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DEGREE CONDITIONS OF NEARLY INDUCED

MATCHING EXTENDABLE GRAPHS

LONGSHU WU AND QIN WANG

Abstract. A graph G is induced matching extendable (shortly, IM-
extendable) if every induced matching of G is included in a perfect
matching of G. The IM-extendable graph was first introduced by Yuan
in [11]. A graph G is nearly IM-extendable if G ∨K1 is IM-extendable.
We show in this paper that: (1) Let G be a graph with 2n− 1 vertices,
where n ≥ 2. If for each pair of nonadjacent vertices u and v in G,
d(u) + d(v) ≥ 2d4n/3e − 3, then G is nearly IM-extendable. (2) Let
G be a claw-free graph with 2n − 1 vertices, where n ≥ 2. If for each
pair of nonadjacent vertices u and v in G, d(u) + d(v) ≥ 2n − 1, then
G is nearly IM-extendable. Minimum degree conditions of nearly IM-
extendable graphs and nearly IM-extendable claw-free graphs are also
obtained in this paper. It is also shown that all these results are best
possible.

1. Introduction

Graphs considered in this paper are finite, simple, and undirected. For a
graph G, V (G) and E(G) denote its vertex set and edge set, respectively.
The edge joining two vertices x and y is written as xy. The number of
edges in G incident with a vertex u is called the degree of u, and denoted
by d(u). The minimum degree of G is denoted by δ(G). For X ⊆ V (G), the
neighbour set NG(X) of X is defined by

NG(X) = {y ∈ V (G) \X : there is x ∈ X such that xy ∈ E(G)}.

The neighbour set of vertex u in V (G) is denoted by N(u). For W ⊆ V (G),
set

E(W ) = E(G[W ]) = {uv ∈ E(G) : u, v ∈W}.
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For M ⊆ E(G), set

V (M) = {x ∈ V (G) : there is y ∈ V (G) such that xy ∈M}.
When no confusion can occur, a single-element set {a} will be denoted by a
for short. A component H of G is odd (even) if |V (H)| is odd (even). The
number of odd components of G is denoted by o(G). Let G1 and G2 be two
disjoint graphs. We denote their union by G1 ∪G2. The join G1 ∨G2 is the
graph obtained from G1 ∪G2 by joining each vertex of G1 to each vertex of
G2. A graph G is called claw-free, if it does not contain K1,3 as an induced
subgraph.

We call M ⊆ E(G) a matching [5] of G, if V (e) ∩ V (f) = ∅ for every two
distinct edges e, f ∈M . A matching M of G is perfect [5], if V (M) = V (G).
We say a matching M of G is an induced matching [2, 3] if E(V (M)) = M .
A connected graph G is said to be n-extendable [6], if |V (G)| ≥ 2n + 2, G
has a perfect matching, and for every matching M of G with |M | = n, there
is a perfect matching M∗ of G, such that M ⊆M∗. A graph G is said to be
induced matching extendable [11] (shortly, IM-extendable), if every induced
matching of G is included in a perfect matching of G. A graph G is said to
be nearly IM-extendable, if G ∨K1 is IM-extendable.

Research on IM-extendable graphs can be found, for example, in [4], [7],
[9]–[15]. For notation and terminology not defined here we refer to [1].

In this paper, we will give some degree sum conditions and minimum
degree conditions of nearly IM-extendable graphs. We also show that these
results are best possible. The following four Lemmas will be very useful in
our proofs.

Lemma 1.1 ([6]). Let G be a graph with p vertices, where p is even, and let
n be an integer with 1 ≤ n < p/2. Suppose that for each pair of nonadjacent
vertices u and v in G, d(u) + d(v) ≥ p+ 2n− 1. Then G is n-extendable.

Lemma 1.2 (Tutte’s Theorem [8]). A graph G has a perfect matching if
and only if for every vertex subset S ⊂ V (G), o(G− S) ≤ |S|.

Lemma 1.3 ([5]). If G is a connected claw-free graph with even number of
vertices, then G has a perfect matching.

Lemma 1.4 ([1]). Suppose that G is a graph with minimum degree at least
1
2(|V (G)|+ k − 2), where 1 ≤ k ≤ |V (G)| − 1, then G is k-connected.

2. Main Results

Theorem 2.1. Let G be a graph with 2n − 1 vertices, where n ≥ 2. If for
each pair of nonadjacent vertices u and v in G, d(u) + d(v) ≥ 2d4n/3e − 3,
then G is nearly IM-extendable, and the result is best possible.

Proof. When n = 2, G is a graph with 3 vertices. We can easily check that
G is nearly IM-extendable if and only if G is C3. Hence we suppose n ≥ 3
in the sequel. Let F = G ∨K1, where K1 = s and |V (F )| = 2n. We need
only show that F is IM-extendable.
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Because s is adjacent to each vertex in V (G), we have

(2.1) dF (u) + dF (v) ≥ 2

⌈
4n

3

⌉
− 3 + 2 = 2

⌈
4n

3

⌉
− 1

for each pair of nonadjacent vertices u and v in F , where dF (w) is the degree
of vertex w in F . Let M be an induced matching in F . The following Claim
holds.

Claim 1. |M | ≤ dn/3e.

Suppose to the contrary that |M | ≥ dn/3e+ 1. Because n ≥ 3, |M | ≥ 2.
There must be two nonadjacent vertices x and y in V (M). By (2.1),

dF (x) + dF (y) ≥ 2

⌈
4n

3

⌉
− 1.

It follows that there exists t ∈ {x, y} such that

dF (t) ≥
⌈

4n

3

⌉
.

Because dF (t) ≤ |V (F )| − |V (M)|+ 1, we have⌈
4n

3

⌉
≤ 2n− 2(

⌈n
3

⌉
+ 1) + 1 = 2

⌊
2n

3

⌋
− 1 ≤ 4n

3
− 1,

a contradiction. This completes the proof of Claim 1.
Hence we must have |M | ≤ dn/3e. By Lemma 1.1, F is dn/3e-extendable.

So F is IM-extendable and G is nearly IM-extendable.
Now we show that the result is best possible. We construct a graph G

with 2n − 1 vertices and degree sum 2d4n/3e − 4 which is not nearly IM-
extendable as follows.

Let V (G) = A1 ∪A2 ∪A3 and Ai ∩Aj = ∅, where 1 ≤ i < j ≤ 3.

Case 1. 2n ≡ 0 (mod 3). Let 2n− 1 = 3m− 1.

In this case, 2d4n/3e − 4 = 4m − 4 and m is even. Let |A1| = m,
|A2| = m+ 1, |A3| = m− 2. Let E(A1) be a matching of size m/2,

E(Ai, Aj) = {xy|x ∈ Ai, y ∈ Aj}, for 1 ≤ i < j ≤ 3,

E(A2) = E(A3) = ∅.
The edge set of G is defined by

E(G) =

( 3⋃
i=1

E(Ai)

)
∪
( ⋃

1≤i<j≤3

E(Ai, Aj)

)
.

Clearly, the minimum degree sum of the constructed graph G is 4m − 4 =
2d4n/3e−4. Let F = G∨K1, then E(A1) is an induced matching of F . Let
H = F − A1, we have o(H − A3 ∪K1) = |A2| > |A3| + 1. By Lemma 1.2,
H has no perfect matching. So F is not IM-extendable and G is not nearly
IM-extendable.
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Case 2. 2n ≡ 1 (mod 3). Let 2n− 1 = 3m.

In this case, 2d4n/3e−4 = 4m−2 and m is odd. Let |A1| = |A2| = m+1,
|A3| = m−2. Let E(A1) be a matching of size (m+ 1)/2; and the remaining
part of E(G) is the same as Case 1. Clearly, the minimum degree sum of
G is 4m − 2. It is easy to check that G is not nearly IM-extendable by a
similar argument as above.

Case 3. 2n ≡ 2 (mod 3). Let 2n− 1 = 3m+ 1.

In this case, 2d4n/3e − 4 = 4m and m is even. Let |A1| = m + 2,
|A2| = m + 1, |A3| = m − 2. Let E(G) be the same as before except that
E(A1) is a matching of size (m+ 2)/2. Clearly, the minimum degree sum
of G is 4m, and G is not nearly IM-extendable.

We now summarize the above three cases as follows.
Let V (G) = A1∪A2∪A3, |V (G)| = 2n−1 = 3m+k−1, and Ai∩Aj = ∅,

where 1 ≤ i < j ≤ 3, k = 0, 1, 2.
Let |A1| = m+ k, |A2| = m+ 1, |A3| = m− 2. Let E(A1) be a matching

of size |A1|/2,

E(Ai, Aj) = {xy|x ∈ Ai, y ∈ Aj}, for 1 ≤ i < j ≤ 3.

The edge set of G is defined by

E(G) = E(A1) ∪ (
⋃

1≤i<j≤3

E(Ai, Aj)).

Then G is a graph with 2n− 1 vertices and degree sum 2d4n/3e − 4 which
is not nearly IM-extendable, and so the result is best possible. �

The following Corollary can be obtained from Theorem 2.1 directly. We
can use the graphs constructed in the proof of Theorem 2.1 to show that
the result in Corollary 2.2 is best possible.

Corollary 2.2. d4n/3e−1 is the minimum integer δ such that every graph G
with minimum degree at least δ is nearly IM-extendable, where 3 ≤ |V (G)| =
2n− 1.

Theorem 2.3. Let G be a claw-free graph with 2n−1 vertices, where n ≥ 2.
If for each pair of nonadjacent vertices u and v in G, d(u) + d(v) ≥ 2n− 1,
then G is nearly IM-extendable, and the result is best possible.

Proof. Let F = G∨K1, where K1 = s and |V (F )| = 2n. Since s is adjacent
to each vertex in V (G), for each pair of nonadjacent vertices u and v in F ,

(2.2) dF (u) + dF (v) ≥ 2n+ 1.

By Lemma 1.1, F is 1-extendable. We need only show that F is IM-
extendable.

Let M be an induced matching of F . If s ∈ V (M), then |M | = 1. So
F − V (M) has a perfect matching. If s /∈ V (M), we choose an arbitrary
vertex t ∈ F − V (M) − s. If o(F − V (M) − {s, t}) = 0, by Lemma 1.3,
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F−V (M)−{s, t} has a perfect matching. Otherwise, o(F−V (M)−{s, t}) ≥
2. Let F1 and F2 be two odd components of F − V (M) − {s, t}. Choose
x ∈ V (F1) and y ∈ V (F2) arbitrarily. By (2.2),

(2.3) dF (x) + dF (y) ≥ 2n+ 1.

Because G is claw-free, we have

|N(x) ∩ V (M)| ≤ 4 and |N(y) ∩ V (M)| ≤ 4.

It follows that

(2.4) dF (x) ≤ |V (F1)| − 1 + 4 + 2 = |V (F1)|+ 5

and

(2.5) dF (y) ≤ |V (F2)|+ 5.

Because

(2.6) |V (F1)|+ |V (F2)|+ |V (M)|+ 2 ≤ |V (F )|,
we have

dF (x) + dF (y) ≤ |V (F )| − |V (M)| − 2 + 10 = |V (F )| − |V (M)|+ 8,

and so
2n+ 1 ≤ 2n+ 8− |V (M)|.

This implies that |M | ≤ 3. If |M | = 1, because F is 1-extendable, F −
V (M) has a perfect matching. We distinguish the following two cases.

Case 1. |M | = 3. Then n > 4.

By (2.3), (2.4), and (2.5), we have |V (F1)|+ |V (F2)| ≥ 2n− 8. By (2.6),
we have |V (F1)| + |V (F2)| ≤ 2n − 8. So |V (F1)| + |V (F2)| = 2n − 8. This
implies that F − V (M) − {s, t} = F1 ∪ F2. It follows that there exists
i ∈ {1, 2} such that |V (Fi)| ≥ n − 4. Without loss of generality, suppose
that |V (F2)| ≥ n− 4. Then |V (F1)| ≤ n− 4.

Claim 1.1. N(t) ∩ (V (F1) ∪ V (F2)) 6= ∅.

Otherwise, because |N(t)∩V (M)| ≤ 4, we have d(t) ≤ 4 and d(x) ≤ n−1.
So, d(t)+d(x) ≤ n+3 < 2n−1, a contradiction to the fact that the minimum
degree sum of G is at least 2n− 1. Hence N(t) ∩ (V (F1) ∪ V (F2)) 6= ∅.

Without loss of generality, suppose that N(t) ∩ V (F2) 6= ∅. By Lemma
1.3, G[V (F2) ∪ {t}] has a perfect matching M2. Let w be a vertex of F1

such that w is not a cut vertex of F1 (in fact, w can be any vertex of F1,
which we will show in the sequel). So F1 − w is connected. By Lemma 1.3,
F1 −w has a perfect matching M1. Hence M1 ∪ {sw} is a perfect matching
of F1 ∨ s. So F − V (M) has a perfect matching M1 ∪M2 ∪ {sw}.

Remark. For more details and for further research, we give some charac-
terizations of F1 and F2 as follows, which also show that w can be any vertex
of F1 (or F2, if N(t) ∩ V (F2) = ∅).

We have
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Claim 1.2. F1 is a complete graph.

Suppose that there are two vertices u, v ∈ V (F1) such that uv /∈ E(F1).
Then d(u) + d(v) ≤ n− 1 +n− 1 = 2n− 2 < 2n− 1, a contradiction. Hence
Claim 1.2 holds.

Claim 1.3. If |V (F1)| ≥ 5, F2 is 3-connected.

Because 2n − 1 ≤ d(x) + d(y) ≤ n + d(y), we have d(y) ≥ n − 1. That
is δ(F2) ≥ n − 6. Because |V (F1)| + |V (F2)| = 2n − 8 and |V (F1)| ≥ 5, we
have |V (F2)| ≤ 2n− 13. By Lemma 1.4, F2 is 3-connected.

Claim 1.4. If |V (F1)| < 5 and N(t) ∩ V (F2) = ∅, F2 is a complete graph.

Suppose to the contrary that there are two vertices u, v ∈ V (F2) such
that uv /∈ E(F2). If F1 = K1, we have |V (F2)| = 2n−9. Then d(u) +d(t) ≤
2n− 11 + 4 + 5 = 2n− 2 < 2n− 1, a contradiction. If |V (F1)| = 3, we have
|V (F2)| = 2n− 11. Then d(u) + d(t) ≤ 2n− 13 + 4 + 7 = 2n− 2 < 2n− 1,
a contradiction again. Hence Claim 1.4 holds.

From the above four claims, we know that if N(t) ∩ V (F2) 6= ∅, F1 is a
complete graph; if N(t) ∩ V (F2) = ∅, either F2 is a complete graph or F2 is
3-connected.

Case 2. |M | = 2. Then n > 3.

By (2.3), (2.4), and (2.5), we have |V (F1)|+ |V (F2)| ≥ 2n− 8. By (2.6),
we have |V (F1)| + |V (F2)| ≤ 2n − 6. So |V (F1)| + |V (F2)| = 2n − 6 or
|V (F1)|+ |V (F2)| = 2n− 8. When n ≤ 7, we can check that F − V (M) has
a perfect matching. Now we suppose n > 7 in the sequel.

When n > 7, we can obtain that |V (F1)|+ |V (F2)| = 2n−6. This implies
F − V (M) − {s, t} = F1 ∪ F2. It follows that there exists i ∈ {1, 2} such
that |V (Fi)| ≥ n − 3. Without loss of generality, suppose |V (F2)| ≥ n − 3.
Then |V (F1)| ≤ n− 3. We have

Claim 2.1. N(t) ∩ (V (F1) ∪ V (F2)) 6= ∅.

Otherwise, d(t) ≤ 4 and d(x) ≤ n. So, d(t) + d(x) ≤ n + 4 < 2n − 1, a
contradiction to the fact that the minimum degree sum is at least 2n − 1.
Hence N(t) ∩ (V (F1) ∪ V (F2)) 6= ∅.

From a similar discussion of Claim 1.1, we can prove that F − V (M) has
a perfect matching. We also give some characterizations of F1 and F2 as
follows.

Claim 2.2. If N(t) ∩ V (F2) 6= ∅, F1 is a complete graph.

Suppose that there are two vertices u, v ∈ V (F1) such that uv /∈ E(F1).
If N(t) ∩ V (F1) = ∅, then d(u) + d(v) ≤ n − 1 + n − 1 = 2n − 2 < 2n − 1,
a contradiction. If N(t) ∩ V (F1) 6= ∅, because N(t) ∩ V (F2) 6= ∅ and G is a
claw-free graph, we know that |N(t) ∩ {u, v}| ≤ 1. Assume that v 6∈ N(t).
So d(u) + d(v) ≤ |V (F1)| − 2 + 5 + |V (F1)| − 2 + 4 = 2|V (F1)|+ 5 ≤ 2n− 1.
Since d(u) + d(v) ≥ 2n− 1, we have d(u) + d(v) = 2n− 1. This implies that
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|N(u) ∩ V (M)| = 4 and |N(v) ∩ V (M)| = 4. So N(F2) ∩ V (M) = ∅. But
now d(v)+d(y) ≤ |V (F1)|−2+4+ |V (F2)|−1+1 = |V (F1)|+ |V (F2)|+2 =
2n− 4 < 2n− 1, a contradiction. Hence F1 is a complete graph and Claim
2.2 holds.

Claim 2.3. If |V (F1)| ≥ 9, F2 is 3-connected.

Because 2n− 1 ≤ d(x) + d(y) ≤ n+ 1 + d(y), we have d(y) ≥ n− 2. That
is δ(F2) ≥ n − 7. Because |V (F1)| + |V (F2)| = 2n − 6 and |V (F1)| ≥ 9, we
have |V (F2)| ≤ 2n− 15. By Lemma 1.4, F2 is 3-connected.

Claim 2.4. If |V (F1)| < 9 and N(t) ∩ V (F2) = ∅, F2 is 3-connected.

If F1 = K1, since |V (F1)|+ |V (F2)| = 2n− 6, we have |V (F2)| = 2n− 7.
Because d(t) ≤ 5, d(y) ≥ 2n − 6. So δ(F2) ≥ 2n − 10. Since n > 7, by
Lemma 1.4, F2 is 5-connected. The cases when |V (F1)| = 3, 5, and 7 can be
proved similarly.

From these four claims, we can deduce that if N(t) ∩ V (F2) 6= ∅, F1 is a
complete graph; if N(t) ∩ V (F2) = ∅, F2 is 3-connected.

In both Case 1 and Case 2, we have proved that F − V (M) has a per-
fect matching. According to the above analysis, we know that F is IM-
extendable, and so G is nearly IM-extendable.

The result is best possible. For if G = K1∨(Kx∪K2n−2−x), where K1 = t
and x is an odd number such that 1 ≤ x < 2n− 2, we can easily check that
G is a claw-free graph with minimum degree sum 2n−2. Let F = G∨s and
M = st. Since F −V (M) has two odd components, F is not IM-extendable,
and so G is not nearly IM-extendable.

�

Theorem 2.4. 2bn/2c is the minimum integer δ such that every claw-free
graph G with minimum degree at least δ is nearly IM-extendable, where
3 ≤ |V (G)| = 2n− 1.

Proof. Let F = G∨K1, where K1 = s and |V (F )| = 2n. Since s is adjacent
to each vertex in V (G), δ(F ) ≥ 2bn/2c+ 1. By Lemma 1.1, when n is even,
F is 1-extendable.

Now we show that F is IM-extendable. Let M be an induced matching
of F . For each vertex x ∈ V (F ) − V (M) − s, since G is claw-free, |N(x) ∩
V (M)| ≤ 4.

Claim 1. If s ∈ V (M), F − V (M) has a perfect matching.

If s ∈ V (M), then |M | = 1. If n is even, since F is 1-extendable, F−V (M)
has a perfect matching. If n is odd, we show that o(F − V (M)) = 0,
and so F − V (M) has a perfect matching. Suppose to the contrary that
o(F−V (M)) ≥ 2. Then there must exist an odd component F1 of F−V (M)
such that |V (F1)| ≤ n−2. For any vertex v ∈ V (F1), we have d(v) ≤ n−2 <
2bn/2c, a contradiction. Hence Claim 1 holds.

When s /∈ V (M), we choose an arbitrary vertex t ∈ F − V (M) − s. If
o(F − V (M)− {s, t}) = 0, by Lemma 1.3, F − V (M)− {s, t} has a perfect
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matching. Otherwise, o(F − V (M)−{s, t}) ≥ 2. Let F1 and F2 be two odd
components of F − V (M)− {s, t}. We distinguish the following two cases.

Case 1. n is even.

In this case, δ = n. It is obvious that F − V (M) has a perfect matching,
which can be obtained from Theorem 2.3 directly.

Case 2. n is odd. Let δ = n− 1 = 2m.

Subcase 2.1. |M | = 1.

We can deduce that |V (Fi)|−1+2+2 ≥ δ(F ) ≥ 2m+1 and so |V (Fi)| ≥
2m− 1, i = 1, 2. Because

(2.7) |V (F )| ≥ |V (F1)|+ |V (F2)|+ |V (M)|+ 2,

we have

4m+ 2 ≥ 2m− 1 + 2m− 1 + 2 + 2 = 4m+ 2.

This implies that |V (F1)| = |V (F2)| = 2m− 1.
When m = 1, we have |V (F1)| = |V (F2)| = 1. Suppose that F1 = u and

F2 = v. Since δ = 2m = 2 and G is claw-free, we know that N(t)∩{u, v} 6= ∅.
Without loss of generality, suppose that tu ∈ E(G). Then {tu} ∪ {sv} is a
perfect matching of F − V (M).

When m ≥ 2, since d(t) ≥ δ = 2m, it is easy to check that N(t)∩(V (F1)∪
V (F2)) 6= ∅. Without loss of generality, suppose that N(t)∩ V (F1) 6= ∅. By
Lemma 1.3, G[V (F1) ∪ {t}] has a perfect matching M1. Let w be a vertex
of F2 such that w is not a cut vertex of F2. So F2 − w is connected. By
Lemma 1.3, F2−w has a perfect matching M2. Hence M2∪{sw} is a perfect
matching of F2 ∨ s. So F − V (M) has a perfect matching M1 ∪M2 ∪ {sw}.

Subcase 2.2. |M | ≥ 2.

Because for each vertex x ∈ V (F )−V (M)−s, |N(x)∩V (M)| ≤ 4, we can
deduce that |V (Fi)| − 1 + 4 + 2 ≥ δ(F ) ≥ 2m+ 1 and so |V (Fi)| ≥ 2m− 3,
i = 1, 2. By (2.7),

4m+ 2 ≥ 2m− 3 + 2m− 3 + 4 + 2 = 4m.

We have |M | ≤ 3 and |V (F −V (M ∪F1∪F2)−{s, t})| ≤ 2. Without loss
of generality, suppose |V (F1)| ≤ |V (F2)|. Since δ = 2m and G is claw-free,
this implies the following two possible cases:

(a) |V (F1)| = 2m− 3, |V (F2)| = 2m− 1, |M | = 2.
(b) |V (F1)| = |V (F2)| = 2m− 3, |M | = 3.

When m = 2 or m = 3, because G is claw-free and d(t) ≥ 2m, we can check
that N(t) ∩ (V (F1) ∪ V (F2)) 6= ∅. When m ≥ 4, since d(t) ≥ 2m ≥ 8,
obviously we have N(t)∩ (V (F1)∪V (F2)) 6= ∅. From a similar discussion of
Subcase 2.1, we can prove that F − V (M) has a perfect matching.

According to the above analysis, we know that F is IM-extendable, and
so G is nearly IM-extendable.
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The above result is best possible. For if

G =

{
K1 ∨ 2Kn−1 n is even,

K1 ∨ (Kn ∪Kn−2) n is odd,

where K1 = t, we can easily check that G is a claw-free graph with δ(G) =
2bn/2c − 1. Let F = G ∨ s and M = st. Since F − V (M) has two odd
components, F is not IM-extendable, and so G is not nearly IM-extendable.

�
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