## Contributions to Discrete Mathematics

# $K_{n}(\lambda)$ IS FULLY $\left\{P_{5}, C_{6}\right\}$-DECOMPOSABLE 

R. CHINNAVEDI AND R. SANGEETHA


#### Abstract

Let $P_{k+1}$ denote a path of length $k, C_{\ell}$ denote a cycle of length $\ell$, and $K_{n}(\lambda)$ denote the complete multigraph on $n$ vertices in which every edge is taken $\lambda$ times. In this paper, we have obtained the necessary conditions for a $\left\{P_{k+1}, C_{\ell}\right\}$-decomposition of $K_{n}(\lambda)$ and proved that the necessary conditions are also sufficient when $k=4$ and $\ell=6$.


## 1. Introduction

All graphs considered here are finite and undirected with no loops. For the standard graph-theoretic terminology the reader is referred to [2]. A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. A complete graph on $n$ vertices is denoted by $K_{n}$. If more than one edge joining two vertices are allowed, the resulting object is called a multigraph. Let $K_{n}(\lambda)$ denotes the complete multigraph on $n$ vertices and in which every edge is taken $\lambda$ times. A complete bipartite graph is a simple bipartite graph with bipartition $(X, Y)$ in which each vertex of $X$ is joined to each vertex of $Y$; if $|X|=m$ and $|Y|=n$, such a graph is denoted by $K_{m, n}$. In $K_{m, n}(\lambda)$, we label the vertices in the partite set $X$ as $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y$ as $\left\{x_{m+1}, x_{m+2}, \ldots, x_{m+n}\right\}$. A cycle is a closed trail with no repeated vertex other than the first and last vertex. A cycle with $\ell$ edges is denoted by $C_{\ell}$. A path is an open trail with no repeated vertex. A path with $k$ edges is denoted by $P_{k+1}$. The complete bipartite graph $K_{1, m}$ is called a star and is denoted by $S_{m}$. For $m \geq 3$, the vertex of degree $m$ in $S_{m}$ is called the center and any vertex of degree 1 in $S_{m}$ is called an end vertex.

Let $G$ be a graph and $G_{1}$ be a subgraph of $G$. Then $G \backslash G_{1}$ is obtained from $G$ by deleting the edges of $G_{1}$. Let $G_{1}$ and $G_{2}$ be subgraphs of $G$. The union $G_{1} \cup G_{2}$ of $G_{1}$ and $G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. We say that $G_{1}$ and $G_{2}$ are edge-disjoint if they have no edge in common. If $G_{1}$ and $G_{2}$ are edge-disjoint, we denote their union by $G_{1}+G_{2}$. A decomposition of a graph $G$ is a collection of

[^0]edge-disjoint subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ of $G$ such that every edge of $G$ is in exactly one $G_{i}$. Here it is said that $G$ is decomposed or decomposable into $G_{1}, G_{2}, \ldots, G_{n}$. If $G$ has a decomposition into $p_{1}$ copies of $G_{1}, \ldots, p_{n}$ copies of $G_{n}$, then we say that $G$ has a $\left\{p_{1} G_{1}, \ldots, p_{n} G_{n}\right\}$-decomposition. If such a decomposition exists for all values of $p_{1}, \ldots, p_{n}$ satisfying trivial necessary conditions, then we say that $G$ has a $\left\{G_{1}, \ldots, G_{n}\right\}_{\left\{p_{1}, \ldots, p_{n}\right\}}$-decomposition or $G$ is fully $\left\{G_{1}, \ldots, G_{n}\right\}$-decomposable. We say that $G$ is decomposed into $P_{5}$ and $C_{6}$ if each $G_{i} \simeq P_{5}$ or $C_{6}$.

In [6], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of $\left\{p G_{1}, q G_{2}\right\}$-decomposition of $K_{n}(\lambda)$, when

$$
\left(G_{1}, G_{2}\right) \in\left\{\left(P_{n}, S_{1, n-1}\right),\left(C_{n}, S_{1, n-1}\right),\left(P_{n}, C_{n}\right)\right\} .
$$

In [9], Shyu gave the necessary conditions for a $\left\{p P_{k+1}, q C_{\ell}\right\}$-decomposition of $K_{n}$ and proved that $K_{n}$ is fully $\left\{P_{k+1}, C_{k}\right\}$-decomposable, when $k$ is even, $n$ is odd, $n \geq 5 k+1$ and settled the case $k=4$ completely. In [10], Shyu proved that $K_{n}$ is fully $\left\{P_{4}, C_{3}\right\}$-decomposable. In [5], Jeevadoss and Muthusamy proved that $K_{n}$ is fully $\left\{P_{k+1}, C_{k}\right\}$-decomposable, when $k$ is even and $n$ is odd with $n>4 k$. In [4], Ilayaraja and Muthusamy proved that $K_{n}$ is fully $\left\{P_{4}, C_{4}\right\}$-decomposable. In [7], Sarvate and Zhang obtained necessary and sufficient conditions for the existence of a $\left\{p P_{3}, q K_{3}\right\}-$ decomposition of $K_{n}(\lambda)$, when $p=q$. In [8], Shyu gave the necessary conditions for a $\left\{p C_{k}, q P_{k+1}, r S_{k}\right\}$-decomposition of $K_{n}$ and proved that $K_{n}$ is fully $\left\{C_{4}, P_{5}, S_{4}\right\}$-decomposable, when $n$ is odd. In this paper we prove that $K_{n}(\lambda)$ is fully $\left\{P_{5}, C_{6}\right\}$-decomposable.

## 2. Preliminaries

For convenience we denote $V\left(K_{n}(\lambda)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The notation $\left(x_{1}, x_{2}, \ldots, x_{\ell}\right)$ denotes a cycle with vertices $x_{1}, x_{2}, \ldots, x_{\ell}$ and edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{\ell-1} x_{\ell}, x_{\ell} x_{1}$, and $\left(x_{1} x_{2} \ldots x_{k+1}\right)$ is a path with vertices $x_{1}, x_{2}, \ldots, x_{k+1}$ and edges $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{k} x_{k+1}$.

We recall here some results on $P_{k+1}$ and $C_{\ell}$-decompositions that are useful for our proofs.

Theorem 2.1 (Bryant, et al. [1]). Let $\lambda, n$ and $\ell$ be integers with $n, \ell \geq 3$ and $\lambda \geq 1$. There exists a decomposition of $K_{n}(\lambda)$ into $C_{\ell}$ if and only if $\ell \leq n, \lambda(n-1)$ is even and $\ell$ divides $\lambda\binom{n}{2}$. There exists a decomposition of $K_{n}(\lambda)$ into $C_{\ell}$ and a perfect matching if and only if $\ell \leq n, \lambda(n-1)$ is odd and $\ell$ divides $\lambda\binom{n}{2}-\frac{n}{2}$.

Theorem 2.2 (Tarsi [11]). Necessary and sufficient conditions for the existence of a $P_{k+1}$-decomposition of $K_{n}(\lambda)$ are $\lambda\binom{n}{2} \equiv 0(\bmod k)$ and $n \geq k+1$.

Theorem 2.3 (Lee [3]). For positive integers $\lambda, m, n$ and $\ell$ with $\lambda m \equiv$ $\lambda n \equiv \ell \equiv 0(\bmod 2)$ and $\min \{m, n\} \geq \frac{\ell}{2} \geq 2$, the multigraph $K_{m, n}(\lambda)$ is $C_{\ell}$-decomposable if one of the following conditions holds:
(i) $\lambda$ is odd and $\ell$ divides $m n$,
(ii) $\lambda$ is even and $\ell$ divides $2 m n$,
(iii) $\lambda$ is even and $\lambda m$ or $\lambda n$ is divisible by $\ell$.

Theorem 2.4 (Truszczynski [12]). Let $k$ be a positive integer and let $m$ and $n$ be positive even integers such that $m \geq n . K_{m, n}(\lambda)$ has a $P_{k+1}$ decomposition if and only if $m \geq\left\lceil\frac{k+1}{2}\right\rceil, n \geq\left\lceil\frac{k}{2}\right\rceil$ and $\lambda m n \equiv 0(\bmod k)$.
Lemma 2.5 (Shyu [9]). Let $k$ and $n$ be positive integers such that
$k \geq 3$ and $n \geq 2$. Suppose that for $i \in\{1,2, \ldots, n\}, C_{i}$ denotes the cycle
$\left(x_{(i, 1)}, x_{(i, 2)}, \ldots, x_{(i, k)}\right)$ of length $k$. If $x_{(1,1)}=x_{(2,1)}=\cdots=x_{(n, 1)}$,
$x_{(i+1,2)} \notin\left\{x_{(i, 1)}, x_{(i, 2)}, \ldots, x_{(i, k)}\right\}$ for $i \in\{1,2, \ldots, n-1\}$, and
$x_{(1,2)} \notin\left\{x_{(n, 1)}, x_{(n, 2)}, \ldots, x_{(n, k)}\right\}$, then $\bigcup_{i=1}^{n} C_{i}$ can be decomposed into $n$ paths of length $k$.

Theorem 2.6 (Shyu [9]). Let $n$, $\ell$ and $k$ be positive integers such that $n$ is odd and $n \geq \max \{\ell, k+1\}$. If $K_{n}$ can be decomposed into $p$ copies of $P_{k+1}$ and $q$ copies of $C_{\ell}$ for nonnegative integers $p$ and $q$, then $p k+q \ell=e\left(K_{n}\right)$ and $p \neq 1$.

Theorem 2.7 (Shyu [9]). Let $n$, $\ell$ and $k$ be positive integers such that $n$ is even and $n \geq \max \{\ell, k+1\}$. If $K_{n}$ can be decomposed into $p$ copies of $P_{k+1}$ and $q$ copies of $C_{\ell}$ for nonnegative integers $p$ and $q$, then $p k+q \ell=e\left(K_{n}\right)$ and $p \geq \frac{n}{2}$.

In [9], Shyu gave the necessary conditions for a $\left\{p P_{k+1}, q C_{\ell}\right\}$-decomposition of $K_{n}$ and proved that $K_{n}$ is fully $\left\{P_{k+1}, C_{k}\right\}$-decomposable, when $k$ is even, $n$ is odd, $n \geq 5 k+1$ and settled the case $k=4$ completely.

In the following theorems, we discuss the necessary conditions for a $\left\{p P_{k+1}, q C_{\ell}\right\}$ decomposition of $K_{n}(\lambda)$, when $\lambda \geq 1$.
Theorem 2.8. Let $\lambda, n, k$ and $\ell$ be positive integers such that $n$ is odd or $n$ and $\lambda$ are both even and $n \geq \max \{\ell, k+1\}$. If $K_{n}(\lambda)$ can be decomposed into $p$ copies of $P_{k+1}$ and $q$ copies of $C_{\ell}$ for nonnegative integers $p$ and $q$, then $p k+q \ell=\lambda\binom{n}{2}$ and $p \neq 1$.

Proof. Condition $p k+q \ell=\lambda\binom{n}{2}$ is trivial. On the contrary, suppose that $p=1$. Let $P$ denote the only path of length $k$ in the decomposition. It follows that the starting and end vertices of $P$ have odd degree $\lambda(n-1)-1$ in $K_{n}(\lambda) \backslash P$. Therefore, $K_{n}(\lambda) \backslash P$ can not be decomposed into cycles. We obtained a contradiction.
Theorem 2.9. Let $\lambda, n, k$ and $\ell$ be positive integers such that $\lambda$ is odd, $n$ is even and $n \geq \max \{\ell, k+1\}$. If $K_{n}(\lambda)$ can be decomposed into $p$ copies of $P_{k+1}$ and $q$ copies of $C_{\ell}$ for nonnegative integers $p$ and $q$, then $p k+q \ell=\lambda\binom{n}{2}$ and $p \geq \frac{n}{2}$.
Proof. Condition $p k+q \ell=\lambda\binom{n}{2}$ is trivial. Let $D$ be an arbitrary decomposition of $K_{n}(\lambda)$ into $p$ copies of $P_{k+1}$ and $q$ copies of $C_{l}$; let $P^{(1)}, P^{(2)}, \ldots, P^{(p)}$ denote those $p$ copies of $P_{k+1}$ in $D$. By assumption,

$$
K_{n}(\lambda) \backslash\left(P^{(1)} \cup P^{(2)} \cup \ldots \cup P^{(p)}\right)
$$

has a $C_{\ell}$-decomposition. It follows that each vertex of

$$
K_{n}(\lambda) \backslash\left(P^{(1)} \cup P^{(2)} \cup \ldots \cup P^{(p)}\right)
$$

has even degree. Since $\lambda$ is odd and $n$ is even, each vertex of $K_{n}(\lambda)$ must be an end vertex of at least one $P^{(i)}(1 \leq i \leq p)$. It implies that $2 p \geq n$.

We prove that the above necessary conditions are sufficient for a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{n}(\lambda)$ in Theorem 3.5.

## 3. Main Result

In this section, we discuss a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{n}(\lambda)$, when $\lambda \geq 1$. Since $K_{n}(\lambda)$ cannot be decomposed into $P_{5}$ and $C_{6}$ when $n \leq 5$, we discuss the decompositions for $n \geq 6$.
Remark 3.1: The necessary conditions for the existence of a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition in $K_{n}(\lambda)$ are satisfied when $n \equiv 0,1(\bmod 4)$ if $\lambda \geq 1$ and $n \equiv$ $2,3(\bmod 4)$ if $\lambda$ is even, i.e., there does not exist nonnegative integers $p$ and $q$ satisfying $4 p+6 q=\lambda\binom{n}{2}$ when $n \equiv 2,3(\bmod 4)$ if $\lambda$ is odd.

In the following lemma, we discuss a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decompositions of $K_{4,6}$, which we use further to decompose $K_{n}(\lambda)$ into $\left\{p P_{5}, q C_{6}\right\}$.

Lemma 3.2. If $p$ and $q$ are nonnegative integers such that $4 p+6 q=24$, then $K_{4,6}$ is fully $\left\{P_{5}, C_{6}\right\}$-decomposable.

Proof. $(p, q) \in\{(0,4),(3,2),(6,0)\}$. By Theorem 2.3, $K_{4,6}$ is $\left\{0 P_{5}, 4 C_{6}\right\}$ decomposable. The graph $K_{4,6}$ can be decomposed into

$$
3 P_{5}:\left(x_{1} x_{6} x_{4} x_{5} x_{3}\right),\left(x_{3} x_{10} x_{1} x_{8} x_{4}\right),\left(x_{4} x_{7} x_{2} x_{9} x_{1}\right)
$$

and

$$
2 C_{6}:\left(x_{1}, x_{5}, x_{2}, x_{6}, x_{3}, x_{7}\right),\left(x_{2}, x_{8}, x_{3}, x_{9}, x_{4}, x_{10}\right)
$$

By Theorem 2.4, $K_{4,6}$ is $\left\{6 P_{5}, 0 C_{6}\right\}$-decomposable. Therefore $K_{4,6}$ is fully $\left\{P_{5}, C_{6}\right\}$ decomposable.

Remark 3.3: The graph $K_{4,4}(3)$ can be decomposed into

$$
\begin{array}{r}
8 C_{6}: \quad\left(x_{1}, x_{5}, x_{2}, x_{6}, x_{3}, x_{7}\right),\left(x_{1}, x_{6}, x_{4}, x_{8}, x_{3}, x_{5}\right),\left(x_{1}, x_{8}, x_{2}, x_{7}, x_{4}, x_{5}\right), \\
\left(x_{2}, x_{5}, x_{4}, x_{6}, x_{3}, x_{8}\right),\left(x_{1}, x_{6}, x_{2}, x_{5}, x_{3}, x_{7}\right),\left(x_{1}, x_{6}, x_{2}, x_{7}, x_{4}, x_{8}\right), \\
\left(x_{1}, x_{7}, x_{3}, x_{6}, x_{4}, x_{8}\right),\left(x_{2}, x_{8}, x_{3}, x_{5}, x_{4}, x_{7}\right)
\end{array}
$$

Thus $K_{4,4}(3)$ is $\left\{0 P_{5}, 8 C_{6}\right\}$-decomposable.
Based on Lemma 2.5, we have the following remark.
Remark 3.4: Let $C_{6}^{1}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ and $C_{6}^{2}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right)$. If $x_{1}=$ $y_{1}, x_{6} \notin\left\{y_{3}, y_{4}\right\}, x_{2} \notin V\left(C_{6}^{2}\right)$ and $y_{2} \notin V\left(C_{6}^{1}\right)$, then $C_{6}^{1} \cup C_{6}^{2}$ can be decomposed into 3 copies of

$$
P_{5}:\left(x_{2} x_{3} x_{4} x_{5} x_{6}\right),\left(x_{6} x_{1} y_{2} y_{3} y_{4}\right),\left(y_{4} y_{5} y_{6} y_{1} x_{2}\right)
$$

We now prove our main result.
Theorem 3.5. For any nonnegative integers $p$ and $q$ and any integer $n \geq 6$, there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{n}(\lambda)$ if and only if $4 p+6 q=\lambda\binom{n}{2}$, (i) $p \geq \frac{n}{2}$, if $\lambda$ is odd and $n$ is even, (ii) $p \neq 1$ otherwise.

Proof. The necessary part follows from Theorem 2.8 and 2.9. From remark 3.1, we have $n \equiv 0,1(\bmod 4)$ if $\lambda \geq 1$ and $n \equiv 2,3(\bmod 4)$ if $\lambda$ is even. First we prove the result for $6 \leq n \leq 17$, next we generalise it for any $n>17$ by applying mathematical induction. As we discuss $\left\{p P_{5}, q C_{6}\right\}$-decompositions of $K_{n}(\lambda)$ for all possible choices of $p$ and $q$, we have the following cases:
Case 1: $n=6$.
If $\lambda=2$, then $(p, q) \in\{(0,5),(3,3),(6,1)\}$. By Theorem $2.1, K_{6}(2)$ is $\left\{0 P_{5}, 5 C_{6}\right\}$ decomposable. The graph $K_{6}(2)$ can be decomposed into

$$
3 P_{5}:\left(x_{1} x_{6} x_{3} x_{2} x_{4}\right),\left(x_{6} x_{3} x_{4} x_{5} x_{1}\right),\left(x_{6} x_{5} x_{1} x_{2} x_{4}\right)
$$

and

$$
3 C_{6}: C^{1}=C^{2}=\left(x_{1}, x_{3}, x_{5}, x_{2}, x_{6}, x_{4}\right), C^{3}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)
$$

The above $3 P_{5}$ in $K_{6}(2)$ along with $\left(x_{1} x_{3} x_{5} x_{2} x_{6}\right),\left(x_{1} x_{6} x_{4} x_{3} x_{2}\right)$ and $\left(x_{6} x_{5} x_{4} x_{1} x_{2}\right)$ (Since $C^{1} \cup C^{3}$ can be decomposed into $3 P_{5}$ ), and a $C^{2}$, we get the required $\left\{6 P_{5}, 1 C_{6}\right\}$-decomposition.

If $\lambda=4$, then $(p, q) \in\{(0,10),(3,8),(6,6),(9,4),(12,2),(15,0)\}$. We write

$$
\begin{aligned}
K_{6}(4)=K_{6}(2)+K_{6}(2) & =\{(0,5),(3,3),(6,1)\}+\{(0,5),(3,3),(6,1)\} \\
& =\{(0,10),(3,8),(6,6),(9,4),(12,2)\}
\end{aligned}
$$

By Theorem 2.2, $K_{6}(4)$ is $\left\{15 P_{5}, 0 C_{6}\right\}$-decomposable.
If $\lambda \geq 6$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 4)$. We write $K_{6}(\lambda)=\frac{\lambda}{4} K_{6}(4)$.
$\lambda \equiv 2(\bmod 4)$. We write $K_{6}(\lambda)=K_{6}(\lambda-2)+K_{6}(2)=\frac{\lambda-2}{4} K_{6}(4)+K_{6}(2)$. Therefore $K_{6}(\lambda)$ is fully $\left\{P_{5}, C_{6}\right\}$-decomposable.
CASE 2: $n=7$.
If $\lambda=2$, the graph $K_{7}(2)$ can be decomposed into

$$
\begin{aligned}
7 C_{6}: C^{1} & =\left(x_{1}, x_{2}, x_{4}, x_{7}, x_{6}, x_{5}\right), C^{2}=\left(x_{1}, x_{3}, x_{7}, x_{4}, x_{5}, x_{6}\right), \\
C^{3} & =\left(x_{2}, x_{4}, x_{1}, x_{7}, x_{6}, x_{3}\right), C^{4}=\left(x_{2}, x_{5}, x_{7}, x_{1}, x_{3}, x_{6}\right), \\
C^{5} & =\left(x_{4}, x_{6}, x_{2}, x_{7}, x_{3}, x_{5}\right), C^{6}=\left(x_{4}, x_{1}, x_{2}, x_{7}, x_{5}, x_{3}\right), \\
C^{7} & =\left(x_{1}, x_{5}, x_{2}, x_{3}, x_{4}, x_{6}\right) .
\end{aligned}
$$

By applying remark 3.4 to $C^{1} \cup C^{2}, C^{3} \cup C^{4}, C^{5} \cup C^{6}$, we get all the possible decompositions.

If $\lambda=4$, then $(p, q) \in\{(0,14),(3,12),(6,10), \ldots,(21,0)\}$ (we see that the values of $p$ increases by 3 and the values of $q$ decreases by 2 ). By Theorem $2.2, K_{7}(4)$ is $\left\{21 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{7}(4)=2 K_{7}(2)$, we get all the above possible decompositions.

If $\lambda \geq 6$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 4)$. We write $K_{7}(\lambda)=\frac{\lambda}{4} K_{7}(4)$.
$\lambda \equiv 2(\bmod 4)$. We write $K_{7}(\lambda)=K_{7}(\lambda-2)+K_{7}(2)=\frac{\lambda-2}{4} K_{7}(4)+K_{7}(2)$.
Case 3: $n=8$.
If $\lambda=1$, then $(p, q) \in\{(4,2),(7,0)\}$. By Theorem 2.2, $K_{8}$ is $\left\{7 P_{5}, 0 C_{6}\right\}$ decomposable. The graph $K_{8}$ can be decomposed into

$$
4 P_{5}:\left(x_{3} x_{1} x_{8} x_{2} x_{6}\right),\left(x_{4} x_{2} x_{7} x_{1} x_{5}\right),\left(x_{8} x_{6} x_{4} x_{5} x_{2}\right),\left(x_{1} x_{6} x_{3} x_{5} x_{7}\right)
$$

and

$$
2 C_{6}:\left(x_{1}, x_{2}, x_{3}, x_{8}, x_{7}, x_{4}\right),\left(x_{3}, x_{4}, x_{8}, x_{5}, x_{6}, x_{7}\right)
$$

If $\lambda=2$, then $(p, q) \in\{(2,8),(5,6),(8,4), \ldots,(14,0)\}$. The graph $K_{8}(2)$ can be decomposed into

$$
2 P_{5}:\left(x_{1} x_{7} x_{5} x_{6} x_{3}\right),\left(x_{1} x_{5} x_{8} x_{4} x_{3}\right)
$$

and

$$
\begin{aligned}
8 C_{6}: C^{1} & =\left(x_{1}, x_{7}, x_{4}, x_{2}, x_{3}, x_{6}\right), C^{2}=\left(x_{1}, x_{3}, x_{8}, x_{5}, x_{4}, x_{2}\right), \\
C^{3} & =\left(x_{1}, x_{3}, x_{8}, x_{4}, x_{7}, x_{5}\right), C^{4}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), \\
C^{5} & =C^{6}=\left(x_{8}, x_{6}, x_{7}, x_{3}, x_{5}, x_{2}\right), C^{7}=C^{8}=\left(x_{1}, x_{8}, x_{7}, x_{2}, x_{6}, x_{4}\right) .
\end{aligned}
$$

The above $2 P_{5}$ in $K_{8}(2)$ along with $\left(x_{7} x_{1} x_{3} x_{2} x_{4}\right),\left(x_{7} x_{4} x_{5} x_{8} x_{3}\right)$ and $\left(x_{4} x_{2} x_{1} x_{6} x_{3}\right)$ (Since $C^{1} \cup C^{2}$ can be decomposed into $3 P_{5}$ ), and $C^{3}, C^{4}, C^{5}, C^{6}$, $C^{7}, C^{8}$, we get the required $\left\{5 P_{5}, 6 C_{6}\right\}$-decomposition. By taking $K_{8}(2)=2 K_{8}$, we get all the other possible decompositions.

If $\lambda=3$, then $(p, q) \in\{(6,10),(9,8),(12,6), \ldots,(21,0)\}$. By taking $K_{8}(3)=$ $K_{8}(2)+K_{8}$, we get all the above possible decompositions.

If $\lambda=4$, then $(p, q) \in\{(4,16),(7,14),(10,12), \ldots,(28,0)\}$. By taking $K_{8}(4)=$ $2 K_{8}(2)$, we get all the above possible decompositions.

If $\lambda=5$, then $(p, q) \in\{(5,20),(8,18),(11,16), \ldots,(35,0)\}$. The graph $K_{8}(5)$ can be decomposed into

$$
\begin{aligned}
5 P_{5}: & \left(x_{8} x_{5} x_{4} x_{6} x_{2}\right),\left(x_{5} x_{8} x_{4} x_{3} x_{6}\right),\left(x_{2} x_{4} x_{3} x_{7} x_{1}\right) \\
& \left(x_{4} x_{2} x_{3} x_{1} x_{7}\right),\left(x_{3} x_{7} x_{1} x_{6} x_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
20 C_{6}: & \left(x_{3}, x_{4}, x_{5}, x_{8}, x_{2}, x_{6}\right),\left(x_{8}, x_{5}, x_{6}, x_{2}, x_{3}, x_{4}\right), \\
& \left(x_{1}, x_{7}, x_{2}, x_{6}, x_{4}, x_{3}\right),\left(x_{8}, x_{5}, x_{6}, x_{1}, x_{7}, x_{2}\right), \\
& 3 \text { copies of }\left(x_{8}, x_{2}, x_{7}, x_{3}, x_{6}, x_{4}\right),\left(x_{1}, x_{3}, x_{2}, x_{4}, x_{5}, x_{6}\right), \\
& 5 \text { copies of }\left(x_{8}, x_{3}, x_{5}, x_{1}, x_{4}, x_{7}\right),\left(x_{8}, x_{6}, x_{7}, x_{5}, x_{2}, x_{1}\right) .
\end{aligned}
$$

By taking $K_{8}(5)=K_{8}(3)+K_{8}(2)$, we get all the other possible decompositions.
If $\lambda=6$, then $(p, q) \in\{(0,28),(3,26),(6,24), \ldots,(42,0)\}$. By Theorem 2.1, $K_{8}(6)$ is $\left\{0 P_{5}, 28 C_{6}\right\}$-decomposable. The graph $K_{8}(6)$ can be decomposed into

$$
3 P_{5}:\left(x_{4} x_{6} x_{8} x_{7} x_{3}\right),\left(x_{8} x_{2} x_{7} x_{6} x_{4}\right),\left(x_{8} x_{2} x_{4} x_{7} x_{3}\right)
$$

and

$$
\begin{aligned}
26 C_{6}: & \left(x_{1}, x_{5}, x_{6}, x_{4}, x_{7}, x_{3}\right),\left(x_{1}, x_{5}, x_{7}, x_{3}, x_{8}, x_{2}\right), \\
& \left(x_{8}, x_{2}, x_{5}, x_{1}, x_{6}, x_{4}\right),\left(x_{1}, x_{5}, x_{4}, x_{6}, x_{3}, x_{7}\right), \\
& \left(x_{1}, x_{5}, x_{3}, x_{4}, x_{2}, x_{8}\right),\left(x_{6}, x_{4}, x_{1}, x_{5}, x_{8}, x_{2}\right) \\
& \left(x_{1}, x_{2}, x_{3}, x_{7}, x_{8}, x_{6}\right), 5 \text { copies of }\left(x_{2}, x_{6}, x_{7}, x_{5}, x_{8}, x_{3}\right), \\
& \left(x_{1}, x_{3}, x_{6}, x_{5}, x_{4}, x_{8}\right),\left(x_{1}, x_{4}, x_{3}, x_{5}, x_{2}, x_{7}\right), \\
& 4 \text { copies of }\left(x_{1}, x_{2}, x_{4}, x_{7}, x_{8}, x_{6}\right) .
\end{aligned}
$$

By taking $K_{8}(6)=K_{8}(4)+K_{8}(2)$, we get all the other possible decompositions.
If $\lambda \geq 7$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 6)$. We write $K_{8}(\lambda)=\frac{\lambda}{6} K_{8}(6)$.
$\lambda \equiv 1(\bmod 6)$. We write $K_{8}(\lambda)=K_{8}(\lambda-1)+K_{8}=\frac{\lambda-1}{6} K_{8}(6)+K_{8}$.
$\lambda \equiv 2(\bmod 6)$. We write $K_{8}(\lambda)=K_{8}(\lambda-2)+K_{8}(2)=\frac{\lambda-2}{6} K_{8}(6)+K_{8}(2)$.
$\lambda \equiv 3(\bmod 6)$. We write $K_{8}(\lambda)=K_{8}(\lambda-3)+K_{8}(3)=\frac{\lambda-3}{6} K_{8}(6)+K_{8}(3)$.
$\lambda \equiv 4(\bmod 6)$. We write $K_{8}(\lambda)=K_{8}(\lambda-4)+K_{8}(4)=\frac{\lambda-4}{6} K_{8}(6)+K_{8}(4)$.
$\lambda \equiv 5(\bmod 6)$. We write $K_{8}(\lambda)=K_{8}(\lambda-5)+K_{8}(5)=\frac{\lambda-5}{6} K_{8}(6)+K_{8}(5)$.
Case 4: $n=9$.
The graph $K_{9}$ can be decomposed into

$$
\begin{aligned}
6 C_{6}: C^{1} & =\left(x_{1}, x_{9}, x_{4}, x_{7}, x_{8}, x_{5}\right), C^{2}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, x_{8}\right), \\
C^{3} & =\left(x_{9}, x_{2}, x_{6}, x_{3}, x_{7}, x_{5}\right), C^{4}=\left(x_{9}, x_{8}, x_{3}, x_{1}, x_{7}, x_{6}\right) \\
C^{5} & =\left(x_{5}, x_{6}, x_{1}, x_{4}, x_{8}, x_{2}\right), C^{6}=\left(x_{5}, x_{3}, x_{9}, x_{7}, x_{2}, x_{4}\right) .
\end{aligned}
$$

By applying remark 3.4 to $C^{1} \cup C^{2}, C^{3} \cup C^{4}, C^{5} \cup C^{6}$, we get all the possible decompositions. If $\lambda \geq 2$, by taking $K_{9}(\lambda)=\lambda K_{9}$, we get all the possible decompositions. Case 5: $n=10$.

If $\lambda=2$, then $(p, q) \in\{(0,15),(3,13),(6,11), \ldots,(21,1)\}$. By Theorem 2.1, $K_{10}(2)$ is $\left\{0 P_{5}, 15 C_{6}\right\}$-decomposable. We write $K_{10}(2)=K_{10}(2) \backslash K_{6}(2)+K_{6}(2)$. The graph $K_{10}(2) \backslash K_{6}(2)$ can be decomposed into

$$
3 P_{5}:\left(x_{8} x_{7} x_{5} x_{10} x_{9}\right),\left(x_{9} x_{10} x_{2} x_{7} x_{5}\right),\left(x_{8} x_{7} x_{2} x_{10} x_{5}\right)
$$

and

$$
\begin{aligned}
8 C_{6}: C^{1} & =\left(x_{10}, x_{4}, x_{8}, x_{9}, x_{7}, x_{6}\right), C^{2}=\left(x_{10}, x_{1}, x_{9}, x_{2}, x_{8}, x_{3}\right), \\
C^{3} & =\left(x_{10}, x_{4}, x_{8}, x_{9}, x_{7}, x_{6}\right), C^{4}=\left(x_{10}, x_{1}, x_{9}, x_{2}, x_{8}, x_{3}\right), \\
C^{5} & =\left(x_{7}, x_{4}, x_{9}, x_{5}, x_{8}, x_{10}\right), C^{6}=\left(x_{7}, x_{1}, x_{8}, x_{6}, x_{9}, x_{3}\right), \\
C^{7} & =\left(x_{7}, x_{10}, x_{8}, x_{5}, x_{9}, x_{4}\right), C^{8}=\left(x_{7}, x_{3}, x_{9}, x_{6}, x_{8}, x_{1}\right)
\end{aligned}
$$

By applying remark 3.4 to $C^{1} \cup C^{2}, C^{3} \cup C^{4}, C^{5} \cup C^{6}, C^{7} \cup C^{8}$ we get the decompositions $(p, q) \in\{(6,6),(9,4),(12,2),(15,0)\}$ in $K_{10}(2) \backslash K_{6}(2)$. By combining these copies of $P_{5}$ and $C_{6}$ along with the copies of $P_{5}$ and $C_{6}$ in $K_{6}(2)$, we get all the above possible decompositions.

If $\lambda=4$, then $(p, q) \in\{(0,30),(3,28),(6,26), \ldots,(45,0)\}$. By Theorem 2.2, $K_{10}(4)$ is $\left\{45 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{10}(4)=2 K_{10}(2)$, we get all the other possible decompositions.

If $\lambda \geq 6$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 4)$. We write $K_{10}(\lambda)=\frac{\lambda}{4} K_{10}(4)$.
$\lambda \equiv 2(\bmod 4)$. We write $K_{10}(\lambda)=K_{10}(\lambda-2)+K_{10}(2)=\frac{\lambda-2}{4} K_{10}(4)+K_{10}(2)$.
Case 6: $n=11$.
If $\lambda=2$, then $(p, q) \in\{(2,17),(5,15),(8,13), \ldots,(26,1)\}$. We write $K_{11}(2)=$ $K_{11}(2) \backslash K_{7}(2)+K_{7}(2)$. The graph $K_{11}(2) \backslash K_{7}(2)$ can be decomposed into

$$
2 P_{5}:\left(x_{11} x_{2} x_{10} x_{9} x_{8}\right),\left(x_{8} x_{6} x_{10} x_{1} x_{11}\right)
$$

and

$$
\begin{aligned}
10 C_{6}: C^{1} & =\left(x_{10}, x_{3}, x_{9}, x_{2}, x_{8}, x_{6}\right), C^{2}=\left(x_{10}, x_{9}, x_{8}, x_{3}, x_{11}, x_{7}\right) \\
C^{3} & =\left(x_{11}, x_{1}, x_{10}, x_{2}, x_{9}, x_{3}\right), C^{4}=\left(x_{8}, x_{3}, x_{10}, x_{7}, x_{11}, x_{2}\right) \\
C^{5} & =C^{6}=\left(x_{8}, x_{5}, x_{11}, x_{6}, x_{9}, x_{4}\right), C^{7}=C^{8}=\left(x_{10}, x_{4}, x_{11}, x_{9}, x_{1}, x_{8}\right) \\
C^{9} & =C^{10}=\left(x_{11}, x_{10}, x_{5}, x_{9}, x_{7}, x_{8}\right)
\end{aligned}
$$

The above $2 P_{5}$ in $K_{11}(2) \backslash K_{7}(2)$ along with

$$
\begin{aligned}
& \left(x_{10} x_{5} x_{9} x_{7} x_{8}\right),\left(x_{8} x_{11} x_{10} x_{3} x_{9}\right),\left(x_{10} x_{6} x_{8} x_{2} x_{9}\right), \\
& \left(x_{8} x_{3} x_{10} x_{1} x_{11}\right),\left(x_{10} x_{2} x_{9} x_{3} x_{11}\right),\left(x_{10} x_{7} x_{11} x_{2} x_{8}\right), \\
& \left(x_{11} x_{5} x_{8} x_{4} x_{9}\right),\left(x_{10} x_{8} x_{1} x_{9} x_{11}\right),\left(x_{9} x_{6} x_{11} x_{4} x_{10}\right), \\
& \left(x_{10} x_{4} x_{11} x_{5} x_{8}\right),\left(x_{10} x_{8} x_{1} x_{9} x_{11}\right),\left(x_{11} x_{6} x_{9} x_{4} x_{8}\right), \\
& \left(x_{11} x_{7} x_{10} x_{9} x_{8}\right),\left(x_{8} x_{11} x_{10} x_{5} x_{9}\right) \text { and }\left(x_{11} x_{3} x_{8} x_{7} x_{9}\right)
\end{aligned}
$$

(Since $C^{1} \cup C^{9}, C^{3} \cup C^{4}, C^{5} \cup C^{7}, C^{6} \cup C^{8}, C^{2} \cup C^{10}$ can be decomposed into $15 P_{5}$ ), we get a $\left\{17 P_{5}, 0 C_{6}\right\}$-decomposition in $K_{11}(2) \backslash K_{7}(2)$. The above $2 P_{5}, 3 P_{5}$ obtained from $C^{1} \cup C^{9}$ in $K_{11}(2) \backslash K_{7}(2)$ and $C^{2}, C^{3}, C^{4}, C^{5}, C^{6}, C^{7}, C^{8}, C^{10}$ we get a $\left\{5 P_{5}, 8 C_{6}\right\}$-decomposition in $K_{11}(2) \backslash K_{7}(2)$. By combining these copies of $P_{5}$ and $C_{6}$ along with the copies of $P_{5}$ and $C_{6}$ in $K_{7}(2)$, we get all the above possible decompositions.

If $\lambda=4$, then $(p, q) \in\{(4,34),(7,32),(10,30), \ldots,(55,0)\}$. By Theorem 2.2, $K_{11}(4)$ is $\left\{55 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{11}(4)=2 K_{11}(2)$, we get all the above possible decompositions.

If $\lambda=6$, then $(p, q) \in\{(0,53),(3,53),(6,51), \ldots,(81,1)\}$. By Theorem 2.3, $K_{5,5}(6)$ is $\left\{0 P_{5}, 25 C_{6}\right\}$-decomposable. By taking $K_{11}(6)=2 K_{6}(6)+K_{5,5}(6)$, we get the decomposition $(p, q)=(3,53)$. By taking $K_{11}(6)=K_{11}(4)+K_{11}(2)$, we get all the other possible decompositions.

If $\lambda=8$, then $(p, q) \in\{(2,72),(5,70),(8,68), \ldots,(110,0)\}$. By Theorem 2.2, $K_{11}(8)$ is $\left\{110 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{11}(8)=K_{11}(6)+K_{11}(2)$, we get all the above possible decompositions.

If $\lambda=10$, then $(p, q) \in\{(4,89),(7,87),(10,85), \ldots,(136,1)\}$. By taking $K_{11}(10)=K_{11}(6)+K_{11}(4)$, we get all the above possible decompositions.

If $\lambda=12$, then $(p, q) \in\{(0,110),(3,108),(6,106), \ldots,(165,0)\}$. By Theorem $2.2, K_{11}(12)$ is $\left\{165 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{11}(12)=2 K_{11}(6)$, we get all the above possible decompositions.

If $\lambda \geq 14$, then the proof is divided into the following cases. $\lambda \equiv 0(\bmod 12)$. We write $K_{11}(\lambda)=\frac{\lambda}{12} K_{11}(12)$.
$\lambda \equiv 2(\bmod 12)$. We write $K_{11}(\lambda)=K_{11}(\lambda-2)+K_{11}(2)=\frac{\lambda-2}{12} K_{11}(12)+K_{11}(2)$.
$\lambda \equiv 4(\bmod 12)$. We write $K_{11}(\lambda)=K_{11}(\lambda-4)+K_{11}(4)=\frac{\lambda-4}{12} K_{11}(12)+K_{11}(4)$.
$\lambda \equiv 6(\bmod 12)$. We write $K_{11}(\lambda)=K_{11}(\lambda-6)+K_{11}(6)=\frac{\lambda-6}{12} K_{11}(12)+K_{11}(6)$.
$\lambda \equiv 8(\bmod 12)$. We write $K_{11}(\lambda)=K_{11}(\lambda-8)+K_{11}(8)=\frac{\lambda-8}{12} K_{11}(12)+K_{11}(8)$.
$\lambda \equiv 10(\bmod 12)$. We write $K_{11}(\lambda)=K_{11}(\lambda-10)+K_{11}(10)=\frac{\lambda-10}{12} K_{11}(12)$
$+K_{11}(10)$.
CASE 7: $n=12$.
If $\lambda=1$, then $(p, q) \in\{(6,7),(9,5),(12,3),(15,1)\}$. We write $K_{12}=\left(K_{12} \backslash K_{9}\right)+$ $K_{9}$. The graph $K_{12} \backslash K_{9}$ can be decomposed into

$$
\begin{aligned}
6 P_{5}: & \left(x_{6} x_{10} x_{5} x_{11} x_{3}\right),\left(x_{12} x_{10} x_{4} x_{11} x_{8}\right), \\
& \left(x_{5} x_{12} x_{6} x_{11} x_{9}\right),\left(x_{4} x_{12} x_{7} x_{11} x_{10}\right), \\
& \left(x_{2} x_{12} x_{9} x_{10} x_{1}\right),\left(x_{11} x_{12} x_{8} x_{10} x_{7}\right)
\end{aligned}
$$

and a

$$
C_{6}:\left(x_{12}, x_{1}, x_{11}, x_{2}, x_{10}, x_{3}\right)
$$

By combining these copies of $P_{5}$ and $C_{6}$ along with the copies of $P_{5}$ and $C_{6}$ in $K_{9}$, we get all the above possible decompositions.

If $\lambda=2$, then $(p, q) \in\{(0,22),(3,20),(6,18), \ldots,(33,0)\}$. By Theorem 2.2, $K_{12}(2)$ is $\left\{33 P_{5}, 0 C_{6}\right\}$-decomposable. By Theorems 2.3 and $2.4 K_{6,6}$ is $\left\{\left\{0 P_{5}, 6 C_{6}\right\},\left\{9 P_{5}, 0 C_{6}\right\}\right\}$-decomposable. By taking $K_{12}(2)=2 K_{6}(2)+2 K_{6,6}$, we get all the above possible decompositions.

If $\lambda \geq 3$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 2)$. We write $K_{12}(\lambda)=\frac{\lambda}{2} K_{12}(2)$.
$\lambda \equiv 1(\bmod 2)$. We write $K_{12}(\lambda)=K_{12}(\lambda-1)+K_{12}=\frac{\lambda-1}{2} K_{12}(2)+K_{12}$. CASE 8: $n=13$.

If $\lambda=1$, then $(p, q) \in\{(0,13),(3,11),(6,9), \ldots,(18,1)\}$. We write $K_{13}=$ $\left(K_{13} \backslash K_{9}\right)+K_{9}$. The graph $K_{13} \backslash K_{9}$ can be decomposed into

$$
\begin{aligned}
7 C_{6}: C^{1} & =\left(x_{13}, x_{7}, x_{10}, x_{8}, x_{11}, x_{3}\right), C^{2}=\left(x_{13}, x_{4}, x_{10}, x_{5}, x_{12}, x_{6}\right), \\
C^{3} & =\left(x_{11}, x_{7}, x_{12}, x_{8}, x_{13}, x_{9}\right), C^{4}=\left(x_{11}, x_{5}, x_{13}, x_{2}, x_{10}, x_{12}\right) \\
C^{5} & =\left(x_{11}, x_{4}, x_{12}, x_{3}, x_{10}, x_{6}\right), C^{6}=\left(x_{11}, x_{1}, x_{10}, x_{9}, x_{12}, x_{13}\right) \\
C^{7} & =\left(x_{13}, x_{1}, x_{12}, x_{2}, x_{11}, x_{10}\right)
\end{aligned}
$$

By applying remark 3.4 to $C^{1} \cup C^{2}, C^{3} \cup C^{4}, C^{5} \cup C^{6}$, we get the decompositions $(p, q) \in\{(0,7),(3,5),(6,3),(9,1)\}$ in $K_{13} \backslash K_{9}$. By combining these copies of $P_{5}$ and $C_{6}$ along with the copies of $P_{5}$ and $C_{6}$ in $K_{9}$, we get all the above possible decompositions.

If $\lambda=2$, then $(p, q) \in\{(0,26),(3,24),(6,22), \ldots,(39,0)\}$. By Theorem 2.2, $K_{13}(2)$ is $\left\{39 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{13}(2)=2 K_{13}$, we get all the above possible decompositions.

If $\lambda \geq 3$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 2)$. We write $K_{13}(\lambda)=\frac{\lambda}{2} K_{13}(2)$.
$\lambda \equiv 1(\bmod 2)$. We write $K_{13}(\lambda)=K_{13}(\lambda-1)+K_{13}=\frac{\lambda-1}{2} K_{13}(2)+K_{13}$.
CASE 9: $n=14$.
By taking $K_{14}(\lambda)=K_{8}(\lambda)+K_{6}(\lambda)+2 \lambda K_{4,6}$, we get all the possible decompositions.
CASE 10: $n=15$.
By taking $K_{15}(\lambda)=K_{9}(\lambda)+K_{7}(\lambda)+2 \lambda K_{4,6}$, we get all the possible decompositions.
Case 11: $n=16$.
If $\lambda=1$, then $(p, q) \in\{(9,14),(12,12),(15,10), \ldots,(30,0)\}$. We write $K_{16}=$ $\left(K_{16} \backslash K_{13}\right)+K_{13}$. The graph $K_{16} \backslash K_{13}$ can be decomposed into

$$
\begin{aligned}
9 P_{5}: & \left(x_{11} x_{14} x_{2} x_{15} x_{13}\right),\left(x_{15} x_{1} x_{16} x_{5} x_{14}\right),\left(x_{4} x_{16} x_{12} x_{14} x_{6}\right) \\
& \left(x_{11} x_{16} x_{9} x_{14} x_{7}\right),\left(x_{5} x_{15} x_{7} x_{16} x_{10}\right),\left(x_{1} x_{14} x_{16} x_{15} x_{12}\right) \\
& \left(x_{11} x_{15} x_{14} x_{13} x_{16}\right),\left(x_{2} x_{16} x_{8} x_{15} x_{9}\right),\left(x_{3} x_{15} x_{10} x_{14} x_{8}\right)
\end{aligned}
$$

and a

$$
C_{6}:\left(x_{16}, x_{3}, x_{14}, x_{4}, x_{15}, x_{6}\right)
$$

By Theorem 2.1, $K_{13}$ is $\left\{0 P_{5}, 13 C_{6}\right\}$-decomposable. We have, $K_{16}=\left(K_{16} \backslash K_{13}\right)+K_{13}=\{(9,1)\}+\{(0,13)\}=\{(9,14)\}$. The graph $K_{2,8}$ is $\left\{4 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{16}=2 K_{8}+2 K_{6,4}+K_{2,8}$, we get all the other possible decompositions.

If $\lambda=2$, then $(p, q) \in\{(0,40),(3,38),(6,36), \ldots,(60,0)\}$. By Theorem 2.2, $K_{16}(2)$ is $\left\{60 P_{5}, 0 C_{6}\right\}$-decomposable. By Theorems 2.3 and $2.4, K_{6,6}(2)$ is
$\left\{\left\{0 P_{5}, 12 C_{6}\right\},\left\{18 P_{5}, 0 C_{6}\right\}\right\}$-decomposable. By taking $K_{16}(2)=K_{10}(2)+K_{6}(2)+$ $K_{6,6}(2)+2 K_{4,6}$, we get all the above possible decompositions.

If $\lambda \geq 3$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 2)$. We write $K_{16}(\lambda)=\frac{\lambda}{2} K_{16}(2)$.
$\lambda \equiv 1(\bmod 2)$. We write $K_{16}(\lambda)=K_{16}(\lambda-1)+K_{16}=\frac{\lambda-1}{2} K_{16}(2)+K_{16}$.
CASE 12: $n=17$.
If $\lambda=1$, then $(p, q) \in\{(4,20),(7,18),(10,16), \ldots,(34,0)\}$. The graph $K_{2,8}$ is $\left\{4 P_{5}, 0 C_{6}\right\}$-decomposable. By taking $K_{17}=2 K_{9}+2 K_{6,4}+K_{2,8}$, we get all the above possible decompositions.

If $\lambda=2$, then $(p, q) \in\{(2,44),(5,42),(8,40), \ldots,(68,0)\}$. By Theorem 2.2, $K_{17}(2)$ is $\left\{68 P_{5}, 0 C_{6}\right\}$-decomposable. By Theorems 2.3 and $2.4, K_{6,6}(2)$ is $\left\{\left\{0 P_{5}, 12 C_{6}\right\},\left\{18 P_{5}, 0 C_{6}\right\}\right\}$-decomposable. By taking $K_{17}(2)=K_{11}(2)+K_{7}(2)+$ $K_{6,6}(2)+2 K_{4,6}$, we get all the above possible decompositions.

If $\lambda=3$, then $(p, q) \in\{(0,68),(3,66),(6,64), \ldots,(102,0)\}$. By Theorem 2.1, $K_{17}(3)$ is $\left\{0 P_{5}, 68 C_{6}\right\}$-decomposable. By taking $K_{17}(3)=2 K_{9}(3)+4 K_{4,4}(3)$, we get the decomposition when $(p, q)=(3,66)$ and by taking $K_{17}(3)=K_{17}(2)+K_{17}$, we get all the other possible decompositions.

If $\lambda \geq 4$, then the proof is divided into the following cases.
$\lambda \equiv 0(\bmod 3)$. We write $K_{17}(\lambda)=\frac{\lambda}{3} K_{17}(3)$.
$\lambda \equiv 1(\bmod 3)$. We write $K_{17}(\lambda)=K_{17}(\lambda-1)+K_{17}=\frac{\lambda-1}{3} K_{17}(3)+K_{17}$.
$\lambda \equiv 2(\bmod 3)$. We write $K_{17}(\lambda)=K_{17}(\lambda-2)+K_{17}(2)=\frac{\lambda-2}{3} K_{17}(3)+K_{17}(2)$.
Now we prove the result for $n>17$. We apply mathematical induction on $n$ and split the proof into four cases as follows:
$n \equiv 0(\bmod 4)$. Let $n=4 r$, where $r \geq 2$. If $2 \leq r \leq 4$, the result follows from Cases 3, 7 and 11. Now for some $t>4$ we assume that there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{4 r}(\lambda)$ for all $r$ where $2 \leq r<t$. Next, we write

$$
\begin{aligned}
K_{4 t}(\lambda) & =K_{4(t-3)}(\lambda)+K_{12}(\lambda)+K_{4(t-3), 12}(\lambda) \\
& =K_{4(t-3)}(\lambda)+K_{12}(\lambda)+(t-3) K_{4,12}(\lambda) \\
& =K_{4(t-3)}(\lambda)+K_{12}(\lambda)+(2 t-6) \lambda K_{4,6} .
\end{aligned}
$$

By the induction hypothesis, there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4(t-3)}(\lambda)$, and by case 7 and by Lemma 3.2 there exist $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decompositions of $K_{12}(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{4 t}(\lambda)$ exists.
$n \equiv 1(\bmod 4)$. Let $n=4 r+1$, where $r \geq 2$. If $2 \leq r \leq 4$, the result follows from cases 4,8 and 12. Now for some $t>4$ we assume that there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4 r+1}(\lambda)$ for all $r$ where $2 \leq r<t$. Next, we write

$$
\begin{aligned}
K_{4 t+1}(\lambda) & =K_{4(t-3)+1}(\lambda)+K_{13}(\lambda)+K_{4(t-3), 12}(\lambda) \\
& =K_{4(t-3)+1}(\lambda)+K_{13}(\lambda)+(t-3) K_{4,12}(\lambda) \\
& =K_{4(t-3)+1}(\lambda)+K_{13}(\lambda)+(2 t-6) \lambda K_{4,6}
\end{aligned}
$$

By the induction hypothesis, there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4(t-3)+1}(\lambda)$, and by case 8 and by Lemma 3.2 there exist $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decompositions of $K_{13}(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{4 t+1}(\lambda)$ exists.
$n \equiv 2(\bmod 4)$. Let $n=4 r+2$, where $r \geq 1$. If $1 \leq r \leq 3$, the result follows from cases 1,5 and 9 . Now for some $t>3$ we assume that there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4 r+2}(\lambda)$ for all $r$ where $1 \leq r<t$. Next, we write

$$
\begin{aligned}
K_{4 t+2}(\lambda) & =K_{4(t-1)}(\lambda)+K_{6}(\lambda)+K_{4(t-1), 6}(\lambda) \\
& =K_{4(t-1)}(\lambda)+K_{6}(\lambda)+(t-1) \lambda K_{4,6}
\end{aligned}
$$

By the induction hypothesis, there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4(t-1)}(\lambda)$, and by case 1 and by Lemma 3.2 there exist $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}{ }^{-}$ decompositions of $K_{6}(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{4 t+2}(\lambda)$ exists.
$n \equiv 3(\bmod 4)$. Let $n=4 r+3$, where $r \geq 1$. If $1 \leq r \leq 3$, the result follows from cases 2, 6 and 10. Now for some $t>3$ we assume that there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4 r+3}(\lambda)$ for all $r$ where $1 \leq r<t$. Next, we write

$$
\begin{aligned}
K_{4 t+3}(\lambda) & =K_{4(t-1)+1}(\lambda)+K_{7}(\lambda)+K_{4(t-1), 6}(\lambda) \\
& =K_{4(t-1)+1}(\lambda)+K_{7}(\lambda)+(t-1) \lambda K_{4,6}
\end{aligned}
$$

By the induction hypothesis, there exists a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}}$-decomposition of $K_{4(t-1)+1}(\lambda)$, and by case 2 and by Lemma 3.2 there exist $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decompositions of $K_{7}(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\left\{P_{5}, C_{6}\right\}_{\{p, q\}^{-}}$ decomposition of $K_{4 t+3}(\lambda)$ exists, and the result follows by mathematical induction.

## Acknowledgments

The authors thank the anonymous referee for the helpful remarks and suggestions. The second author thanks the University Grants Commission, New Delhi for its financial support (NO. F. MRP-6292/15(SERO/UGC)).

## References

1. D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Cycle decompositions of complete multigraphs, J. Combin. Des., 19 (2011) 42-69.
2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).
3. H.-C. Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math., 338 (2015) 1362-1369.
4. M. Ilayaraja and A. Muthusamy, $\left\{p P_{4}, q C_{4}\right\}$-Decomposition of complete graphs, Indian J. Discrete Math., vol. 4 (2), (2018) 13-33.
5. S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math., 331 (2014) 98-108.
6. H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of $\lambda K_{m}$, J. Combin. Math. Combin. Comput. 69 (2009) 145-150.
7. D. G. Sarvate and L. Zhang, Decomposition of a $\lambda K_{v}$ into equal number of $K_{3}^{s}$ and $P_{3}^{s}$, Bull. Inst. Combin. Appl., 67 (2013) 43-48.
8. T. W. Shyu, Decompositions of complete bipartite graphs and complete graphs into paths, stars and cycles with four edges each, Discuss. Math. Graph Theory 41 (2021) 451-468.
9.——, Decompositions of complete graphs into paths and cycles, Ars Combin., 97 (2010) 257-270.
9. -_, Decomposition of complete graphs into paths of length three and triangles, Ars Combin., 107 (2012) 209-224.
10. M. Tarsi, Decomposition of complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser A, 34 (1983) 60-70.
11. M. Truszczynski, Note on the decomposition of $\lambda K_{m, n}\left(\lambda K_{m, n}^{*}\right)$ into paths, Discrete Math., 55 (1985), 89-96.

Department of Mathematics, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu, India. E-mail address: chinnavedi571991@gmail.com.

Department of Mathematics, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi, Thanjavur, Tamil Nadu, India.

E-mail address: jaisangmaths@yahoo.com


[^0]:    Received by the editors January 8, 2020, and in revised form April 28, 2021.
    2000 Mathematics Subject Classification. 05C38, 05C70.
    Key words and phrases. Decomposition, Complete multigraph, Cycle, Path.

