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REFINING OVERPARTITIONS BY PROPERTIES OF

NONOVERLINED PARTS

A. M. ALANAZI, B. M. ALENAZI, W. J. KEITH, AND A. O. MUNAGI

Abstract. We study new classes of overpartitions of numbers based
on the properties of nonoverlined parts. Several combinatorial iden-
tities are established by means of generating functions and bijective
proofs. We show that our enumeration function satisfies a pair of infi-
nite Ramanujan-type congruences modulo 3. Lastly, by conditioning on
the overlined parts of overpartitions, we give a seemingly new identity
between the number of overpartitions and a certain class of ordinary
partition functions. A bijective proof for this theorem also includes a
partial answer to a previous request for a bijection on partitions doubly
restricted by divisibility and frequency.

1. Introduction

An overpartition of a positive integer n is a partition of n, where the first
occurrence of each part-size may be overlined. Overpartitions generalize or-
dinary partitions. We denote the number of overpartitions of n by p(n), with
p(0) = 1. For example, p(3) = 8 enumerates the following overpartitions:

(3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1).

The three overpartitions with no overlined parts are the ordinary partitions
of 3.

Given a positive integer ℓ, a partition λ is called ℓ-regular if no part of λ
is divisible by ℓ.

Munagi and Sellers [6] studied combinatorial and arithmetic properties of
overpartitions when the overlined parts are ℓ-regular. Alanazi and Munagi
[1] later investigated certain combinatorial identities satisfied by ℓ-regular
overpartitions. Some other authors have also investigated the arithmetic
properties of related overpartition functions (see for example [2, 7, 8, 9, 10]).
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Let R∗
ℓ (n) denote the number of overpartitions of n where nonoverlined

parts are ℓ-regular, and denote by Aℓ(n) the number of overpartitions of n
in which the overlined parts are ℓ-regular.

The generating functions are given by

(1.1)
∞∑
n=0

R∗
ℓ (n)q

n =
∞∏
n=1

(1− qnℓ)(1 + qn)

(1− qn)
,

and

(1.2)

∞∑
n=0

Aℓ(n)q
n =

∞∏
n=1

(1 + qn)

(1− qn)(1 + qnℓ)
.

Expectedly, there is a sort of symmetry between these two enumeration
functions, as the following assertion shows.

Theorem 1.1. We have{
Aℓ(n) = R∗

ℓ (n) if n < 2ℓ,

Aℓ(n) > R∗
ℓ (n) if n ≥ 2ℓ.

In section 2 we give two proofs of Theorem 1.1, and consider several iden-
tities between R∗

ℓ (n) and different restricted partition functions. In section
3 we establish some related congruences modulo 3 using the Ramanujan
theta functions. In section 4 we discuss the parity of Aℓ(n), and prove a
special identity that it satisfies (Theorem 4.2) which seems to be new. In
that section, we also give a second, bijective proof, which includes a partial
answer to a question posed in [5].

2. Combinatorial Identities for R∗
ℓ (n)

We will use the following special notation throughout this paper: ifG(n) is
an enumeration function, the corresponding enumerated set will be denoted
by G[n], where G represents any letter symbol.

Proof of Theorem 1.1. We give two proofs.
First proof. If we multiply the right-hand-side of Equation (1.2) by

∞∏
m=1

(1− q2ℓm),

we obtain

(2.1)

∞∏
m=1

(1 + qm)(1− q2ℓm)

(1− qn)(1 + qmℓ)
=

∞∏
m=1

(1 + qℓm)(1 + qm)(1− qℓm)

(1− qm)(1 + qmℓ)
.

The combinatorial interpretation of the coefficient of qn in (2.1) is:
“the number of overpartitions of n in which overlined parts are ℓ-regular,
nonoverlined parts that are multiples of ℓ are distinct, and other nonover-
lined parts are unrestricted.”
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It follows immediately from the pentagonal number theorem expansion,

∞∏
m=1

(1− q2ℓm) = 1− q2ℓ − q4ℓ + q10ℓ + q14ℓ − q24ℓ − · · ·

and the monotonicity of the coefficients of
∑∞

n=0Aℓ(n)q
n (since appending

a nonoverlined 1 is an injection from Aℓ(n) to Aℓ(n+ 1)), that

∞∏
m=1

(1 + qm)

(1− qm)(1 + qmℓ)
>

∞∏
m=1

(1 + qm)(1− q2ℓm)

(1− qm)(1 + qmℓ)
=

∞∏
m=1

(1− qmℓ)(1 + qm)

(1− qm)

which is equivalent to

∞∏
m=1

(
1− qmℓ + q2mℓ − q3mℓ + · · ·

)
>

∞∏
m=1

(1− qmℓ).

That is,
∑∞

n=0Aℓ(n)q
n >

∑∞
n=0R

∗
ℓ (n)q

n. Here we write f(q) > g(q) if the
coefficient of qn in f(q) is greater than the coefficient of qn in g(q) for all
n > 0. In particular, this is the case when n ≥ 2ℓ.

It is clear that when n < 2ℓ, the interpretation of (2.1) is identical with
that of

∑∞
n=0R

∗
ℓ (n)q

n.
Second proof. We consider two cases.
Case 1: n < 2ℓ.

Let λ ∈ R∗
ℓ [n] and define the map R∗

ℓ [n] → Aℓ[n]. If ℓ /∈ λ, then λ is
fixed. But if ℓ ∈ λ, then ℓ is overlined and so maps to a nonoverlined
ℓ ∈ β ∈ Aℓ[n]. Note that ℓ cannot occur more than once in λ, and ℓ
cannot occur more than once in β because n < 2ℓ. Hence, we have a
one-to-one correspondence, proving Aℓ(n) = R∗

ℓ (n).
Case 2: n ≥ 2ℓ.

We apply the same map and obtain an injection. Since n ≥ 2ℓ, we can
find some γ ∈ Aℓ[n] in which ℓ occurs more than once. Then γ has no
preimage in R∗

ℓ [n] since at most one copy of ℓ may be overlined in any

member of R∗
ℓ [n]. Thus we have a strict injection when n ≥ 2ℓ. Hence,

Aℓ(n) > R∗
ℓ (n).

This completes the proof. □

Theorem 2.1. Let B4(2n) be the number of partitions of 2n in which no
part is divisible by 4, odd parts occur with even multiplicity and even parts
are unrestricted. Then

B4(2n) = R∗
2(n).
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Proof. The generating function for B4(2n) is

∞∑
n=0

B4(2n)q
2n =

∞∏
n=1

(1 + q2n + q4n + · · · )(1 + q2(2n−1) + q4(2n−1) + · · · )
(1 + q4n + q8n + q12n + · · · )

(since an odd part is not divisible by 4)

=
∞∏
n=1

(1− q4n)

(1− q2n)(1− q2(2n−1))
.

Thus on replacing q2 by q we obtain

∞∑
n=0

B4(2n)q
n =

∞∏
n=1

(1− q2n)

(1− qn)(1− q2n−1)

=
∞∏
n=1

(1− q2n)(1 + qn)

(1− qn)
=

∞∑
n=0

R∗
2(n)q

n.

The theorem follows by comparing the coefficients of qn in the extremes of
the foregoing equations.

We now give a bijective proof. We will start from a partition counted by
B4(2n) and obtain the corresponding overpartition counted by R∗

2(n), under

the map β2 : B4[2n] → R∗
2[n].

Let λ = (cu1
1 , cu2

2 , . . .) ∈ B4[2n], c1 > c2 > · · · . If cj = 2m, then from the

definition of B4(2n), 2 ∤ m. In order to assign the c
uj

j ∈ λ, we first obtain
the 2-adic expansion:

uj = m0 + 2m1 + · · ·+ 2rmr,mi ∈ {0, 1}.

Thus c
uj

j = cm0
j , c2m1

j , c2
2m2

j , . . . , c2
rmr

j . Note that if λi = c2
imi

j , we use the

convention β2(λ) =
⋃

λi∈λ(β2(λi)). Setting k = 2imi (note that k is 1, 2 or
a multiple of 4), we get,

β2 : c
k
j = (2m)k 7→


m if k = 1,

2m if k = 2,

km if k ≡ 0 (mod 4).

For all other cj (these are odd so k is even) we define a second map f by:

λ 7→ f(λ) =
⋃

c∈λ fc(c
k), where

fc(c
k) =

{
c if k = 2,

c2 if k = 4,

and if 4 < k ≡ r (mod 4) , r ∈ {0, 2}, the image is a sequence of parts:

fc(c
k) = fc(c

r), c
k−r
2 .

The inverse map β−1
2 will be applied to c, where c is a multiple of 4, so c

can be written as c = 4rs where 4 ∤ s. Now we define β−1
2 as follows:
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β−1
2 (4rs) =

{
(2s)4

r
if s ≡ 1 (mod 2),

(s)2(4
r) if s ≡ 0 (mod 2).

The inverse map f−1 is analogously given by:

f−1
c (c) = c2, f−1

c (ck) =

{
2c if k = 1,

c4 if k = 2,

and if 2 < k ≡ r (mod 2) , 1 ≤ r ≤ 2, then

f−1
c (ck) = f−1

c (cr), c2(k−r).

This bijection is illustrated in Table 1 with the case n = 36. □

B4[72] → 2-adic exp of even parts → R∗
2[36]

(236) → (232, 24) → (32, 4)
(612) → (68, 64) → (24, 12)

(107, 2) → (104, 103, 2) → (20, 10, 5, 1)
(172) → (172) → (136)

(230, 62) → (216, 28, 24, 22, 62) → (16, 8, 4, 2, 6)
(232, 32, 12) → (232, 32, 12) → (32, 3, 1)
(220, 132) → (216, 24, 132) → (16, 4, 116)

(64, 36, 210, 110) → (64, 36, 28, 22, 110) → (12, 32, 3, 8, 2, 14, 1)
(145, 2) → (144, 14, 2) → (28, 7, 1)

Table 1. The correspondence between B4[72] and R∗
2[36].

The following is an extension of Theorem 2.1 (which is the case ℓ = 2).

Theorem 2.2. Let B2ℓ(2n) be the number of 2ℓ-regular partitions of 2n in
which odd parts occur with even multiplicity and even parts are unrestricted.
Then

B2ℓ(2n) = R∗
ℓ (n).

Proof. This is analogous to the proof of the previous theorem. The gener-
ating function for B2ℓ(2n) is
∞∑
n=0

B2ℓ(2n)q
2n =

∞∏
n=1

(1 + q2n + q4n + · · · )(1 + q2(2n−1) + q4(2n−1) + · · · )
(1 + q2ℓn + q4ℓn + q6ℓn + · · · )

=

∞∏
n=1

(1− q2ℓn)

(1− q2n)(1− q2(2n−1))
.

But on replacing q2 by q we obtain
∞∑
n=0

B2ℓ(2n)q
n =

∞∏
n=1

(1− qℓn)

(1− qn)(1− q2n−1)

=

∞∏
n=1

(1− qℓn)(1 + qn)

(1− qn)
=

∞∑
n=0

R∗
ℓ (n)q

n.(2.2)
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Hence the theorem follows.
Secondly, we give a bijective proof with βℓ : B2ℓ[2n] → R∗

ℓ [n].
Let

λ = (cu1
1 , cu2

2 , . . .) ∈ B2ℓ[2n], c1 > c2 > · · · .
Note that

cj = ℓm =⇒ 2 ∤ m.

We first obtain the 2-adic expansion

uj = m0 + 2m1 + · · ·+ 2rmr, mi ∈ {0, 1}.

Then each c
uj

j ∈ λ is equivalent to c
uj

j = c2m1 , c2
2m2 , . . . , c2

rmr , where c = cj .

Thus for each j we set k = 2imi and obtain

βℓ : c
k
j = (ℓm)k, 7→


ℓm
2 if k = 1,

ℓm if k = 2,

kℓm
2 if k ≡ 0 (mod 4).

(Note that when ℓ is odd, the case k = 1 does not apply).

Then for all other cj , we apply the map f , in extended form, as follows:

fc(c
k) =


c
2 if k = 1,

c if k = 2,
c
2 , c if k = 3,

c2 if k = 4,

and if 4 < k ≡ r (mod 4) , r ∈ {0, 2}, the image is a sequence of parts:

fc(c
k) = fc(c

r), c
k−r
2 .

Note that the cases k = 1, 3 refer to even parts only since odd parts occur
with even multiplicities.

See Table 2 (second and third columns) for an illustration with n = 25
and ℓ = 4. □

Theorem 2.3. Let Vℓ(2n) denote the number of partitions of 2n in which
even parts appear at most ℓ− 1 times and odd parts occur with even multi-
plicities. Then

Vℓ(2n) = R∗
ℓ (n).

Proof. The generating function for Vℓ(2n) is

∞∑
n=0

Vℓ(2n)q
2n =

∞∏
n=1

(1 + q2n + · · ·+ q(ℓ−1)2n)(1 + q2(2n−1) + q4(2n−1) + · · · )

=

∞∏
n=1

(1− q2ℓn)

(1− q2n)(1− q2(2n−1))
.
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V4(50)
α→ B8(50)

f, βℓ−→ R∗
4(25)

(48, 2) → (124, 2) → (24, 1)
(32, 12, 4, 2) → (216, 12, 4, 2) → (16, 6, 2, 1)
(242, 2) → (68, 2) → (64, 1)

(24, 16, 8, 12) → (64, 44, 24, 12) → (62, 8, 22, 1)
(163, 2) → (412, 2) → (16, 8, 1)

(162, 12, 4, 2) → (48, 12, 4, 2) → (16, 6, 2, 1)
(16, 122, 8, 12) → (122, 44, 24, 12) → (12, 8, 22, 1)
(123, 8, 6) → (123, 24, 6) → (12, 6, 22, 1)
(83, 72, 43) → (212, 72, 43) → (26, 7, 4, 2)

(8, 43, 36, 23, 16) → (43, 36, 27, 16) → (4, 3, 32, 2, 23, 1, 12)

Table 2. Bijections of Theorems 2.2 and 2.3, n = 25, ℓ = 4.

Thus replacing q2 by q gives (with Equation (2.2)),

∞∑
n=0

Vℓ(2n)q
2n =

∞∏
n=1

(1− qℓn)

(1− qn)(1− q2n−1)
=

∞∑
n=0

R∗
ℓ (n)q

n,

as required.
For a combinatorial proof, we employ a new bijection, α, to compose with

f and βℓ:

Vℓ[2n]
α−→ B2ℓ[2n]

f, βℓ−→ R∗
ℓ [n].

If λ = (c1, c2, . . .) ∈ Bℓ[2n], then each ci = c can be expressed uniquely in
the form c = (2ℓ)rm with r ≥ 0 such that 2ℓ ∤ m.
Define α : Vℓ[2n] → A2ℓ[2n] by setting α(λ) =

⋃
c∈λ αc(c), with

αc(c) = αc((2ℓ)
rm), 7→


c if r = 0,

2m(2r−1ℓr) if ℓ ∤ m and r > 0,

(2mℓ )(2
r−1ℓr+1) if ℓ | m and r > 0.

This correspondence is illustrated for n = 25 and ℓ = 4 in Table 2 (first and
third columns). □

Theorem 2.4. Denote by Hℓ(2n) the number of partitions of 2n where parts
which are multiples of 2ℓ occur exactly twice, each part ≡ ℓ (mod 2ℓ) appears
at most three times and odd parts occur with even multiplicities. Then

Hℓ(2n) = R∗
ℓ (n).
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Proof. The generating function proof runs as follows:

∞∑
n=0

Hℓ(2n)q
2n =

∞∏
n=1

(1− qℓn)(1 + q4ℓn)(1 + q(2ℓn−ℓ) + q2(2ℓn−ℓ) + q3(2ℓn−ℓ))

(1− q2n)(1− q2(2n−1))

=

∞∏
n=1

(1− qℓn)(1− q8ℓn)(1− q4(2ℓn−ℓ))

(1− q4ℓn)(1− q(2ℓn−ℓ))(1− q2n)(1− q2(2n−1))

=
∞∏
n=1

(1− qℓn)(1− q4ℓn)

(1− q4ℓn)(1− qℓ(2n−1))(1− q2n)(1− q2(2n−1))

=

∞∏
n=1

(1− qℓ2n)(1− qℓ(2n−1))

(1− qℓ(2n−1))(1− q2n)(1− q2(2n−1))

=
∞∏
n=1

(1− qℓ2n)

(1− q2n)(1− q2(2n−1))
.

Lastly, the proof follows from by replacing q2 with q, that is,

∞∑
n=0

Hℓ(2n)q
n =

∞∏
n=1

(1− qℓn)(1 + qn)

(1− qn)
=

∞∑
n=0

R∗
ℓ (n)q

n.

For a bijection, we will apply the map f : Hℓ[2n] → R∗
ℓ [n], as the reader

may verify. □

The proof of the following identity is similar to the foregoing ones.

Theorem 2.5. Let Qℓ(n) denote the number of partitions of n in which parts
divisible by ℓ are distinct and parts not divisible by ℓ occur with multiplicity
rℓ, r ≥ 0. Then

(2.3) Qℓ(ℓn) = R∗
ℓ (n).

3. Congruence Properties

We denote by p(n | S) the number of partitions of n that satisfy property
S.

Theorem 3.1. R∗
ℓ (n) ≡ 1 (mod 2) if and only if

ℓ | n and p
(n
ℓ
| distinct parts

)
is odd.
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Proof. Firstly, using generating functions we have∑
n≥0

R∗
ℓ (n)q

n =
∏
n≥1

(1− qℓn)(1 + qn)

(1− qn)
×

∏
n≥1

(1− qℓn)(1− qn)

(1− qℓn)(1− qn)

=
∏
n≥1

(1− qℓn)2(1− q2n)

(1− qn)2(1− qℓn)

≡
∏
n≥1

(1− q2ℓn)(1− q2n)

(1− q2n)(1− qℓn)
(mod 2)

=
∏
n≥1

(1− q2ℓn)

(1− qℓn)
(mod 2)

=
∏
n≥1

(1 + qℓn) (mod 2) .

Secondly, for a bijective proof we first assume that R∗
ℓ (n) ≡ 1 (mod 2).

Construct a partition λ = (cu1
1 , cu2

2 , . . . , cur
r ) by overlining the first occurrence

of each part-size such that multiples of ℓ are overlined. So there are a power
of 2 such overpartitions λ unless all the parts are multiples of ℓ. From the
definition of R∗

ℓ (n) the overlined parts are distinct and ℓ | n. Their number
is the same as the number p(n/ℓ | distinct parts) of ordinary partitions of
n/ℓ into distinct part sizes. Therefore, we need to consider only the case of
λ when all the ci are multiples of ℓ such that ℓ | n. Since R∗

ℓ (n) is odd and
ℓ | n, it follows that p(n/ℓ | distinct parts) must be odd.

Conversely, if ℓ | m and p(n/ℓ | distinct parts) ≡ 1 (mod 2), the result is
immediate from the previous argument. □

There is a nice expression in terms of the Ramanujan theta functions [3]:

∞∑
n=0

R∗
ℓ (n)q

n =
f(−q2ℓ)

φ(−q)
,

where f (different from the previous map notation) is defined by

f(−q) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 =

∞∏
n=1

(1− qn),

and

(3.1) φ(q) =

∞∑
n=−∞

qn
2
=

∞∏
n=1

(1 + q2n−1)2(1− q2n).

Consider the following functions, where f b
a =

∏∞
n=1(1− qan)b,

D(q) =
∞∑

n=−∞
(−1)nqn

2
=

f2
1

f2
= φ(−q)
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and

Y (q) =
∞∑

n=−∞
(−1)nq3n

2−2n =
f1f

2
6

f2f3
.

Hirschhorn and Sellers [4] showed that

D(q) = D(q9)− 2qY (q3),

D(q)D(ωq)D(ω2q) =
D(q3)4

D(q9)
, where ω = e2πi/3.

Now we can prove the following result.

Theorem 3.2. For all n ≥ 0,

R∗
3(9n+ 4) ≡ 0 (mod 3) and R∗

3(9n+ 7) ≡ 0 (mod 3) .

Proof. Using the f b
a notation we have∑

n≥0

R∗
3(n)q

n =
∏
n≥1

(1− q3n)(1 + qn)

(1− qn)
×

∏
n≥1

(1− qn)

(1− qn)

=
∏
n≥1

(1− q3n)(1− q2n)

(1− qn)2
=

f3f2
f2
1

=
f3

D(q)

=
f3

D(q)

D(ωq)

D(ωq)

D(ω2q)

D(ω2q)

=
f3D(q9)

D(q3)4
(D(q9)− 2ωqY (q3))(D(q9)− 2ω2qY (q3))

=
f3D(q9)

D(q3)4
(D(q9)2 + 2qD(q9)Y (q3) + 4q2Y (q3)2).

Next, we can 3-dissect R∗
3 to get∑

n≥0

R∗
3(3n+ 1)qn =

f1D(q3)

D(q)4
(2D(q3)Y (q))

= 2f1
f4
3

f2
6

f1f
2
6

f2f3

f4
2

f8
1

=
2f3

2 f
3
3

f6
1

≡ 2f3
2 f

3
3

f2
3

(mod 3)

= 2f3
2 f3

≡ 2f6f3 (mod 3) .

It is clear that the series 2f6f3 cannot contain terms of the form q3n+1

nor q3n+2. Therefore, for all n ≥ 0,

R∗
3(3(3n+ 1) + 1) = R∗

3(9n+ 4) ≡ 0 (mod 3) ,
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and

R∗
3(3(3n+ 2) + 1) = R∗

3(9n+ 7) ≡ 0 (mod 3) .

□

Theorem 3.3. For all n ≥ 0 and all j ≥ 3, R∗
3j
(27n+ 18) ≡ 0 (mod 3) .

Proof. From recent work of Alanazi et al. [2], we define the function Rℓ(n)
to be the number of overpartitions of n in which no part is divisible by ℓ.
Then for all n ≥ 0 and all j ≥ 3, R3j (27n+ 18) ≡ 0 (mod 3) where

(3.2)
∑
n≥0

R3j (n)q
n =

∏
n≥1

(1− q3
jn)

(1− qn)

∏
n≥1

(1 + qn)

(1 + q3jn)
.

Next, note that

(3.3)
∑
n≥0

R∗
3j
(n)qn =

∏
n≥1

(1− q3
jn)

(1− qn)

∏
n≥1

(1 + qn).

It is then clear from (3.2) and (3.3) that

∑
n≥0

R∗
3j
(n)qn =

∏
n≥1

(1 + q3
jn)

∑
n≥0

R3j (n)q
n.

Lastly, since
∏

n≥1(1 + q3
jn) is a function of q27, the theorem follows. □

4. A New Identity for Aℓ(n)

We give the counterpart of Theorem 3.1 for the dual enumeration function
Aℓ(n), i.e., the number of overpartitions of n in which the overlined parts
are ℓ-regular, followed by a special identity with a class of ordinary partition
functions.

Theorem 4.1. Aℓ(n) ≡ 1 (mod 2) if and only if

ℓ | n and p
(n
ℓ

)
≡ 1 (mod 2) .

The proof of this theorem is analogous to that of Theorem 3.1, and so is
omitted.

Lastly, we prove the following identity.

Theorem 4.2. Let Wℓ(2n) denote the number of partitions of 2n in which
odd parts occur with multiplicity 2, 4, . . ., or 2(ℓ − 1) and even parts are
unrestricted. Then we have

Wℓ(2n) = Aℓ(n).
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Proof. We give two proofs—a generating function proof and a bijective
proof. The generating function for Wℓ(2n) is

∞∑
n=0

Wℓ(2n)q
2n =

∞∏
n=1

(1 + q1·2n + q2·2n + · · · )

× (1 + q2(2n−1) + · · ·+ q2(ℓ−1)(2n−1))

=
∞∏
n=1

(1− q2ℓ(2n−1))

(1− q2n)(1− q2(2n−1))
.

On the other hand, if we replace q2 by q we obtain,
∞∑
n=0

Wℓ(2n)q
2n =

∞∏
n=1

(1− qℓ(2n−1))

(1− qn)(1− q2n−1)

=

∞∏
n=1

(1− qℓ(2n−1))

(1− qn)(1− q2n−1)
× (1− qn)(1− q2ℓn)

(1− qn)(1− q2ℓn)

=
∞∏
n=1

(1− q2n)(1− qℓn)

(1− qn)2(1− q2ℓn)

=
∞∏
n=1

(1 + qn)

(1− qn)(1 + qℓn)
× (1− qn)(1− qℓn)

(1− qn)(1− qℓn)

=
∞∑
n=0

Aℓ(n)q
n.

Hence the proof. □

4.1. Bijective Proof of Theorem 4.2. Although the generating function
argument is straightforward, an interesting element of a second, bijective
proof of Theorem 4.2 will be a bijection for a general class of partitions
referred to in [5], partially answering a request there for a generalization of
a more restricted bijection, which we will detail at the appropriate point in
the proof.

Given an element of Wℓ(2n), our strategy is as follows:

• Construct an arbitrary partition α of some weight |α| ≤ n.
• Construct a partition into distinct parts, none of which are divisible
by ℓ, of weight n− |α|.

• Overline the distinct parts from the latter partition and combine the
two to obtain an overpartition in Aℓ(n).

Proof. Let ω ∈ Wℓ(2n), ω = (ω1
m1 , ω2

m2 , . . . ). Let the indices {e1, e2, . . . , et}
demarcate the even part sizes, and {o1, o2, . . . , os} the odd part sizes. The
odd part sizes appear an even number of times but at most 2(ℓ− 1).

From the even parts of ω, construct the intermediate partition

α =
((ωe1

2

)me1
,
(ωe2

2

)me2
, . . . ,

(ωet

2

)met
)
.
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Observe that α can be an arbitrary partition.
Of the odd parts (ωo1

mo1 , . . . , ωos
mos ), reduce the frequencies by half to

obtain a partition

β = (ω
(mo1/2)
o1 , . . . , ω(mos/2)

os ).

This will be a partition into odd parts appearing less than ℓ times, and
clearly any such partition can arise.

Our goal is now a bijection between partitions of any N into odd parts
appearing less than ℓ times, and partitions of N into distinct parts not
divisible by ℓ.

Such partitions were considered in [5]. It is easy to see that in general,
the number of partitions of integers into parts not divisible by s, each part
size appearing less than t times, has generating function symmetric in s and
t, namely

∞∏
n=1

(1− qsn)(1− qtn)

(1− qn)(1− qstn)
.

This is also the generating function of the number of partitions of integers
into parts not divisible by t, each part size appearing less than s times,
and equality of the sets is immediate but there remains the question of a
bijection between the two sets.

In [5] it was shown that, in the case where s and t were coprime, these
two classes could be mapped to each other by a double use of Glaisher’s
bijections, which individually are a standard set of maps in combinatorial
partition theory. They are bijections ϕt between partitions with parts not
divisible by t and those with parts appearing fewer than t times. We describe
these maps below.

Let λ be a partition into parts not divisible by t. Suppose that part size
m appears k times, with

k = am,0t
0 + am,1t

1 + am,2t
2 + . . . ,

with 0 ≤ am,i < t. That is, the frequency of appearance of m is written in
base-t notation

k = (· · · am,2am,1am,0)t.

Then µ = ϕt(λ) is the partition that contains am,i parts of each size tim,
and this is a partition into parts appearing fewer than t times. To reverse
the map, ϕt

−1(µ) will be the partition in which each part of size tim, with
m not divisible by t, becomes ti appearances of part size m.

For the present purpose we require the case t = 2, s = ℓ. The aforemen-
tioned result in the case when s and t are coprime is Lemma 4.3, which we
append at the end of this section. The lemma establishes the required map
when ℓ is odd; we now complete the proof by exhibiting the necessary map
when ℓ is even.

Suppose ℓ = 2rk, k odd.
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We consider β. Suppose part size ωoi = gi to save repeated indices. Write

moi

2
= ai + Cik, 0 ≤ ai < k, 0 ≤ Ci ≤ 2r − 1.

The partition

γ = (g1
a1 , g2

a2 , . . . )

is a partition into odd parts appearing less than k times. We defined k to
be odd, so by the Lemma, the partition δ = ϕ2ϕk

−1(γ) is a partition into
parts not divisible by k, appearing less than twice, i.e. parts are distinct.

For each gi in β for which Ci ̸= 0, write

Ci = ci,02
0 + ci,12

1 + ci,22
2 + . . . , ci,j ∈ {0, 1}.

Using this expression, insert into δ parts of size 2jkgi whenever ci,j = 1.
Since ℓ = 2rk and Ci < 2r, with k and gi odd, we have that 2

jkgi is never
divisible by 2r and so ℓ never divides any of the parts added to δ in this
step, which are all multiples of k.

The map is easily reversible (simply separate the multiples of k and the
nonmultiples) and one-to-one in both directions, and hence a bijection.

We conclude our desired bijection from Wℓ(2n) to Aℓ(n) by overlining
the parts of δ. We then take α and insert the distinct overlined parts. By
construction, only parts not divisible by ℓ will be overlined, and hence the
resulting overpartition is in Aℓ(n). Reversing the map is a simple matter of
separating the overlined parts and reversing the individual maps above, and
hence we have the desired bijection. □

Example. Let ℓ = 12 = 223. Let ω = (24, 116, 92, 8, 62, 2, 122) ∈ W12(152).
The even parts yield

α = (12, 4, 32, 1).

The odd parts after halving frequencies yield

β = (113, 9, 111).

Taking the residue modulo 3 of the frequencies, we have the partition

γ = (9, 12).

We then construct

δ = ϕ2ϕ3
−1((9, 12)) = ϕ2((1

11)) = (8, 2, 1).

The remaining odd parts in β are (113, 19). They are mapped thus:

(113) = (113·(2
0)) −→ (3 · 11 · 20) = (33),

(19) = (13·(2
0+21)) −→ (3 · 1 · 21, 3 · 1 · 20) = (6, 3).

Inserting the distinct parts (33, 8, 6, 3, 2, 1) into α and overlining sizes

where an insertion occurred, we obtain (33, 12, 8, 6, 4, 3
3
, 2, 1

2
) ∈ A12(76).

For completeness, we close with a restatement of the previously published
Lemma required in the proof above.
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Lemma 4.3. Let s and t be coprime. The map ϕtϕs
−1 is a bijection that

maps the set of partitions of N with parts not divisible by t, appearing fewer
than s times, to the set of partitions of N with parts not divisible by s,
appearing fewer than t times.

Example. Let λ = (252, 74, 5, 1, 1) be a partition of 84 into parts not
divisible by 2, appearing fewer than 5 times. Then

ρ = ϕ5
−1(λ) = (74, 157)

and ρ is a partition into parts divisible by neither 2 nor 5. Finally

ϕ2(ρ) = (32, 28, 16, 8, 1)

and as desired this is a partition into distinct parts not divisible by 5.

Proof. Consider a partition λ of N into parts not divisible by t, appearing
fewer than s times, with s and t coprime. Then applying ϕs

−1 produces
parts of size m from parts of size sim. This only divides sizes by powers of
s and thus parts which were not divisible by t remain not divisible by t.

Hence ϕs
−1(λ) is a partition of N into parts simultaneously not divisible

by either t or s. Applying ϕs to any such partition produces a partition into
parts appearing less than s times, and since part sizes can only be multiplied
by powers of s, coprime to t, the resulting parts are also not divisible by t.
Hence the maps are onto in both directions.

Applying instead ϕt, we obtain a partition into parts appearing fewer than
t times. Again, ϕt multiplies part sizes by powers of t, coprime to s, and
hence no part is produced divisible by s. The map is onto as above, and so
we have the required bijection between the two sets. □

Remark. The proof above required coprimality. An intermediate set—
partitions into parts divisible by neither s nor t—is equal in size to the
other two when s and t are coprime, but such a set does not appear when
gcd(s, t) > 1. It is an open conjecture of Bridget Tenner, mentioned in
[5], that for s and t not coprime, some map (ϕtϕs

−1)k exhibits the required
bijection. If this conjecture could not be established, another bijection ex-
hibiting the equality was requested. We believe that a bijection along the
lines of Theorem 4.2 can be constructed for general s and t, but Glaisher’s
bijections are an important set of maps in combinatorial partition theory,
and it would remain interesting to show Tenner’s conjecture independently.
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