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ON THE D, SPECTRUM OF CONNECTED GRAPHS

ZIA ULLAH KHAN AND XIAO-DONG ZHANG

ABSTRACT. Let G be a connected graph with « € [0, 1], the D,-spectral
radius of G is defined to be the spectral radius of the matrix Dq(G),
defined as Do (G) = oT(G) + (1—a)D(G), where T(G) is a transmission
diagonal matrix of G and D(G) denotes the distance matrix of G. In this
paper, we give some sharp upper and lower bounds for the D,-spectral
radius with respect to different graph parameters.

1. INTRODUCTION

Throughout this paper we consider simple connected undirected graphs.
Let G be a graph of order n with vertex set V(G) and edge set E(G). For
u,v € V(G), we define the distance between vertex u and v in G, denoted
by dg(u,v) or simply dy,, is the length of a shortest path from vertex u to
vertex v in G. The maximum distance between any two vertices in G is called
diameter of G, denoted by d(G). The distance matriz of G is the nxn matrix
D(G) = (dg(u,v))upev(a)- For u € V(G), the transmission of u (also
known as the degree distance of u) in G, denoted by T, is defined as the sum
of distances from u to all other vertices of G, i.e., Tu(G) = X ey () da (u, v).
The transmission matriz T'(G) of G is the diagonal matrix of transmissions
of G. We define the distance signless Laplacian matrix of any graph G
as Dgo(G) = T(G) + D(G) and distance Laplacian matrix as Dp(G) =
T(G) — D(G), where D(G) denotes the distance matrix of G and T'(G) the
transmission matrix of G.

The distance eigenvalues and especially the distance spectral radius have
been extensively studied for many years, see the recent survey [1] and ref-
erences therein. The distance Laplacian and distance signless Laplacian
spectrum of graphs have also received much attention in recent years, espe-
cially the problems related to their spectral radius, see [2, 5, 7, 9, 10, 11, 15].
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Aouchiche and Hansen [2] showed that the distance Laplacian eigenvalues
and distance signless Laplacian eigenvalues do not decrease when an edge is
deleted. In [3], the same authors proved that the star is a unique tree with
a minimum distance Laplacian spectral radius. In [6], Alhevaz et al. gave
some upper and lower bounds on distance signless Laplacian spectral radius
and also determined the distance signless Laplacian spectrum of some graph
operations. For more review about distance Laplacian and distance signless
laplacian see [2, 5, 7, 9, 10, 11, 12, 15].

In [8], Nikiforov proposed to study the convex linear combinations of the
adjacency matrix A(G) of G and diagonal matrix of its vertices Dgeq(G),
ie.,

Aa(G) - aA(G> + (1 - a)Ddeg(G)7 Q€ [07 1]7

where A, (G) is called generalized adjacency matriz or A, matrix of G. This
concept of generalized adjacency matrix helped in merging the adjacency
spectral and signless Laplacian spectral theories. Similarly Cui, He and
Tian [13], introduced the generalized distance matrix D,(G) as the convex
combination of T'(G) and D(G).

Do(G) = aT(G) + (1 —a)D(G),  a€0,1],

where D(G) denotes the distance matrix of graph G and T(G) denotes the
transmission matrix of graph G. Obviously, Dy(G) = D(G) for @ = 0,
which represents the distance matrix of G and 2D, 5(G) = Dg(G), a dis-
tance signless laplacian matrix of graph G. We call the eigenvalues of
distance matrix D(G) as the distance eigenvalues and denoted them by
wi(G) = p2(G) = -+ = pn(G) while the eigenvalues of D, (G) matrix of
G, we call them distance a-eigenvalues of G. As D,(G) is a symmetric
matrix, the distance a-eigenvalues of G are all real and we denote them by
A&l)(G), . .,A&")(G), arranged in nonincreasing order, where n = |V(G)|.
The largest distance a-eigenvalue )\((xl)(G) of G is called the D,-spectral ra-
dius of G, written as p,(G) and the minimum distance alpha eigenvalue A2

as pmin(G). Obviously, Aél)(G), e ,)\én)(G) are the distance eigenvalues of

G, and 2>\§1/)2(G), cee 2)\57)2(G) are the distance signless Laplacian eigenval-
ues of G. Particularly, po(G) is the distance spectral radius and 2, /5(G) is
just the distance signless Laplacian spectral radius of G. For more details on
D,, matrix, readers are suggested to see [13, 14, 16, 17]. In this paper we give
sharp upper and lower bounds, involving transmission, second transmission
and independence number for the distance a-spectral radius of connected

graphs, for example the upper bound

aTy + /ATymy (1 — a) + (aTy)?

S
1<usn 2
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(see Theorem 3.3) and lower bound

pa(G r Z duv u ) + 2T T )

(see Theorem 3.6). In section 2, we briefly introduce the preliminaries.
Section 3 comprises the main results of the paper. In section 3, we give some
sharp upper and lower bounds for D,-spectral radius and briefly discussed
the equality conditions for each bound. We also state and prove bounds for
D,-spectral radius of the connected bipartite graph and show that graph
K1 -1 is a unique graph which maximizes the D, spectral radius among all
graphs with diameter 2. Moreover, we also give some results and bounds on
D,, spectral radius of a graph in terms of its connected complement.

2. PRELIMINARIES

Let G be a connected graph with V(G) = {v1,...,v,} and a column

vector £ = (Xyy,..., 2y, ) € R™ can be considered as a function defined on

V(G), which maps vertex v; to x,,, i.e., z(v;) = z,, for i = 1,...,n. Then

(2.1) xTDa(G)m =« Z Tuxz + 2 Z (1 — @)dyy Ty Ty,
ueV(G) {u,v}eV(G)

or equivalently,

(22)  2"Da(@x= D dulo(a] +22) +2(1 — a)zuxy).
{u,w}eV(G)

Here we recall that a matrix is irreducible if it cannot be placed into block
upper-triangular form by simultaneous row/column permutations. Since
D, (G) is a nonnegative irreducible matrix, by Perron-Frobenius theorem,
pa (@) is simple and there is a unique positive unit eigenvector corresponding
to pa(G), which is called the D,-Perron vector of G. If z is the distance
a-Perron vector of G, then for each u € V(G),

(2.3) pa(G)xy = aTyzy + (1 — ) Z Ayv Ty,
veV(G)

or equivalently,

Pa(G)y = Z Ay (axy + (1 — a)xy),
veV(Q)

which is called the «a-eigenequation of G at vertex u. For a unit column
vector x € R™ with at least one nonnegative entry, by Rayleigh’s principle,
we have po(G) > x' Do(G)z with equality if and only if = is the distance
a-Perron vector of G.
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We denote by &(G), the sum of distances between all unordered pairs of
vertices in G i.e.,

1
veV(G)
For a graph G with V(G) = {v1,v2,...,v,}, then second transmission of

vertex v is denoted by T, i.e.,

Un
T, = Z duy T

u=v1
A graph is said to be transmission regular if T, is a constant for each
v € V(G). Tt is clear that any vertex-transitive graph (a graph G in which
for every two vertices u and v, there exist an automorphism f on G such
that f(u) = v) is a transmission regular graph. Indeed, the graph on 9
vertices shown in Figure 1 is 14-transmission regular graph but not degree
regular and therefore not vertex-transitive. For more examples of transmis-
sion regular but not degree regular graphs see [4].

FIGURE 1. The transmission regular but not degree regular
graph with the smallest order.

In [17], H. Guo and B. Zhou studied some graph transformation properties
and its effect on D, matrix of connected graph. The deletion or addition of
an edge mainly effects the D, spectral radius.

Lemma 2.1 (Guo and Zhou, [17]). Let G be a connected graph with u,v €
V(G). If u and v are not adjacent, then po(G + uv) < pa(G).

By [16] it is known that D,, spectrum of K, is {n—1, (an—1)""1}. Thus:

Theorem 2.2 (Guo and Zhou, [17]). Let G be a connected graph of order
n. Then

pa(G) >n—1,
with equality if and only if G =2 K.
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Lemma 2.3 (Diaz, Pastén and Rojo, [14]). Let G be a connected graph on
n > 2 vertices and o € [1/2,1]. Then
M@ =2 A\(K)=n-1  and
MNA(G) = N (Ky)=an—1, V2<i<n.
3. MAIN RESULTS

In this section, we give sharp upper and lower bounds on p,(G) for a
connected graph G of order n. We first recall some results from [13] and
compare the bounds.

Lemma 3.1 (Cui, He and Tian, [13]). Let G be a simple connected graph

of order n with transmission sequence (11, ...,T,) and
1
veV(G)
Then 2 (C)
Pa(G) = n

with equality if and only if G is transmission regqular.

Proposition 3.2 (Cui, He and Tian, [13]). Let G be a connected graph and
{N,Ts,..., T}, {T1,T>,...,T,} be the transmission and second transmis-
sion sequence respectively of graph G and « € [1/2,1]. Then

(3.1) pa(G) > | =

Moreover, if G is transmission reqular then equality holds.

Cui et al. in [13] stated the above two results but here we show that
the lower bound for p,(G) given in Proposition 3.2 is always better than
the bound given in Lemma 3.1. First its obvious that >, 7; = Y.° T2

- 2
By Cauchy-Shwartz inequality, we see that (}.r ;7;)? < n> i, 71; and
(Xr T2 <nd " T?. Now from Proposition 3.2 we have,

S (aT? — (o — 1)T3)?

Pa(G) > = )
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In the following Theorems, we give some new sharp upper and lower
bounds for D,-spectral radius of connected graphs.

Theorem 3.3. Let G be a simple connected graph with n vertices and the

transmission sequence (T1,...,T,) and o € [1/2,1]. Then
T 4T, 1-— T,)?
(3.2) pa(G) < max ofy + /ATumu(1 — o) + (0T2) ,
1<usn 2

where my, = (1/Ty) > o_y duwTy. Moreover, if G is a transmission regular
graph then equality holds.

Proof. Let x = (x1,... ,xn)T be the distance a-Perron vector of G corre-
sponding to p,(G). By the « eigenequation of G' at vertex u we have

Paty = aTyz, + (1 — ) Z Ay Ty
u,veV(G)

Let o, = maxi<j<n{z;}

n
Paty = &TyTy + (1 - O[) Z duvTy,

n
PaTy < Ty, + (1 - 04) Z Ay T

(3.3) Paty < Tyly.
Now to get the quadratic form we have,
o2z = D2z = (aT(G) + (1 - a)D)%,

= ’Téz + (14 o — 20)D*z 4 a(1 — a)TgDx + a(l — o) DTgz.
Thus,

peay = T2z, + (1 +a? — 2a)

XZdUUZdwaw—i—a (1—-a)T, Zdwxy—l—al—oa ZdwT:):v.
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In order to prove (5) we consider the simple quadratic function of p,(G),

(P2 + bpa)ay = ?Tiay + (1 +a® — 2a)

X zn: Ay zn: Ay T + a(l - O[) (Tu zn: oy + yél duvTvJ;v) + bpazy,

v=1 w=1 v=1

where b is an integer. As we know x,, = maxi<j<n{z;},

n n n n
Z Ay Ty < Tumy@y; Z oy Z Ay Ty < Ty Ty; Z dyp Ty < Ty,
v=1 v=1 w=1

v=1
by the above inequalities we get a simple quadratic equation, provided that
ol +b >0 we get,
(P2 4 bpa) Ty < (@Ty 4+ b) Ty + (1 — @) Tyumyzy,

P2 + bpa — (T + b+ (1 — a)my,)T, < 0.
Since pq is the Perron vector and py > 0,

20(G) < b+ /b2 + 4T, (aTy, + b+ (1 — a)my)
(6% ~ 2 .

From the inequality above for each b we can get a distinct upper bound.
In particular if b = —aT,, then we get the inequality (5).

(G < . it VAT (T

1<u<sn 2

Suppose the equality holds in above inequality. Then all inequalities in
the above arguments must be equalities. Therefore we have x, = x, for all
v. By pax = Dgx we can deduce that Ty = Ty = --- =T, that is, G is a
transmission regular graph. O

Theorem 3.4. Let G be a simple connected graph with n vertices and trans-

mission sequence (T1,...,T,) and a € [1/2,1]. Then
B+ 41 — a)dywTy + 52
. < )
(3.4) palG) < | max_ 5

where 8 = Ty, — (1 —a)dyyw. Moreover, if G is the transmission reqular graph
then equality holds.

Proof. Let x = (x1,...,7,) be the distance a-Perron vector of G corre-
sponding to p,(G). We can assume that one eigencomponent z,, is equal to 1
and other components are less than or equal to 1ie., z, =1land 0 z, <1
for all x,. Let z,, = max{xz,|v # u}. So by the D,-eigenequation:

Pa(G)xy = aTyzy + (1 — ) Z Ayv Ty,
v=1

(3.5) Po(G)xy < aTyzy + (1 — @) Tyxy.



84 ZIA ULLAH KHAN AND XIAO-DONG ZHANG

Now by using the « eigenequation corresponding to .,
n
Pa(G)xy = Ty + (1 — ) Z ATy
v=1

By expanding the above equation,

Pa (G = awaw—i—(l—a)dwuaﬁu—i—(l—a)(dwuxw—i—z Ay Ty)—(1—)dy T,
vF#U

(3.6) Pa(G)xw < Ty + (1 — a)dywy — (1 — @) dyw ().
Now multiplying both sides of equation (3.6) with p,(G) we have
Pa(@)w < Typa Gy + (1 = A)dywpa(G)zy — (1 = a)dywpa(G)a.

Substituting equation (3.5) i.e., po(G)zy < aTyzy + (1 — a)Tyxy in the
above inequality we get,

P2 (G2 KTwpal(G)zw + (1 — a)duw (aTyzy + (1 — @) Ty
— (1 — a)duwpa(G)xy.
(pi(G)—Twpa(G)—i—(l—a)duwpa(G)—(l—a)2Tuduw>:cw < a(l—a)dywTyxy.

As we already know that x, = 1 and x,, = max{z,|v # u} for all z,.
Thus,

(pi(G) — Twpa(G) + (1 — a)dywpa(G) — (1 — a)ZTuduw> < a(l — a)dywTy.
So we get the quadratic form as,
p2(G) — (Tw —(1— a)duw>pa(G) — (1 = ) Tyduw < 0.

Thus we get the inequality (3.4).

pe(@) < max DV = )du Ty + 57

1<u#wLn 2 ’

where =Ty — (1 — @)dyy-

Suppose the equality occurs in Equation 3.4, then x is an eigenvector of
po(G) with x, = x,, for all w = 1,2,...,n. This concludes that all the row
sums of D, (G) are same, and so G is a transmission regular graph. O

Theorem 3.5. Let G be a simple connected graph on n vertices with trans-

mission sequence (T4, ...,T,), where d is the diameter of G and o € [1/2,1].
Then
dn(l — a)d
aTy + [ (aTy)? + 7( ) S Ty(aTy + (1 — a)my)
Tu vFEU

1) pa < jpis, 2 ,
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where my, = (1/T,) Y w_1 duwTw. Moreover, the equality holds if and only if
G is a complete graph.

Proof. Let B = (b1,...,b,) is an n x n diagonal matrix where b, > 0.
Consider the matrix B~'D,B. Since D, and B~'D,B are similar matri-
ces, po(G) is also an eigenvalue of B~1D,B. We see that (u,v)"-entry of
B™'D.B is aT, for u = v or (1 — a)(by/by)duyy for u # v.

Let x = (x1,...,7,)T be the distance a-Perron vector of G corresponding
to pa(G). We can assume that one eigencomponent z,, is equal to 1 and
other components are less than or equal to 1 i.e., z, =1 and 0 < z, < 1 for
all x,, then by the « eigenequation for xz,,

" byd
paxu:aTuxu—l—(l—a)Z LAl Ly
v=1 w
n
b,d
a=0aly+(1-a)) ”b“” .
v=1 u

Now by the a eigenequation for x,:

Paty = Tyzy + (1 — )

" b,d
P2 = apaT, + (1 fa)z M ey,

=1
p = apaTy + Z byl Tyxy + (1 Z Ay Z bu Ay Toy-

On other hand d is the dlameter of Gand 0 <z, < 1, o) nd > szl Ayp Ty -
Thus,

2 < apaTy+ X "deT ZZb .

vFEU v#£u w=1

Moreover, by setting up b,, = T, for all w, we have

(l—Toz)nd Z T,(aTy + (1 — a)my,),
v vF£U

where m, = (1/Ty,) > v _; dwyTrw. Hence we obtain the inequality (3.7).

Pi < apaly +

oT, + \/(aTu)Q + dn(l = a)d > Ty(aTy + (1 — a)my)

< Tu vFEU
max
Pa s 1<u<gn 2

Suppose the equality hold is the above equation, then all inequalities in the
above argument must be equalities. In particular d,, = d, then d = 1 since
G is connected. Hence G must be the complete graph K. O
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Theorem 3.6. Let G be a simple connected graph with transmission se-
quence (T1,...,T,) and a € [1/2,1]. Then

38 (@) Y dula(fu -7 + 2LT,).
Z T? uvev (@)
=1

Moreover, the equality holds if G is the transmission regular graph.

Proof. Let
1

W 2TF
i=1

be a unit vector, then by using Rayleigh Quotient,
pa(G) = ' Dy,
from Equation (2.2) we have,

2T Do (G = — ! > (a(TP+ T2 +2(1 - )T.T)

Z T? {uwv}evV(a)

€r =

(Ty,...,T,)"

2T Do (G)x = > du(e T,)? + 2T, T,).
Z T? wwev (@)
So we have,
pa(G) 2 % Z duv(a(Tu - Tv)2 =+ QTUTU)'

S T? uwev(Q)

i=1
Hence we obtain the bound (3.8). Moreover, it is easy to check that the
equality holds if G is a transmission regular graph. O

Theorem 3.7. Let G be a simple connected graph with n vertices and trans-
mission sequence (T1,...,T,) and a € [1/2,1], then

Yij + \/712] + 4Ti(dz’j - Oé(TJ + dlj))
(3.9) pa(G) > min
1<i#j<n 2

)

where v;; = o(T; + d;i;) + T — d;j. Moreover, if G is a transmission regular
graph then equality holds.

Proof. Let x = (21,...,2,)" be the eigenvector corresponding to eigenvalue
pa(G) of Dy (G). Then by the eigenequation,

Dy (G)x = po(G)z.
From the k' equation of above equation we have,

pa(Gxg = aTrag + (1 — «) Z dpixy, k=1,2,...,n.
’UZEV )
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Since D, (@) is irreducible and nonnegative, so we have zj > 0 for all k =
1,2,...,n. We can assume that z; and z; are the minimum and second
minimum components of eigenvector x respectively i.e.,

r; = min g, T; = min Tk
v €V (Q) v €V(Q),k#1

T 2 x5 = x5 > 0.

It is obvious that for vy € V(G), where vy # 4,j. For v; € V(G) using the
eigenequation,

pa(G)z; = aTix; + (1 — ) Z dikxy,
’UkEV(G)

> aTix; + (1 — a)Tixj,
(3.10) (pa(G) — aTy)x; = (1 — o) Tix;.
Thus by using an eigenequation for v; € V(G),

pa(G)r; = aTjwj+ (1 —a) Y djpas,
v €V (Q)
> aTjrj+ (1 = a)dijz; + (1 — a)(T) — dij)z,
(3.11) (pa(G) - T] + dij — adij)xj = (1 — a)dijxi.

From equations (3.10) and (3.11) we see that left hand side of inequalities
are positive so we can multiply both inequalities as,

(Pa(G) = aTy)(pa(G) = Tj + dij — adij) > (1 — a)di;T;.
Now by solving the above inequality we get the quadratic form,
Pa(G) = (aldij + T;) + Tj — dij)pa(G) + (a(Tj + dij) — dig)Ti = 0
that is,

. Yij + \/%2] +4T;(dij — (T + dij))
pa( ) = 2 ?

where v;; = o(T; + dij) + T — d;j. From the above inequality we get the
required result in (3.9).

Suppose the equality holds in above inequality. Then all inequalities in
the above arguments must be equalities. Therefore we have x; = z; for all
j=12,...,n. By po(G)x = Do(G)x we can deduce that T} =Tp = --- =
T,, that is, G is a transmission regular graph. ([

A subset S of a vertex set V(G) of a graph G is said to be an independent
set if no two vertices of S are adjacent in G. The independence number of
G is the maximum number of vertices in the independent sets in G. The
following theorems will give the lower bound for D, spectral radius in terms
of the order and the independence number of G.
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Theorem 3.8. Let G be a connected graph of order n with independence
number s and o € [1/2,1]. Then

@) 9 V0?2 —4(ns(na? — da + 1) — s2(na? — 2na + 1) + 2sa)
pa )
2

where § = —(2s + nsa — 2sa + na — 2).

Proof. Let G be a connected graph of order n and S be the independent
set with independence number s. Let X = (z1,...,7,)" be the Perron
vector corresponding to p,(G), where x; corresponds to vertex v; for i =
1,2,...,n. As S is independent set so u,v € V(S5), d(u,v) > 2 as all the
vertices are nonadjacent in S. Assume that x; = min{k | £ € V(9)} and
z; =min{k | k € V(G)\S}.

By using p,(G) eigenequation for x; we have,

pa(G)x Z div(ax; + (1 — @)zy) + Z diy(ax; + (1 — a)xy,).
veV(S) ueV(G)\S

As z; , x; are the minimum eigenvector components of V(S) and V(G)\S
respectively. So it follows,

P (G = 2(s — 1)(ax; + (1 — @)xy) + (n — s)(az; + (1 — a)zy),
Pa(G)zi = (2(s — 1)+ a(n — 5))z; + (1 — a)(n — s)z;.

As left hand side of the above inequality is positive so we have,

(3.12) <pa(G) —(2(s—1)+a(n— s)))acZ > (1—-a)(n—s)x;j.
Similarly using p.(G) eigenequation for x; we have,

Z djp(azj + (1 — a)z,) + Z dju(ox; + (1 — a)zy,).

veV(S) ueV(G)\S

As z; , x; are the minimum eigenvector components of V(5) and V(G)\S
respectively. So it follows,

Pa(G)z; = s(1 — a)x; + as(n — 1)x;.

As the left hand side of the above inequality is positive so we have,

(3.13) <pa(G) — as(n — 1)>xj > s(1 — a)z;.

Thus multiplying inequalities (3.12) and (3.13) we get the quadratic form
as:

P2 (G) — (25 + nsa — 2sa + no — 2> pa(QG)

+ ns(na® — 4a + 1) — s*(na® — 2na + 1) + 2sa > 0.
So we get the required bound. O
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Theorem 3.9. Let G = (V, E) be a connected bipartite graph of order n
with bipartition V(G) = P U Q where |P| =p and |Q| = q and o € [1/2,1].
Then
(3.14)

pa(G) 2

(2+a)(n) —4++/(4—6a+a?)(p? + ¢2) + pg(a — 1 — 6a2)
5 7

(n—1)<(om—|—n—2)+\/(an+n—2)2—4pq(1—a)2>

2

Moreover, if G is a complete bipartite graph then equality holds in (3.14)
and if G is a path of order p + q then equality holds in (3.15).

(3.15) pa(G) <

Proof. Since G is a bipartite graph with bipartition V(G) = P U Q, where
|P| =pand |Q| =q. As PNQ = ) so we assume that P = {1,2,...,p} and
Q={p+1,p+2,....,p+q} withp+q=n. Let X = (z1,22,...,2,)7 be
the eigenvector of D,(G) corresponding to the eigenvalue p,(G). We can
assume that z; = min{x;|k € P} and also z; = min{zx|k € Q}. So for
1 € P using the eigenequation,

P p+q
pa(G)x; = Z div(az; + (1 — a)xy) + Z diy(az; + (1 — a)zy,).
v=1,vF#1 u=p+1

As x; and x; are the minimums in P and @ respectively, so we have
pa(Gzi 2 (2(p — 1) + agq)z; + (1 — @)q)z;.
We see that the left hand side of the above inequality is positive. Thus

319 (5a(6) - - 1) +a0) Jui > (1= @
Similarly for j € @ using the eigenequation we have,
p ptq
pa(G)ay = djp(om; + (1 —a)zy) + Y dju(om;+ (1 - a)zy)
v=1 u=p+1,u#j

pa(G)zj = (2(¢ — 1) + ap)z; + (1 — a)p)i.
We see that the left hand side of the above inequality is positive. Thus

(3.17) (5a(6) = (o= 1) +ap) )5 > (1 -l
Since G is connected, so x > 0 for all & € V(G). Multiplying the
inequalities (3.16) and (3.17) we have,
Pal(G) + (4= (p+ @) (2 + @))pa(G) +20(p° + ¢°)
—(p+ @) (2a+4) +pg(5+20° — 2a) +4 > 0.
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From above quadratic inequality we have,

pa(G) = (2+a)(n) —4+4+/(4 —6a+a?)(p® + ¢%) + pga — 1 — 60?)
(0% = 2 .

Now suppose that equality holds. Then all inequalities in the above ar-
gument must be equalities. From equality in (3.16), we get z, = x; for
all £ € V(Q). From equality in (3.17), we get xp = z; for all k£ € V(P).
Thus, each vertex in each set is adjacent to all the vertices on the other set
and vice versa. Hence, G is a complete bipartite graph which completes the
proof for (3.14). Now for the upper bound in equation (3.15) we can assume
that z; = max{zy|k € P} and also x; = max{zi|k € Q}. So for i € P using
the eigenequation,

p ptq
pa(G)x; = Z diy(ax; + (1 — a)zy) + Z di(ax; + (1 — a)xy,)
v=1,v7#1 u=p+1

(3.18) <pa(G) —(p—1+aq)(p+q- 1)>$i <q(1—a)(p+q—1)zj.

Similarly for j € @) using the eigenequation we have,

P p+q
pa(G)z; = Z djp(az; + (1 — a)z,) + Z dju(ax; + (1 — a)xy)
v=1 u=p+1,u#j

(3.19) (pa<G> (ot a-)p+a- 1>):cj <p(l—a)p+q-a.

Since G is connected, so x > 0 for all & € V(G). Multiplying the
inequalities (3.18) and (3.19) we have,

P2(G) — (n — 1)(an +n — 2)pa(G) + pa(n — 1)*(1 — a)?) < 0.

From the above quadratic inequality we get

(n—l)((an+n—2)+\/(an+n—2)2—4pq(1—a)2>

pa(G) < 5
From the above inequality, it can easily be verified that equality holds if G
is a path graph of order p + q. ([

Graph operations are natural techniques for producing new graphs from
old ones. The join of two vertex disjoint connected graphs G and H, denoted
by GV H is the graph obtained from the union GU H by joining each vertex
of G to each vertex of H.

Theorem 3.10. The graph Ki,—1 is a unique graph which mazimizes the
D,, spectral radius among all graphs with diameter 2.
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Proof. Let G be a connected graph of diameter 2 with V(G) = {v1, va, ..., v, }.
Suppose X = (z1,%2,...,2,)" is a Perron vector of G corresponding to
pa(G), where each z; corresponds to vertex v;, (i = 1,2,...,n). Let v, €
V(G) such that xy = min{z;|v; € V(G)}. Let d(v;) denotes the degree of
vertex v;. Then we consider the following two cases.
CASE 1: d(vy) =n — 1.
If we delete all the edges in N (v;), then the resulting graph will be K1 1.
Hence from Lemma 2.1 we have po(K1n,—1) = po(G) and equality holds
if G = Kqp1.
CASE 2: d(vy) < n—2.
Let C(v:) be the set of vertices in G that are not adjacent to v;. Then
C(vt) # 0, obviously each vertex in C'(v;) is adjacent to atleast one vertex
in N(v). As we know from Equation (2.2) that for any vertex u and v
in G,
2" Do(Gz = > duwl(a(@]+2)+2(1 — a)zuw,).
{uv}eV(G)
Now let G* be the graph obtained from G such that
G* =G — [N(v4),C(ve)] + {vpvi|v; € C(wvy)},

clearly the diameter of G* is 2 and maximum degree i.e., A(G*) = n—1.
As we move from G to G*, we see that the distance between v; and
C(vt) is decreased by 1, while the distance between N (v¢) and C(vy) is
increased by 1. Using the Rayleigh Quotient we have,

pa(G*) = pa(G) = 2" (D(G") - (D(G)))z,

pa(G) = pa(@) = D (alaf +23) +2(1 — a)ziz,)
veC (vt)

+2 0 Y (aaf +af) +2(1 - a)winy)

[N (vt),C(vt)]

-2 Z afx? +22) +2(1 — a)zywy,)
veC (vt)

- Y (@} + ) +2(1 - a)wizy)

Vi,U5€

[N (v¢),C(ve)]

pa(G) = pa(G) = Y (alaf +af) +2(1 - a)zay)

[N (ve),C(v1)]
- Z (cx (ﬁUt +z ) +2(1 — a)zeay).
veC (vt)

As we assumed z; = min{z;|v; € V(G)}, therefore we have po(G*) >
pa(G). By Case 1 we see that po(Kin—1) = pa(G*) = pa(G).
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If po(Kin-1) = pa(G), then G* = Ky ,-1 and po(G*) = po(G). It
follows that X is also the perron vector of Ki,_1. Then if v;, v; # vy,
then we have x; = z; > ;. Since all the above inequalities are equalities
so we have

Z (ou(x? + H+2(1 — a)ziz)) = Z (a(z? + 22) +2(1 — @)z
= v;€C(vt)

[N (ve),C(ve)]

Then for each edge viv; € [N(ve), C(vy)],v; € N(vg) and v; € C(vy), we
get z; = x4, a contradiction. Hence po (K1 pn—1) > pa(G).
[l

Remark: It can be easily seen from Lemmas 2.2 and 2.3 that K,, —e is unique
graph that minimizes the D, spectral radius among all graphs of diameter
2.

The complement of a graph G denoted by G is a graph on the same
vertices such that two distinct vertices of G’ are adjacent if and only if they
are not adjacent in G. In the following result, we show the lower bound for
the sum of D,-spectral radius of G and G.

Theorem 3.12. Let G be a connected graph of order n = 4 vertices and m
edges. Let G is also connected. Then

pa(G) + paG = 3(n —1).
Proof. Let G and G be connected. Let v € V(G) = V(G) and 6, é, be the
degrees of v in G and G respectively. Then
Ty =20y +2(n—1—10y) =2(n—1) — 0y,
where equality holds if the maximum distance between v and any other ver-

tex of G is 2. Let m and m be the number of edges in G and G respectively.
Then

Z Tv/f Z 2(n—1)—=6d)]) =n(n—1)—m,
vEV veV(G)

where equahty holds 1f and only if G is of diameter 2. Similarly
Z T, > Z [2(n—1) —6,] =n(n—1) —m,
veV (@) veV(G)

where equality holds if the maximum distance between v and any other
vertex of G is 2. Now note that m +m = (1/2)n(n — 1).
By using Lemma 3.1 we have,
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The equalities in the above inequalities hold if and only if G and G are
both transmission regular and diameter is at most two. Since n > 4, if G (G,
respectively) is of diameter one then G = K,, (G = K, respectively), which
contradicts the fact that G and G is connected. The result follows since

T,(G) =2(n—1) -6, and T,(G) = 2(n —1) =, for each v € V(G) = V(G),

if G and G are both of diameter two. O

4. DISCUSSION

Let GG; be connected graphs for ¢ = 1,2,3,4 in Figure 2. In this section
of the paper, we briefly discuss lower and upper bounds for D, spectral
radius by showing examples for each bound for G; (see Figure 2) and then
comparing them with the exact D,-spectral radius. We see that G4 = Cy is
a transmission regular graph and each vertex has transmission 9.

G, G, G, G,

FIGURE 2. An example of simple connected graphs.

In Table 1, we depict the upper bounds up to four decimal places for
Theorems 3.3, 3.4 and 3.5 for p,(G;) for fixed o = 3/4.

Gy Gy Gs Gy
Pa(G) 57219 43314 4.8829 9
Theorem 3.3 5.8986  4.7500  4.9597 9
Theorem 3.4 6 5.0012  5.0010 9

Theorem 3.5 12.1625 6.9433 8.8850 19.9832

TABLE 1. Table of upper bounds for p,(G;) for i = 1,2,3,4.

In Table 2, we depict the lower bounds up to four decimal places for
Theorems 3.6, 3.7 and 3.8 for p,(G;) for fixed o = 3/4.
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G4 Go Gs Gy
pa(G) 57219 43314  4.8829 9
Theorem 3.6 5.6709 4.2045 4.8530 9
Theorem 3.7 ) 3.8661 4.8727 9
Theorem 3.8 4.5001 4 4.5100 3.3590

TABLE 2. Table of lower bounds for p,(G;) for i = 1,2, 3, 4.

5. ACKNOWLEDGMENTS

We sincerely thank an anonymous referee whose valuable comments and
suggestions especially pointing out overlapping results with [13], resulted in
improvement to the presentation of this paper. The research of XD. Zhang
was supported by the Montenegrin-Chinese Science and Technology Co-
operation Project (Nos. 3-12), and the National Natural Science Foundation
of China (Nos. 11971311, 12026230).

REFERENCES

[1] M. Aouchiche and P. Hansen, Distance spectra of graphs: A survey, Linear Algebra
Appl. 458 (2014), 301-386.

2] , Two Laplacians for the distance matriz of a graph, Linear Algebra Appl. 439
(2013), 21-33.

(3]

(4]

, Some properties of distance Laplacian eigenvalues of graphs, Czechoslovak

Math. J. 64 (2014), 751-761.

, On a conjecture about the Szeged index, European J. Combin. 31 (2010),
1662-1666.

[5] F. Atik and P. Panigrahi, On the distance and distance signless Laplacian eigenvalues
of graphs and the smallest Gergorin disc, Electron. J. Linear Algebra. 34 (2018),
191-204.

[6] A. Alhevaz, M. Baghipur, E. Hashemi, and H. S. Ramane, On the distance signless
Laplacian spectrum of graphs, Bull. Malays. Math. Sci. Soc. 42 (2019), 2603-2621.

[7] R. B. Bapat, D. Kalita, M. Nath, and D. Sarma, Convez and quasi convex functions
on trees and their applications, Linear Algebra Appl. 533 (2017), 210-234.

[8] V. Nikiforov, Merging the A-and Q-spectral theories, Appl. Anal. Discrete Math. 11
(2017), 81-107.

[9] K. C. Das, Proof of conjectures on the distance signless Laplacian eigenvalues of
graphs, Linear Algebra Appl. 467 (2015), 100-115.

[10] H. Lin and X. Lu, Bounds on the distance signless Laplacian spectral radius in terms
of clique number, Linear Multilinear Algebra. 63 (2015), 1750-1759.

[11] H. Lin and B. Zhou, The effect of graft transformations on the distance signless
Laplacian spectral radius, Linear Algebra Appl. 504 (2016), 433-461.

[12] H. Minc, Nonnegative Matrices, John Wiley & Sons, New York. 1988.




ON THE D, SPECTRUM OF CONNECTED GRAPHS 95

[13] SY. Cui, JX. He and GX. Tian, The generalized distance matriz, Linear Algebra
Appl. 563 (2019), 1-23.

[14] RC. Diaz, G. Pastén and O. Rojo, New results on the Do matriz of connected graphs,
Linear Algebra Appl. 577 (2019), 168-185.

[15] R. Xing, B. Zhou and J. Li, On the distance signless Laplacian spectral radius of
graphs, Linear and Multilinear Algebra. 62 (2014), 1377-1387.

[16] HQ. Lin, J. Xue and J. Shu, On the Dy spectra of graphs, Linear and Multilinear
Algebra. 69 (2021), 997-1019.

[17] H. Guo and B. Zhou, On the distance a-spectral radius of a connected graph, Journal
of Inequalities and Applications. 161 (2020).

SCHOOL OF MATHEMATICAL SCIENCES, MOE-LSC, SHL-MAC SHANGHAI Jia0 ToNG
UNIVERSITY, SHANGHAI 200240, P. R. CHINA.
FE-mail address: z.u.khan@sjtu.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, MOE-LSC, SHL-MAC SHANGHAI Jia0 ToNG
UNIVERSITY, SHANGHAI 200240, P. R. CHINA.
E-mail address: xiaodong@sjtu.edu.cn



	1. Introduction
	2. Preliminaries
	3. Main results
	4. Discussion
	5. Acknowledgments
	References

