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SYMMETRIC ASSOCIATION SCHEMES ARISING

FROM ABSTRACT REGULAR POLYTOPES

ALYEAH ALSAIRAFI AND ALLEN HERMAN

Abstract. This article investigates the question of when every double
coset of a string C-group G relative to its vertex stabilizer subgroup H
is represented by an involution. We show that this is the case for every
finite string Coxeter group except in the {5, 3, 3} case of type H4, and
for the infinite Coxeter groups of Schläfli type {4, 4} and {3, 6}. From
this it is immediate that, for every string C-group of these types, the
double coset algebra C[G//H] is commutative and all of its characters
are realizable over R. In particular, the abstract regular polytopes with
these automorphism groups have a polyhedral realization cone.

1. Introduction

The motivation for this article stems from Problem 23 of Schulte and
Ivič-Weiss’s Problems on Polytopes [13], which asks if there are irreducible
characters of string C-groups (i.e. automorphism groups of abstract regu-
lar polytopes) that have real Schur index 2. This problem originates in
the work of McMullen and Monson [8] which adapted some formulas in an
earlier work of McMullen to account for the possibility that irreducible con-
stituents of the character afforded by the geometric simplex realization of
the abstract regular polytope might not be realizable over the real numbers.
It was later observed that irreducible characters with imaginary fields of
character values can occur as constituents of the simplex realization of the
polytope (see [6] and [7]). However, the existence of irreducible characters
of string C-groups that are real-valued but not realizable over the field of
real numbers (i.e. of quaternion type), has remained open, and, should they
exist, it is of particular interest if they could occur as constituents of the
simplex realization of the corresponding polytope.

A finite string C-group G of Schläfli type {m1, . . . ,mr} and of rank r+1 is
a finite group G = 〈S〉 whose generating set S = {s0, s1, . . . , sr} consists of
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r+ 1 involutions of order 2 and relations (si−1si)
mi = 1 for i = 1, . . . , r and

(sjsi)
2 = 1 for 0 ≤ j ≤ i− 2 ≤ r − 2, plus additional relations R that must

guarantee finiteness and respect the intersection condition: 〈I∩J〉 = 〈I〉∩〈J〉
for all subsets I, J ⊆ S. We will restrict ourselves here to the case of
“connected” string C-groups by assuming mi ≥ 3 for all i = 1, . . . , r. To
indicate the generic string C-group G with Schläfli type {m1, . . . ,mr} we
will write G = [m1, . . . ,mr]. The vertex stablizer of G = [m1, . . . ,mr] =
〈s0, s1, . . . , sr〉 is the subgroup H = 〈s1, . . . , sr〉. Note that H depends on
the orientation of the Schläfli type of G, since the reversed type is associated
with the dual polytope. The geometric structures of the realizations of the
corresponding polytope are encoded in its realization cone, which is built
up from pure realizations, one for each real irreducible character of G that
occurs in the simplex realization of the polytope, which is obtained from the
action of G on the vertices of the polytope, with the trivial representation
removed by convention. As the vertices correspond to the cosets of H in G,
the character associated to the simplex realization is (1H)G − 1G (see, for
example, [6]).

The starting point for this article is the observation that (1H)G is precisely
the character of G that determines the character theory of the double coset
algebra C[G//H] via the character theory of Hecke algebras as explained in
[2, §11D]. Furthermore, this algebra is precisely the adjacency algebra of the
Schurian association scheme (G/H,G//H), and (1H)G can be identified with
its standard character. Ladisch showed the essential Wythoff dimension
of the pure realization afforded by a real irreducible character χ̃ 6= 1G is
its multiplicity mχ̃ in (1H)G [7, Lemma 3.3], and from this we can assert
that the formulas for the number of vertices, diagonal classes, and Wythoff
space dimension in [8] (see [9, 5B14, 5B17]) match well-known formulas for
the order, number of ∗-classes of relations, and rank for these association
schemes. Another consequence of [7, Lemma 3.3] and [9, 5B18] is that the
realization cone of the polytope will be polyhedral if and only if mχ̃ = 1
for every real irreducible character χ̃ of G occurring in (1H)G − 1G. In
Section 2 we explain how this is equivalent to the property that every simple
component of R[G//H] has trivial matrix degree.

It is well-known that symmetric association schemes are always com-
mutative. For double coset algebras this corresponds to having HgH =
(HgH)−1 = Hg−1H for every double coset HgH ∈ G//H. Since symmetric
basis elements in finite association schemes always have real character val-
ues, it follows that every irreducible constituent of the simplex realization
for the polytopes corresponding to these groups will be realizable over R.
An even stronger case of commutativity is the case where G//H is involutive;
i.e. every nontrivial double coset HgH contains an element of order 2. It
should be clear that

G//H is involutive =⇒ C[G//H] is symmetric
=⇒ C[G//H] is commutative.
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(Although all of the reverse implications do not hold for Schurian associa-
tion schemes in general, we find it interesting we have not found examples
where either fails for finite string C-groups relative to their vertex stabilizer
subgroups — in every string C-group G where we have found G//H to be
not involutive, we have found the corresponding C[G//H] to be not commu-
tative.) The main results of this article show that, in the case G is a string
C-group and H is its vertex stabilizer subgroup, every double coset HgH is
involutive when

(i) G is any finite Coxeter group except the one of Schläfli type {5, 3, 3};
and

(ii) G is any finite string C-group of Schläfli type {4, 4} or {3, 6}.
A consequence is that, for the polytopes corresponding to string C-groups
of these types, every irreducible constituent of the simplex realization will
be realizable over R, and the realization cone will be polyhedral. That the
realization cone in the case of {5, 3, 3} is not polyhedral was observed by
Ladisch [7, Example 3.6]. In this case C[G//H] has simple components of
dimensions 4 and 9. That irreducible constituents of the simplex realization
were realizable over R and that the realization cone was polyhedral was
already noted for the polytopes of type {3, 6} in [10] and [1], and for those
of type {4, 4} in [11]. Monson and Weiss also noted the self-inverse property
for double cosets for type {4, 4} ([11, p. 461]). We are able to treat all
of these cases with a uniform approach - we show every double coset is
involutive by showing that every nontrivial double coset is either

(i) represented by an element that is a palindromic word in the gen-
erators s0, s1, . . . , sr (the same sequence of generators forwards or
backwards); or

(ii) represented by an element of the form pqp−1, where q is a product
of commuting involutions.

In our treatment of the finite Coxeter group cases in Section 3, we also
make an effort to identify the association schemes that occur. The infinite
Coxeter groups are investigated in Section 4, and we also give some evidence
that these two infinite cases are likely the only ones of rank 3 for which the
involutive property holds.

2. A condition for the realization cone to be polyhedral

The results of [7, §3] clarify the structure of the realization cone of a
finite-dimensional polytope. Ladisch’s results confirm the equivalence of
conditions (b) and (c) of [9, 5B18], that the realization cone of a regular
polytope with finite automorphism group G and vertex stabilizer H will be
polyhedral if and only if χ̃ has multiplicity one in (1H)G for every real irre-
ducible constituent χ̃ 6= 1G of (1H)G. By [7, Lemma 3.3], this multiplicity
is equal to the essential Wythoff dimension of the pure realization whose
irreducible representation affords χ, and it is immediate from [7, Theorem
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3.5] that the realization cone is polyhedral if and only if all of these multi-
plicities are 1. Our goal of this section is to interpret this condition in terms
of the structure of the real adjacency algebra R[G//H].

We begin with an overview of the character theory of double coset al-
gebras. When H is a subgroup of a finite group G, 1GH represents the
standard character of the association scheme (G/H,G//H) [4]. The cor-
respondence between irreducible characters of the double coset algebra and
the constituents of 1GH in Irr(G) is explained by the character theory of Hecke
algebras (see [2] and [4]). The irreducible characters χ̂ of C[G//H] are restric-
tions of the irreducible constituents χ of (1H)G to the double coset algebra.
As the identity element of the double coset algebra is eH := 1

|H|
∑

h∈H h,

this restriction may not preserve degrees: the degree of χ̂ is the value χ(eH),
which is at most χ(1), and will be 0 when χ is not a constituent of (1H)G.
When ((1H)G, χ) 6= 0, the degree of χ̂ will be equal to ((1H)G, χ), and
χ(1) := mχ̂ is the multiplicity of χ̂ in its standard representation. In par-

ticular, C[G//H] is commutative if and only if (1H)G is multiplicity free as
a complex character.

The simple components of RG, and in turn R[G//H], are matrix rings over
R, C, or H. The division algebra that occurs determines the real, complex,
or quaternionic type of the real irreducible character corresponding to a
given simple component. From Ladisch’s results it follows that the matrix
degree corresponding to a real irreducible character χ̃ of G with positive
multiplicity in (1H)G − 1G coincides with the essential Wythoff dimension
for the space of pure realizations corresponding to χ̃.

Commutativity of C[G//H] is equivalent to the commutativity of R[G//H],
and the latter semisimple algebra will be commutative precisely when all of
its simple components are isomorphic to R or C. The adjacency algebras of
symmetric association schemes are even more restricted. If χ ∈ Irr(CS) for

an association scheme (X,S), it always holds that χ(b∗) = χ(b) for all b ∈ CS
[3, Proposition 4.5]. This means that every irreducible complex character
of a symmetric association scheme will be real-valued. Since the adjacency
algebras of symmetric association schemes are automatically commutative,
this is equivalent to the property that every simple component of R[G//H]
is isomorphic to R.

This tells us the answer to Monson’s question about the existence of
quaternionic constituents of the simplex realization of the polytope is clearly
no when the association scheme is commutative or symmetric. Condition (a)
and (d) of [9, 5B18] are, on the other hand, easily seen to be equivalent to the
property that our Schurian association scheme (G/H,G//H) is symmetric,
which turns out to be stronger than the multiplicity condition if some of the
real irreducible characters occurring in (1H)G happen to be of complex or
quaternionic type.

Proposition 2.1. The realization cone of a polytope with automorphism
group G and vertex stabilizer H is finite-dimensional and polyhedral if and
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only if R[G//H] is finite-dimensional and every simple component of R[G//H]
is isomorphic to either R, C, or H.

Proof. The realization cone will be finite-dimensional if and only if H has
finite index in G, which is equivalent to the double coset algebra being finite-
dimensional. When the realization cone is polyhedral, every nontrivial real
irreducible constituent χ̃ of (1H)G has multiplicity 1 in (1H)G. In cases
(i) or (ii) above, this implies ((1H)G, χ) will also be 1 for each complex
irreducible constituent χ of χ̃. This implies the simple component of C[G//H]
corresponding to these characters is commutative: in the first case it will be
isomorphic to R and in the second case it will be isomorphic to C. If χ̃ = 2χ
for a quaternionic real-valued complex irreducible character χ, then χ̃ has
multiplicity 1 in (1H)G when (1H)G, χ) = 2. As there is a unique simple
component of R[G//H] corresponding to χ̃ it must have dimension 4, and so
being of quaternionic type it will be isomorphic to H.

Conversely, if every simple component of R[G//H] is isomorphic to R, C, or
H, then each simple component will correspond to an irreducible constituent
χ̃ of (1H)G of multiplicity 1. It follows then from [7, Theorem 3.5] that
the pure part of the realization cone corresponding to each nontrivial real
irreducible constituent of (1H)G has dimension 1. Therefore the realization
cone is polyhedral. �

We have yet to encounter examples of string C-groups G and vertex stabi-
lizers H where R[G//H] is commutative but (G/H,G//H) is not symmetric.
We remark that real-valued irreducible characters of quaternionic type are
not yet known to occur in simplex realizations of polytopes, it would be even
more difficult to show they could occur with the smallest possible positive
multiplicity.

3. The structure constants of Schurian association schemes

Suppose H is a subgroup of a finite group G with [G : H] = n. Let

G//H = {H,Hg1H, . . . ,HgdH}

be the partition of G into H-H-double cosets. Each double coset is the
union of the distinct left (or distinct right) cosets of H that it contains.
For subsets D of G write D+ for the sum of the elements of D in the
complex group algebra CG. We call D+ the characteristic function of D.
When we multiply characteristic functions for two double cosets, we get a
nonnegative linear combination of them. The next lemma gives a structure
constant formula for Schurian association schemes that is computationally
more efficient than the general formula for structure constants of quotient
association schemes [15, Theorem 4.1.3]. For another treatment of structure
constants for commutative double coset algebras, see [14].

Lemma 3.1. Suppose H is a subgroup of a finite group G. Let HgiH
and HgjH be a pair of H-H-double cosets in G, and suppose HgjH =
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h1gjH ∪ · · · ∪ hegjH is a partition of HgjH into distinct left cosets. Then

(HgiH)+(HgjH)+ =
∑

HgkH∈G//H

|HgiH||H|nijk
|HgkH|

(HgkH)+,

where nijk = #{hu : gihugj ∈ HgkH}. This number nijk is independent of
the choice of double coset representatives.

Proof. Let HgiH = Hgib1 ∪ · · · ∪Hgibf and HgjH = Hgja1 ∪ · · · ∪Hgjae
be partitions of HgiH and HgjH into distinct right cosets. We have

(HgiH)+ · (HgjH)+ =
∑f

v=1

∑e
u=1(Hgibv)

+(Hgjav)
+

=
∑f

v=1

∑e
u=1(H

+gibv)(H
+gjau)

= f
∑e

u=1H
+giH

+gjau
= f(H+gi)

∑e
u=1H

+gjau
= f(H+gi)(HgjH)+.

Now let HgjH = h1gjH∪· · ·∪hegjH be a partition of HgjH into distinct left
cosets. For each double coset HgkH, let nijk = #{hu : gihugj ∈ HgkH}. To
see that this does not depend on the choice of double coset representatives,
note that nijk is the number of distinct left cosets hugjH in the partition
of HgjH which are sent into HgkH on left multiplication by gi. Replacing
gi by gix for x ∈ H only permutes the left cosets hugjH to xhugjH. Since
these give the same collection of left cosets hugjH in a different order, the
same number will be mapped into HgkH under left multiplication by gi.
Then

(HgiH)+ · (HgjH)+ = f(H+gi)(HgjH)+

= f
∑e

u=1H
+gihugjH

+

= f
∑

HgkH
nijkH

+gkH
+.

Finally, by counting the number of elements in the support of H+gkH
+ we

see that H+gkH
+ = |H|2

|HgkH|(HgkH)+. Therefore,

(HgiH)+ · (HgjH)+ = f
∑

HgkH
nijkH

+gkH
+

=
∑
HgkH

|HgiH|nijk|H|2

|H||HgkH|
(HgkH)+

=
∑
HgkH

|HgiH||H|nijk
|HgkH|

(HgkH)+.

This proves the lemma. �

Borrowing some notation from association schemes, we will writeHgk∗H =
Hg−1H, and identify the double coset H with Hg0H. Considering G//H
as the quotient association scheme of G modulo H, the standard basis of
C[G//H] will be the set of normalized characteristic functions { 1

|H|(HgiH)+ :

HgiH ∈ G//H} [4, Proposition 3.4]. The valency of each standard basis ele-
ment bi := 1

|H|(HgiH)+ is the number of left cosets of H contained in HgiH.
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By Lemma 3.1, the structure constants of C[G//H] in the standard basis are
given by

λijk =
|HgiH|nijk
|HgkH|

where nijk is the number of distinct left cosets hugjH in a left coset partition
of HgjH such that HgihugjH = HgkH.

4. The involutive double coset property for finite string
Coxeter groups

In the case G = 〈s0, s1, . . . , sr〉 is a finite string C-group of rank r+1 and
H = 〈s1, . . . , sr〉 is its vertex stabilizer subgroup, it is clear that for every
nontrivial double coset HgH ∈ G//H,

(i) HgH can be represented by a word g that starts and ends with s0,
and

(ii) if a reduced word presentation of g contains k s0’s, then k is the least
positive integer for which (HgH)+ appears with nonzero coefficient
in the decomposition of ((Hs0H)+)k.

The latter makes it possible to inductively generate all double coset repre-
sentatives that require k + 1 s0’s from those that contain k s0’s. All of the
new double coset representatives will be the old ones appended on the left
by left prefixes: left-reduced words of the form s0s1...− that contain only
one s0. (The reviewer has remarked this observation reminds one of the
circuit criterion for polytopes, see [9, 2F3, 2F4].)

Our goal for this section is to determine all cases among finite string
Coxeter groups G where all double cosets relative to the vertex stabilizer
subgroup H are involutive. Where possible we identify the finite association
scheme G//H in terms of its identification in the database of small associa-
tion schemes, its intersection array, or as an extension of smaller schemes.
Where convenient in what follows, we will write a := s0, b := s1, c := s2,
etc.

Example 4.1. Type I. Let G = [m] = 〈a, b〉 be the finite dihedral group of
order 2m in its Coxeter presentation in terms of two noncommuting reflec-
tions. The vertex stabilizer subgroup H = 〈b〉 has order 2, so [G : H] = m.
Suppose |G//H| = h. Since the only possible left prefix is ab− and (ab)m = 1,
the list of distinct double cosets is

H,HaH,H(ab)aH, . . . ,H(ab)h−2aH,

where m+1
2 ≤ h ≤ m

2 + 1. This is because the first time k ≥ m
2 − 1, we have

H(ab)kaH = H(ba)m−kaH = Hb(ab)m−k−2abaaH = H(ab)m−k−2aH,

so the double coset is represented by a word with fewer a’s. It is clear
that each of these double coset representatives is palindromic, so G//H is
involutive. Furthermore, the valency of H(ab)kaH will be 2 unless m is
even and h = m

2 + 1, in which case the valency of H(ab)h−2aH will be 1.
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Note that this association scheme agrees with the one generated by an m-
polygon (i.e. an undirected m-cycle). This is precisely what we obtain when
we consider the underlying graph of the 1-skeleton of this polytope.

Example 4.2. Type A. Let G = [3, 3, 3, . . . , 3] = 〈s0, s1, . . . , sr〉 be the
string Coxeter group of type A and rank r+1, and letH be the corresponding
vertex stabilizer subgroup. Since si−1sisi−1 = sisi−1si for i = 1, . . . , r, the
list of possible left prefixes consists only of the increasing strings

s0s1−, s0s1s2−, s0s1s2s3−, . . . , s0s1 · · · sr − .

But when any of these is appended on the left to s0 to try to produce a
double coset representative with two occurrences of s0 in its reduced word,
we get

H(s0s1 · · · sk)s0H = Hs0s1s0H = Hs1s0s1H = Hs0H.

This means H and Hs0H are the only two double cosets in G//H. Since
G ' Sr+2, we have that [G : H] = r+2, and so the valency of Hs0H is r+1.
This is the association scheme Kr+2, the association scheme corresponding
to the complete graph on r + 2 vertices. This again agrees with the r + 2-
simplex graph that underlies the 1-skeleton of this polytope. That this has
a unique pure realization was noted in [9, §5B]. This is also immediate from
the fact that |G//H| = 2.

Remark: The double coset algebra we considered for type A is the adjacency
algebra for association scheme generated by the Johnson graph J(n, 1). In
general the double coset algebras of G//Hk where Hk = 〈S \ {sk−1}〉 for k−
1 = 0, 1, . . . , r agree with the adjacency algebras for the association schemes
generated by the Johnson graphs J(n, k). J(n, k) is also the underlying
graph that would be associated with our double coset Hksk−1Hk in the
standard representation of the association scheme. It was earlier observed
that the Johnson graph J(n, k) is the graph associated with the vertices and
edges of the hypersimplex polytope ∆n,k (see [12]).

Example 4.4. Type B, m1 = 3. Let G = [3, . . . , 3, 4] = 〈s0, s1, . . . , sr〉, and
let H = 〈s1, . . . , sr〉. We have that [G : H] = 2r + 2, and the list of left
prefixes is

s0s1−, s0s1s2−, . . . , s0s1 · · · sr−1sr−, s0s1 · · · sr−1srsr−1−,
. . . , s0s1 · · · sr−1srsr−1 · · · s1 − .

Using this we can show, for all ranks, there are only three distinct dou-
ble cosets: H, Hs0H, and Hs0s1 · · · sr−1srsr−1 · · · s1s0H, with valencies 1,
2r, and 1, respectively. Since these double coset representatives are palin-
dromic, G//H is involutive. These association schemes are the wreath prod-
ucts C2oKr+1. This Schläfli type is associated with the (r+2)-cross polytopes
(a.k.a. (r+ 2)-orthoplexes). That they have two pure realizations was noted
in [9, §5B].
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We will leave the dual case of type B, m1 = 4 to the end, as the association
schemes in that case have unbounded dimension.

Example 4.5. Type F4. Let G = [3, 4, 3] = 〈a, b, c, d〉, and let H = 〈b, c, d〉.
Then [G : H] = 24. The list of possible left prefixes is

ab−, abc−, abcb−, abcd−, abcdb−, abcdbc−, and abcdbcb− .
(Recall that these need only be left-reduced.) By appending these to a
we get two new double coset representatives with two a’s: H abcb aH and
H abcdbcb aH. The first of these representatives is palindromic, the second
is involutory since it is equal to (abc)db(cba). When we append each left
prefix to these two representatives to try to make one with three a’s, we
find we can cancel an a except in the case of H(abcdbcb)(abcdbcb)aH. This
representative is also reduced and palindromic. The valencies of H, HaH,
HabcbaH, HabcdbcbaH and HabcdbcbabcdbcbaH are 1, 8, 6, 8, and 1, re-
spectively, so we know these are all of the double cosets in G//H. Therefore,
G//H is involutive.

Remark: The association scheme we generated is denoted by as24no42 in
the classification of small association schemes [5]. While this association
scheme is neither P - nor Q-polynomial, its adjacency algebra is isomorphic
to the polynomial algebra generated by the matrix

b1 =


0 8 0 0 0
1 3 3 1 0
0 4 0 4 0
0 1 3 3 1
0 0 0 8 0


associated with our double coset HaH, and this matrix can be used to write
the other elements of the table algebra basis as polynomials in b1. Note that
this matrix realization of b1 depends on our ordering of the double cosets.
The graph underlying the 1-skeleton of the regular polytope of type F4 is
the 8-regular graph associated with the 24-cell, and this corresponds to our
double coset HaH. It is interesting to note that the other basis element
of degree 8 does not generate C[G//H] in this case, in fact b1 is the only
standard basis element that generates the algebra.

Example 4.7. Type H3, m1 = 3. Let G = [3, 5] = 〈a, b, c〉. There are 12
left cosets of H = 〈b, c〉 in G. The list of possible left prefixes is

ab−, abc−, abcb−, and abcbc− .
Working inductively from HaH, we find just one double coset H abcb aH
represented by a reduced palindromic word with two a’s, and one more
double coset Habcbc abcb aH represented by a palindromic word with three
a’s. The valencies of H, HaH, HabcbaH, and HabcbcabcbaH are 1, 5,
5, and 1, respectively. So G//H is involutive. This association scheme
appears as as12no9 in [5], it is the distance regular graph with intersection
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array [5, 4, 1; 1, 4, 5]. The polytope of type {3, 5} is the icosahedron, and its
underlying graph is exactly this distance-regular graph. That it has three
pure realizations was noted in [9, §5B].)

Example 4.8. Type H3, m1 = 5. Let G = [5, 3] = 〈a, b, c〉 and H = 〈b, c〉.
This time we find 20 left cosets of H in G, and the list of left prefixes is
just ab− and abc−. Working from HaH, we can produce one new double
coset HabaH with two a’s, and one HabcabaH with three a’s. Appending
ab− after an abc− will result in Hab abc ab . . . aH = Hbababa c ab . . . aH =
Hababcb . . . aH, so two a’s will be cancelled. So any additional double coset
representatives result from the prefix abc−. We get one H(abc)(abc)abaH
with four a’s, one H(abc)(abc)(abc)abaH with five a’s but that is all, be-
cause the respective valencies of the six double cosets H, HaH, HabaH,
Hab ca baH, HabcabcabaH, and HabcabcabcabaH are 1, 3, 6, 6, 3, and 1.
The first three are palindromic, the fourth is involutory. To see that the last
two are involutory as well, note that

HabcabcabaH = H abac b cabaH

is represented by a palindrome, and

HabcabcabcabaH = H abacb ca bcabaH.

(This association scheme is P -polynomial with intersection array

[3, 2, 1, 1, 1; 1, 1, 1, 2, 3].

It appears as as20no35 in [5].
On the other hand, the regular polytope of type {5, 3} is that of the dodec-

ahedron, and its underlying graph coincides with the distance-regular graph
associated with this intersection array. That there are 5 pure realizations in
this case was noted in [9, §5B].)

Example 4.9. Type H4, m1 = 3. Let G = [3, 3, 5] = 〈a, b, c, d〉 and H =
〈b, c, d〉. This time [G : H] = 120, and the list of possible left prefixes is:

ab−, abc−, abcd−, abcdc−, abcdcb−, abcdcd−, abcdcdb−, abcdcdbc−,
abcdcdbcd−, abcdcdbcdc−, and abcdcdbcdcb− .

Starting with HaH, we can inductively produce nine double cosets:

G//H = {H,HaH,H abcdcb aH,H abcdcdbcdcb aH,
H abcdcbdcd abcdcb aH,
H abcdcbdcdc abcdcdbcdcb aH,
H abcdcbdcdc abcdcbdcd abcdcb aH,
H abcdcdbcdc abcdcbdc abcdcdbc abcdcb aH,
H abcdcdbcb abcdcdbcdcb abcdcdbcd abcdcb aH}.

Their valencies are 1, 12, 20, 12, 30, 12, 20, 12, and 1, respectively. We
have verified that each of these double cosets is involutive. This association
scheme is not P -polynomial, but it is polynomial - the left regular matrix
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associated with the standard basis element b1 = 1
|H|(HaH)+ with respect

to our ordering of basis elements is

0 12 0 0 0 0 0 0 0
1 5 5 1 0 0 0 0 0
0 3 3 3 3 0 0 0 0
0 1 5 0 5 1 0 0 0
0 0 2 2 4 2 2 0 0
0 0 0 1 5 0 5 1 0
0 0 0 0 3 3 3 3 0
0 0 0 0 0 1 5 5 1
0 0 0 0 0 0 0 12 0


and the rational adjacency algebra of the association scheme is isomorphic to
the ring of matrix polynomials Q[b1]. The basis element b6 corresponding to
the sixth double coset listed above also generates C[G//H] in this case. The
underlying graph of the 1-skeleton the regular polytope of type {3, 3, 5} is
the 12-regular graph with 120 vertices associated with the 600-cell. Ladisch
used the character multiplicities to deduce that the realization cone will be
polyhedral in this case [7].

Example 4.10. Type H4, m1 = 5. This is the only finite Coxeter group for
which G//H produces a noncommutative association scheme. When G =
[5, 3, 3] = 〈a, b, c, d〉 and H = 〈b, c, d〉, we find that [G : H] = 600, and
|G//H| = 45. G//H has 9 nonself-inverse pairs of double cosets. (1H)G is
not multiplicity-free — it has fifteen irreducible constituents of multiplicity
1, three of multiplicity 2, and one of multiplicity 3. (One of the irreducible
characters of multiplicity 2 occurring here is the restriction of the unique
noncuspidal irreducible character of G of degree 48. This character is unique
among characters of finite Coxeter groups, as it has local Schur index 2 at
precisely the primes 2 and 3, it has rational Schur index 2 and real Schur
index 1.) Ladisch used the same character theoretic approach to show the
realization cone in this case is the unique nonpolyhedral one among the finite
Coxeter groups [7, Example 3.6].

The underlying graph of the 1-skeleton of the regular polytope of type
{5, 3, 3} is the 4-regular graph with 600 vertices associated with the 120-
cell. This graph corresponds to the HaH double coset in our association
scheme. Being noncommutative, C[G//H] is not generated as an algebra by
the single basis element (HaH)+. In fact the unital subalgebra of C[G//H]
generated by (HaH)+ has dimension 27. Our computer calculations show
C[G//H] is generated by the pair of double cosets HaH and HabcabadcbaH.

Example 4.11. Type B, m1 = 4. Let G = [4, 3, . . . , 3] = 〈s0, s1, . . . , sr〉,
and let H = 〈s1, . . . , sr〉. The list of left prefixes is

s0s1−, s0s1s2−, . . . , s0s1 · · · sr − .
Working from Hs0H, Hs0s1s0H gives a new coset, and all of the others give
the same one. After that Hs0s1s2s0s1s0H is a new one with three s0’s, and
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again all of the other prefixes do not give new double cosets. We claim that
the double cosets with k s0’s are represented by

H(s0s1 · · · sk−1)(s0s1 · · · sk−2) · · · (s0s1)s0H.

This representative is reduced. If the left prefix is s0s1 · s` with ` > k − 1,
we can move the sk · · · s` on the left past everything to the right and reduce
to the given form. If the left prefix is s0s1 · · · s`− with ` < k − 1, then the
first two prefixes reduce to

(s0s1 · · · s`)(s0s1 · · · s`−1s` · · · sk−2)s0s1−
= (s0s1 · · · s`−2)s0s1 · · · s`−1s`−2s`−1s` · · · sk−2s0s1−
= (s0s1 · · · s`−3)s0s1 · · · s`−2s`−1s`−2s`−1 · · · sk−2s0s1−
...
= s0s1s0(s2s1s2) · · · sk−2s0s1−
= s0s1s0s1s2s1s3 · · · sk−2s0s1−
= s1s0s1s0s2s1s3 · · · sk−2s0s1−
= s1s0s1s2s3 · · · sk−2s0s1s0s1−
= s1s0s1s2s3 · · · sk−2s1s0s1s0−,

and the s0 on the right will cancel with the next s0 on the right. So there
is a unique double coset whose reduced representative contains k s0’s, for
k = 1, . . . , r. So |G//H| = r + 1. A similar calculation shows that each of
these double cosets has the form pqp−1 where q is a product of commuting
involutions, so G//H is involutive.

The underlying graph of the 1-skeleton the regular polytope of type
{4, 3, . . . , 3} and rank (r + 1) is the (r + 1)-dimensional hypercube. Again
for this type, our association schemes are generated by the basis elements
corresponding to these graphs, as [G : H] = 2r, |G//H| = r + 1, and the
elements have valencies

(
r
k

)
for k = 0, . . . , r. These association schemes are

P - and Q-polynomial and have intersection array [r, r− 1, . . . , 1; 1, 2, . . . , r].

Question. If an abstract regular polytope with automorphism group G and
vertex stabilizer H has a polyhedral realization cone, will the underlying
graph of its 1-skeleton generate (G/H,G//H) as a polynomial association
scheme?

5. The involutive double coset property for infinite Coxeter
groups

If G is an infinite string Coxeter group of type {m1, . . . ,mr} with vertex
stabilizer H which has the property that every double coset HgH is involu-
tive (or self-inverse), then this property will hold in every finite homomorphic
image. This is of interest to our problem because this will imply the dou-
ble coset algebra of the resulting Schurian association scheme is involutive
(or symmetric) and hence it will be commutative and all of its irreducible
characters will be realizable over R.
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Given our characterization of the finite Coxeter groups for which G//H
is involutive, it makes sense to check the involutive property for the infinite
Coxeter groups obtained by increasing one of the parameters in the type
by one. The {5, 3} to {5, 3, 3} example shows adding a 3 at the end may
not preserve the involutive double cosets property. So the list of infinite
Coxeter groups of rank 3 or 4 that we would like to check are the ones of
type {4, 4}, {6, 3} and {3, 6}, {4, 4, 3} and {3, 4, 4}, {4, 3, 4}, {3, 5, 3}, and
possibly {3, 3, 6}, {4, 3, 5}, and {3, 4, 5}. It would also make sense to check
the rank 5 Coxeter group of types {3, 4, 3, 3} and {3, 3, 4, 3} obtained by
adding one to a middle parameter of the rank 5 type A Coxeter group, but
we have been unable to settle these rank 5 cases.

Some of these cases can be eliminated quickly by finding noninvolutive
double cosets:

Proposition 5.1. The following double cosets of G//H are noninvolutive
when G is of the type given and H is the vertex stabilizer subgroup:

(i) H abcd abcb aH if G has type {4, 4, 3};
(ii) H abcdcb abcdbcb aH if G has type {3, 4, 4}; and
(iii) H abcbcd abcb aH if G has type {3, 5, 3};

Another sieve technique one can use to eliminate cases is to find finite
string C-groups G of a given type for which the character (1H)G induced
from the vertex stabilizer H is not multiplicity-free. We will write {m1,m2}`
for the rank 2 string C-group of type {m1,m2} with the additional string
order relation (abc)` = 1.

Proposition 5.2. G//H is noncommutative for the following finite string
C-groups G when H is the vertex stabilizer subgroup:

(i) the string C-group {6, 3}6;
(ii) the string C-group {4, 5}6;
(iii) the string C-group {5, 4}8; and
(iv) the string C-group {3, 7}8.

By (i), we can eliminate type {6, 3} from our list. Once we show the
groups of type {4, 4} and {3, 6} have involutive double cosets with respect
to the vertex stabilizer, parts (ii), (iii), and (iv) tell us we should not expect
to find more of these with rank 3.

Theorem 5.3. Let G be a finite string C-group of type {4, 4}, and let H be
its vertex stabilizer subgroup. Then every double coset of G//H is involutive.

Proof. It suffices to show the involutive property holds for every double coset
of H = 〈b, c〉 in the infinite Coxeter group G = 〈a, b, c〉, since this property
will be inherited by every finite homomorphic image of G.

To do this, we show nontrivial double cosets of H in G fall into three
infinite families, then show that each of these infinite families is represented
by an element of order 2. Let n be the number of a’s occurring in a reduced
double coset representative as a word in the defining generators a, b, and c.
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We claim that every nontrivial double coset of H in G lies in one of these
three infinite families:

F1: H(abcb)n−1(a)H;
F2: H(abc)n−2(aba)H; and
F3: H(abcb)n−k−2(abc)k(aba)H, where k is odd and < n− 2.

Since G is of type {4, 4}, the possible left prefixes in this case are: ab−,
abc−, and abcb−. Starting from HaH, we can get two new double cosets
HabaH and HabcbaH whose representatives require two a’s. Appending
abcb− on the left preserves the families F1 and F3. Appending abc− on the
left preserves the familiy F2. Appending abcb− to a member of family F2

with an odd number of a’s will result in a member of F3. Since

(abc)(abc)b = (aba)(cbcb)
= (aba)(bcbc)
= (abab)(cbc)
= (baba)(cbc)
= b(abc)(abc),

we have that b commutes with (abc)2. This implies that when we append
abcb− to a member of family F2 that has an even number of a’s, the result
will be equivlaent to the member of F2 with one additional a. If we append
abc− on the left to a double coset in family F1 with n a’s, we get

H (abc) (abcb)n−1 aH = H (abc) (abcb) (abcb)n−2 aH
= H (abc)2 (abcb)n−2 aH
= H (abcb) (abc)2 (abcb)n−3 aH
= H (abcb)2 (abc)2 (abcb)n−4 aH
...
= H (abcb)n−2 (abc)2 aH
= H (abcb)n−2 (abc) (aba)H,

which is a member of F3. If we append abc− to a double coset in family F3

with n a’s, a similar calculation shows

H (abc) (abcb)n−k−2 (abc)k aH = H (abcb)n−k−3 (abc)k+2 (aba)H,

so the result will be in F3.
We leave it to the reader to show that appending ab− preserves these

families and does not produce a new double coset that is not already obtained
by appending abc− or abcb−.

Finally, we need to show every double coset in these three families is
involutive. It is easy to see that the given representatives of members of
family F1 are palindromic. For family F2, we have

H(abc)(aba)H = H(ab)ca(ba)H

and

H(abc)(abc)(aba)H = H(abac)b(caba)H.
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When m > 2,

H(abc)m(aba)H = H(abc)(abc)m−2(aba)(cba)H

so by induction we can conclude H(abc)m(aba)H has the form Hpqp−1H
with

q =

{
ca m odd

b m even
.

For family F3, we have four base cases:

H(abcb)(abc)(aba)H = H(abc)baba(cba)H,

H(abcb)2(abc)(aba)H = H(abc)(babcbaba)(cba)H
= H(abc)(bab)ca(bab)(cba)H,

H(abcb)(abc)3(aba)H = H(abc)(baba)(cbc)(aba)(cba)H
= H(abc)(aba)bcbc(aba)(cba)H, and

H(abcb)2(abc)3(aba)H = H(abcb)(abc)3(abc)b(aba)(cba)H
= H(abcb)(abc)3(abc)(aba)(bcba)H
= H(abcb)(aba)(cbca)b(acbc)(aba)(bcba)H.

If k is odd and > 4, then for all m ≥ 1, we can use the fact that b commutes
with (abc)2 to show

H(abcb)m(abc)k(aba)H = H(abc)2(abcb)m(abc)k−4(aba)(cba)2H.

Also for all m ≥ 1, we have that

H(abcb)m(abc)(aba)H = H(abcb)(abcb)m−2(abc)(baba)(cba)H
= H(abcb)(abcb)m−2(abc)(aba)(bcba)H,

and

H(abcb)m(abc)3(aba)H = H(abcb)(abcb)m−2(abc)3baba(cba)H
= H(abcb)(abcb)m−2(abc)3(aba)(bcba)H.

These identities allow us to always reduce the problem to one of the base
cases. So each double coset H(abcb)n−k−2(abc)k(aba)H in the family F3 is
equal to one of the form Hpqp−1H with

q =


abab n even, k ≡ 1 mod 4

ca n even, k ≡ 1 mod 4

bcbc n odd, k ≡ 3 mod 4

b n odd, k ≡ 3 mod 4

.

Therefore, every double coset of H = 〈b, c〉 in G = 〈a, b, c〉 is involutive
when G is the infinite Coxeter group of type {4, 4}. The same will be true
for any finite string C-group of type {4, 4}. This completes the proof of the
theorem. �
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Theorem 5.4. Let G be a finite string C-group of type {3, 6}, and let H be
its vertex stabilizer subgroup. Then every double coset of G//H is involutive.

Proof. We use the same approach as in the previous theorem. This time
the possible left prefixes are abc−, abcb−, abcbc−, and abcbcb−. We get two
double cosets with two a’s: HabcbaH and HabcbcbaH. After that append-
ing abc− or abcb− will not increase the number of a’s, since Habc abc− =
Haba cbc− = Hbab cbc− = Habcbc− and Habcb abcb− = Habcabacb− =
Habacbcab− = Habcbcab−. Furthermore, b commutes with (abcbc)2, since

b(abcbc)(abcbc) = (bab)cbcabcbc = ab(ac)b(ca)bcbc
= abc(aba)cbcbc = abc(bab)cbcbc
= abcba(bcbcbc) = abcba(cbcbcb)
= (abcbc)(abcbc)b.

As in the previous theorem, this identity allows us to again sort the double
cosets into three infinite families:

F1: H(abcbcb)n−1aH;
F2: H(abcbc)n−2(abcba)H; and
F3: H(abcbcb)n−k−2(abcbc)k(abcba)H, where k is odd and < n− 2.

Finally, we claim all of these double cosets are involutive. The given rep-
resentatives of F1 are palindromic, so we need to show all members of F2

and F3 are equivalent to an Hpqp−1H with q of order 2. For family F2, the
identity

H(abcbc)m(abcba)H = H(abcbc)(abcbc)m−2(abcba)(cbcba)H

for all m > 2 allows us to reduce to one of two base cases, depending on
whether m is even or odd: m = 0: H(abcba)H, which is pallidromic, and
m = 1: H(abcbc)(abcba)H = H(abcb)(ca)(bcba)H.

For the family F3, when k > 4 and m ≥ 2 we can use the fact that b
commutes with (abcbc)2 to establish the identity

H(abcbcb)m(abcbc)k(abcba)H
= H(abcbc)2(abcbcb)m(abcbc)k−4(abcba)(cbcba)2H,

so we can assume k = 1 or 3. Now consider, for m ≥ 2,

H(abcbcb)m(abcbc)(abcba)H
= H(abcbcb)m−1(abcbc)babcbc(abcba)H
= H(abcbcb)m−1(abcbc)abacba(cbcba)H
= H(abcbcb)m−1(abcbc)abcbab(cbcba)H
= H(abcbcb)(abcbcb)m−2(abcbc)(abcba)(bcbcba)H.

Also, for m ≥ 2,

H(abcbcb)m(abcbc)3(abcba)H
= H(abcbcb)m−1(abcbc)3b(abcbc)(abcba)H
= H(abcbcb)m−1(abcbc)3abacba(cbcba)H
= H(abcbcb)(abcbcb)m−2(abcbc)3(abcba)(bcbcba)H,
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so the problem is reduced to one of four base cases:

H(abcbc)(abcba)H = H(abcb)ca(bcba)H,

H(abcbc)3(abcba)H = H(abcba)(cbcb)ca(bcbc)(abcba)H,

H(abcbcb)(abcbc)(abcba)H = H(abcbc)(ab)ac(ba)(cbcba)H, and

H(abcbcb)(abcbc)3(abcba)H = H(abcbc)3babcba(cbcba)H
= H(abcbcabc)bcabcbcbab(cbacbcba)H
= H(abcbcabcba)cbcbcb(abcbacbcba)H.

Therefore, all of the double cosets in G//H are involutive. The same will be
true of any homomorphic image of G. This completes the proof that any
string C-group of type {3, 6} will have involutive double cosets. �

The authors would like to thank the reviewer for numerous suggestions
to improve the readability of this article.
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