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ON THE Dα SPECTRUM OF CONNECTED GRAPHS

ZIA ULLAH KHAN AND XIAO-DONG ZHANG

Abstract. Let G be a connected graph with α ∈ [0, 1], the Dα-spectral
radius of G is defined to be the spectral radius of the matrix Dα(G),
defined as Dα(G) = αT (G)+(1−α)D(G), where T (G) is a transmission
diagonal matrix of G and D(G) denotes the distance matrix of G. In this
paper, we give some sharp upper and lower bounds for the Dα-spectral
radius with respect to different graph parameters.

1. Introduction

Throughout this paper we consider simple connected undirected graphs.
Let G be a graph of order n with vertex set V (G) and edge set E(G). For
u, v ∈ V (G), we define the distance between vertex u and v in G, denoted
by dG(u, v) or simply duv, is the length of a shortest path from vertex u to
vertex v inG. The maximum distance between any two vertices inG is called
diameter ofG, denoted by d(G). The distance matrix ofG is the n×nmatrix
D(G) = (dG(u, v))u,v∈V (G). For u ∈ V (G), the transmission of u (also
known as the degree distance of u) in G, denoted by Tu, is defined as the sum
of distances from u to all other vertices of G, i.e., Tu(G) =

∑
v∈V (G) dG(u, v).

The transmission matrix T (G) of G is the diagonal matrix of transmissions
of G. We define the distance signless Laplacian matrix of any graph G
as DQ(G) = T (G) + D(G) and distance Laplacian matrix as DL(G) =
T (G)−D(G), where D(G) denotes the distance matrix of G and T (G) the
transmission matrix of G.

The distance eigenvalues and especially the distance spectral radius have
been extensively studied for many years, see the recent survey [1] and ref-
erences therein. The distance Laplacian and distance signless Laplacian
spectrum of graphs have also received much attention in recent years, espe-
cially the problems related to their spectral radius, see [2, 5, 7, 9, 10, 11, 15].
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Aouchiche and Hansen [2] showed that the distance Laplacian eigenvalues
and distance signless Laplacian eigenvalues do not decrease when an edge is
deleted. In [3], the same authors proved that the star is a unique tree with
a minimum distance Laplacian spectral radius. In [6], Alhevaz et al. gave
some upper and lower bounds on distance signless Laplacian spectral radius
and also determined the distance signless Laplacian spectrum of some graph
operations. For more review about distance Laplacian and distance signless
laplacian see [2, 5, 7, 9, 10, 11, 12, 15].

In [8], Nikiforov proposed to study the convex linear combinations of the
adjacency matrix A(G) of G and diagonal matrix of its vertices Ddeg(G),
i.e.,

Aα(G) = αA(G) + (1− α)Ddeg(G), α ∈ [0, 1],

where Aα(G) is called generalized adjacency matrix or Aα matrix of G. This
concept of generalized adjacency matrix helped in merging the adjacency
spectral and signless Laplacian spectral theories. Similarly Cui, He and
Tian [13], introduced the generalized distance matrix Dα(G) as the convex
combination of T (G) and D(G).

Dα(G) = αT (G) + (1− α)D(G), α ∈ [0, 1],

where D(G) denotes the distance matrix of graph G and T (G) denotes the
transmission matrix of graph G. Obviously, D0(G) = D(G) for α = 0,
which represents the distance matrix of G and 2D1/2(G) = DQ(G), a dis-
tance signless laplacian matrix of graph G. We call the eigenvalues of
distance matrix D(G) as the distance eigenvalues and denoted them by
µ1(G) ⩾ µ2(G) ⩾ · · · ⩾ µn(G) while the eigenvalues of Dα(G) matrix of
G, we call them distance α-eigenvalues of G. As Dα(G) is a symmetric
matrix, the distance α-eigenvalues of G are all real and we denote them by

λ
(1)
α (G), . . . , λ

(n)
α (G), arranged in nonincreasing order, where n = |V (G)|.

The largest distance α-eigenvalue λ
(1)
α (G) of G is called the Dα-spectral ra-

dius of G, written as ρα(G) and the minimum distance alpha eigenvalue λn
α

as ρmin(G). Obviously, λ
(1)
0 (G), . . . , λ

(n)
0 (G) are the distance eigenvalues of

G, and 2λ
(1)
1/2(G), . . . , 2λ

(n)
1/2(G) are the distance signless Laplacian eigenval-

ues of G. Particularly, ρ0(G) is the distance spectral radius and 2λ1/2(G) is
just the distance signless Laplacian spectral radius of G. For more details on
Dα matrix, readers are suggested to see [13, 14, 16, 17]. In this paper we give
sharp upper and lower bounds, involving transmission, second transmission
and independence number for the distance α-spectral radius of connected
graphs, for example the upper bound

ρα(G) ⩽ max
1⩽u⩽n

αTu +
√
4Tumu(1− α) + (αTu)2

2
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(see Theorem 3.3) and lower bound

ρα(G) ⩾
1

n∑
i=1

T 2
i

∑
u,v∈V (G)

duv(α(Tu − Tv)
2 + 2TuTv)

(see Theorem 3.6). In section 2, we briefly introduce the preliminaries.
Section 3 comprises the main results of the paper. In section 3, we give some
sharp upper and lower bounds for Dα-spectral radius and briefly discussed
the equality conditions for each bound. We also state and prove bounds for
Dα-spectral radius of the connected bipartite graph and show that graph
K1,n−1 is a unique graph which maximizes the Dα spectral radius among all
graphs with diameter 2. Moreover, we also give some results and bounds on
Dα spectral radius of a graph in terms of its connected complement.

2. Preliminaries

Let G be a connected graph with V (G) = {v1, . . . , vn} and a column
vector x = (xv1 , . . . , xvn)

⊤ ∈ Rn can be considered as a function defined on
V (G), which maps vertex vi to xvi , i.e., x(vi) = xvi for i = 1, . . . , n. Then

(2.1) xTDα(G)x = α
∑

u∈V (G)

Tux
2
u + 2

∑
{u,v}∈V (G)

(1− α)duvxuxv,

or equivalently,

(2.2) xTDα(G)x =
∑

{u,v}∈V (G)

duv(α(x
2
u + x2v) + 2(1− α)xuxv).

Here we recall that a matrix is irreducible if it cannot be placed into block
upper-triangular form by simultaneous row/column permutations. Since
Dα(G) is a nonnegative irreducible matrix, by Perron-Frobenius theorem,
ρα(G) is simple and there is a unique positive unit eigenvector corresponding
to ρα(G), which is called the Dα-Perron vector of G. If x is the distance
α-Perron vector of G, then for each u ∈ V (G),

(2.3) ρα(G)xu = αTuxu + (1− α)
∑

v∈V (G)

duvxv,

or equivalently,

ρα(G)xu =
∑

v∈V (G)

duv(αxu + (1− α)xv),

which is called the α-eigenequation of G at vertex u. For a unit column
vector x ∈ Rn with at least one nonnegative entry, by Rayleigh’s principle,
we have ρα(G) ≥ x⊤Dα(G)x with equality if and only if x is the distance
α-Perron vector of G.
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We denote by ξ(G), the sum of distances between all unordered pairs of
vertices in G i.e.,

ξ(G) =
1

2

∑
v∈V (G)

Tv.

For a graph G with V (G) = {v1, v2, . . . , vn}, then second transmission of

vertex v is denoted by T̂v i.e.,

T̂v =

vn∑
u=v1

duvTu.

A graph is said to be transmission regular if Tv is a constant for each
v ∈ V (G). It is clear that any vertex-transitive graph (a graph G in which
for every two vertices u and v, there exist an automorphism f on G such
that f(u) = v) is a transmission regular graph. Indeed, the graph on 9
vertices shown in Figure 1 is 14-transmission regular graph but not degree
regular and therefore not vertex-transitive. For more examples of transmis-
sion regular but not degree regular graphs see [4].

Figure 1. The transmission regular but not degree regular
graph with the smallest order.

In [17], H. Guo and B. Zhou studied some graph transformation properties
and its effect on Dα matrix of connected graph. The deletion or addition of
an edge mainly effects the Dα spectral radius.

Lemma 2.1 (Guo and Zhou, [17]). Let G be a connected graph with u, v ∈
V (G). If u and v are not adjacent, then ρα(G+ uv) ⩽ ρα(G).

By [16] it is known that Dα spectrum of Kn is {n−1, (αn−1)n−1}. Thus:

Theorem 2.2 (Guo and Zhou, [17]). Let G be a connected graph of order
n. Then

ρα(G) ≥ n− 1,

with equality if and only if G ∼= Kn.
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Lemma 2.3 (Dı́az, Pastén and Rojo, [14]). Let G be a connected graph on
n ⩾ 2 vertices and α ∈ [1/2, 1]. Then

λ1
α(G) ⩾ λ1

α(Kn) = n− 1 and

λi
α(G) ⩾ λi

α(Kn) = αn− 1, ∀ 2 ⩽ i ⩽ n.

3. Main results

In this section, we give sharp upper and lower bounds on ρα(G) for a
connected graph G of order n. We first recall some results from [13] and
compare the bounds.

Lemma 3.1 (Cui, He and Tian, [13]). Let G be a simple connected graph
of order n with transmission sequence (T1, . . . , Tn) and

ξ(G) =
1

2

∑
v∈V (G)

Tv.

Then

ρα(G) ⩾
2 ξ(G)

n
,

with equality if and only if G is transmission regular.

Proposition 3.2 (Cui, He and Tian, [13]). Let G be a connected graph and

{T1, T2, . . . , Tn}, {T̂1, T̂2, . . . , T̂n} be the transmission and second transmis-
sion sequence respectively of graph G and α ∈ [1/2, 1]. Then

(3.1) ρα(G) ⩾

√√√√√√√
n∑

i=1
(αT 2

i − (α− 1)T̂i)
2

n∑
i=1

T 2
i

.

Moreover, if G is transmission regular then equality holds.

Cui et al. in [13] stated the above two results but here we show that
the lower bound for ρα(G) given in Proposition 3.2 is always better than

the bound given in Lemma 3.1. First its obvious that
∑n

i=1 T̂i =
∑n

i=1 T
2
i .

By Cauchy-Shwartz inequality, we see that (
∑n

i=1 T̂i)
2 ⩽ n

∑n
i=1 T̂i

2
and

(
∑n

i=1 Ti)
2 ⩽ n

∑n
i=1 T

2
i . Now from Proposition 3.2 we have,

ρα(G) ⩾

√√√√√√√
n∑

i=1
(αT 2

i − (α− 1)T̂i)
2

n∑
i=1

T 2
i

,

ρα(G) >

√√√√√√√
n∑

i=1
(αT 2

i − (α− 1)T̂i)
2

n
n∑

i=1
T 2
i

,
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ρα(G) >

√√√√√√√
(

n∑
i=1

T 2
i )

2

n
n∑

i=1
T 2
i

=

√√√√√(
n∑

i=1
Ti)

2

n
,

ρα(G) >

√√√√√(
n∑

i=1
Ti)

2

n2
=

2 ξ(G)

n
.

In the following Theorems, we give some new sharp upper and lower
bounds for Dα-spectral radius of connected graphs.

Theorem 3.3. Let G be a simple connected graph with n vertices and the
transmission sequence (T1, . . . , Tn) and α ∈ [1/2, 1]. Then

(3.2) ρα(G) ⩽ max
1⩽u⩽n

αTu +
√
4Tumu(1− α) + (αTu)2

2
,

where mu = (1/Tu)
∑n

v=1 duvTv. Moreover, if G is a transmission regular
graph then equality holds.

Proof. Let x = (x1, . . . , xn)
T be the distance α-Perron vector of G corre-

sponding to ρα(G). By the α eigenequation of G at vertex u we have

ραxu = αTuxu + (1− α)
∑

u,v∈V (G)

duvxv.

Let xu = max1⩽j⩽n{xj}

ραxu = αTuxu + (1− α)

n∑
v=1

duvxv,

ραxu ⩽ αTuxu + (1− α)

n∑
v=1

duvxu,

(3.3) ραxu ⩽ Tuxu.

Now to get the quadratic form we have,

ρ2αx = D2
αx = (αT (G) + (1− α)D)2x,

= α2T 2
Gx+ (1 + α2 − 2α)D2x+ α(1− α)TGDx+ α(1− α)DTGx.

Thus,

ρ2αxu = α2T 2
uxu + (1 + α2 − 2α)

×
n∑

v=1

duv

n∑
w=1

dvwxw + α(1− α)Tu

n∑
v=1

duvxv + α(1− α)

n∑
v=1

duvTvxv.
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In order to prove (5) we consider the simple quadratic function of ρα(G),

(ρ2α + bρα)xu = α2T 2
uxu + (1 + α2 − 2α)

×
n∑

v=1

duv

n∑
w=1

dvwxw + α(1− α)(Tu

n∑
v=1

duvxv+
n∑

v=1
duvTvxv) + bραxu,

where b is an integer. As we know xu = max1⩽j⩽n{xj},
n∑

v=1

duvTvxv ⩽ Tumuxu;

n∑
v=1

duv

n∑
w=1

dvwxw ⩽ Tumuxu;

n∑
v=1

duvxv ⩽ Tuxu,

by the above inequalities we get a simple quadratic equation, provided that
αTu + b ⩾ 0 we get,

(ρ2α + bρα)xu ⩽ (αTu + b)Tuxu + (1− α)Tumuxu,

ρ2α + bρα − ((αTu + b+ (1− α)mu)Tu ⩽ 0.

Since ρα is the Perron vector and ρα ⩾ 0,

ρα(G) ⩽
−b+

√
b2 + 4Tu(αTu + b+ (1− α)mu)

2
.

From the inequality above for each b we can get a distinct upper bound.
In particular if b = −αTu then we get the inequality (5).

ρα(G) ⩽ max
1⩽u⩽n

αTu +
√
4Tumu(1− α) + (αTu)2

2
.

Suppose the equality holds in above inequality. Then all inequalities in
the above arguments must be equalities. Therefore we have xu = xv for all
v. By ραx = Dαx we can deduce that T1 = T2 = · · · = Tn, that is, G is a
transmission regular graph. □

Theorem 3.4. Let G be a simple connected graph with n vertices and trans-
mission sequence (T1, . . . , Tn) and α ∈ [1/2, 1]. Then

(3.4) ρα(G) ⩽ max
1⩽u̸=w⩽n

β +
√

4(1− α)duwTu + β2

2
,

where β = Tw−(1−α)duw. Moreover, if G is the transmission regular graph
then equality holds.

Proof. Let x = (x1, . . . , xn)
T be the distance α-Perron vector of G corre-

sponding to ρα(G). We can assume that one eigencomponent xu is equal to 1
and other components are less than or equal to 1 i.e., xu = 1 and 0 ⩽ xv ⩽ 1
for all xv. Let xw = max{xv|v ̸= u}. So by the Dα-eigenequation:

ρα(G)xu = αTuxu + (1− α)

n∑
v=1

duvxv,

(3.5) ρα(G)xu ⩽ αTuxu + (1− α)Tuxw.
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Now by using the α eigenequation corresponding to xw,

ρα(G)xw = αTwxw + (1− α)

n∑
v=1

dwvxv.

By expanding the above equation,

ρα(G)xw = αTwxw+(1−α)dwuxu+(1−α)(dwuxw+
∑
v ̸=u

dwvxv)−(1−α)duwxw,

(3.6) ρα(G)xw ⩽ Twxw + (1− α)duwxu − (1− α)duw(xw).

Now multiplying both sides of equation (3.6) with ρα(G) we have

ρ2α(G)xw ⩽ Twρα(G)xw + (1− α)duwρα(G)xu − (1− α)duwρα(G)xw.

Substituting equation (3.5) i.e., ρα(G)xu ⩽ αTuxu + (1 − α)Tuxw in the
above inequality we get,

ρ2α(G)xw ⩽Twρα(G)xw + (1− α)duw
(
αTuxu + (1− α)Tuxw

)
− (1− α)duwρα(G)xw.(

ρ2α(G)−Twρα(G)+(1−α)duwρα(G)−(1−α)2Tuduw

)
xw ⩽ α(1−α)duwTuxu.

As we already know that xu = 1 and xw = max{xv|v ̸= u} for all xv.
Thus,(
ρ2α(G)− Twρα(G) + (1−α)duwρα(G)− (1−α)2Tuduw

)
⩽ α(1−α)duwTu.

So we get the quadratic form as,

ρ2α(G)−
(
Tw − (1− α)duw

)
ρα(G)− (1− α)Tuduw ⩽ 0.

Thus we get the inequality (3.4).

ρα(G) ⩽ max
1⩽u̸=w⩽n

β +
√

4(1− α)duwTu + β2

2
,

where β = Tw − (1− α)duw.
Suppose the equality occurs in Equation 3.4, then x is an eigenvector of

ρα(G) with xu = xw for all w = 1, 2, . . . , n. This concludes that all the row
sums of Dα(G) are same, and so G is a transmission regular graph. □

Theorem 3.5. Let G be a simple connected graph on n vertices with trans-
mission sequence (T1, . . . , Tn), where d is the diameter of G and α ∈ [1/2, 1].
Then

(3.7) ρα ⩽ max
1⩽u⩽n

αTu +

√
(αTu)2 +

4n(1− α)d

Tu

∑
v ̸=u

Tv(αTv + (1− α)mv)

2
,
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where mv = (1/Tv)
∑n

w=1 dwvTw. Moreover, the equality holds if and only if
G is a complete graph.

Proof. Let B = (b1, . . . , bn) is an n × n diagonal matrix where bu > 0.
Consider the matrix B−1DαB. Since Dα and B−1DαB are similar matri-
ces, ρα(G) is also an eigenvalue of B−1DαB. We see that (u, v)th-entry of
B−1DαB is αTu for u = v or (1− α)(bv/bu)duv for u ̸= v.

Let x = (x1, . . . , xn)
T be the distance α-Perron vector of G corresponding

to ρα(G). We can assume that one eigencomponent xu is equal to 1 and
other components are less than or equal to 1 i.e., xu = 1 and 0 ⩽ xv ⩽ 1 for
all xv then by the α eigenequation for xu,

ραxu = αTuxu + (1− α)
n∑

v=1

bvduv
bu

xv,

ρα = αTu + (1− α)
n∑

v=1

bvduv
bu

xv.

Now by the α eigenequation for xv:

ραxv = αTvxv + (1− α)
n∑

w=1

bwdvw
bv

xw,

ρ2α = αραTu + (1− α)

n∑
v=1

bvduv
bu

ραxv,

ρ2α = αραTu +
α(1− α)

bu

n∑
v=1

bvduvTvxv +
(1− α)2

bu

n∑
v=1

duv

n∑
w=1

bwdvwxw.

On other hand d is the diameter of G and 0 ⩽ xv ⩽ 1, so nd ⩾
∑n

v=1 duvxv.
Thus,

ρ2α ⩽ αραTu +
α(1− α)nd

bu

∑
v ̸=u

bvTv +
(1− α)2nd

bu

∑
v ̸=u

n∑
w=1

bwdvw.

Moreover, by setting up bw = Tw for all w, we have

ρ2α ⩽ αραTu +
(1− α)nd

Tu

∑
v ̸=u

Tv(αTv + (1− α)mv),

where mv = (1/Tv)
∑n

w=1 dwvTw. Hence we obtain the inequality (3.7).

ρα ⩽ max
1⩽u⩽n

αTu +

√
(αTu)2 +

4n(1− α)d

Tu

∑
v ̸=u

Tv(αTv + (1− α)mv)

2
.

Suppose the equality hold is the above equation, then all inequalities in the
above argument must be equalities. In particular duv = d, then d = 1 since
G is connected. Hence G must be the complete graph Kn. □
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Theorem 3.6. Let G be a simple connected graph with transmission se-
quence (T1, . . . , Tn) and α ∈ [1/2, 1]. Then

(3.8) ρα(G) ⩾
1

n∑
i=1

T 2
i

∑
u,v∈V (G)

duv(α(Tu − Tv)
2 + 2TuTv).

Moreover, the equality holds if G is the transmission regular graph.

Proof. Let

x =
1√
n∑

i=1
T 2
i

(T1, . . . , Tn)
T

be a unit vector, then by using Rayleigh Quotient,

ρα(G) ⩾ xTDαx,

from Equation (2.2) we have,

xTDα(G)x =
1

n∑
i=1

T 2
i

∑
{u,v}∈V (G)

(α(T 2
u + T 2

v ) + 2(1− α)TuTv)

xTDα(G)x =
1

n∑
i=1

T 2
i

∑
u,v∈V (G)

duv(α(Tu − Tv)
2 + 2TuTv).

So we have,

ρα(G) ⩾
1

n∑
i=1

T 2
i

∑
u,v∈V (G)

duv(α(Tu − Tv)
2 + 2TuTv).

Hence we obtain the bound (3.8). Moreover, it is easy to check that the
equality holds if G is a transmission regular graph. □

Theorem 3.7. Let G be a simple connected graph with n vertices and trans-
mission sequence (T1, . . . , Tn) and α ∈ [1/2, 1], then

(3.9) ρα(G) ⩾ min
1⩽i ̸=j⩽n

γij +
√
γ2ij + 4Ti(dij − α(Tj + dij))

2
,

where γij = α(Ti + dij) + Tj − dij. Moreover, if G is a transmission regular
graph then equality holds.

Proof. Let x = (x1, . . . , xn)
T be the eigenvector corresponding to eigenvalue

ρα(G) of Dα(G). Then by the eigenequation,

Dα(G)x = ρα(G)x.

From the kth equation of above equation we have,

ρα(G)xk = αTkxk + (1− α)
∑

vl∈V (G)

dklxk, k = 1, 2, . . . , n.



ON THE Dα SPECTRUM OF CONNECTED GRAPHS 87

Since Dα(G) is irreducible and nonnegative, so we have xk > 0 for all k =
1, 2, . . . , n. We can assume that xi and xj are the minimum and second
minimum components of eigenvector x respectively i.e.,

xi = min
vk∈V (G)

xk, xj = min
vk∈V (G),k ̸=i

xk,

xk ⩾ xj ⩾ xi > 0.

It is obvious that for vk ∈ V (G), where vk ̸= i, j. For vi ∈ V (G) using the
eigenequation,

ρα(G)xi = αTixi + (1− α)
∑

vk∈V (G)

dikxk,

⩾ αTixi + (1− α)Tixj ,

(3.10) (ρα(G)− αTi)xi ⩾ (1− α)Tixj .

Thus by using an eigenequation for vj ∈ V (G),

ρα(G)xj = αTjxj + (1− α)
∑

vk∈V (G)

djkxk,

⩾ αTjxj + (1− α)dijxi + (1− α)(Tj − dij)xj ,

(3.11) (ρα(G)− Tj + dij − αdij)xj ⩾ (1− α)dijxi.

From equations (3.10) and (3.11) we see that left hand side of inequalities
are positive so we can multiply both inequalities as,

(ρα(G)− αTi)(ρα(G)− Tj + dij − αdij) ⩾ (1− α)2dijTi.

Now by solving the above inequality we get the quadratic form,

ρ2α(G)− (α(dij + Ti) + Tj − dij)ρα(G) + (α(Tj + dij)− dij)Ti ⩾ 0

that is,

ρα(G) ⩾
γij +

√
γ2ij + 4Ti(dij − α(Tj + dij))

2
,

where γij = α(Ti + dij) + Tj − dij . From the above inequality we get the
required result in (3.9).

Suppose the equality holds in above inequality. Then all inequalities in
the above arguments must be equalities. Therefore we have xi = xj for all
j = 1, 2, . . . , n. By ρα(G)x = Dα(G)x we can deduce that T1 = T2 = · · · =
Tn, that is, G is a transmission regular graph. □

A subset S of a vertex set V (G) of a graph G is said to be an independent
set if no two vertices of S are adjacent in G. The independence number of
G is the maximum number of vertices in the independent sets in G. The
following theorems will give the lower bound for Dα spectral radius in terms
of the order and the independence number of G.
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Theorem 3.8. Let G be a connected graph of order n with independence
number s and α ∈ [1/2, 1]. Then

ρα(G) ⩾
θ −

√
θ2 − 4(ns(nα2 − 4α+ 1)− s2(nα2 − 2nα+ 1) + 2sα)

2
,

where θ = −(2s+ nsα− 2sα+ nα− 2).

Proof. Let G be a connected graph of order n and S be the independent
set with independence number s. Let X = (x1, . . . , xn)

T be the Perron
vector corresponding to ρα(G), where xi corresponds to vertex vi for i =
1, 2, . . . , n. As S is independent set so u, v ∈ V (S), d(u, v) ⩾ 2 as all the
vertices are nonadjacent in S. Assume that xi = min{k | k ∈ V (S)} and
xj = min{k | k ∈ V (G)\S}.

By using ρα(G) eigenequation for xi we have,

ρα(G)xi =
∑

v∈V (S)

div(αxi + (1− α)xv) +
∑

u∈V (G)\S

diu(αxi + (1− α)xu).

As xi , xj are the minimum eigenvector components of V (S) and V (G)\S
respectively. So it follows,

ρα(G)xi ⩾ 2(s− 1)(αxi + (1− α)xv) + (n− s)(αxi + (1− α)xv),

ρα(G)xi ⩾ (2(s− 1) + α(n− s))xi + (1− α)(n− s)xj .

As left hand side of the above inequality is positive so we have,

(3.12)

(
ρα(G)− (2(s− 1) + α(n− s))

)
xi ⩾ (1− α)(n− s)xj .

Similarly using ρα(G) eigenequation for xj we have,

ρα(G)xj =
∑

v∈V (S)

djv(αxj + (1− α)xv) +
∑

u∈V (G)\S

dju(αxj + (1− α)xu).

As xi , xj are the minimum eigenvector components of V (S) and V (G)\S
respectively. So it follows,

ρα(G)xj ⩾ s(1− α)xi + αs(n− 1)xj .

As the left hand side of the above inequality is positive so we have,

(3.13)

(
ρα(G)− αs(n− 1)

)
xj ⩾ s(1− α)xi.

Thus multiplying inequalities (3.12) and (3.13) we get the quadratic form
as:

ρ2α(G)−
(
2s+ nsα− 2sα+ nα− 2

)
ρα(G)

+ ns(nα2 − 4α+ 1)− s2(nα2 − 2nα+ 1) + 2sα ⩾ 0.

So we get the required bound. □
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Theorem 3.9. Let G = (V,E) be a connected bipartite graph of order n
with bipartition V (G) = P ∪Q where |P | = p and |Q| = q and α ∈ [1/2, 1].
Then
(3.14)

ρα(G) ⩾
(2 + α)(n)− 4 +

√
(4− 6α+ α2)(p2 + q2) + pq(α− 1− 6α2)

2
,

(3.15) ρα(G) ⩽
(n− 1)

(
(αn+ n− 2) +

√
(αn+ n− 2)2 − 4pq(1− α)2

)
2

.

Moreover, if G is a complete bipartite graph then equality holds in (3.14)
and if G is a path of order p+ q then equality holds in (3.15).

Proof. Since G is a bipartite graph with bipartition V (G) = P ∪ Q, where
|P | = p and |Q| = q. As P ∩Q = ∅ so we assume that P = {1, 2, . . . , p} and
Q = {p + 1, p + 2, . . . , p + q} with p + q = n. Let X = (x1, x2, . . . , xn)

T be
the eigenvector of Dα(G) corresponding to the eigenvalue ρα(G). We can
assume that xi = min{xk|k ∈ P} and also xj = min{xk|k ∈ Q}. So for
i ∈ P using the eigenequation,

ρα(G)xi =

p∑
v=1,v ̸=i

div(αxi + (1− α)xv) +

p+q∑
u=p+1

diu(αxi + (1− α)xu).

As xi and xj are the minimums in P and Q respectively, so we have

ρα(G)xi ⩾ (2(p− 1) + αq)xi + ((1− α)q)xj .

We see that the left hand side of the above inequality is positive. Thus

(3.16)

(
ρα(G)− (2(p− 1) + αq)

)
xi ⩾ ((1− α)q)xj .

Similarly for j ∈ Q using the eigenequation we have,

ρα(G)xj =

p∑
v=1

djv(αxj + (1− α)xv) +

p+q∑
u=p+1,u̸=j

dju(αxj + (1− α)xu)

ρα(G)xj ⩾ (2(q − 1) + αp)xj + ((1− α)p)xi.

We see that the left hand side of the above inequality is positive. Thus

(3.17)

(
ρα(G)− (2(q − 1) + αp)

)
xj ⩾ ((1− α)p)xi.

Since G is connected, so xk > 0 for all k ∈ V (G). Multiplying the
inequalities (3.16) and (3.17) we have,

ρ2α(G) + (4− (p+ q)(2 + α))ρα(G) + 2α(p2 + q2)

− (p+ q)(2α+ 4) + pq(5 + 2α2 − 2α) + 4 ⩾ 0.
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From above quadratic inequality we have,

ρα(G) ⩾
(2 + α)(n)− 4 +

√
(4− 6α+ α2)(p2 + q2) + pq(α− 1− 6α2)

2
.

Now suppose that equality holds. Then all inequalities in the above ar-
gument must be equalities. From equality in (3.16), we get xk = xj for
all k ∈ V (Q). From equality in (3.17), we get xk = xi for all k ∈ V (P ).
Thus, each vertex in each set is adjacent to all the vertices on the other set
and vice versa. Hence, G is a complete bipartite graph which completes the
proof for (3.14). Now for the upper bound in equation (3.15) we can assume
that xi = max{xk|k ∈ P} and also xj = max{xk|k ∈ Q}. So for i ∈ P using
the eigenequation,

ρα(G)xi =

p∑
v=1,v ̸=i

div(αxi + (1− α)xv) +

p+q∑
u=p+1

diu(αxi + (1− α)xu)

(3.18)

(
ρα(G)− (p− 1 + αq)(p+ q − 1)

)
xi ⩽ q(1− α)(p+ q − 1)xj .

Similarly for j ∈ Q using the eigenequation we have,

ρα(G)xj =

p∑
v=1

djv(αxj + (1− α)xv) +

p+q∑
u=p+1,u ̸=j

dju(αxj + (1− α)xu)

(3.19)

(
ρα(G)− (αp+ q − 1)(p+ q − 1)

)
xj ⩽ p(1− α)(p+ q − 1)xi.

Since G is connected, so xk > 0 for all k ∈ V (G). Multiplying the
inequalities (3.18) and (3.19) we have,

ρ2α(G)− (n− 1)(αn+ n− 2)ρα(G) + pq(n− 1)2(1− α)2) ⩽ 0.

From the above quadratic inequality we get

ρα(G) ⩽
(n− 1)

(
(αn+ n− 2) +

√
(αn+ n− 2)2 − 4pq(1− α)2

)
2

.

From the above inequality, it can easily be verified that equality holds if G
is a path graph of order p+ q. □

Graph operations are natural techniques for producing new graphs from
old ones. The join of two vertex disjoint connected graphs G and H, denoted
by G∨H is the graph obtained from the union G∪H by joining each vertex
of G to each vertex of H.

Theorem 3.10. The graph K1,n−1 is a unique graph which maximizes the
Dα spectral radius among all graphs with diameter 2.
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Proof. LetG be a connected graph of diameter 2 with V (G) = {v1, v2, . . . , vn}.
Suppose X = (x1, x2, . . . , xn)

T is a Perron vector of G corresponding to
ρα(G), where each xi corresponds to vertex vi, (i = 1, 2, . . . , n). Let vt ∈
V (G) such that xt = min{xi|vi ∈ V (G)}. Let d(vt) denotes the degree of
vertex vt. Then we consider the following two cases.
Case 1: d(vt) = n− 1.

If we delete all the edges inN(vt), then the resulting graph will beK1,n−1.
Hence from Lemma 2.1 we have ρα(K1,n−1) ⩾ ρα(G) and equality holds
if G ∼= K1,n−1.

Case 2: d(vt) ⩽ n− 2.
Let C(vt) be the set of vertices in G that are not adjacent to vt. Then
C(vt) ̸= ∅, obviously each vertex in C(vt) is adjacent to atleast one vertex
in N(vt). As we know from Equation (2.2) that for any vertex u and v
in G,

xTDα(G)x =
∑

{u,v}∈V (G)

duv(α(x
2
u + x2v) + 2(1− α)xuxv).

Now let G∗ be the graph obtained from G such that

G∗ = G− [N(vt), C(vt)] + {vtvi|vi ∈ C(vt)},
clearly the diameter of G∗ is 2 and maximum degree i.e., ∆(G∗) = n−1.
As we move from G to G∗, we see that the distance between vt and
C(vt) is decreased by 1, while the distance between N(vt) and C(vt) is
increased by 1. Using the Rayleigh Quotient we have,

ρα(G
∗)− ρα(G) ⩾ xT (D(G∗)− (D(G)))x,

ρα(G
∗)− ρα(G) ⩾

∑
v∈C(vt)

(α(x2t + x2v) + 2(1− α)xtxv)

+ 2
∑
vi,vj∈

[N(vt),C(vt)]

(α(x2i + x2j ) + 2(1− α)xixj)

− 2
∑

v∈C(vt)

(α(x2t + x2v) + 2(1− α)xtxv)

−
∑
vi,vj∈

[N(vt),C(vt)]

(α(x2i + x2j ) + 2(1− α)xixj)

ρα(G
∗)− ρα(G) ⩾

∑
vi,vj∈

[N(vt),C(vt)]

(α(x2i + x2j ) + 2(1− α)xixj)

−
∑

v∈C(vt)

(α(x2t + x2v) + 2(1− α)xtxv).

As we assumed xt = min{xi|vi ∈ V (G)}, therefore we have ρα(G
∗) ⩾

ρα(G). By Case 1 we see that ρα(K1,n−1) ⩾ ρα(G
∗) ⩾ ρα(G).
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If ρα(K1,n−1) = ρα(G), then G∗ ∼= K1,n−1 and ρα(G
∗) = ρα(G). It

follows that X is also the perron vector of K1,n−1. Then if vi, vj ̸= vt,
then we have xi = xj > xt. Since all the above inequalities are equalities
so we have∑
vivj∈

[N(vt),C(vt)]

(α(x2i +x2j )+2(1−α)xixj) =
∑

vi∈C(vt)

(α(x2t +x2v)+2(1−α)xtxv).

Then for each edge vivj ∈ [N(vt), C(vt)], vi ∈ N(vt) and vj ∈ C(vt), we
get xi = xt, a contradiction. Hence ρα(K1,n−1) > ρα(G).

□

Remark: It can be easily seen from Lemmas 2.2 and 2.3 that Kn−e is unique
graph that minimizes the Dα spectral radius among all graphs of diameter
2.

The complement of a graph G denoted by Ḡ is a graph on the same
vertices such that two distinct vertices of Ḡ are adjacent if and only if they
are not adjacent in G. In the following result, we show the lower bound for
the sum of Dα-spectral radius of G and Ḡ.

Theorem 3.12. Let G be a connected graph of order n ⩾ 4 vertices and m
edges. Let Ḡ is also connected. Then

ρα(G) + ραḠ ⩾ 3(n− 1).

Proof. Let G and Ḡ be connected. Let v ∈ V (G) = V (Ḡ) and δv, δ̄v be the
degrees of v in G and Ḡ respectively. Then

Tv ⩾ δv + 2(n− 1− δv) = 2(n− 1)− δv,

where equality holds if the maximum distance between v and any other ver-
tex of G is 2. Let m and m̄ be the number of edges in G and Ḡ respectively.
Then

ξ(G) =
1

2

∑
v∈V (G)

Tv ⩾
1

2

∑
v∈V (G)

[2(n− 1)− δv] = n(n− 1)−m,

where equality holds if and only if G is of diameter 2. Similarly

ξ(Ḡ) =
1

2

∑
v∈V (Ḡ)

Tv ⩾
1

2

∑
v∈V (Ḡ)

[2(n− 1)− δ̄v] = n(n− 1)− m̄,

where equality holds if the maximum distance between v and any other
vertex of G is 2. Now note that m+ m̄ = (1/2)n(n− 1).

By using Lemma 3.1 we have,

ρα(G) ⩾
2ξ(G)

n
,

ρα(G) + ρα(Ḡ) ⩾
2(ξ(G) + ξ(Ḡ))

n
⩾

2

n
[2n(n− 1)− (m+ m̄)],

ρα(G) + ρα(Ḡ) ⩾ 3(n− 1).
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The equalities in the above inequalities hold if and only if G and Ḡ are
both transmission regular and diameter is at most two. Since n ⩾ 4, if G (Ḡ ,
respectively) is of diameter one then G = Kn (Ḡ = Kn, respectively), which
contradicts the fact that G and Ḡ is connected. The result follows since
Tv(G) = 2(n−1)− δv and Tv(Ḡ) = 2(n−1)− δ̄v for each v ∈ V (G) = V (Ḡ),
if G and Ḡ are both of diameter two. □

4. Discussion

Let Gi be connected graphs for i = 1, 2, 3, 4 in Figure 2. In this section
of the paper, we briefly discuss lower and upper bounds for Dα spectral
radius by showing examples for each bound for Gi (see Figure 2) and then
comparing them with the exact Dα-spectral radius. We see that G4 = C6 is
a transmission regular graph and each vertex has transmission 9.

Figure 2. An example of simple connected graphs.

In Table 1, we depict the upper bounds up to four decimal places for
Theorems 3.3, 3.4 and 3.5 for ρα(Gi) for fixed α = 3/4.

G1 G2 G3 G4

ρα(G) 5.7219 4.3314 4.8829 9

Theorem 3.3 5.8986 4.7500 4.9597 9

Theorem 3.4 6 5.0012 5.0010 9

Theorem 3.5 12.1625 6.9433 8.8850 19.9832

Table 1. Table of upper bounds for ρα(Gi) for i = 1, 2, 3, 4.

In Table 2, we depict the lower bounds up to four decimal places for
Theorems 3.6, 3.7 and 3.8 for ρα(Gi) for fixed α = 3/4.
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G1 G2 G3 G4

ρα(G) 5.7219 4.3314 4.8829 9

Theorem 3.6 5.6709 4.2045 4.8530 9

Theorem 3.7 5 3.8661 4.8727 9

Theorem 3.8 4.5001 4 4.5100 3.3590

Table 2. Table of lower bounds for ρα(Gi) for i = 1, 2, 3, 4.
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