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TWO FAMILIES OF STRONGLY WALK REGULAR GRAPHS FROM
THREE-WEIGHT CODES OVER Z4

MINJIA SHI, WENJUN XU, XUAN WANG, YUE CHENG, HUAZHANG WU, AND PATRICK SOLÉ

Abstract. A necessary condition for a Z4-code to be a three-weight code for the Lee
weight is given. Two special constructions of three-weight codes over Z4 are derived.
The coset graphs of their duals are shown to be strongly 3-walk-regular, a generalization
of strongly regular graphs.

1. Introduction

Strongly walk-regular graphs (SWRG) were introduced in [2] as a generalization
of strongly regular graphs. Recently, a simple numerical condition bearing on the
homogeneous weights of three-weight codes over rings was introduced to check if the
coset graph of their dual codes is SWRG [5, 7]. In parallel, in a series of papers
[6, 9, 10, 11, 12, 13, 14, 15, 16], Shi et al. constructed and studied one-weight codes,
two-weight and three-weight codes over various finite rings. The general construction
method is based on trace codes, see [4, Chapt. 18] for a survey. Especially, Shi et al.
considered the construction of one-Lee weight and two-Lee weight projective codes over
Z4 in [10]. Later, the authors also determined the linearity of these codes completely in
[14].

Inspired by the above works, we revisit Z4 codes. The alphabet Z4 has been an
important and popular example of ring alphabet ever since the paper [3], where, already
the coset graph of the Preparata code is used to construct a distance regular graph of
diameter three.

We give two special constructions of projective three-weight codes over Z4, with explicit
weight distributions. Using the weight information, the spectrum of the coset graph of
the dual codes are determined. Using a spectral condition of [2], these graphs are shown
to be 3-SWRG.

This work is organized as follows. In Section 2, we recall some background and
notations about linear codes over Z4, and their coset graphs. In Section 3, some useful
conditions for a linear code to have three-Lee weight over Z4 are given. The structures of
three-Lee weight projective linear codes are discussed in Section 4. Moreover, we also
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give some examples to illustrate the results. In section 5, we discuss the linearity of the
Gray images of these codes. Section 6 concludes the article.

2. Definitions and Notation

2.1. Z4 codes. In this section, we first recall the codes over Z4 in [5]. Let Z4 = {0, 1, 2, 3},
and Zn

4 = {(x1, x2, . . . , xn)|xi ∈ Z4, 1 ≤ i ≤ n}. A linear code C over Z4 of length n is a
Z4-submodule of Zn

4 . The Lee weights of 0, 1, 2, 3 ∈ Z4 are 0, 1, 2, 1 respectively. For any
x = (x1, x2, . . . , xn) ∈ Zn

4 , we define

WL(x) =
n∑

i=1
WL(xi).

Each element x ∈ Z4 has a 2-adic expansion x = α(x) + 2β(x), where α(x), β(x) ∈ F2,
the Gray map from Z4 to F2

2 is given by Φ(x) = (β(x), α(x) + β(x)). Define α(x) =
(α(x1), . . . , α(xn)), where α(0) = α(2) = 0 and α(1) = α(3) = 1. This map can be
extended to Zn

4 naturally. Φ is a weight-preserving map from (Zn
4 , Lee weight) to (F2n

2 ,
Hamming weight).

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two elements of Zn
4 , the inner

product of x and y in Zn
4 is defined by x · y = x1y1 + x2y2 + · · · + xnyn, and the

componentwise multiplication ∗ of x and y is x ∗ y = (x1y1, x2y2, . . . , xnyn), where the
operation is performed in Z4. The dual code of C is defined as C⊥ = {x ∈ Zn

4 |x · y =
0, ∀ y ∈ C}. A Lee weight projective code C of length n over Z4 is a linear code such
that the minimum Lee weight of its dual code is at least three.

It is well known that a nonzero linear code C over Z4 has a generator matrix which
after a suitable permutation of the coordinates can be written in the form (see [3])

(2.1) Gk1,k2 =
(

Ik1 A B
0 2Ik2 2D

)
,

where Ik1 and Ik2 denote the k1 × k1 and k2 × k2 identity matrices, respectively, A and
D are Z2-matrices, B is a Z4-matrix, and |C| = 4k12k2 .

2.2. Graphs. An eigenvalue of a graph Γ (i.e., an eigenvalue of its adjacency matrix)
is called a restricted eigenvalue if there is a corresponding eigenvector which is not a
multiple of the all-one vector 1. Note that for an η-regular connected graph, the restricted
eigenvalues are simply the eigenvalues different from η.

Definition 2.1. Let T be a finite abelian group and S ⊆ T a subset satisfying S = −S
and 0T /∈ S. The corresponding Cayley graph C(T, S) has vertex set equal to T ; two
vertices g, h ∈ T are adjacent in C(T, S) iff g − h ∈ S.

For a precise definition of a Cayley graph attached to a code in a canonical way we
refer to [8]. Now, we recall the relation between the weight distribution of a linear code
over Z4 and the eigenvalues of the syndrome graph of its dual code. This extension of
Lemma 3.4 in [1] was derived in Theorem 3.4 in [8], thus its proof is omitted here.

Theorem 2.2. Suppose that C is a regular, projective linear code over Z4 with Lee
weights wi and corresponding weight distribution Ai = |{x ∈ C; WL(x) = wi}|. Then the
eigenvalues of Γ(C⊥) are 2n − 2wi with multiplicity Ai.
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3. Some preliminaries

We motivate the constructions of the next section by two necessary conditions for a
Z4-code to be a three-weight code.

Lemma 3.1. Let C be a linear code over Z4 with type 4k12k2 of length n. There is no
three-Lee weight projective linear code when k1 = 1.

Proof. Suppose there is a three-Lee weight projective linear code when k1 = 1. Let
r0, r1, . . . , rk2 be the rows of generator matrix G1,k2 . Let r0 = (r00, r01, . . . , r0,n−1). We
claim that r0j can only take 1 or 3 for 0 ≤ j ≤ n − 1. Otherwise, if r0j = 0 or 2, there is
(0, . . . , 2, . . . , 0) in its dual code C⊥, this is a contradiction since C is projective. Thus
ω1 = wL(r0) = n, ω2 = wL(2r0) = 2n. We assume that ω3 = 2n2, where n2 is the
number of 2 in the row ri for 1 ≤ i ≤ k2, thus wL(2r0 + ri) = 2n − 2n2 it is easy to check
that 2n − 2n2 can’t equal to ω1, ω2 and ω3. This completes the proof. □

Lemma 3.2. Let C be a linear code over Z4 with type 4k12k2 of length n, where k1 ≥ 1
and k2 ≥ 1. Let r1, . . . , rk1 , rk1+1, . . . , rk1+k2 be the rows of the generator matrix Gk1,k2 .
If r = (r00, r01, . . . , r0,n−1) is a linear combination of the first k1 rows and r0j can only
take 1 or 3 for 0 ≤ j ≤ n − 1, then there is no three-Lee weight projective linear code.

Here are two fundamental lemmas.

Lemma 3.3. Let C be an N -Lee weight linear code of length n with nonzero Lee weights
ω1, ω2, . . . , ωN over Z4 and G be its generator matrix. If C ′ is generated by

G′ =
(

G G G G
0 1 2 3

)
,

where i is the row vector (i, i, . . . , i) of length n, i ∈ Z4, then C ′ is an (N + 1)-Lee weight
linear code of length n′ = 4n withh nonzero Lee weights ω′

1 = 4ω1, ω′
2 = 4ω2, . . . , ω′

N = 4ωN

and ω′
N+1 = 4n. Moreover, A′

ω1 = Aω1 , A′
ω2 = Aω2 , . . ., A′

ωN
= AωN , and A′

ωN+1 = 3|C|,
where A′

ωi
is the number of the codewords of weight ω′

i in C ′, 1 ≤ i ≤ N + 1, and Aωj is
the number of the codewords of weight ωj in C, 1 ≤ j ≤ N .

Proof. It is easily seen that n′ = 4n, ω′
i = 4ωi and A′

ωi
= Aωi , 1 ≤ i ≤ N . Without loss

of generality, let c′ = (c c c c) and r0 = (0 1 2 3), where c ∈ C and i is the row vector
(i, i, . . . , i) of length n, i ∈ Z4. Thus WL(r0) = WL(2r0) = WL(3r0) = 4n. Denote the
number of i in c by ni, i ∈ Z4.

(1) If the order of c is 2, then n = n0 + n2, and

WL(r0 + c′) = WL(c) + WL(c + 1) + WL(c + 2) + WL(c + 3)
= 2n2 + n + 2(n − n2) + n

= 4n.
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(2) If the order of c is 4, then n = n0 + n1 + n2 + n3, and

WL(r0 + c′) = WL(c) + WL(c + 1) + WL(c + 2) + WL(c + 3)
= (n1 + 2n2 + n3) + (n0 + 2n1 + n2)

+ (2n0 + n1 + n3) + (n0 + n2 + 2n3)
= 4(n1 + n3 + n2 + n0)
= 4n.

Similarly, we can also prove WL(2r0 + c′) = WL(3r0 + c′) = 4n = ω′
N+1. Therefore,

A′
ωN+1 = 3(|C| − 1) + 3 = 3|C|. □

Remark. Obviously, if ωi = n for some i, then C ′ is still an N -Lee weight code and
A′

ωi
= Aωi + 3|C|.

Similar to the discussion of Lemma 3.3, we have the following lemma.

Lemma 3.4. Let C be an N -Lee weight linear code of length n with nonzero Lee weights
ω1, ω2, . . . , ωN over Z4 and G be its generator matrix. If C ′ is generated by

G′ =
(

G G
0 2

)
,

where i is the row vector (i, i, . . . , i) of length n, i ∈ 2Z4, then C ′ is an (N +1)-Lee weight
linear code of length n′ = 2n with nonzero Lee weights ω′

1 = 2ω1, ω′
2 = 2ω2, . . . , ω′

N = 2ωN

and ω′
N+1 = 2n. Moreover, A′

ω1 = Aω1 , A′
ω2 = Aω2 , . . ., A′

ωN
= AωN , and A′

ωN+1 = |C| ,
where A′

ωi
is the number of the codewords of weight ω′

i in C ′, 1 ≤ i ≤ N + 1, and Aωj is
the number of the codewords of weight ωj in C, 1 ≤ j ≤ N .

Remark: Obviously, if ωi = n for some i, then C ′ is still an N -Lee weight code and
A′

ωi
= Aωi + |C|.

Let C be an N -Lee weight linear code of length n with type 4s2t over Z4 and G be its
generator matrix. Assume the nonzero Lee weights of C are ω1, ω2, . . ., and ωN . If N = 2,
ω1 ̸= n, and ω2 ̸= n, or N = 3, ωi = n, for some i ∈ {1, 2, 3}, then we can construct a
three-Lee weight code with type 4k12k2 , where k1 ≥ s + 1, and k2 ≥ t + 1.

4. Constructions

In this section, we will give the constructions of three-weight codes with type 4k12k2

over Z4.

Proposition 4.1. Let C be a linear code over Z4 with type 4220 of length 3 with the
following generator matrix: (

1 1 2
2 1 1

)
.

It is easy to check that C is a two-Lee weight linear code with nonzero Lee weights ω1 = 2,
and ω2 = 4. Moreover, Aω1 = 6, and Aω2 = 9.

We can generalize Propsition 4.1 to the general case by Lemma 3.3 and Lemma 3.4.
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Theorem 4.2. Let C1 be the linear code over Z4 with type 422k2 of length n = 3 · 2k2

with generator matrix

(4.1) Gk2+2,n =

 1 1 2
2 1 1

G0,k2 G0,k2 G0,k2

 ,

where i is the row vector (i, i, . . . , i︸ ︷︷ ︸
2k2

), i = 1 or 2 and (c3,j , . . . , ck2+2,j)⊤, ci,j = 0 or 2, 3 ≤

i ≤ k2 + 2, 1 ≤ j ≤ 2k2 runs over all distinct column vectors of G0,k2. Then C1 is
a three-Lee weight code with nonzero weights ω1 = 2k2+1, ω2 = 3 · 2k2 , ω3 = 2k2+2, of
respective frequencies Aω1 = 6, Aω2 = 2k2+4 − 16, Aω3 = 9.

Proof. Let r01, r02, r1, . . . , rk2 be the rows of generator matrix Gk2+2,n, where

r01 = (1, 1, . . . , 1︸ ︷︷ ︸
2k2

, 1, 1, . . . , 1︸ ︷︷ ︸
2k2

, 2, 2, . . . , 2︸ ︷︷ ︸
2k2

), r02 = (2, 2, . . . , 2︸ ︷︷ ︸
2k2

, 1, 1, . . . , 1︸ ︷︷ ︸
2k2

, 1, 1, . . . , 1︸ ︷︷ ︸
2k2

).

It is easy to check that WL(p01r01 + p02r02) = 2k2+1or 2k2+2 unless p01 = p02 = 0 for any
p0i ∈ Z4, 1 ≤ i ≤ 2. Moreover, we can also prove that WL(p01r01 + p02r02 + p1r1 + · · · +
pk2rk2) = 3·2k2 unless p1 = · · · = pk2 = 0 for any p0i ∈ Z4, 1 ≤ i ≤ 2, pj ∈ F2, 1 ≤ j ≤ k2.
Hence C1 contains 9 codewords with weight 2k2+2, 6 codewords of weight 2k2+1 and
2k2+4 − 16 codewords with weight 3 · 2k2 . □

Example 1. If k1 = 2 and k2 = 2, then n = 12 and ω1 = 8, ω2 = 12, ω3 = 16, according
to Theorem 4.2, there exists a three-Lee weight code with the generator matrix:

G2,2 =


1 1 1 1 1 1 1 1 2 2 2 2
2 2 2 2 1 1 1 1 1 1 1 1
0 0 2 2 0 0 2 2 0 0 2 2
0 2 0 2 0 2 0 2 0 2 0 2

 .

Corollary 4.3. The coset graph of C⊥
1 is a 3-SWRG.

Proof. From [2] we know that a graph with three restricted eigenvalues is 3-SWRG iff
they add up to zero. Translating in terms of weights of C1 by Theorem 2.2 we see that
it is equivalent to check that ω1 + ω2 + ω3 = 3n. This is easy to check by the explicit
formulas of Theorem 4.2. □

In the above theorem, if we assume

(4.2) G2,k2 =

 1 1 2
2 1 1

G0,k2 G0,k2 G0,k2

 = (G2
1, G2

2, G2
3),

then we have the following result.

Theorem 4.4. Let C2 be the linear code over Z4 with type 4k12k2 of length n = 3·22k1+k2−4

with a generator matrix Gk1,k2 , defined inductively as follows. G2,k2 is as above. Assume
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Gm,k2 = (Gm
1 , Gm

2 , Gm
3 ), and if i is the row vector (i, i, . . . , i), i ∈ Z4, m ≥ 2 define

Gm+1,k2 as
(4.3)(

0 1 2 3 0 1 2 3 0 1 2 3
Gm

1 Gm
1 Gm

1 Gm
1 Gm

2 Gm
2 Gm

2 Gm
2 Gm

3 Gm
3 Gm

3 Gm
3

)
.

Then C2 is a three-Lee weight code with nonzero weights ω1 = 22k1+k2−3, ω2 = 3 ·
22k1+k2−4, ω3 = 22k1+k2−2, of respective frequencies Aω1 = 6, Aω2 = 22k1+k2−16, and Aω3 =
9, where k1 ≥ 2 and k2 ≥ 1.
Proof. If k1 = 2, the result is proved by Theorem 2. Assume the result is valid for any
k1 = m. Namely, if Gm,k2 = (Gm

1 , Gm
2 , Gm

3 ) is the generator matrix of a three-Lee weight
code with nonzero weights ω1 = 22m+k2−3, ω2 = 3 · 22m+k2−4 and ω3 = 22m+k2−2. Now
we consider the case when k1 = m + 1, the generator matrix of the linear code C is (4),
it is easily seen that C is a three-Lee weight code with nonzero weight ω1 = 22m+k2−1 =
4ω1, ω2 = 3 × 22m+k2−2 = 4ω2, ω3 = 22m+k2 = 4ω3. By the induction hypothesis, C is a
three-Lee weight code over Z4. □

Example 2. If k1 = 3, k2 = 1, then n = 24, ω1 = 16, ω2 = 24, ω3 = 32, according to
Theorem 4.3, there is a three-Lee weight code with the generator matrix G3,1:

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

,

where

G2,1 =

 1 1 1 1 2 2
2 2 1 1 1 1
0 2 0 2 0 2

 .

The analogue of Corollary 4.3 is the following result, the proof of which is omitted.
Corollary 4.5. The coset graph of C⊥

2 is a 3-SWRG.
Here we give another method to construct three-Lee weight codes.

Proposition 4.6. Consider the code C generated by the following generator matrix:

G0 =

 1 2 3 0 0 0
0 0 0 1 2 3
1 1 2 1 1 2

 .

It is easy to check that C is a three-Lee weight linear code with nonzero Lee weights
ω1 = 4, ω2 = 8, and ω3 = 6. Moreover, Aω1 = 18, Aω2 = 21, and Aω3 = 24.

Theorem 4.7. Let C3 be a linear code over Z4 with type 4k12k2 of length n. If the
columns of the generator matrix G(k1+k2)×n are all distinct nonzero vectors

(c1, c2, . . . , ck1 , ck1+1, . . . , ck1+k2)T ,

where (c1, c2, . . . , ck1)T is one column of G0 defined above, ci ∈ Z4, 4 ≤ i ≤ k1 when
k1 ≥ 4, and cj = 0 or 2, k1 + 1 ≤ j ≤ k1 + k2, then C3 is a three-Lee weight code of
length n = 3 × 22k1+k2−5 with nonzero Lee weights ω1 = 22k1+k2−4 , ω2 = 22k1+k2−3 and
ω3 = 3 × 22k1+k2−5. Moreover, Aω1 = 18, Aω2 = 21, and Aω3 = 4k12k2 − 40, respectively.
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Proof. Denote the generator matrix of C3 by Gk1,k2 .
If k1 = 3, k2 = 0, then G3,0 = G0, and the result is valid from the statement of

Proposition 4.6. Assume the result is valid for any k2 = m and we denote the nonzero
weights by ω′

1, ω′
2 and ω′

3. Since

G3,m+1 =
(

G3,m G3,m

0 2

)
,

where i is the row vector (i, i, . . . , i) of length 3 × 2m+1, i ∈ 2Z4, according to Lemma 3.4
and the remark of Lemma 3.4, C3 is a three-Lee weight code with nonzero Lee weights
ω1 = 2ω′

1, ω2 = 2ω′
2 and ω3 = 2ω′

3, By induction hypothesis, the results are valid.
It is easy to check that

Gk1+1,k2 =
(

Gk1,k2 Gk1,k2 Gk1,k2 Gk1,k2
0′ 1′ 2′ 3′

)
,

where i′ is the row vector (i, i, . . . , i) of length 3 × 22k1+k2−5, i ∈ Z4. Similar to the
proof of (1), we can prove C3 is a three-Lee weight code by Lemma 3.3 and the following
remark of Lemma 3.3. □

Example 3. If k1 = 3, k2 = 1, then w1 = 8, w2 = 16, and w3 = 12, then, according to
Theorem 4.7, there is a three-Lee weight code with the generator matrix:

(4.4) G1 =


1 2 3 0 0 0 1 2 3 0 0 0
0 0 0 1 2 3 0 0 0 1 2 3
1 1 2 1 1 2 1 1 2 1 1 2
2 2 2 2 2 2 0 0 0 0 0 0

 .

Like Corollary 2, we have the following graphical consequence, whose proof is omitted.

Corollary 4.8. The coset graph of C⊥
3 is 3-SWRG.

Here we prove the codes we get are projective.

Theorem 4.9. The codes C2 and C3 obtained in Theorem 4.3 and Theorem 4.4 are
projective, respectively.

Proof. Take C3 for example. Let C⊥
3 be the dual code of C3, G be the generator matrix of

C3, and x1, x2, . . . , xn be the columns of G, where n is the length of C3. It’s easy to check
that every column of G contains 1 and any two columns of G are not multiple of each
other by ±1. If c ∈ C⊥

3 and c ̸= 0, then we only need to prove WL(c) ≥ 3. Obviously,
WL(c) cannot be 1 because all columns are nonzero. Assume WL(c) = 2. Since every
column of G contains at least a 1, c cannot be written as c = (0, . . . , 0, 2, 0, . . . , 0). Then
we have 2 cases:
Case 1 Without loss of generality, let c = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0), where ci =

cj = 1, i < j. Then xi + xj = 0. Thus, xj = 3xi, xi and xj are in proportion by
the unit 3, contradiction.

Case 2 Without loss of generality, let c = (0, . . . , 0, 1, 0, . . . , 0, 3, 0, . . . , 0), where ci =
1, cj = 3, i < j. Then xi + xj = 0. Thus, xj = xi, contradiction.

Therefore, C3 is projective. Similarly, we can prove C2 is projective. □
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5. Linearity of Gray Images

For our purpose, we first require the following classic lemma of [3, Th.4].

Lemma 5.1. If C is a linear code over Z4, with generators x1, x2, . . . , xm, then Φ(C)
is linear if and only if 2α(xi) ∗ α(xj) in C for all i, j, satisfying 1 ≤ i ≤ j ≤ m.

We can now state and prove the following results.

Theorem 5.2. The Gray image ϕ(C2) of C2 is nonlinear.

Proof. It is enough to prove the result is valid for k1 = 2. Let x1 and x2 be two row
vectors of Gk2+2,n. Clearly, if either x1 or x2 is from the last k2 rows, it is easy to check
that 2α(x1) ∗ α(x2) = 0 ∈ C2. When

x1 = (1, 1, . . . , 1︸ ︷︷ ︸
2k2

, 1, 1, . . . , 1︸ ︷︷ ︸
2k2

, 2, 2, . . . , 2︸ ︷︷ ︸
2k2

), x2 = (2, 2, . . . , 2︸ ︷︷ ︸
2k2

, 1, 1, . . . , 1︸ ︷︷ ︸
2k2

, 1, 1, . . . , 1︸ ︷︷ ︸
2k2

),

we have
2α(x1) ∗ α(x2) = (0, 0, . . . , 0︸ ︷︷ ︸

2k2

, 2, 2, . . . , 2︸ ︷︷ ︸
2k2

, 0, 0, . . . , 0︸ ︷︷ ︸
2k2

).

The weight of 2α(x1) ∗ α(x2) is ω1. According to Theorem 4.2, Aω1 = 6. However, we
can easily check that 2α(x1) ∗ α(x2) is not in C2, because it is not the linear combination
of the first two rows. Therefore C2 is nonlinear. □

Example 4. Consider the code defined in Example 1. Let x1 and x2 denote the first and
second rows of G2,2, respectively. Then we can get

2α(x1) ∗ α(x2) = 2α(111111112222) ∗ α(222211111111) = (000022220000).

However, we can easily check that 2α(x1) ∗ α(x2) is not in C2, because it is not the linear
combination of the first two rows. Therefore C2 is nonlinear.

Similar to Theorem 5.2, we have the following theorem.

Theorem 5.3. The Gray image ϕ(C3) of C3 is nonlinear.

Proof. It is easy to check that the first three rows of Gk1,k2 can be written as:

G0 G0 · · · G0︸ ︷︷ ︸
4k1−32k2

,

which is permutation-equivalent to the matrix

(5.1) G′
0 =

 1 2 3 0 0 0
0 0 0 1 2 3
1 1 2 1 1 2

 ,

where i is the row vector (i, i, . . . , i) of length 4k1−32k2 , i ∈ Z4. Let r1 and r3 be the first
and third rows of G′

0, respectively, then WL(2α(r1) ∗ α(r3)) = 2 × 4k1−32k2 = 22k1+k2−5.
By Theorem 4.7, C3 is a three-Lee weight code with nonzero Lee weights ω1 = 22k1+k2−4

, ω2 = 22k1+k2−3 and ω3 = 3 × 22k1+k2−5. Thus, 2α(r1) ∗ α(r3) /∈ C3. By Lemma 5.1,
ϕ(C3) is nonlinear. □
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Example 5. Consider the code defined in Example 3. Let r1 and r3 denote the first and
third rows of G1 in (4.4), respectively. Then the Lee weight of

2α(r1) ∗ α(r3) = 2α(123000123000) ∗ α(112112112112) = (200000200000)

is 4, which can not be contained in C3 since C3 is a three-Lee weight code with ω1 = 8,
ω2 = 16, and ω3 = 12.

6. Conclusion and open problems

In this paper, we have constructed two infinite families of three-weight projective
codes over Z4. From there strongly walk-regular graphs were built. There are two main
directions of inquiry from that point on. One is to look at other families of three-weight
Z4-codes. The other is to extend this research to other rings. In particular, chain rings
are the natural candidates to replace Z4 as an alphabet for our three-weight codes.
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