

Volume 17, Number 1, Pages 1–12 ISSN 1715-0868

$K_n(\lambda)$ IS FULLY { P_5, C_6 }-DECOMPOSABLE

R. CHINNAVEDI AND R. SANGEETHA

ABSTRACT. Let P_{k+1} denote a path of length k, C_{ℓ} denote a cycle of length ℓ , and $K_n(\lambda)$ denote the complete multigraph on n vertices in which every edge is taken λ times. In this paper, we have obtained the necessary conditions for a $\{P_{k+1}, C_{\ell}\}$ -decomposition of $K_n(\lambda)$ and proved that the necessary conditions are also sufficient when k = 4 and $\ell = 6$.

1. INTRODUCTION

All graphs considered here are finite and undirected with no loops. For the standard graph-theoretic terminology the reader is referred to [2]. A simple graph in which each pair of distinct vertices is joined by an edge is called a complete graph. A complete graph on n vertices is denoted by K_n . If more than one edge joining two vertices are allowed, the resulting object is called a multigraph. Let $K_n(\lambda)$ denotes the complete multigraph on n vertices and in which every edge is taken λ times. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if |X| = m and |Y| = n, such a graph is denoted by $K_{m,n}$. In $K_{m,n}(\lambda)$, we label the vertices in the partite set X as $\{x_1, x_2, \ldots, x_m\}$ and Y as $\{x_{m+1}, x_{m+2}, \ldots, x_{m+n}\}$. A cycle is a closed trail with no repeated vertex other than the first and last vertex. A cycle with ℓ edges is denoted by C_{ℓ} . A path is an open trail with no repeated vertex. A path with k edges is denoted by P_{k+1} . The complete bipartite graph $K_{1,m}$ is called a *star* and is denoted by S_m . For $m \geq 3$, the vertex of degree m in S_m is called the center and any vertex of degree 1 in S_m is called an *end vertex*.

Let G be a graph and G_1 be a subgraph of G. Then $G \setminus G_1$ is obtained from G by deleting the edges of G_1 . Let G_1 and G_2 be subgraphs of G. The union $G_1 \cup G_2$ of G_1 and G_2 is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. We say that G_1 and G_2 are edge-disjoint if they have no edge in common. If G_1 and G_2 are edge-disjoint, we denote their union by $G_1 + G_2$. A decomposition of a graph G is a collection of

This work is licensed under a Creative Commons "Attribution-NoDerivatives 4.0 International" license.

Received by the editors January 8, 2020, and in revised form April 28, 2021.

²⁰⁰⁰ Mathematics Subject Classification. 05C38, 05C70.

Key words and phrases. Decomposition, Complete multigraph, Cycle, Path.

edge-disjoint subgraphs G_1, G_2, \ldots, G_n of G such that every edge of G is in exactly one G_i . Here it is said that G is *decomposed* or *decomposable* into G_1, G_2, \ldots, G_n . If G has a decomposition into p_1 copies of G_1, \ldots, p_n copies of G_n , then we say that G has a $\{p_1G_1, \ldots, p_nG_n\}$ -decomposition. If such a decomposition exists for all values of p_1, \ldots, p_n satisfying trivial necessary conditions, then we say that G has a $\{G_1, \ldots, G_n\}_{\{p_1, \ldots, p_n\}}$ -decomposition or G is fully $\{G_1, \ldots, G_n\}$ -decomposable. We say that G is decomposed into P_5 and C_6 if each $G_i \simeq P_5$ or C_6 .

In [6], Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of $\{pG_1, qG_2\}$ -decomposition of $K_n(\lambda)$, when

$$(G_1, G_2) \in \{(P_n, S_{1,n-1}), (C_n, S_{1,n-1}), (P_n, C_n)\}.$$

In [9], Shyu gave the necessary conditions for a $\{pP_{k+1}, qC_{\ell}\}$ -decomposition of K_n and proved that K_n is fully $\{P_{k+1}, C_k\}$ -decomposable, when k is even, n is odd, $n \ge 5k + 1$ and settled the case k = 4 completely. In [10], Shyu proved that K_n is fully $\{P_4, C_3\}$ -decomposable. In [5], Jeevadoss and Muthusamy proved that K_n is fully $\{P_{k+1}, C_k\}$ -decomposable, when k is even and n is odd with n > 4k. In [4], Ilayaraja and Muthusamy proved that K_n is fully $\{P_4, C_4\}$ -decomposable. In [7], Sarvate and Zhang obtained necessary and sufficient conditions for the existence of a $\{pP_3, qK_3\}$ decomposition of $K_n(\lambda)$, when p = q. In [8], Shyu gave the necessary conditions for a $\{pC_k, qP_{k+1}, rS_k\}$ -decomposition of K_n and proved that K_n is fully $\{C_4, P_5, S_4\}$ -decomposable, when n is odd. In this paper we prove that $K_n(\lambda)$ is fully $\{P_5, C_6\}$ -decomposable.

2. Preliminaries

For convenience we denote $V(K_n(\lambda)) = \{x_1, x_2, \ldots, x_n\}$. The notation $(x_1, x_2, \ldots, x_\ell)$ denotes a cycle with vertices x_1, x_2, \ldots, x_ℓ and edges $x_1x_2, x_2x_3, \ldots, x_{\ell-1}x_\ell, x_\ell x_1$, and $(x_1x_2 \ldots x_{k+1})$ is a path with vertices $x_1, x_2, \ldots, x_{k+1}$ and edges $x_1x_2, x_2x_3, \ldots, x_kx_{k+1}$.

We recall here some results on P_{k+1} and C_{ℓ} -decompositions that are useful for our proofs.

Theorem 2.1 (Bryant, et al. [1]). Let λ , n and ℓ be integers with $n, \ell \geq 3$ and $\lambda \geq 1$. There exists a decomposition of $K_n(\lambda)$ into C_ℓ if and only if $\ell \leq n, \lambda(n-1)$ is even and ℓ divides $\lambda\binom{n}{2}$. There exists a decomposition of $K_n(\lambda)$ into C_ℓ and a perfect matching if and only if $\ell \leq n, \lambda(n-1)$ is odd and ℓ divides $\lambda\binom{n}{2} - \frac{n}{2}$.

Theorem 2.2 (Tarsi [11]). Necessary and sufficient conditions for the existence of a P_{k+1} -decomposition of $K_n(\lambda)$ are $\lambda\binom{n}{2} \equiv 0 \pmod{k}$ and $n \geq k+1$.

Theorem 2.3 (Lee [3]). For positive integers λ , m, n and ℓ with $\lambda m \equiv \lambda n \equiv \ell \equiv 0 \pmod{2}$ and $\min\{m,n\} \geq \frac{\ell}{2} \geq 2$, the multigraph $K_{m,n}(\lambda)$ is C_{ℓ} -decomposable if one of the following conditions holds:

(i) λ is odd and ℓ divides mn,

(ii) λ is even and ℓ divides 2mn,

(iii) λ is even and λm or λn is divisible by ℓ .

Theorem 2.4 (Truszczynski [12]). Let k be a positive integer and let m and n be positive even integers such that $m \ge n$. $K_{m,n}(\lambda)$ has a P_{k+1} decomposition if and only if $m \ge \lceil \frac{k+1}{2} \rceil$, $n \ge \lceil \frac{k}{2} \rceil$ and $\lambda mn \equiv 0 \pmod{k}$.

Lemma 2.5 (Shyu [9]). Let k and n be positive integers such that $k \geq 3$ and $n \geq 2$. Suppose that for $i \in \{1, 2, ..., n\}$, C_i denotes the cycle $(x_{(i,1)}, x_{(i,2)}, ..., x_{(i,k)})$ of length k. If $x_{(1,1)} = x_{(2,1)} = \cdots = x_{(n,1)}$, $x_{(i+1,2)} \notin \{x_{(i,1)}, x_{(i,2)}, ..., x_{(i,k)}\}$ for $i \in \{1, 2, ..., n-1\}$, and $x_{(1,2)} \notin \{x_{(n,1)}, x_{(n,2)}, ..., x_{(n,k)}\}$, then $\bigcup_{i=1}^{n} C_i$ can be decomposed into n paths of length k.

Theorem 2.6 (Shyu [9]). Let n, ℓ and k be positive integers such that n is odd and $n \ge \max\{\ell, k+1\}$. If K_n can be decomposed into p copies of P_{k+1} and q copies of C_{ℓ} for nonnegative integers p and q, then $pk + q\ell = e(K_n)$ and $p \ne 1$.

Theorem 2.7 (Shyu [9]). Let n, ℓ and k be positive integers such that n is even and $n \ge \max\{\ell, k+1\}$. If K_n can be decomposed into p copies of P_{k+1} and q copies of C_{ℓ} for nonnegative integers p and q, then $pk + q\ell = e(K_n)$ and $p \ge \frac{n}{2}$.

In [9], Shyu gave the necessary conditions for a $\{pP_{k+1}, qC_{\ell}\}$ -decomposition of K_n and proved that K_n is fully $\{P_{k+1}, C_k\}$ -decomposable, when k is even, n is odd, $n \geq 5k + 1$ and settled the case k = 4 completely.

In the following theorems, we discuss the necessary conditions for a $\{pP_{k+1}, qC_\ell\}$ -decomposition of $K_n(\lambda)$, when $\lambda \geq 1$.

Theorem 2.8. Let λ , n, k and ℓ be positive integers such that n is odd or n and λ are both even and $n \geq \max\{\ell, k+1\}$. If $K_n(\lambda)$ can be decomposed into p copies of P_{k+1} and q copies of C_{ℓ} for nonnegative integers p and q, then $pk + q\ell = \lambda {n \choose 2}$ and $p \neq 1$.

Proof. Condition $pk + q\ell = \lambda \binom{n}{2}$ is trivial. On the contrary, suppose that p = 1. Let P denote the only path of length k in the decomposition. It follows that the starting and end vertices of P have odd degree $\lambda(n-1) - 1$ in $K_n(\lambda) \setminus P$. Therefore, $K_n(\lambda) \setminus P$ can not be decomposed into cycles. We obtained a contradiction. \Box

Theorem 2.9. Let λ , n, k and ℓ be positive integers such that λ is odd, n is even and $n \geq \max\{\ell, k+1\}$. If $K_n(\lambda)$ can be decomposed into p copies of P_{k+1} and qcopies of C_{ℓ} for nonnegative integers p and q, then $pk + q\ell = \lambda \binom{n}{2}$ and $p \geq \frac{n}{2}$.

Proof. Condition $pk + q\ell = \lambda \binom{n}{2}$ is trivial. Let D be an arbitrary decomposition of $K_n(\lambda)$ into p copies of P_{k+1} and q copies of C_l ; let $P^{(1)}, P^{(2)}, \ldots, P^{(p)}$ denote those p copies of P_{k+1} in D. By assumption,

$$K_n(\lambda) \setminus (P^{(1)} \cup P^{(2)} \cup \ldots \cup P^{(p)})$$

has a C_{ℓ} -decomposition. It follows that each vertex of

 $K_n(\lambda) \setminus (P^{(1)} \cup P^{(2)} \cup \ldots \cup P^{(p)})$

has even degree. Since λ is odd and n is even, each vertex of $K_n(\lambda)$ must be an end vertex of at least one $P^{(i)}(1 \le i \le p)$. It implies that $2p \ge n$.

We prove that the above necessary conditions are sufficient for a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_n(\lambda)$ in Theorem 3.5.

3. MAIN RESULT

In this section, we discuss a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_n(\lambda)$, when $\lambda \geq 1$. Since $K_n(\lambda)$ cannot be decomposed into P_5 and C_6 when $n \leq 5$, we discuss the decompositions for $n \geq 6$.

Remark 3.1: The necessary conditions for the existence of a $\{P_5, C_6\}_{\{p,q\}}$ decomposition in $K_n(\lambda)$ are satisfied when $n \equiv 0, 1 \pmod{4}$ if $\lambda \geq 1$ and $n \equiv 2, 3 \pmod{4}$ if λ is even, i.e., there does not exist nonnegative integers p and q satisfying $4p + 6q = \lambda \binom{n}{2}$ when $n \equiv 2, 3 \pmod{4}$ if λ is odd.

In the following lemma, we discuss a $\{P_5, C_6\}_{\{p,q\}}$ -decompositions of $K_{4,6}$, which we use further to decompose $K_n(\lambda)$ into $\{pP_5, qC_6\}$.

Lemma 3.2. If p and q are nonnegative integers such that 4p + 6q = 24, then $K_{4,6}$ is fully $\{P_5, C_6\}$ -decomposable.

Proof. $(p,q) \in \{(0,4), (3,2), (6,0)\}$. By Theorem 2.3, $K_{4,6}$ is $\{0P_5, 4C_6\}$ -decomposable. The graph $K_{4,6}$ can be decomposed into

$$3P_5: (x_1x_6x_4x_5x_3), (x_3x_{10}x_1x_8x_4), (x_4x_7x_2x_9x_1)$$

and

$$2C_6: (x_1, x_5, x_2, x_6, x_3, x_7), (x_2, x_8, x_3, x_9, x_4, x_{10}).$$

By Theorem 2.4, $K_{4,6}$ is $\{6P_5, 0C_6\}$ -decomposable. Therefore $K_{4,6}$ is fully $\{P_5, C_6\}$ -decomposable.

Remark 3.3: The graph $K_{4,4}(3)$ can be decomposed into

$$\begin{aligned} &8C_6: \quad (x_1, x_5, x_2, x_6, x_3, x_7), (x_1, x_6, x_4, x_8, x_3, x_5), (x_1, x_8, x_2, x_7, x_4, x_5), \\ &\quad (x_2, x_5, x_4, x_6, x_3, x_8), (x_1, x_6, x_2, x_5, x_3, x_7), (x_1, x_6, x_2, x_7, x_4, x_8), \\ &\quad (x_1, x_7, x_3, x_6, x_4, x_8), (x_2, x_8, x_3, x_5, x_4, x_7). \end{aligned}$$

Thus $K_{4,4}(3)$ is $\{0P_5, 8C_6\}$ -decomposable.

Based on Lemma 2.5, we have the following remark.

Remark 3.4: Let $C_6^1 = (x_1, x_2, x_3, x_4, x_5, x_6)$ and $C_6^2 = (y_1, y_2, y_3, y_4, y_5, y_6)$. If $x_1 = y_1, x_6 \notin \{y_3, y_4\}, x_2 \notin V(C_6^2)$ and $y_2 \notin V(C_6^1)$, then $C_6^1 \cup C_6^2$ can be decomposed into 3 copies of

 $P_5: (x_2x_3x_4x_5x_6), (x_6x_1y_2y_3y_4), (y_4y_5y_6y_1x_2).$

We now prove our main result.

Theorem 3.5. For any nonnegative integers p and q and any integer $n \ge 6$, there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_n(\lambda)$ if and only if $4p + 6q = \lambda \binom{n}{2}$, (i) $p \ge \frac{n}{2}$, if λ is odd and n is even, (ii) $p \ne 1$ otherwise. *Proof.* The necessary part follows from Theorem 2.8 and 2.9. From remark 3.1, we have $n \equiv 0, 1 \pmod{4}$ if $\lambda \geq 1$ and $n \equiv 2, 3 \pmod{4}$ if λ is even. First we prove the result for $6 \leq n \leq 17$, next we generalise it for any n > 17 by applying mathematical induction. As we discuss $\{pP_5, qC_6\}$ -decompositions of $K_n(\lambda)$ for all possible choices of p and q, we have the following cases: CASE 1: n = 6.

If $\lambda = 2$, then $(p,q) \in \{(0,5), (3,3), (6,1)\}$. By Theorem 2.1, $K_6(2)$ is $\{0P_5, 5C_6\}$ -decomposable. The graph $K_6(2)$ can be decomposed into

$$3P_5: (x_1x_6x_3x_2x_4), (x_6x_3x_4x_5x_1), (x_6x_5x_1x_2x_4)$$

and

$$3C_6: C^1 = C^2 = (x_1, x_3, x_5, x_2, x_6, x_4), C^3 = (x_1, x_2, x_3, x_4, x_5, x_6).$$

The above $3P_5$ in $K_6(2)$ along with $(x_1x_3x_5x_2x_6), (x_1x_6x_4x_3x_2)$ and $(x_6x_5x_4x_1x_2)$ (Since $C^1 \cup C^3$ can be decomposed into $3P_5$), and a C^2 , we get the required $\{6P_5, 1C_6\}$ -decomposition.

If $\lambda = 4$, then $(p, q) \in \{(0, 10), (3, 8), (6, 6), (9, 4), (12, 2), (15, 0)\}$. We write

$$K_{6}(4) = K_{6}(2) + K_{6}(2) = \{(0,5), (3,3), (6,1)\} + \{(0,5), (3,3), (6,1)\}$$
$$= \{(0,10), (3,8), (6,6), (9,4), (12,2)\}.$$

By Theorem 2.2, $K_6(4)$ is $\{15P_5, 0C_6\}$ -decomposable.

If $\lambda \geq 6$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{4}$. We write $K_6(\lambda) = \frac{\lambda}{4}K_6(4)$. $\lambda \equiv 2 \pmod{4}$. We write $K_6(\lambda) = K_6(\lambda - 2) + K_6(2) = \frac{\lambda - 2}{4}K_6(4) + K_6(2)$. Therefore $K_6(\lambda)$ is fully $\{P_5, C_6\}$ -decomposable. CASE 2: n = 7.

If $\lambda = 2$, the graph $K_7(2)$ can be decomposed into

$$\begin{aligned} & C_6 : C^1 = (x_1, x_2, x_4, x_7, x_6, x_5), C^2 = (x_1, x_3, x_7, x_4, x_5, x_6), \\ & C^3 = (x_2, x_4, x_1, x_7, x_6, x_3), C^4 = (x_2, x_5, x_7, x_1, x_3, x_6), \\ & C^5 = (x_4, x_6, x_2, x_7, x_3, x_5), C^6 = (x_4, x_1, x_2, x_7, x_5, x_3), \\ & C^7 = (x_1, x_5, x_2, x_3, x_4, x_6). \end{aligned}$$

By applying remark 3.4 to $C^1 \cup C^2$, $C^3 \cup C^4$, $C^5 \cup C^6$, we get all the possible decompositions.

If $\lambda = 4$, then $(p,q) \in \{(0,14), (3,12), (6,10), \dots, (21,0)\}$ (we see that the values of p increases by 3 and the values of q decreases by 2). By Theorem 2.2, $K_7(4)$ is $\{21P_5, 0C_6\}$ -decomposable. By taking $K_7(4) = 2K_7(2)$, we get all the above possible decompositions.

If $\lambda \geq 6$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{4}$. We write $K_7(\lambda) = \frac{\lambda}{4} K_7(4)$.

 $\lambda \equiv 2 \pmod{4}$. We write $K_7(\lambda) = K_7(\lambda - 2) + K_7(2) = \frac{\lambda - 2}{4}K_7(4) + K_7(2)$. CASE 3: n = 8.

If $\lambda = 1$, then $(p,q) \in \{(4,2), (7,0)\}$. By Theorem 2.2, K_8 is $\{7P_5, 0C_6\}$ -decomposable. The graph K_8 can be decomposed into

 $4P_5:(x_3x_1x_8x_2x_6),(x_4x_2x_7x_1x_5),(x_8x_6x_4x_5x_2),(x_1x_6x_3x_5x_7)$

and

$$2C_6: (x_1, x_2, x_3, x_8, x_7, x_4), (x_3, x_4, x_8, x_5, x_6, x_7).$$

If $\lambda = 2$, then $(p,q) \in \{(2,8), (5,6), (8,4), \dots, (14,0)\}$. The graph $K_8(2)$ can be decomposed into

$$2P_5:(x_1x_7x_5x_6x_3),(x_1x_5x_8x_4x_3)$$

and

$$8C_6: C^1 = (x_1, x_7, x_4, x_2, x_3, x_6), C^2 = (x_1, x_3, x_8, x_5, x_4, x_2),$$

$$C^3 = (x_1, x_3, x_8, x_4, x_7, x_5), C^4 = (x_1, x_2, x_3, x_4, x_5, x_6),$$

$$C^5 = C^6 = (x_8, x_6, x_7, x_3, x_5, x_2), C^7 = C^8 = (x_1, x_8, x_7, x_2, x_6, x_4).$$

The above $2P_5$ in $K_8(2)$ along with $(x_7x_1x_3x_2x_4), (x_7x_4x_5x_8x_3)$ and $(x_4x_2x_1x_6x_3)$ (Since $C^1 \cup C^2$ can be decomposed into $3P_5$), and C^3 , C^4 , C^5 , C^6 , C^7 , C^8 , we get the required $\{5P_5, 6C_6\}$ -decomposition. By taking $K_8(2) = 2K_8$, we get all the other possible decompositions.

If $\lambda = 3$, then $(p,q) \in \{(6,10), (9,8), (12,6), \dots, (21,0)\}$. By taking $K_8(3) =$ $K_8(2) + K_8$, we get all the above possible decompositions.

If $\lambda = 4$, then $(p,q) \in \{(4,16), (7,14), (10,12), \dots, (28,0)\}$. By taking $K_8(4) =$ $2K_8(2)$, we get all the above possible decompositions.

If $\lambda = 5$, then $(p,q) \in \{(5,20), (8,18), (11,16), \dots, (35,0)\}$. The graph $K_8(5)$ can be decomposed into

$$5P_5:(x_8x_5x_4x_6x_2),(x_5x_8x_4x_3x_6),(x_2x_4x_3x_7x_1),(x_4x_2x_3x_1x_7),(x_3x_7x_1x_6x_2)$$

and

$$\begin{aligned} 20C_6 :& (x_3, x_4, x_5, x_8, x_2, x_6), (x_8, x_5, x_6, x_2, x_3, x_4), \\ & (x_1, x_7, x_2, x_6, x_4, x_3), (x_8, x_5, x_6, x_1, x_7, x_2), \\ & 3 \text{ copies of } (x_8, x_2, x_7, x_3, x_6, x_4), (x_1, x_3, x_2, x_4, x_5, x_6), \\ & 5 \text{ copies of } (x_8, x_3, x_5, x_1, x_4, x_7), (x_8, x_6, x_7, x_5, x_2, x_1). \end{aligned}$$

By taking $K_8(5) = K_8(3) + K_8(2)$, we get all the other possible decompositions. If $\lambda = 6$, then $(p,q) \in \{(0,28), (3,26), (6,24), \dots, (42,0)\}$. By Theorem 2.1, $K_8(6)$ is $\{0P_5, 28C_6\}$ -decomposable. The graph $K_8(6)$ can be decomposed into

 $3P_5: (x_4x_6x_8x_7x_3), (x_8x_2x_7x_6x_4), (x_8x_2x_4x_7x_3)$

and

$$\begin{array}{l} 26C_6: (x_1,x_5,x_6,x_4,x_7,x_3), (x_1,x_5,x_7,x_3,x_8,x_2), \\ (x_8,x_2,x_5,x_1,x_6,x_4), (x_1,x_5,x_4,x_6,x_3,x_7), \\ (x_1,x_5,x_3,x_4,x_2,x_8), (x_6,x_4,x_1,x_5,x_8,x_2), \\ (x_1,x_2,x_3,x_7,x_8,x_6), 5 \text{ copies of } (x_2,x_6,x_7,x_5,x_8,x_3), \\ (x_1,x_3,x_6,x_5,x_4,x_8), (x_1,x_4,x_3,x_5,x_2,x_7), \\ 4 \text{ copies of } (x_1,x_2,x_4,x_7,x_8,x_6). \end{array}$$

By taking $K_8(6) = K_8(4) + K_8(2)$, we get all the other possible decompositions. If $\lambda \geq 7$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{6}$. We write $K_8(\lambda) = \frac{\lambda}{6}K_8(6)$.

- $$\begin{split} \lambda &\equiv 1 \pmod{6}. \text{ We write } K_8(\lambda) = \overset{0}{K_8}(\lambda 1) + K_8 = \frac{\lambda 1}{6}K_8(6) + K_8.\\ \lambda &\equiv 2 \pmod{6}. \text{ We write } K_8(\lambda) = K_8(\lambda 2) + K_8(2) = \frac{\lambda 2}{6}K_8(6) + K_8(2).\\ \lambda &\equiv 3 \pmod{6}. \text{ We write } K_8(\lambda) = K_8(\lambda 3) + K_8(3) = \frac{\lambda 3}{6}K_8(6) + K_8(3). \end{split}$$

 $\lambda \equiv 4 \pmod{6}$. We write $K_8(\lambda) = K_8(\lambda - 4) + K_8(4) = \frac{\lambda - 4}{6}K_8(6) + K_8(4)$. $\lambda \equiv 5 \pmod{6}$. We write $K_8(\lambda) = K_8(\lambda - 5) + K_8(5) = \frac{\lambda - 5}{6}K_8(6) + K_8(5)$. CASE 4: n = 9.

The graph K_9 can be decomposed into

$$6C_6: C^1 = (x_1, x_9, x_4, x_7, x_8, x_5), C^2 = (x_1, x_2, x_3, x_4, x_6, x_8),$$

$$C^3 = (x_9, x_2, x_6, x_3, x_7, x_5), C^4 = (x_9, x_8, x_3, x_1, x_7, x_6),$$

$$C^5 = (x_5, x_6, x_1, x_4, x_8, x_2), C^6 = (x_5, x_3, x_9, x_7, x_2, x_4).$$

By applying remark 3.4 to $C^1 \cup C^2$, $C^3 \cup C^4$, $C^5 \cup C^6$, we get all the possible decompositions. If $\lambda \geq 2$, by taking $K_9(\lambda) = \lambda K_9$, we get all the possible decompositions. CASE 5: n = 10.

If $\lambda = 2$, then $(p,q) \in \{(0,15), (3,13), (6,11), \dots, (21,1)\}$. By Theorem 2.1, $K_{10}(2)$ is $\{0P_5, 15C_6\}$ -decomposable. We write $K_{10}(2) = K_{10}(2) \setminus K_6(2) + K_6(2)$. The graph $K_{10}(2) \setminus K_6(2)$ can be decomposed into

$$3P_5:(x_8x_7x_5x_{10}x_9),(x_9x_{10}x_2x_7x_5),(x_8x_7x_2x_{10}x_5)$$

and

$$8C_6: C^1 = (x_{10}, x_4, x_8, x_9, x_7, x_6), C^2 = (x_{10}, x_1, x_9, x_2, x_8, x_3),$$

$$C^3 = (x_{10}, x_4, x_8, x_9, x_7, x_6), C^4 = (x_{10}, x_1, x_9, x_2, x_8, x_3),$$

$$C^5 = (x_7, x_4, x_9, x_5, x_8, x_{10}), C^6 = (x_7, x_1, x_8, x_6, x_9, x_3),$$

$$C^7 = (x_7, x_{10}, x_8, x_5, x_9, x_4), C^8 = (x_7, x_3, x_9, x_6, x_8, x_1).$$

By applying remark 3.4 to $C^1 \cup C^2$, $C^3 \cup C^4$, $C^5 \cup C^6$, $C^7 \cup C^8$ we get the decompositions $(p,q) \in \{(6,6), (9,4), (12,2), (15,0)\}$ in $K_{10}(2) \setminus K_6(2)$. By combining these copies of P_5 and C_6 along with the copies of P_5 and C_6 in $K_6(2)$, we get all the above possible decompositions.

If $\lambda = 4$, then $(p,q) \in \{(0,30), (3,28), (6,26), \dots, (45,0)\}$. By Theorem 2.2, $K_{10}(4)$ is $\{45P_5, 0C_6\}$ -decomposable. By taking $K_{10}(4) = 2K_{10}(2)$, we get all the other possible decompositions.

If $\lambda \geq 6$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{4}$. We write $K_{10}(\lambda) = \frac{\lambda}{4} K_{10}(4)$.

 $\lambda \equiv 2 \pmod{4}$. We write $K_{10}(\lambda) = K_{10}(\lambda - 2) + K_{10}(2) = \frac{\lambda - 2}{4}K_{10}(4) + K_{10}(2)$. CASE 6: n = 11.

If $\lambda = 2$, then $(p,q) \in \{(2,17), (5,15), (8,13), \dots, (26,1)\}$. We write $K_{11}(2) = K_{11}(2) \setminus K_7(2) + K_7(2)$. The graph $K_{11}(2) \setminus K_7(2)$ can be decomposed into

$$2P_5: (x_{11}x_2x_{10}x_9x_8), (x_8x_6x_{10}x_1x_{11})$$

and

$$10C_6: C^1 = (x_{10}, x_3, x_9, x_2, x_8, x_6), C^2 = (x_{10}, x_9, x_8, x_3, x_{11}, x_7),$$

$$C^3 = (x_{11}, x_1, x_{10}, x_2, x_9, x_3), C^4 = (x_8, x_3, x_{10}, x_7, x_{11}, x_2),$$

$$C^5 = C^6 = (x_8, x_5, x_{11}, x_6, x_9, x_4), C^7 = C^8 = (x_{10}, x_4, x_{11}, x_9, x_1, x_8),$$

$$C^9 = C^{10} = (x_{11}, x_{10}, x_5, x_9, x_7, x_8).$$

The above $2P_5$ in $K_{11}(2)\setminus K_7(2)$ along with

 $\begin{aligned} & (x_{10}x_5x_9x_7x_8), (x_8x_{11}x_{10}x_3x_9), (x_{10}x_6x_8x_2x_9), \\ & (x_8x_3x_{10}x_1x_{11}), (x_{10}x_2x_9x_3x_{11}), (x_{10}x_7x_{11}x_2x_8), \\ & (x_{11}x_5x_8x_4x_9), (x_{10}x_8x_1x_9x_{11}), (x_9x_6x_{11}x_4x_{10}), \\ & (x_{10}x_4x_{11}x_5x_8), (x_{10}x_8x_1x_9x_{11}), (x_{11}x_6x_9x_4x_8), \\ & (x_{11}x_7x_{10}x_9x_8), (x_8x_{11}x_{10}x_5x_9) \text{ and } (x_{11}x_3x_8x_7x_9) \end{aligned}$

(Since $C^1 \cup C^9$, $C^3 \cup C^4$, $C^5 \cup C^7$, $C^6 \cup C^8$, $C^2 \cup C^{10}$ can be decomposed into $15P_5$), we get a $\{17P_5, 0C_6\}$ -decomposition in $K_{11}(2)\setminus K_7(2)$. The above $2P_5$, $3P_5$ obtained from $C^1 \cup C^9$ in $K_{11}(2)\setminus K_7(2)$ and C^2 , C^3 , C^4 , C^5 , C^6 , C^7 , C^8 , C^{10} we get a $\{5P_5, 8C_6\}$ -decomposition in $K_{11}(2)\setminus K_7(2)$. By combining these copies of P_5 and C_6 along with the copies of P_5 and C_6 in $K_7(2)$, we get all the above possible decompositions.

If $\lambda = 4$, then $(p,q) \in \{(4,34), (7,32), (10,30), \dots, (55,0)\}$. By Theorem 2.2, $K_{11}(4)$ is $\{55P_5, 0C_6\}$ -decomposable. By taking $K_{11}(4) = 2K_{11}(2)$, we get all the above possible decompositions.

If $\lambda = 6$, then $(p,q) \in \{(0,53), (3,53), (6,51), \dots, (81,1)\}$. By Theorem 2.3, $K_{5,5}(6)$ is $\{0P_5, 25C_6\}$ -decomposable. By taking $K_{11}(6) = 2K_6(6) + K_{5,5}(6)$, we get the decomposition (p,q) = (3,53). By taking $K_{11}(6) = K_{11}(4) + K_{11}(2)$, we get all the other possible decompositions.

If $\lambda = 8$, then $(p,q) \in \{(2,72), (5,70), (8,68), \dots, (110,0)\}$. By Theorem 2.2, $K_{11}(8)$ is $\{110P_5, 0C_6\}$ -decomposable. By taking $K_{11}(8) = K_{11}(6) + K_{11}(2)$, we get all the above possible decompositions.

If $\lambda = 10$, then $(p,q) \in \{(4,89), (7,87), (10,85), \dots, (136,1)\}$. By taking $K_{11}(10) = K_{11}(6) + K_{11}(4)$, we get all the above possible decompositions.

If $\lambda = 12$, then $(p,q) \in \{(0,110), (3,108), (6,106), \dots, (165,0)\}$. By Theorem 2.2, $K_{11}(12)$ is $\{165P_5, 0C_6\}$ -decomposable. By taking $K_{11}(12) = 2K_{11}(6)$, we get all the above possible decompositions.

If $\lambda \geq 14$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{12}$. We write $K_{11}(\lambda) = \frac{\lambda}{12} K_{11}(12)$.

a **D** (

$$\begin{split} \lambda &\equiv 2 \pmod{12}, \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-2) + K_{11}(2) = \frac{\lambda-2}{12}K_{11}(12) + K_{11}(2), \\ \lambda &\equiv 4 \pmod{12}. \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-4) + K_{11}(4) = \frac{\lambda-4}{12}K_{11}(12) + K_{11}(4), \\ \lambda &\equiv 6 \pmod{12}. \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-6) + K_{11}(6) = \frac{\lambda-6}{12}K_{11}(12) + K_{11}(6), \\ \lambda &\equiv 8 \pmod{12}. \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-8) + K_{11}(8) = \frac{\lambda-8}{12}K_{11}(12) + K_{11}(6), \\ \lambda &\equiv 10 \pmod{12}. \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-10) + K_{11}(10) = \frac{\lambda-10}{12}K_{11}(12) + K_{11}(12) + K_{11}(12), \\ \lambda &\equiv 10 \pmod{12}. \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-10) + K_{11}(10) = \frac{\lambda-10}{12}K_{11}(12) + K_{11}(12) + K_{11}(12) + K_{11}(12), \\ \lambda &\equiv 10 \pmod{12}. \text{ We write } K_{11}(\lambda) = K_{11}(\lambda-10) + K_{11}(10) = \frac{\lambda-10}{12}K_{11}(12) + K_{11}(12) + K$$

CASE 7: n = 12.

If $\lambda = 1$, then $(p,q) \in \{(6,7), (9,5), (12,3), (15,1)\}$. We write $K_{12} = (K_{12} \setminus K_9) + K_9$. The graph $K_{12} \setminus K_9$ can be decomposed into

$$\begin{aligned} 6P_5 :& (x_6x_{10}x_5x_{11}x_3), (x_{12}x_{10}x_4x_{11}x_8), \\ & (x_5x_{12}x_6x_{11}x_9), (x_4x_{12}x_7x_{11}x_{10}), \\ & (x_2x_{12}x_9x_{10}x_1), (x_{11}x_{12}x_8x_{10}x_7) \end{aligned}$$

and a

$$C_6: (x_{12}, x_1, x_{11}, x_2, x_{10}, x_3)$$

By combining these copies of P_5 and C_6 along with the copies of P_5 and C_6 in K_9 , we get all the above possible decompositions.

If $\lambda = 2$, then $(p,q) \in \{(0,22), (3,20), (6,18), \dots, (33,0)\}$. By Theorem 2.2, $K_{12}(2)$ is $\{33P_5, 0C_6\}$ -decomposable. By Theorems 2.3 and 2.4 $K_{6,6}$ is $\{\{0P_5, 6C_6\}, \{9P_5, 0C_6\}\}$ -decomposable. By taking $K_{12}(2) = 2K_6(2) + 2K_{6,6}$, we

get all the above possible decompositions. If $\lambda \geq 3$, then the proof is divided into the following cases.

- K = 0 (read 2). We write $K_{-}(1) = \lambda K_{-}(2)$
- $\lambda \equiv 0 \pmod{2}$. We write $K_{12}(\lambda) = \frac{\lambda}{2} K_{12}(2)$.

 $\lambda \equiv 1 \pmod{2}$. We write $K_{12}(\lambda) = K_{12}(\lambda - 1) + K_{12} = \frac{\lambda - 1}{2}K_{12}(2) + K_{12}$. CASE 8: n = 13.

If $\lambda = 1$, then $(p,q) \in \{(0,13), (3,11), (6,9), \dots, (18,1)\}$. We write $K_{13} = (K_{13} \setminus K_9) + K_9$. The graph $K_{13} \setminus K_9$ can be decomposed into

$$7C_6: C^1 = (x_{13}, x_7, x_{10}, x_8, x_{11}, x_3), C^2 = (x_{13}, x_4, x_{10}, x_5, x_{12}, x_6),$$

$$C^3 = (x_{11}, x_7, x_{12}, x_8, x_{13}, x_9), C^4 = (x_{11}, x_5, x_{13}, x_2, x_{10}, x_{12}),$$

$$C^5 = (x_{11}, x_4, x_{12}, x_3, x_{10}, x_6), C^6 = (x_{11}, x_1, x_{10}, x_9, x_{12}, x_{13}),$$

$$C^7 = (x_{13}, x_1, x_{12}, x_2, x_{11}, x_{10}).$$

By applying remark 3.4 to $C^1 \cup C^2$, $C^3 \cup C^4$, $C^5 \cup C^6$, we get the decompositions $(p,q) \in \{(0,7), (3,5), (6,3), (9,1)\}$ in $K_{13} \setminus K_9$. By combining these copies of P_5 and C_6 along with the copies of P_5 and C_6 in K_9 , we get all the above possible decompositions.

If $\lambda = 2$, then $(p,q) \in \{(0,26), (3,24), (6,22), \dots, (39,0)\}$. By Theorem 2.2, $K_{13}(2)$ is $\{39P_5, 0C_6\}$ -decomposable. By taking $K_{13}(2) = 2K_{13}$, we get all the above possible decompositions.

If $\lambda \geq 3$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{2}$. We write $K_{13}(\lambda) = \frac{\lambda}{2} K_{13}(2)$.

 $\lambda \equiv 1 \pmod{2}$. We write $K_{13}(\lambda) = K_{13}(\lambda - 1) + K_{13} = \frac{\lambda - 1}{2}K_{13}(2) + K_{13}$. CASE 9: n = 14.

By taking $K_{14}(\lambda) = K_8(\lambda) + K_6(\lambda) + 2\lambda K_{4,6}$, we get all the possible decompositions.

CASE 10: n = 15.

By taking $K_{15}(\lambda) = K_9(\lambda) + K_7(\lambda) + 2\lambda K_{4,6}$, we get all the possible decompositions.

CASE 11: n = 16.

If $\lambda = 1$, then $(p,q) \in \{(9,14), (12,12), (15,10), \dots, (30,0)\}$. We write $K_{16} = (K_{16} \setminus K_{13}) + K_{13}$. The graph $K_{16} \setminus K_{13}$ can be decomposed into

$$\begin{array}{l}9P_5:(x_{11}x_{14}x_{2}x_{15}x_{13}),(x_{15}x_{1}x_{16}x_{5}x_{14}),(x_{4}x_{16}x_{12}x_{14}x_{6}),\\(x_{11}x_{16}x_{9}x_{14}x_{7}),(x_{5}x_{15}x_{7}x_{16}x_{10}),(x_{1}x_{14}x_{16}x_{15}x_{12}),\\(x_{11}x_{15}x_{14}x_{13}x_{16}),(x_{2}x_{16}x_{8}x_{15}x_{9}),(x_{3}x_{15}x_{10}x_{14}x_{8})\end{array}$$

and a

$$C_6: (x_{16}, x_3, x_{14}, x_4, x_{15}, x_6).$$

By Theorem 2.1, K_{13} is $\{0P_5, 13C_6\}$ -decomposable. We have, $K_{16} = (K_{16} \setminus K_{13}) + K_{13} = \{(9, 1)\} + \{(0, 13)\} = \{(9, 14)\}$. The graph $K_{2,8}$ is $\{4P_5, 0C_6\}$ -decomposable. By taking $K_{16} = 2K_8 + 2K_{6,4} + K_{2,8}$, we get all the other possible decompositions. If $\lambda = 2$, then $(p,q) \in \{(0,40), (3,38), (6,36), \dots, (60,0)\}$. By Theorem 2.2, $K_{16}(2)$ is $\{60P_5, 0C_6\}$ -decomposable. By Theorems 2.3 and 2.4, $K_{6,6}(2)$ is $\{\{0P_5, 12C_6\}, \{18P_5, 0C_6\}\}$ -decomposable. By taking $K_{16}(2) = K_{10}(2) + K_6(2) + K_{6,6}(2) + 2K_{4,6}$, we get all the above possible decompositions.

If $\lambda \geq 3$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{2}$. We write $K_{16}(\lambda) = \frac{\lambda}{2} K_{16}(2)$.

 $\lambda \equiv 1 \pmod{2}$. We write $K_{16}(\lambda) = \tilde{K}_{16}(\lambda - 1) + K_{16} = \frac{\lambda - 1}{2}K_{16}(2) + K_{16}$. CASE 12: n = 17.

If $\lambda = 1$, then $(p,q) \in \{(4,20), (7,18), (10,16), \dots, (34,0)\}$. The graph $K_{2,8}$ is $\{4P_5, 0C_6\}$ -decomposable. By taking $K_{17} = 2K_9 + 2K_{6,4} + K_{2,8}$, we get all the above possible decompositions.

If $\lambda = 2$, then $(p,q) \in \{(2,44), (5,42), (8,40), \dots, (68,0)\}$. By Theorem 2.2, $K_{17}(2)$ is $\{68P_5, 0C_6\}$ -decomposable. By Theorems 2.3 and 2.4, $K_{6,6}(2)$ is

 $\{\{0P_5, 12C_6\}, \{18P_5, 0C_6\}\}$ -decomposable. By taking $K_{17}(2) = K_{11}(2) + K_7(2) + K_{6,6}(2) + 2K_{4,6}$, we get all the above possible decompositions.

If $\lambda = 3$, then $(p,q) \in \{(0,68), (3,66), (6,64), \dots, (102,0)\}$. By Theorem 2.1, $K_{17}(3)$ is $\{0P_5, 68C_6\}$ -decomposable. By taking $K_{17}(3) = 2K_9(3) + 4K_{4,4}(3)$, we get the decomposition when (p,q) = (3,66) and by taking $K_{17}(3) = K_{17}(2) + K_{17}$, we get all the other possible decompositions.

If $\lambda \geq 4$, then the proof is divided into the following cases.

 $\lambda \equiv 0 \pmod{3}$. We write $K_{17}(\lambda) = \frac{\lambda}{3} K_{17}(3)$.

 $\lambda \equiv 1 \pmod{3}$. We write $K_{17}(\lambda) = K_{17}(\lambda - 1) + K_{17} = \frac{\lambda - 1}{3}K_{17}(3) + K_{17}$.

 $\lambda \equiv 2 \pmod{3}$. We write $K_{17}(\lambda) = K_{17}(\lambda - 2) + K_{17}(2) = \frac{\lambda - 2}{3}K_{17}(3) + K_{17}(2)$.

Now we prove the result for n > 17. We apply mathematical induction on n and split the proof into four cases as follows:

 $n \equiv 0 \pmod{4}$. Let n = 4r, where $r \geq 2$. If $2 \leq r \leq 4$, the result follows from Cases 3, 7 and 11. Now for some t > 4 we assume that there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4r}(\lambda)$ for all r where $2 \leq r < t$. Next, we write

$$K_{4t}(\lambda) = K_{4(t-3)}(\lambda) + K_{12}(\lambda) + K_{4(t-3),12}(\lambda)$$

= $K_{4(t-3)}(\lambda) + K_{12}(\lambda) + (t-3)K_{4,12}(\lambda)$
= $K_{4(t-3)}(\lambda) + K_{12}(\lambda) + (2t-6)\lambda K_{4,6}.$

By the induction hypothesis, there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4(t-3)}(\lambda)$, and by case 7 and by Lemma 3.2 there exist $\{P_5, C_6\}_{\{p,q\}}$ -decompositions of $K_{12}(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4t}(\lambda)$ exists.

 $n \equiv 1 \pmod{4}$. Let n = 4r + 1, where $r \geq 2$. If $2 \leq r \leq 4$, the result follows from cases 4, 8 and 12. Now for some t > 4 we assume that there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4r+1}(\lambda)$ for all r where $2 \leq r < t$. Next, we write

$$K_{4t+1}(\lambda) = K_{4(t-3)+1}(\lambda) + K_{13}(\lambda) + K_{4(t-3),12}(\lambda)$$

= $K_{4(t-3)+1}(\lambda) + K_{13}(\lambda) + (t-3)K_{4,12}(\lambda)$
= $K_{4(t-3)+1}(\lambda) + K_{13}(\lambda) + (2t-6)\lambda K_{4,6}.$

By the induction hypothesis, there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4(t-3)+1}(\lambda)$, and by case 8 and by Lemma 3.2 there exist $\{P_5, C_6\}_{\{p,q\}}$ -decompositions of $K_{13}(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4t+1}(\lambda)$ exists.

 $n \equiv 2 \pmod{4}$. Let n = 4r + 2, where $r \geq 1$. If $1 \leq r \leq 3$, the result follows from cases 1, 5 and 9. Now for some t > 3 we assume that there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4r+2}(\lambda)$ for all r where $1 \leq r < t$. Next, we write

$$K_{4t+2}(\lambda) = K_{4(t-1)}(\lambda) + K_6(\lambda) + K_{4(t-1),6}(\lambda)$$

= $K_{4(t-1)}(\lambda) + K_6(\lambda) + (t-1)\lambda K_{4,6}.$

By the induction hypothesis, there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4(t-1)}(\lambda)$, and by case 1 and by Lemma 3.2 there exist $\{P_5, C_6\}_{\{p,q\}}$ -decompositions of $K_6(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4t+2}(\lambda)$ exists.

 $n \equiv 3 \pmod{4}$. Let n = 4r + 3, where $r \geq 1$. If $1 \leq r \leq 3$, the result follows from cases 2, 6 and 10. Now for some t > 3 we assume that there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4r+3}(\lambda)$ for all r where $1 \leq r < t$. Next, we write

$$K_{4t+3}(\lambda) = K_{4(t-1)+1}(\lambda) + K_7(\lambda) + K_{4(t-1),6}(\lambda)$$

= $K_{4(t-1)+1}(\lambda) + K_7(\lambda) + (t-1)\lambda K_{4,6}.$

By the induction hypothesis, there exists a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4(t-1)+1}(\lambda)$, and by case 2 and by Lemma 3.2 there exist $\{P_5, C_6\}_{\{p,q\}}$ -decompositions of $K_7(\lambda)$ and $K_{4,6}$, respectively. Therefore a $\{P_5, C_6\}_{\{p,q\}}$ -decomposition of $K_{4t+3}(\lambda)$ exists, and the result follows by mathematical induction.

Acknowledgments

The authors thank the anonymous referee for the helpful remarks and suggestions. The second author thanks the University Grants Commission, New Delhi for its financial support (NO. F. MRP-6292/15(SERO/UGC)).

References

- D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Cycle decompositions of complete multigraphs, J. Combin. Des., 19 (2011) 42–69.
- J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan Press, London, (1976).
- H.-C. Lee, Decomposition of the complete bipartite multigraph into cycles and stars, Discrete Math., 338 (2015) 1362–1369.
- M. Ilayaraja and A. Muthusamy, {pP₄, qC₄}-Decomposition of complete graphs, Indian J. Discrete Math., vol.4 (2), (2018) 13–33.
- 5. S. Jeevadoss and A. Muthusamy, *Decomposition of complete bipartite graphs into paths and cycles*, Discrete Math., **331** (2014) 98–108.
- 6. H. M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multifactorization of λK_m , J. Combin. Math. Combin. Comput. **69** (2009) 145–150.
- 7. D. G. Sarvate and L. Zhang, Decomposition of a λK_v into equal number of K_3^s and P_3^s , Bull. Inst. Combin. Appl., **67** (2013) 43–48.
- T. W. Shyu, Decompositions of complete bipartite graphs and complete graphs into paths, stars and cycles with four edges each, Discuss. Math. Graph Theory 41 (2021) 451–468.
- 9. —, Decompositions of complete graphs into paths and cycles, Ars Combin., **97** (2010) 257–270.
- 10. —, Decomposition of complete graphs into paths of length three and triangles, Ars Combin., **107** (2012) 209–224.

- 11. M. Tarsi, Decomposition of complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser A, **34** (1983) 60–70.
- 12. M. Truszczynski, Note on the decomposition of $\lambda K_{m,n}(\lambda K_{m,n}^*)$ into paths, Discrete Math., 55 (1985), 89–96.

DEPARTMENT OF MATHEMATICS, A.V.V.M. SRI PUSHPAM COLLEGE (AFFILIATED TO BHARATHIDASAN UNIVERSITY), POONDI, THANJAVUR, TAMIL NADU, INDIA. *E-mail address:* chinnavedi571991@gmail.com.

DEPARTMENT OF MATHEMATICS, A.V.V.M. SRI PUSHPAM COLLEGE (AFFILIATED TO BHARATHIDASAN UNIVERSITY), POONDI, THANJAVUR, TAMIL NADU, INDIA. *E-mail address:* jaisangmaths@yahoo.com

12