)

tl

l!

=

∞∑
k=0

k∑
m=0

βm,λS2,λ(k,m)
tk

k!

∞∑
l=0

B∗
l,λ(x)

tn

n!

=
∞∑
n=0

(
n∑

k=0

(
n

k

) k∑
m=0

βm,λS2,λ(k,m) B∗
n−k,λ(x)

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (2.7) and (2.8), we
obtain a theorem.

Theorem 2.3. For n ≥ 0, we have

n∑
m=0

βm,λ(x)S2,λ(n,m) =
n∑

k=0

(
n

k

) k∑
m=0

βm,λS2,λ(k,m) B∗
n−k,λ(x).
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Let us replace t by eλ(t)− 1 in (1.5). Then we get

(2.9)

2

eλ(eλ(t)− 1) + 1
exλ(eλ(t)− 1) =

∞∑
m=0

Em,λ(x)
1

m!
(eλ(t)− 1)m

=

∞∑
m=0

Em,λ(x)

∞∑
n=m

S2,λ(n,m)
tn

n!

=
∞∑
n=0

(
n∑

m=0

Em,λ(x)S2,λ(n,m)

)
tn

n!
.

The left hand side of (2.9) is also given by
(2.10)

2

eλ(eλ(t)− 1) + 1
exλ(eλ(t)− 1) =

∞∑
m=0

Em,λ
(eλ(t)− 1)m

m!

∞∑
l=0

B∗
l,λ(x)

tl

l!

=
∞∑

m=0

Em,λ

∞∑
k=m

S2,λ(k,m)
tk

k!

∞∑
l=0

B∗
l,λ(x)

tl

l!

=
∞∑
k=0

k∑
m=0

Em,λS2,λ(k,m)
tk

k!

∞∑
l=0

B∗
l,λ(x)

tn

n!

=
∞∑
n=0

(
n∑

k=0

(
n

k

) k∑
m=0

Em,λS2,λ(k,m) B∗
n−k,λ(x)

)
tn

n!
.

Therefore, from (2.9) and (2.10), we obtain the following.

Theorem 2.4. For n ≥ 0, we have

n∑
m=0

Em,λ(x)S2,λ(n,m) =
n∑

k=0

(
n

k

) k∑
m=0

Em,λS2,λ(k,m) B∗
n−k,λ(x).

From (1.4), the generating function of the Carlitz’s degenerate Bernoulli
polynomials βl,λ(x) can be rewritten as

(2.11) texλ(t) =
∞∑
l=0

βl,λ(x)
tl

l!
(eλ(t)− 1).

By replacing t by eλ(t)− 1 in (2.11), we obtain
(2.12)

(eλ(t)− 1)exλ(eλ(t)− 1) =
∞∑
l=0

βl,λ(x)
(eλ(t)− 1)l

l!
(eλ(eλ(t)− 1)− 1).
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The right hand side of (2.12) is equal to

(2.13)

∞∑
m=0

m∑
l=0

βl,λ(x)S2,λ(m, l)
tm

m!

∞∑
k=1

B∗
k,λ

tk

k!

=
∞∑
n=1

(
n∑

k=1

(
n

k

) n−k∑
l=0

βl,λ(x)S2,λ(n− k, l) B∗
k,λ

)
tn

n!
.

On the other hand, the left hand side of (2.12) is equal to

(2.14)

n∑
k=1

(1)k,λ
tk

k!

∞∑
m=0

B∗
m,λ(x)

tm

m!
=

∞∑
n=1

n∑
k=1

(
n

k

)
(1)k,λB

∗
n−k,λ(x)

tn

n!
.

Therefore, by equating (2.13) and (2.14), we obtain the following.

Theorem 2.5. For n ≥ 0, we have

n∑
k=1

(
n

k

) n−k∑
l=0

βl,λ(x)S2,λ(n− k, l) B∗
k,λ =

n∑
k=1

(
n

k

)
(1)k,λB

∗
n−k,λ(x).

Setting x = 0 in Theorem 2.5 reveals the following.

Corollary 2.6. For any n ∈ N, we have

n∑
k=1

n−k∑
l=0

(
n

k

)
βl,λS2,λ(n− k, l) B∗

k,λ = 1.

From (1.5), the generating function of the degenerate Euler polynomials
El,λ can be formulated as

2 =
∞∑
l=0

El,λ
tl

l!
(eλ(t) + 1)

which implies that

2 =
∞∑
l=0

El,λ
1

l!
(eλ(t)− 1)l(eλ(eλ(t)− 1) + 1)

=
∞∑
k=0

k∑
l=0

El,λS2,λ(k, l)
tk

k!

( ∞∑
m=0

B∗
m,λ

tm

m!
+ 1

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

) k∑
l=0

El,λS2,λ(k, l) B
∗
n−k,λ+

n∑
k=0

Ek,λS2,λ(n, k)

)
tn

n!
.

Consequently, it follows that

n∑
k=0

(
n

k

) k∑
l=0

El,λS2,λ(k, l) B
∗
n−k,λ+

n∑
k=0

Ek,λS2,λ(n, k) =

{
2, for n = 0

0, for n ≥ 1.

Therefore, we obtain the following.
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Theorem 2.7. For n ≥ 0, we have

n∑
k=0

(
n

k

) k∑
l=0

El,λS2,λ(k, l) B
∗
n−k,λ = −

n∑
k=0

Ek,λS2,λ(n, k).

In other words, for n ≥ 0, we have

n∑
k=0

(
n

k

) k∑
l=0

El,λS2,λ(k, l) B
∗
n−k,λ+

n∑
k=0

Ek,λS2,λ(n, k) = 2B∗
n,λ(0).

Let us replace t by eλ(eλ(t)− 1)− 1 in (1.6). Then we have
(2.15)

eλ(eλ(t)− 1)− 1

eλ(t)− 1
exλ(eλ(eλ(t)− 1)) =

∞∑
m=0

Cm,λ(x)
1

m!
(eλ(eλ(t)− 1)− 1)m.

This implies that

(2.16)

∞∑
m=0

Cm,λ(x)
1

m!
(eλ(eλ(t)− 1)− 1)m

=

∞∑
m=0

Cm,λ(x)

∞∑
k=m

S2,λ(k,m)
1

k!
(eλ(t)− 1)k

=

∞∑
k=0

k∑
m=0

Cm,λ(x)S2,λ(k,m)
∞∑
n=k

S2,λ(n, k)
tn

n!

=
∞∑
n=0

(
n∑

k=0

k∑
m=0

Cm,λ(x)S2,λ(k,m)S2,λ(n, k)

)
tn

n!
.

As a result, by (2.15) and (2.16), it follows that

(2.17)

eλ(eλ(t)− 1)− 1

eλ(t)− 1
exλ(eλ(eλ(t)− 1))

=
∞∑
n=0

(
n∑

k=0

k∑
m=0

Cm,λ(x)S2,λ(k,m)S2,λ(n, k)

)
tn

n!
.
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On the other hand,

(2.18)

eλ(eλ(t)− 1)− 1

eλ(t)− 1
exλ(eλ(eλ(t)− 1))

=
ex+1
λ (eλ(t)− 1)− exλ(eλ(t)− 1)

eλ(t)− 1

=

(
t

eλ(t)− 1

)
1

t

(
ex+1
λ (eλ(t)− 1)− exλ(eλ(t)− 1)

)
=

( ∞∑
k=0

βk,λ
tk

k!

) ∞∑
m=0

1

t

(
B∗
m,λ(x+ 1)− B∗

m,λ(x)
) tm
m!

=

( ∞∑
k=0

βk,λ
tk

k!

) ∞∑
m=0

(
B∗
m+1,λ(x+ 1)− B∗

m+1,λ(x)

m+ 1

)
tm

m!

=

∞∑
n=0

(
n∑

m=0

(
n

m

)(
B∗
m+1,λ(x+ 1)− B∗

m+1,λ(x)

m+ 1

)
βn−m,λ

)
tn

n!
.

Therefore, by (2.17) and (2.18), we obtain the following.

Theorem 2.8. For n ≥ 0, we have

n∑
k=0

k∑
m=0

Cm,λ(x)S2,λ(k,m)S2,λ(n, k)

=
n∑

m=0

(
n

m

)(
B∗
m+1,λ(x+ 1)− B∗

m+1,λ(x)

m+ 1

)
βn−m,λ.

Letting x = 0 in Theorem 2.8 leads to

Corollary 2.9. For n ≥ 0, we have

n∑
k=0

k∑
m=0

Cm,λS2,λ(k,m)S2,λ(n, k) =

n∑
m=0

(
n

m

)
B∗
m+1,λ

m+ 1
βn−m,λ.

3. Further identities of the fully degenerate Bell numbers
and polynomials of the second kind

In this section, we further investigate the fully degenerate Bell polyno-
mials of the second kind. We will discover or recover more identities on
those polynomials related to the degenerate central factorial numbers and
the degenerate Stirling numbers of the second kind. Finally, we establish
the Dovinski-like theorem on the fully degenerate Bell polynomials of the
second kind.
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From (1.3) and (2.1), we have the following observation.

exλ(eλ(t)− 1) =

∞∑
m=0

(x)m,λ
1

m!
(eλ(t)− 1)m

=
∞∑

m=0

(x)m,λ
1

m!
(e

1/2
λ (t)− e

−1/2
λ (t))me

m/2
λ (t)

=

∞∑
m=0

(x)m,λ

∞∑
n=m

n∑
k=m

(
n

k

)
T2,λ(k,m)

(m
2

)
n−k,λ

tn

n!
.

Therefore, we can derive the following.

Theorem 3.1. For n ≥ 0, we have

B∗
n,λ(x) =

n∑
m=0

n∑
k=m

(
n

k

)
(x)m,λT2,λ(k,m)

(m
2

)
n−k,λ

.

In particular, when λ approaches zero in Theorem 3.1, we obtain the
known identity in [18]

Bn(x) =
n∑

m=0

n∑
k=m

(
n

k

)
xmT2(k,m)

(m
2

)n−k
.

On the other hand, by (1.2) and (2.1), it follows that
∞∑
n=0

B∗
n,λ(x)

tn

n!
= exλ(eλ(t)− 1) = e

x
λ
log(1+λ(eλ(t)−1))

=

∞∑
m=0

(x
λ

)m 1

m!
log (1 + λ(eλ(t)− 1))m

=
∞∑

m=0

(x
λ

)m ∞∑
l=m

S1(l,m)λl (eλ(t)− 1)l

l!

=
∞∑

m=0

(x
λ

)m ∞∑
l=m

S1(l,m)λl
∞∑
n=l

S2,λ(n, l)
tn

n!

=

∞∑
n=0

(
n∑

l=0

l∑
m=0

xmλl−mS1(l,m)S2,λ(n, l)

)
tn

n!
.

Equating coefficients of tn/n! on both sides of this yields the following.

Theorem 3.2. For n ≥ 0, we have

B∗
n,λ(x) =

n∑
l=0

l∑
m=0

xmλl−mS1(l,m)S2,λ(n, l)

and

B∗
n,λ =

n∑
l=0

l∑
m=0

λl−mS1(l,m)S2,λ(n, l).
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Specially, if λ approaches to 0, we have a very interesting identity:

Bn =

n∑
m=0

S2(n,m).

Using the generating function of the fully degenerate Bell polynomials of
the second kind, we have

∞∑
n=0

B∗
n,λ(x)

tn

n!
= exλ(eλ(t)− 1)

=
∞∑
l=0

(x)l,λ
1

l!
(eλ(t)− 1)l

=
∞∑
l=0

(x)l,λ
1

l!

l∑
m=0

(
l

m

)
(−1)l−memλ (t)

=
∞∑
l=0

(x)l,λ
1

l!

l∑
m=0

(
l

m

)
(−1)l−m

∞∑
n=0

(m)n,λ
tn

n!

=

∞∑
n=0

( ∞∑
l=0

l∑
m=0

1

l!

(
l

m

)
(−1)l−m(m)n,λ(x)l,λ

)
tn

n!
.

Accordingly, comparing both sides of this leads to the the following

Theorem 3.3. For n ≥ 0, we have

B∗
n,λ(x) =

∞∑
l=0

l∑
m=0

1

l!

(
l

m

)
(−1)l−m(m)n,λ(x)l,λ.

In particular,

B∗
n,λ =

∞∑
l=0

l∑
m=0

1

l!

(
l

m

)
(−1)l−m(m)n,λ(1)l,λ.

From Theorem 3.3, it is worthy to note that

lim
λ→0

B∗
n,λ(x) =

∞∑
l=0

l∑
m=0

1

l!

(
l

m

)
(−1)l−mmnxl

= e−x
∞∑
k=0

kn

k!
xk

= ex(e
t−1)

= Bn(x).

By using Theorem 3.2 or Theorem 3.3, we can show that the first five
fully degenerate Bell polynomials of the second kind B∗

n,λ(x) for 1 ≤ n ≤ 5
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are as follows:

(3.1)

B∗
1,λ(x) = x,

B∗
2,λ(x) = (x2 + x)− 2xλ,

B∗
3,λ(x) = (x3 + 3x2 + x) + (−6x2 − 6x)λ+ 7xλ2,

B∗
4,λ(x) = (x4 + 6x3 + 7x2 + x) + (−12x3 − 36x2 − 13x)λ

+ (40x2 + 41x)λ2 − 35xλ3,

B∗
5,λ(x) = (x5 + 10x4 + 25x3 + 15x2 + x)

+ (−20x4 − 120x3 − 145x2 − 25x)λ

+ (130x3 + 395x2 + 155x)λ2

+ (−315x2 − 335x)λ3 + 228xλ4.

Figure 1 shows the graphs of the degenerate Bell polynomials Bn(x|λ) and
the fully degenerate Bell polynomials of the second kind Bn,λ(x) for λ =
0.5, 0.3 and 0.1.

We observe that

∂

∂t

∞∑
n=0

B∗
n,λ(x)

tn

n!
=

∞∑
n=1

B∗
n,λ(x)

tn−1

(n− 1)!

=
∞∑
n=0

B∗
n+1,λ(x)

tn

n!

=
∂

∂t
(1 + λ(eλ(t)− 1))

x
λ

= xe1−λ
λ (t) (1 + λ(eλ(t)− 1))

x−λ
λ

= x
∞∑
l=0

(x− λ)l,λ
1

l!
(eλ(t)− 1)l

∞∑
m=0

(1− λ)m,λ
tm

m!

=

∞∑
n=0

(
x

m∑
k=0

k∑
l=0

(
n

k

)
(x− λ)l,λ(1− λ)n−k,λS2,λ(k, l)

)
tn

n!
.

Therefore, we obtain the following.

Theorem 3.4. (Dovinski like Theorem) For n ≥ 0, we have

B∗
n+1,λ(x) = x

n∑
k=0

(
n

k

) k∑
l=0

(x− λ)l,λS2,λ(k, l)(1− λ)n−k,λ

= x

n∑
k=0

(
n

k

)
B∗
k,λ(x− λ)(1− λ)n−k,λ.
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(a) B∗
n,0.5(x) (b) Bn(x|0.5)

(c) B∗
n,0.3(x) (d) Bn(x|0.3)

(e) B∗
n,0.1(x) (f) Bn(x|0.1)

Figure 1. Graphs of the degenerate Bell polynomials
Bn(x|λ) and the fully degenerate Bell polynomials of the sec-
ond kind Bn,λ(x) for λ = 0.5, 0.3 and 0.1.

Remark: Letting λ → 0 in Theorem 3.4 reduces to

Bn+1(x) = lim
λ→0

B∗
n+1,λ(x)

= x
n∑

k=0

k∑
l=0

(
n

k

)
xlS2(k, l)

= x
n∑

k=0

(
n

k

)
Bk(x).
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This is the well-known Dovinski’s Theorem, which can be found in [6, 7, 8].

We want to study some applications of the fully degenerate Bell polyno-
mials of the second kind to give some identities related to the degenerate
derangement polynomials and the degenerate Fubini polynomials, which are
introduced in the paper [16, 20].

The degenerate derangement polynomials dn,λ(x), and the degenerate Fu-
bini polynomials Fn,λ(x) are given by

1

1− t
ex−1
λ (t) =

∞∑
n=0

dn,λ(x)
tn

n!
,(3.2)

1

1− x(eλ(t)− 1)
=

∞∑
n=0

Fn,λ(x)
tn

n!
.(3.3)

Replacing t by eλ(t)− 1 in (3.2) results in

(3.4)

1

2− eλ(t)
ex−1
λ (eλ(t)− 1) =

∞∑
l=0

dl,λ(x)
1

l!
(eλ(t))

l

=

∞∑
n=0

(
n∑

l=0

S2,λ(n, l)dl,λ(x)

)
tn

n!
.

The left hand side of (3.4) can be expanded into

(3.5)

1

2− eλ(t)
ex−1
λ (eλ(t)− 1) =

∞∑
l=0

Fl,λ(1)
tl

l!

∞∑
m(=0

B∗
m,λ(x− 1)

tm

m!

=
∞∑
n=0

(
n∑

l=0

(
n

l

)
Fl,λ(1)B

∗
n−l,λ(x− 1)

)
tn

n!
.

Therefore by (3.4) and (3.5), we obtain a relation between the degenerate
derangement polynomials via Fubini numbers and the degenerate Bell poly-
nomials of the second kind.

Theorem 3.6. For n ≥ 0, we have

∞∑
l=0

S2,λ(n, l)dl,λ(x) =
n∑

l=0

(
n

l

)
Fl,λ(1)B

∗
n−l,λ(x− 1).

Now we replace t by logλ(1 + t) in (3.3) with x = 1, we get

(3.6)

1

1− t
=

∞∑
l=0

Fl,λ(1)
1

l!
(logλ(1 + t))l

=
∞∑
n=0

(
n∑

l=0

Fl,λ(1)S1,λ(n, l)

)
tn

n!
.
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On the other hand, the left hand side of (3.6) can be represented by the
degenerate derangement polynomials as

(3.7)

1

1− t
=

(
1

1− t
ex−1
λ (t)

)
e1−x
λ (t)

=

( ∞∑
l=0

dl,λ(x)
tl

l!

)( ∞∑
m=0

(1− x)m,λ
tm

m!

)

=
∞∑
n=0

(
n∑

l=0

(
n

l

)
dl,λ(x)(1− x)n−l,λ

)
tn

n!
.

By (3.2), (3.6) and (3.7), we have a result.

Theorem 3.7. For n ≥ 0, we have

∞∑
l=0

Fl,λ(1)S1,λ(n, l) =
n∑

l=0

(
n

l

)
dl,λ(x)(1− x)n−l,λ.

We represent (3.7) in a slightly different form as
(3.8)

1

1− t
=

(
1

1− t
exλ(eλ(t)− 1)

)
exλ(eλ(t)− 1)

=

( ∞∑
k=0

k!
tk

k!

∞∑
l=0

B∗
l,λ(x)

tl

l!

)( ∞∑
m=0

(−x)m,λ
(eλ(t)− 1)m

m!

)

=

∞∑
l=0

(
l∑

k=0

(
l

k

)
(l − k)! B∗

l,λ(x)
tl

l!

)( ∞∑
m=0

(−x)m,λ

∞∑
n=m

S2,λ(n,m)
tn

n!

)

=
∞∑
l=0

(
l∑

k=0

(
l

k

)
(l − k)! B∗

l,λ(x)
tl

l!

) ∞∑
j=0

(
j∑

m=0

(−x)m,λS2,λ(j,m)

)
tj

j!

=
∞∑
n=0

(
l∑

k=0

n−l∑
m=0

(
l

k

)
(l − k)! B∗

l,λ(x)(−x)m,λS2,λ(n− l,m)

)
tn

n!
.

Thus by (3.2), (3.6) and (3.8), we obtain the following result.

Theorem 3.8. For n ≥ 0, we have

∞∑
l=0

Fl,λ(1)S1,λ(n, l) =
l∑

k=0

n−l∑
m=0

(
l

k

)
(l − k)! B∗

l,λ(x)(−x)m,λS2,λ(n− l,m).
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