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Kn(λ) IS FULLY {P5, C6}-DECOMPOSABLE

R. CHINNAVEDI AND R. SANGEETHA

Abstract. Let Pk+1 denote a path of length k, Cℓ denote a cycle of
length ℓ, and Kn(λ) denote the complete multigraph on n vertices in
which every edge is taken λ times. In this paper, we have obtained
the necessary conditions for a {Pk+1, Cℓ}-decomposition of Kn(λ) and
proved that the necessary conditions are also sufficient when k = 4 and
ℓ = 6.

1. Introduction

All graphs considered here are finite and undirected with no loops. For the
standard graph-theoretic terminology the reader is referred to [2]. A simple
graph in which each pair of distinct vertices is joined by an edge is called a
complete graph. A complete graph on n vertices is denoted by Kn. If more
than one edge joining two vertices are allowed, the resulting object is called
a multigraph. Let Kn(λ) denotes the complete multigraph on n vertices and
in which every edge is taken λ times. A complete bipartite graph is a simple
bipartite graph with bipartition (X,Y ) in which each vertex ofX is joined to
each vertex of Y ; if |X| = m and |Y | = n, such a graph is denoted by Km,n.
In Km,n(λ), we label the vertices in the partite set X as {x1, x2, . . . , xm}
and Y as {xm+1, xm+2, . . . , xm+n}. A cycle is a closed trail with no repeated
vertex other than the first and last vertex. A cycle with ℓ edges is denoted
by Cℓ. A path is an open trail with no repeated vertex. A path with k edges
is denoted by Pk+1. The complete bipartite graph K1,m is called a star and
is denoted by Sm. For m ≥ 3, the vertex of degree m in Sm is called the
center and any vertex of degree 1 in Sm is called an end vertex.

Let G be a graph and G1 be a subgraph of G. Then G\G1 is obtained
from G by deleting the edges of G1. Let G1 and G2 be subgraphs of G. The
union G1 ∪ G2 of G1 and G2 is the graph with vertex set V (G1) ∪ V (G2)
and edge set E(G1) ∪ E(G2). We say that G1 and G2 are edge-disjoint if
they have no edge in common. If G1 and G2 are edge-disjoint, we denote
their union by G1 + G2. A decomposition of a graph G is a collection of
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edge-disjoint subgraphs G1, G2, . . . , Gn of G such that every edge of G is in
exactly one Gi. Here it is said that G is decomposed or decomposable into
G1, G2, . . . , Gn. If G has a decomposition into p1 copies of G1, . . . , pn copies
of Gn, then we say that G has a {p1G1, . . . , pnGn}-decomposition. If such a
decomposition exists for all values of p1, . . . , pn satisfying trivial necessary
conditions, then we say that G has a {G1, . . . , Gn}{p1,...,pn}-decomposition
or G is fully {G1, . . . , Gn}-decomposable. We say that G is decomposed into
P5 and C6 if each Gi ≃ P5 or C6.

In [6], Priyadharsini and Muthusamy gave necessary and sufficient condi-
tions for the existence of {pG1, qG2}-decomposition of Kn(λ), when

(G1, G2) ∈ {(Pn, S1,n−1), (Cn, S1,n−1), (Pn, Cn)}.

In [9], Shyu gave the necessary conditions for a {pPk+1, qCℓ}-decomposition
of Kn and proved that Kn is fully {Pk+1, Ck}-decomposable, when k is
even, n is odd, n ≥ 5k + 1 and settled the case k = 4 completely. In [10],
Shyu proved that Kn is fully {P4, C3}-decomposable. In [5], Jeevadoss and
Muthusamy proved that Kn is fully {Pk+1, Ck}-decomposable, when k is
even and n is odd with n > 4k. In [4], Ilayaraja and Muthusamy proved
that Kn is fully {P4, C4}-decomposable. In [7], Sarvate and Zhang ob-
tained necessary and sufficient conditions for the existence of a {pP3, qK3}-
decomposition of Kn(λ), when p = q. In [8], Shyu gave the necessary con-
ditions for a {pCk, qPk+1, rSk}-decomposition of Kn and proved that Kn is
fully {C4, P5, S4}-decomposable, when n is odd. In this paper we prove that
Kn(λ) is fully {P5, C6}-decomposable.

2. Preliminaries

For convenience we denote V (Kn(λ)) = {x1, x2, . . . , xn}. The nota-
tion (x1, x2, . . . , xℓ) denotes a cycle with vertices x1, x2, . . . , xℓ and edges
x1x2, x2x3, . . . , xℓ−1xℓ, xℓx1, and (x1x2 . . . xk+1) is a path with vertices
x1, x2, . . . , xk+1 and edges x1x2, x2x3, . . . , xkxk+1.

We recall here some results on Pk+1 and Cℓ-decompositions that are useful
for our proofs.

Theorem 2.1 (Bryant, et al. [1]). Let λ, n and ℓ be integers with n, ℓ ≥ 3
and λ ≥ 1. There exists a decomposition of Kn(λ) into Cℓ if and only if
ℓ ≤ n, λ(n− 1) is even and ℓ divides λ

(
n
2

)
. There exists a decomposition of

Kn(λ) into Cℓ and a perfect matching if and only if ℓ ≤ n, λ(n− 1) is odd
and ℓ divides λ

(
n
2

)
− n

2 .

Theorem 2.2 (Tarsi [11]). Necessary and sufficient conditions for the exis-
tence of a Pk+1-decomposition of Kn(λ) are λ

(
n
2

)
≡ 0 (mod k) and n ≥ k+1.

Theorem 2.3 (Lee [3]). For positive integers λ, m, n and ℓ with λm ≡
λn ≡ ℓ ≡ 0 (mod 2) and min{m,n} ≥ ℓ

2 ≥ 2, the multigraph Km,n(λ) is
Cℓ-decomposable if one of the following conditions holds:

(i) λ is odd and ℓ divides mn,
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(ii) λ is even and ℓ divides 2mn,
(iii) λ is even and λm or λn is divisible by ℓ.

Theorem 2.4 (Truszczynski [12]). Let k be a positive integer and let m
and n be positive even integers such that m ≥ n. Km,n(λ) has a Pk+1-

decomposition if and only if m ≥ ⌈k+1
2 ⌉, n ≥ ⌈k2⌉ and λmn ≡ 0 (mod k).

Lemma 2.5 (Shyu [9]). Let k and n be positive integers such that
k ≥ 3 and n ≥ 2. Suppose that for i ∈ {1, 2, . . . , n}, Ci denotes the cycle
(x(i,1), x(i,2), . . . , x(i,k)) of length k. If x(1,1) = x(2,1) = · · · = x(n,1),
x(i+1,2) /∈ {x(i,1), x(i,2), . . . , x(i,k)} for i ∈ {1, 2, . . . , n− 1}, and
x(1,2) /∈ {x(n,1), x(n,2), . . . , x(n,k)}, then

⋃n
i=1Ci can be decomposed into n

paths of length k.

Theorem 2.6 (Shyu [9]). Let n, ℓ and k be positive integers such that n is
odd and n ≥ max{ℓ, k + 1}. If Kn can be decomposed into p copies of Pk+1

and q copies of Cℓ for nonnegative integers p and q, then pk + qℓ = e(Kn)
and p ̸= 1.

Theorem 2.7 (Shyu [9]). Let n, ℓ and k be positive integers such that n is
even and n ≥ max{ℓ, k+1}. If Kn can be decomposed into p copies of Pk+1

and q copies of Cℓ for nonnegative integers p and q, then pk + qℓ = e(Kn)
and p ≥ n

2 .

In [9], Shyu gave the necessary conditions for a {pPk+1, qCℓ}-decomposition
of Kn and proved that Kn is fully {Pk+1, Ck}-decomposable, when k is even, n is
odd, n ≥ 5k + 1 and settled the case k = 4 completely.

In the following theorems, we discuss the necessary conditions for a {pPk+1, qCℓ}-
decomposition of Kn(λ), when λ ≥ 1.

Theorem 2.8. Let λ, n, k and ℓ be positive integers such that n is odd or n and
λ are both even and n ≥ max{ℓ, k + 1}. If Kn(λ) can be decomposed into p copies
of Pk+1 and q copies of Cℓ for nonnegative integers p and q, then pk + qℓ = λ

(
n
2

)
and p ̸= 1.

Proof. Condition pk + qℓ = λ
(
n
2

)
is trivial. On the contrary, suppose that p = 1.

Let P denote the only path of length k in the decomposition. It follows that the
starting and end vertices of P have odd degree λ(n−1)−1 in Kn(λ)\P . Therefore,
Kn(λ)\P can not be decomposed into cycles. We obtained a contradiction. □

Theorem 2.9. Let λ, n, k and ℓ be positive integers such that λ is odd, n is even
and n ≥ max{ℓ, k + 1}. If Kn(λ) can be decomposed into p copies of Pk+1 and q
copies of Cℓ for nonnegative integers p and q, then pk + qℓ = λ

(
n
2

)
and p ≥ n

2 .

Proof. Condition pk+ qℓ = λ
(
n
2

)
is trivial. Let D be an arbitrary decomposition of

Kn(λ) into p copies of Pk+1 and q copies of Cl; let P
(1), P (2), . . . , P (p) denote those

p copies of Pk+1 in D. By assumption,

Kn(λ)\(P (1) ∪ P (2) ∪ . . . ∪ P (p))

has a Cℓ-decomposition. It follows that each vertex of

Kn(λ)\(P (1) ∪ P (2) ∪ . . . ∪ P (p))
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has even degree. Since λ is odd and n is even, each vertex of Kn(λ) must be an
end vertex of at least one P (i)(1 ≤ i ≤ p). It implies that 2p ≥ n. □

We prove that the above necessary conditions are sufficient for a {P5, C6}{p,q}-
decomposition of Kn(λ) in Theorem 3.5.

3. Main Result

In this section, we discuss a {P5, C6}{p,q}-decomposition of Kn(λ), when λ ≥ 1.
Since Kn(λ) cannot be decomposed into P5 and C6 when n ≤ 5, we discuss the
decompositions for n ≥ 6.

Remark 3.1: The necessary conditions for the existence of a {P5, C6}{p,q}-
decomposition in Kn(λ) are satisfied when n ≡ 0, 1 (mod 4) if λ ≥ 1 and n ≡
2, 3 (mod 4) if λ is even, i.e., there does not exist nonnegative integers p and q
satisfying 4p+ 6q = λ

(
n
2

)
when n ≡ 2, 3 (mod 4) if λ is odd.

In the following lemma, we discuss a {P5, C6}{p,q}-decompositions of K4,6, which
we use further to decompose Kn(λ) into {pP5, qC6}.

Lemma 3.2. If p and q are nonnegative integers such that 4p+6q = 24, then K4,6

is fully {P5, C6}-decomposable.

Proof. (p, q) ∈ {(0, 4), (3, 2), (6, 0)}. By Theorem 2.3, K4,6 is {0P5, 4C6}-
decomposable. The graph K4,6 can be decomposed into

3P5 : (x1x6x4x5x3), (x3x10x1x8x4), (x4x7x2x9x1)

and

2C6 : (x1, x5, x2, x6, x3, x7), (x2, x8, x3, x9, x4, x10).

By Theorem 2.4, K4,6 is {6P5, 0C6}-decomposable. ThereforeK4,6 is fully {P5, C6}-
decomposable. □

Remark 3.3: The graph K4,4(3) can be decomposed into

8C6 : (x1, x5, x2, x6, x3, x7), (x1, x6, x4, x8, x3, x5), (x1, x8, x2, x7, x4, x5),

(x2, x5, x4, x6, x3, x8), (x1, x6, x2, x5, x3, x7), (x1, x6, x2, x7, x4, x8),

(x1, x7, x3, x6, x4, x8), (x2, x8, x3, x5, x4, x7).

Thus K4,4(3) is {0P5, 8C6}-decomposable.

Based on Lemma 2.5, we have the following remark.

Remark 3.4: Let C1
6 = (x1, x2, x3, x4, x5, x6) and C2

6 = (y1, y2, y3, y4, y5, y6). If x1 =
y1, x6 /∈ {y3, y4}, x2 /∈ V (C2

6 ) and y2 /∈ V (C1
6 ), then C1

6 ∪ C2
6 can be decomposed

into 3 copies of

P5 : (x2x3x4x5x6), (x6x1y2y3y4), (y4y5y6y1x2).

We now prove our main result.

Theorem 3.5. For any nonnegative integers p and q and any integer n ≥ 6, there
exists a {P5, C6}{p,q}-decomposition of Kn(λ) if and only if 4p+ 6q = λ

(
n
2

)
,

(i) p ≥ n
2 , if λ is odd and n is even, (ii) p ̸= 1 otherwise.
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Proof. The necessary part follows from Theorem 2.8 and 2.9. From remark 3.1,
we have n ≡ 0, 1 (mod 4) if λ ≥ 1 and n ≡ 2, 3 (mod 4) if λ is even. First we
prove the result for 6 ≤ n ≤ 17, next we generalise it for any n > 17 by applying
mathematical induction. As we discuss {pP5, qC6}-decompositions of Kn(λ) for all
possible choices of p and q, we have the following cases:
Case 1: n = 6.

If λ = 2, then (p, q) ∈ {(0, 5), (3, 3), (6, 1)}. By Theorem 2.1,K6(2) is {0P5, 5C6}-
decomposable. The graph K6(2) can be decomposed into

3P5 : (x1x6x3x2x4), (x6x3x4x5x1), (x6x5x1x2x4)

and

3C6 : C1 = C2 = (x1, x3, x5, x2, x6, x4), C
3 = (x1, x2, x3, x4, x5, x6).

The above 3P5 in K6(2) along with (x1x3x5x2x6), (x1x6x4x3x2) and
(x6x5x4x1x2) (Since C1 ∪ C3 can be decomposed into 3P5), and a C2, we get the
required {6P5, 1C6}-decomposition.

If λ = 4, then (p, q) ∈ {(0, 10), (3, 8), (6, 6), (9, 4), (12, 2), (15, 0)}. We write

K6(4) = K6(2) +K6(2) = {(0, 5), (3, 3), (6, 1)}+ {(0, 5), (3, 3), (6, 1)}
= {(0, 10), (3, 8), (6, 6), (9, 4), (12, 2)}.

By Theorem 2.2, K6(4) is {15P5, 0C6}-decomposable.
If λ ≥ 6, then the proof is divided into the following cases.

λ ≡ 0 (mod 4). We write K6(λ) =
λ
4K6(4).

λ ≡ 2 (mod 4). We write K6(λ) = K6(λ − 2) + K6(2) = λ−2
4 K6(4) + K6(2).

Therefore K6(λ) is fully {P5, C6}-decomposable.
Case 2: n = 7.

If λ = 2, the graph K7(2) can be decomposed into

7C6 :C1 = (x1, x2, x4, x7, x6, x5), C
2 = (x1, x3, x7, x4, x5, x6),

C3 = (x2, x4, x1, x7, x6, x3), C
4 = (x2, x5, x7, x1, x3, x6),

C5 = (x4, x6, x2, x7, x3, x5), C
6 = (x4, x1, x2, x7, x5, x3),

C7 = (x1, x5, x2, x3, x4, x6).

By applying remark 3.4 to C1 ∪ C2, C3 ∪ C4, C5 ∪ C6, we get all the possible
decompositions.

If λ = 4, then (p, q) ∈ {(0, 14), (3, 12), (6, 10), . . . , (21, 0)} (we see that the values
of p increases by 3 and the values of q decreases by 2). By Theorem 2.2, K7(4)
is {21P5, 0C6}-decomposable. By taking K7(4) = 2K7(2), we get all the above
possible decompositions.

If λ ≥ 6, then the proof is divided into the following cases.
λ ≡ 0 (mod 4). We write K7(λ) =

λ
4K7(4).

λ ≡ 2 (mod 4). We write K7(λ) = K7(λ− 2) +K7(2) =
λ−2
4 K7(4) +K7(2).

Case 3: n = 8.
If λ = 1, then (p, q) ∈ {(4, 2), (7, 0)}. By Theorem 2.2, K8 is {7P5, 0C6}-

decomposable. The graph K8 can be decomposed into

4P5 : (x3x1x8x2x6), (x4x2x7x1x5), (x8x6x4x5x2), (x1x6x3x5x7)

and

2C6 : (x1, x2, x3, x8, x7, x4), (x3, x4, x8, x5, x6, x7).
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If λ = 2, then (p, q) ∈ {(2, 8), (5, 6), (8, 4), . . . , (14, 0)}. The graph K8(2) can be
decomposed into

2P5 : (x1x7x5x6x3), (x1x5x8x4x3)

and

8C6 :C1 = (x1, x7, x4, x2, x3, x6), C
2 = (x1, x3, x8, x5, x4, x2),

C3 = (x1, x3, x8, x4, x7, x5), C
4 = (x1, x2, x3, x4, x5, x6),

C5 = C6 = (x8, x6, x7, x3, x5, x2), C
7 = C8 = (x1, x8, x7, x2, x6, x4).

The above 2P5 in K8(2) along with (x7x1x3x2x4), (x7x4x5x8x3) and
(x4x2x1x6x3) (Since C1 ∪ C2 can be decomposed into 3P5), and C3, C4, C5, C6,
C7, C8, we get the required {5P5, 6C6}-decomposition. By taking K8(2) = 2K8,
we get all the other possible decompositions.

If λ = 3, then (p, q) ∈ {(6, 10), (9, 8), (12, 6), . . . , (21, 0)}. By taking K8(3) =
K8(2) +K8, we get all the above possible decompositions.

If λ = 4, then (p, q) ∈ {(4, 16), (7, 14), (10, 12), . . . , (28, 0)}. By taking K8(4) =
2K8(2), we get all the above possible decompositions.

If λ = 5, then (p, q) ∈ {(5, 20), (8, 18), (11, 16), . . . , (35, 0)}. The graph K8(5)
can be decomposed into

5P5 :(x8x5x4x6x2), (x5x8x4x3x6), (x2x4x3x7x1),

(x4x2x3x1x7), (x3x7x1x6x2)

and

20C6 :(x3, x4, x5, x8, x2, x6), (x8, x5, x6, x2, x3, x4),

(x1, x7, x2, x6, x4, x3), (x8, x5, x6, x1, x7, x2),

3 copies of (x8, x2, x7, x3, x6, x4), (x1, x3, x2, x4, x5, x6),

5 copies of (x8, x3, x5, x1, x4, x7), (x8, x6, x7, x5, x2, x1).

By taking K8(5) = K8(3) +K8(2), we get all the other possible decompositions.
If λ = 6, then (p, q) ∈ {(0, 28), (3, 26), (6, 24), . . . , (42, 0)}. By Theorem 2.1,

K8(6) is {0P5, 28C6}-decomposable. The graph K8(6) can be decomposed into

3P5 : (x4x6x8x7x3), (x8x2x7x6x4), (x8x2x4x7x3)

and

26C6 :(x1, x5, x6, x4, x7, x3), (x1, x5, x7, x3, x8, x2),

(x8, x2, x5, x1, x6, x4), (x1, x5, x4, x6, x3, x7),

(x1, x5, x3, x4, x2, x8), (x6, x4, x1, x5, x8, x2),

(x1, x2, x3, x7, x8, x6), 5 copies of (x2, x6, x7, x5, x8, x3),

(x1, x3, x6, x5, x4, x8), (x1, x4, x3, x5, x2, x7),

4 copies of (x1, x2, x4, x7, x8, x6).

By taking K8(6) = K8(4) +K8(2), we get all the other possible decompositions.
If λ ≥ 7, then the proof is divided into the following cases.

λ ≡ 0 (mod 6). We write K8(λ) =
λ
6K8(6).

λ ≡ 1 (mod 6). We write K8(λ) = K8(λ− 1) +K8 = λ−1
6 K8(6) +K8.

λ ≡ 2 (mod 6). We write K8(λ) = K8(λ− 2) +K8(2) =
λ−2
6 K8(6) +K8(2).

λ ≡ 3 (mod 6). We write K8(λ) = K8(λ− 3) +K8(3) =
λ−3
6 K8(6) +K8(3).
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λ ≡ 4 (mod 6). We write K8(λ) = K8(λ− 4) +K8(4) =
λ−4
6 K8(6) +K8(4).

λ ≡ 5 (mod 6). We write K8(λ) = K8(λ− 5) +K8(5) =
λ−5
6 K8(6) +K8(5).

Case 4: n = 9.
The graph K9 can be decomposed into

6C6 :C1 = (x1, x9, x4, x7, x8, x5), C
2 = (x1, x2, x3, x4, x6, x8),

C3 = (x9, x2, x6, x3, x7, x5), C
4 = (x9, x8, x3, x1, x7, x6),

C5 = (x5, x6, x1, x4, x8, x2), C
6 = (x5, x3, x9, x7, x2, x4).

By applying remark 3.4 to C1∪C2, C3∪C4, C5∪C6, we get all the possible decom-
positions. If λ ≥ 2, by taking K9(λ) = λK9, we get all the possible decompositions.
Case 5: n = 10.

If λ = 2, then (p, q) ∈ {(0, 15), (3, 13), (6, 11), . . . , (21, 1)}. By Theorem 2.1,
K10(2) is {0P5, 15C6}-decomposable. We write K10(2) = K10(2)\K6(2) + K6(2).
The graph K10(2)\K6(2) can be decomposed into

3P5 : (x8x7x5x10x9), (x9x10x2x7x5), (x8x7x2x10x5)

and

8C6 :C1 = (x10, x4, x8, x9, x7, x6), C
2 = (x10, x1, x9, x2, x8, x3),

C3 = (x10, x4, x8, x9, x7, x6), C
4 = (x10, x1, x9, x2, x8, x3),

C5 = (x7, x4, x9, x5, x8, x10), C
6 = (x7, x1, x8, x6, x9, x3),

C7 = (x7, x10, x8, x5, x9, x4), C
8 = (x7, x3, x9, x6, x8, x1).

By applying remark 3.4 to C1 ∪ C2, C3 ∪ C4, C5 ∪ C6, C7 ∪ C8 we get the de-
compositions (p, q) ∈ {(6, 6), (9, 4), (12, 2), (15, 0)} in K10(2)\K6(2). By combining
these copies of P5 and C6 along with the copies of P5 and C6 in K6(2), we get all
the above possible decompositions.

If λ = 4, then (p, q) ∈ {(0, 30), (3, 28), (6, 26), . . . , (45, 0)}. By Theorem 2.2,
K10(4) is {45P5, 0C6}-decomposable. By taking K10(4) = 2K10(2), we get all the
other possible decompositions.

If λ ≥ 6, then the proof is divided into the following cases.
λ ≡ 0 (mod 4). We write K10(λ) =

λ
4K10(4).

λ ≡ 2 (mod 4). We write K10(λ) = K10(λ− 2) +K10(2) =
λ−2
4 K10(4) +K10(2).

Case 6: n = 11.
If λ = 2, then (p, q) ∈ {(2, 17), (5, 15), (8, 13), . . . , (26, 1)}. We write K11(2) =

K11(2)\K7(2) +K7(2). The graph K11(2)\K7(2) can be decomposed into

2P5 : (x11x2x10x9x8), (x8x6x10x1x11)

and

10C6 :C1 = (x10, x3, x9, x2, x8, x6), C
2 = (x10, x9, x8, x3, x11, x7),

C3 = (x11, x1, x10, x2, x9, x3), C
4 = (x8, x3, x10, x7, x11, x2),

C5 = C6 = (x8, x5, x11, x6, x9, x4), C
7 = C8 = (x10, x4, x11, x9, x1, x8),

C9 = C10 = (x11, x10, x5, x9, x7, x8).
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The above 2P5 in K11(2)\K7(2) along with

(x10x5x9x7x8), (x8x11x10x3x9), (x10x6x8x2x9),

(x8x3x10x1x11), (x10x2x9x3x11), (x10x7x11x2x8),

(x11x5x8x4x9), (x10x8x1x9x11), (x9x6x11x4x10),

(x10x4x11x5x8), (x10x8x1x9x11), (x11x6x9x4x8),

(x11x7x10x9x8), (x8x11x10x5x9) and (x11x3x8x7x9)

(Since C1∪C9, C3∪C4, C5∪C7, C6∪C8, C2∪C10 can be decomposed into 15P5),
we get a {17P5, 0C6}-decomposition in K11(2)\K7(2). The above 2P5, 3P5 ob-
tained from C1 ∪C9 in K11(2)\K7(2) and C2, C3, C4, C5, C6, C7, C8, C10 we get a
{5P5, 8C6}-decomposition in K11(2)\K7(2). By combining these copies of P5 and
C6 along with the copies of P5 and C6 in K7(2), we get all the above possible
decompositions.

If λ = 4, then (p, q) ∈ {(4, 34), (7, 32), (10, 30), . . . , (55, 0)}. By Theorem 2.2,
K11(4) is {55P5, 0C6}-decomposable. By taking K11(4) = 2K11(2), we get all the
above possible decompositions.

If λ = 6, then (p, q) ∈ {(0, 53), (3, 53), (6, 51), . . . , (81, 1)}. By Theorem 2.3,
K5,5(6) is {0P5, 25C6}-decomposable. By taking K11(6) = 2K6(6) + K5,5(6), we
get the decomposition (p, q) = (3, 53). By taking K11(6) = K11(4) + K11(2), we
get all the other possible decompositions.

If λ = 8, then (p, q) ∈ {(2, 72), (5, 70), (8, 68), . . . , (110, 0)}. By Theorem 2.2,
K11(8) is {110P5, 0C6}-decomposable. By taking K11(8) = K11(6) + K11(2), we
get all the above possible decompositions.

If λ = 10, then (p, q) ∈ {(4, 89), (7, 87), (10, 85), . . . , (136, 1)}. By taking
K11(10)=K11(6) +K11(4), we get all the above possible decompositions.

If λ = 12, then (p, q) ∈ {(0, 110), (3, 108), (6, 106), . . . , (165, 0)}. By Theorem
2.2, K11(12) is {165P5, 0C6}-decomposable. By taking K11(12) = 2K11(6), we get
all the above possible decompositions.

If λ ≥ 14, then the proof is divided into the following cases.
λ ≡ 0 (mod 12). We write K11(λ) =

λ
12K11(12).

λ ≡ 2 (mod 12). We write K11(λ) = K11(λ− 2)+K11(2) =
λ−2
12 K11(12)+K11(2).

λ ≡ 4 (mod 12). We write K11(λ) = K11(λ− 4)+K11(4) =
λ−4
12 K11(12)+K11(4).

λ ≡ 6 (mod 12). We write K11(λ) = K11(λ− 6)+K11(6) =
λ−6
12 K11(12)+K11(6).

λ ≡ 8 (mod 12). We write K11(λ) = K11(λ− 8)+K11(8) =
λ−8
12 K11(12)+K11(8).

λ ≡ 10 (mod 12). We write K11(λ) = K11(λ− 10) +K11(10) =
λ−10
12 K11(12)

+K11(10).
Case 7: n = 12.

If λ = 1, then (p, q) ∈ {(6, 7), (9, 5), (12, 3), (15, 1)}. We write K12 = (K12\K9)+
K9. The graph K12\K9 can be decomposed into

6P5 :(x6x10x5x11x3), (x12x10x4x11x8),

(x5x12x6x11x9), (x4x12x7x11x10),

(x2x12x9x10x1), (x11x12x8x10x7)

and a

C6 : (x12, x1, x11, x2, x10, x3).
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By combining these copies of P5 and C6 along with the copies of P5 and C6 in K9,
we get all the above possible decompositions.

If λ = 2, then (p, q) ∈ {(0, 22), (3, 20), (6, 18), . . . , (33, 0)}. By Theorem 2.2,
K12(2) is {33P5, 0C6}-decomposable. By Theorems 2.3 and 2.4 K6,6 is
{{0P5, 6C6}, {9P5, 0C6}}-decomposable. By taking K12(2) = 2K6(2) + 2K6,6, we
get all the above possible decompositions.

If λ ≥ 3, then the proof is divided into the following cases.
λ ≡ 0 (mod 2). We write K12(λ) =

λ
2K12(2).

λ ≡ 1 (mod 2). We write K12(λ) = K12(λ− 1) +K12 = λ−1
2 K12(2) +K12.

Case 8: n = 13.
If λ = 1, then (p, q) ∈ {(0, 13), (3, 11), (6, 9), . . . , (18, 1)}. We write K13 =

(K13\K9) +K9. The graph K13\K9 can be decomposed into

7C6 :C1 = (x13, x7, x10, x8, x11, x3), C
2 = (x13, x4, x10, x5, x12, x6),

C3 = (x11, x7, x12, x8, x13, x9), C
4 = (x11, x5, x13, x2, x10, x12),

C5 = (x11, x4, x12, x3, x10, x6), C
6 = (x11, x1, x10, x9, x12, x13),

C7 = (x13, x1, x12, x2, x11, x10).

By applying remark 3.4 to C1 ∪ C2, C3 ∪ C4, C5 ∪ C6, we get the decompositions
(p, q) ∈ {(0, 7), (3, 5), (6, 3), (9, 1)} in K13\K9. By combining these copies of P5

and C6 along with the copies of P5 and C6 in K9, we get all the above possible
decompositions.

If λ = 2, then (p, q) ∈ {(0, 26), (3, 24), (6, 22), . . . , (39, 0)}. By Theorem 2.2,
K13(2) is {39P5, 0C6}-decomposable. By taking K13(2) = 2K13, we get all the
above possible decompositions.

If λ ≥ 3, then the proof is divided into the following cases.
λ ≡ 0 (mod 2). We write K13(λ) =

λ
2K13(2).

λ ≡ 1 (mod 2). We write K13(λ) = K13(λ− 1) +K13 = λ−1
2 K13(2) +K13.

Case 9: n = 14.
By taking K14(λ) = K8(λ) +K6(λ) + 2λK4,6, we get all the possible decompo-

sitions.
Case 10: n = 15.

By taking K15(λ) = K9(λ) +K7(λ) + 2λK4,6, we get all the possible decompo-
sitions.
Case 11: n = 16.

If λ = 1, then (p, q) ∈ {(9, 14), (12, 12), (15, 10), . . . , (30, 0)}. We write K16 =
(K16\K13) +K13. The graph K16\K13 can be decomposed into

9P5 :(x11x14x2x15x13), (x15x1x16x5x14), (x4x16x12x14x6),

(x11x16x9x14x7), (x5x15x7x16x10), (x1x14x16x15x12),

(x11x15x14x13x16), (x2x16x8x15x9), (x3x15x10x14x8)

and a

C6 : (x16, x3, x14, x4, x15, x6).

By Theorem 2.1, K13 is {0P5, 13C6}-decomposable. We have,
K16 = (K16\K13) + K13 = {(9, 1)} + {(0, 13)} = {(9, 14)}. The graph K2,8 is
{4P5, 0C6}-decomposable. By taking K16 = 2K8 + 2K6,4 + K2,8, we get all the
other possible decompositions.
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If λ = 2, then (p, q) ∈ {(0, 40), (3, 38), (6, 36), . . . , (60, 0)}. By Theorem 2.2,
K16(2) is {60P5, 0C6}-decomposable. By Theorems 2.3 and 2.4, K6,6(2) is
{{0P5, 12C6}, {18P5, 0C6}}-decomposable. By taking K16(2) = K10(2) +K6(2) +
K6,6(2) + 2K4,6, we get all the above possible decompositions.

If λ ≥ 3, then the proof is divided into the following cases.
λ ≡ 0 (mod 2). We write K16(λ) =

λ
2K16(2).

λ ≡ 1 (mod 2). We write K16(λ) = K16(λ− 1) +K16 = λ−1
2 K16(2) +K16.

Case 12: n = 17.
If λ = 1, then (p, q) ∈ {(4, 20), (7, 18), (10, 16), . . . , (34, 0)}. The graph K2,8 is

{4P5, 0C6}-decomposable. By taking K17 = 2K9 + 2K6,4 + K2,8, we get all the
above possible decompositions.

If λ = 2, then (p, q) ∈ {(2, 44), (5, 42), (8, 40), . . . , (68, 0)}. By Theorem 2.2,
K17(2) is {68P5, 0C6}-decomposable. By Theorems 2.3 and 2.4, K6,6(2) is
{{0P5, 12C6}, {18P5, 0C6}}-decomposable. By taking K17(2) = K11(2) +K7(2) +
K6,6(2) + 2K4,6, we get all the above possible decompositions.

If λ = 3, then (p, q) ∈ {(0, 68), (3, 66), (6, 64), . . . , (102, 0)}. By Theorem 2.1,
K17(3) is {0P5, 68C6}-decomposable. By taking K17(3) = 2K9(3) + 4K4,4(3), we
get the decomposition when (p, q) = (3, 66) and by taking K17(3) = K17(2) +K17,
we get all the other possible decompositions.

If λ ≥ 4, then the proof is divided into the following cases.
λ ≡ 0 (mod 3). We write K17(λ) =

λ
3K17(3).

λ ≡ 1 (mod 3). We write K17(λ) = K17(λ− 1) +K17 = λ−1
3 K17(3) +K17.

λ ≡ 2 (mod 3). We write K17(λ) = K17(λ− 2) +K17(2) =
λ−2
3 K17(3) +K17(2).

Now we prove the result for n > 17. We apply mathematical induction on n and
split the proof into four cases as follows:

n ≡ 0 (mod 4). Let n = 4r, where r ≥ 2. If 2 ≤ r ≤ 4, the result follows from
Cases 3, 7 and 11. Now for some t > 4 we assume that there exists a {P5, C6}{p,q}-
decomposition of K4r(λ) for all r where 2 ≤ r < t. Next, we write

K4t(λ) = K4(t−3)(λ) +K12(λ) +K4(t−3),12(λ)

= K4(t−3)(λ) +K12(λ) + (t− 3)K4,12(λ)

= K4(t−3)(λ) +K12(λ) + (2t− 6)λK4,6.

By the induction hypothesis, there exists a {P5, C6}{p,q}-decomposition of
K4(t−3)(λ), and by case 7 and by Lemma 3.2 there exist {P5, C6}{p,q}-
decompositions of K12(λ) and K4,6, respectively. Therefore a {P5, C6}{p,q}-
decomposition of K4t(λ) exists.

n ≡ 1 (mod 4). Let n = 4r + 1, where r ≥ 2. If 2 ≤ r ≤ 4, the result
follows from cases 4, 8 and 12. Now for some t > 4 we assume that there exists a
{P5, C6}{p,q}-decomposition of K4r+1(λ) for all r where 2 ≤ r < t. Next, we write

K4t+1(λ) = K4(t−3)+1(λ) +K13(λ) +K4(t−3),12(λ)

= K4(t−3)+1(λ) +K13(λ) + (t− 3)K4,12(λ)

= K4(t−3)+1(λ) +K13(λ) + (2t− 6)λK4,6.

By the induction hypothesis, there exists a {P5, C6}{p,q}-decomposition of
K4(t−3)+1(λ), and by case 8 and by Lemma 3.2 there exist {P5, C6}{p,q}-
decompositions of K13(λ) and K4,6, respectively. Therefore a {P5, C6}{p,q}-
decomposition of K4t+1(λ) exists.
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n ≡ 2 (mod 4). Let n = 4r + 2, where r ≥ 1. If 1 ≤ r ≤ 3, the result
follows from cases 1, 5 and 9. Now for some t > 3 we assume that there exists a
{P5, C6}{p,q}-decomposition of K4r+2(λ) for all r where 1 ≤ r < t. Next, we write

K4t+2(λ) = K4(t−1)(λ) +K6(λ) +K4(t−1),6(λ)

= K4(t−1)(λ) +K6(λ) + (t− 1)λK4,6.

By the induction hypothesis, there exists a {P5, C6}{p,q}-decomposition of
K4(t−1)(λ), and by case 1 and by Lemma 3.2 there exist {P5, C6}{p,q}-
decompositions of K6(λ) and K4,6, respectively. Therefore a {P5, C6}{p,q}-
decomposition of K4t+2(λ) exists.

n ≡ 3 (mod 4). Let n = 4r + 3, where r ≥ 1. If 1 ≤ r ≤ 3, the result
follows from cases 2, 6 and 10. Now for some t > 3 we assume that there exists a
{P5, C6}{p,q}-decomposition of K4r+3(λ) for all r where 1 ≤ r < t. Next, we write

K4t+3(λ) = K4(t−1)+1(λ) +K7(λ) +K4(t−1),6(λ)

= K4(t−1)+1(λ) +K7(λ) + (t− 1)λK4,6.

By the induction hypothesis, there exists a {P5, C6}{p,q}-decomposition of
K4(t−1)+1(λ), and by case 2 and by Lemma 3.2 there exist {P5, C6}{p,q}-
decompositions of K7(λ) and K4,6, respectively. Therefore a {P5, C6}{p,q}-
decomposition ofK4t+3(λ) exists, and the result follows by mathematical induction.

□
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