Contributions to Discrete Mathematics

FURTHER GENERALIZATIONS OF THE PARALLELOGRAM LAW

ANTONIO M. OLLER-MARCÉN

Abstract

In a recent work of Alessandro Fonda, a generalization of the parallelogram law in any dimension $N \geq 2$ was given by considering the ratio of the quadratic mean of the measures of the $(N-1)$ dimensional diagonals to the quadratic mean of the measures of the faces of a parallelotope. In this paper, we provide a further generalization considering not only $(N-1)$-dimensional diagonals and faces, but the k-dimensional ones for every $1 \leq k \leq N-1$.

1. Introduction

If we consider the usual Euclidean space $\left(\mathbb{R}^{n},\|\cdot\|\right)$, the well-known identity

$$
\begin{equation*}
\|a+b\|^{2}+\|a-b\|^{2}=2\left(\|a\|^{2}+\|b\|^{2}\right) \tag{1.1}
\end{equation*}
$$

is called the parallelogram law.
This identity can be extended to higher dimensions in several ways. For example, it is straightforward to see that

$$
\begin{equation*}
\|a+b+c\|^{2}+\|a+b-c\|^{2}+\|a-b+c\|^{2}+\|a-b-c\|^{2}=4\left(\|a\|^{2}+\|b\|^{2}+\|c\|^{2}\right) \tag{1.2}
\end{equation*}
$$

with the subsequent analoguous identities arising inductively. There are many works devoted to provide generalizations of (1.1) in many different contexts $[1,3,4]$.

Note that if we rewrite (1.1) as

$$
\begin{equation*}
\frac{\|a+b\|^{2}+\|a-b\|^{2}}{2}=2 \frac{\left(\|a\|^{2}+\|b\|^{2}+\|a\|^{2}+\|b\|^{2}\right)}{4} \tag{1.3}
\end{equation*}
$$

this means that in any parallelogram, the ratio of the quadratic mean of the lengths of its diagonals to the quadratic mean of the lengths of its sides equals $\sqrt{2}$. With this interpretation in mind, Alessandro Fonda [2] recently proved the following interesting generalization.

[^0]Theorem 1.1. Given linearly independent vectors $a_{1}, \ldots, a_{N} \in \mathbb{R}^{n}$, it holds that

$$
\begin{aligned}
& \sum_{i<j}\left(\left\|\left(a_{i}+a_{j}\right) \wedge \bigwedge_{k \neq i, j} a_{k}\right\|^{2}+\left\|\left(a_{i}-a_{j}\right) \wedge \bigwedge_{k \neq i, j} a_{k}\right\|^{2}\right)= \\
& =(N-1) \sum_{k=1}^{N} 2\left\|a_{1} \wedge \cdots \wedge \widehat{a_{k}} \wedge \cdots \wedge a_{N}\right\|^{2} .
\end{aligned}
$$

In other words, for any N-dimensional parallelotope, the ratio of the quadratic mean of the ($N-1$)-dimensional measures of its diagonals to the quadratic mean of the $(N-1)$-dimensional measures of its faces is equal to $\sqrt{2}$.

In this work we extend this result to faces of dimension k for every $1 \leq$ $k \leq N-1$ and to a suitable definition of the k-dimensional diagonal of a parallelotope. Then Theorem 1.1 will be a particular case of our result for $k=N-1$. Indeed, our result can be stated as follows.

Theorem 1.2. Let us consider an N-dimensional parallelotope and let $1 \leq$ $k \leq N-1$. The ratio of the quadratic mean of the k-dimensional measures of its k-dimensional diagonals to the quadratic mean of the k-dimensional measures of its k-dimensional faces is equal to $\sqrt{N-k+1}$.

In fact, our generalization follows in line with the work [3] but instead considers the definition of a diagonal face given in [2].

2. Notation and preliminaries

In this section, we introduce some notation and present some basic facts that will be useful in the sequel. Let us consider a parallelotope \mathcal{P} generated by a family of linearly independent vectors $\mathcal{B}=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \subseteq \mathbb{R}^{n}$. This means that

$$
\mathcal{P}=\left\{\sum_{i=1}^{N} \alpha_{i} a_{i}: \alpha_{i} \in[0,1]\right\} .
$$

Let us fix $1 \leq k \leq N-1$. Given k different vectors $\mathcal{S}=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq \mathcal{B}$, we can consider the face generated by them:

$$
\mathcal{F}(\mathcal{S})=\left\{\sum_{v \in \mathcal{S}} \alpha_{v} v: \alpha_{v} \in[0,1]\right\} .
$$

This face can now be translated by one or more of the remaining vectors thus obtaining a face

$$
\mathcal{F}^{I}(\mathcal{S})=\left\{\sum_{v \in \mathcal{S}} \alpha_{v} a_{v}+\sum_{w \in \mathcal{B} \backslash \mathcal{S}} \alpha_{w} w \in \mathcal{P}: \alpha_{w} \in\{0,1\}\right\}
$$

where $I=\left(\alpha_{v}\right)_{v \notin \mathcal{S}} \in\{0,1\}^{N-k}$. Since each choice of a set $\mathcal{S} \subseteq \mathcal{B}$ and a vector $I \in\{0,1\}^{N-k}$ leads to a different face and every face can be obtained in this way, it follows that \mathcal{P} has exactly $2^{N-k}\binom{N}{k} k$-dimensional faces. Moreover, it is clear that all the 2^{N-k} different faces $\mathcal{F}^{I}(\mathcal{S})$ are congruent to the set generated by $\mathcal{S}, \mathcal{F}(\mathcal{S})$.

Now, we focus on the k-dimensional diagonals which will be defined following the ideas in [2]. Let us consider $N-k+1$ different vectors $\mathcal{T}=\left\{a_{i_{1}}, \ldots, a_{i_{N-k+1}}\right\} \subseteq \mathcal{B}$ and let $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$ be a decomposition of \mathcal{T} into two disjoint sets (either \mathcal{T}_{1} or \mathcal{T}_{2} could be empty). Then, the following set

$$
\mathcal{D}_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\left\{\alpha \sum_{v \in \mathcal{T}_{1}} v+(1-\alpha) \sum_{v \in \mathcal{T}_{2}} v+\sum_{w \in \mathcal{B} \backslash \mathcal{T}} \alpha_{w} w: \alpha, \alpha_{w} \in[0,1]\right\}
$$

is called the k-dimensional diagonal associated to $\left(\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}\right)$. Clearly each choice of a set $\mathcal{T} \subseteq \mathcal{B}$ and a decomposition $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$ allows us to define a diagonal. Since it is clear that $\mathcal{D}_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\mathcal{D}_{\mathcal{T}}\left(\mathcal{T}_{2}, \mathcal{T}_{1}\right)$, it readily follows that \mathcal{P} has exactly $2^{N-k}\binom{N}{N-k+1}$ different k-dimensional diagonals. Moreover, if we define the vector

$$
V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\sum_{v \in \mathcal{T}_{1}} v-\sum_{v \in \mathcal{T}_{2}} v
$$

we have that

$$
\mathcal{D}_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\left\{\alpha V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)+\sum_{v \in \mathcal{T}_{2}} v+\sum_{w \in \mathcal{B} \backslash \mathcal{T}} \alpha_{w} w: \alpha, \alpha_{w} \in[0,1]\right\}
$$

and consequently, it is clear that the diagonal $\mathcal{D}_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ is a translation of the set generated by $\left\{V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right), w: w \in \mathcal{B} \backslash \mathcal{T}\right\}$ and hence it is congruent to it.
Example. Let us see how the definition of $\mathcal{D}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ applies in the case of lower dimensions; i.e, if $N=2,3$.

In the case $N=2$, we only consider $k=1$. If we consider the parallelogram \mathcal{P} generated by $\mathcal{B}=\left\{a_{1}, a_{2}\right\} \subseteq \mathbb{R}^{N}$, then clearly $\mathcal{T}=\mathcal{B}$ (because $k=1$) and \mathcal{P} has two different diagonals which are defined by the two possible decompositions $\mathcal{T}=\left\{a_{1}\right\} \cup\left\{a_{2}\right\}$ and $\mathcal{T}=\mathcal{T} \cup \emptyset$. In fact,

$$
\begin{aligned}
\mathcal{D}_{\mathcal{B}}\left(\left\{a_{1}\right\},\left\{a_{2}\right\}\right) & =\left\{\alpha a_{1}+(1-\alpha) a_{2}: \alpha \in[0,1]\right\} \\
& =a_{2}+\left\{\alpha\left(a_{1}-a_{2}\right): \alpha \in[0,1]\right\} \\
\mathcal{D}_{\mathcal{B}}(\mathcal{B}, \emptyset) & =\left\{\alpha\left(a_{1}+a_{2}\right): \alpha \in[0,1]\right\}
\end{aligned}
$$

Figure 1 shows how we obtain the two diagonals of the parallelogram. Note that, in this case, $V_{\mathcal{B}}(\mathcal{B}, \emptyset)=a_{1}+a_{2}$ and $V_{\mathcal{B}}\left(\left\{a_{1}\right\},\left\{a_{2}\right\}\right)=a_{1}-a_{2}$.

Figure 1. The case $N=2, k=1$.

Figure 2. The case $N=3, k=1$ (left) and $k=2$ (right).

Now, if $N=3$ and $k=1$, let us consider the parallelepiped \mathcal{P} generated by $\mathcal{B}=\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq \mathbb{R}^{N}$. Again, $\mathcal{T}=\mathcal{B}$ but in this case there are four different 1 -dimensional diagonals which are defined by the decompositions $\mathcal{T}=\left\{a_{1}, a_{2}\right\} \cup\left\{a_{3}\right\}, \mathcal{T}=\left\{a_{1}, a_{3}\right\} \cup\left\{a_{2}\right\}, \mathcal{T}=\left\{a_{2}, a_{3}\right\} \cup\left\{a_{1}\right\}$, and $\mathcal{T}=\mathcal{T} \cup \emptyset$. In fact,

$$
\begin{aligned}
\mathcal{D}_{\mathcal{B}}\left(\left\{a_{1}, a_{2}\right\},\left\{a_{3}\right\}\right) & =\left\{\alpha\left(a_{1}+a_{2}\right)+(1-\alpha) a_{3}: \alpha \in[0,1]\right\} \\
& =a_{3}+\left\{\alpha\left(a_{1}+a_{2}-a_{3}\right): \alpha \in[0,1]\right\}, \\
\mathcal{D}_{\mathcal{B}}\left(\left\{a_{1}, a_{3}\right\},\left\{a_{2}\right\}\right) & =\left\{\alpha\left(a_{1}+a_{3}\right)+(1-\alpha) a_{2}: \alpha \in[0,1]\right\} \\
& =a_{2}+\left\{\alpha\left(a_{1}-a_{2}+a_{3}\right): \alpha \in[0,1]\right\}, \\
\mathcal{D}_{\mathcal{B}}\left(\left\{a_{2}, a_{3}\right\},\left\{a_{1}\right\}\right) & =\left\{\alpha\left(a_{2}+a_{3}\right)(1-\alpha) a_{1}: \alpha \in[0,1]\right\} \\
& =a_{1}+\left\{\alpha\left(-a_{1}+a_{2}+a_{3}\right): \alpha \in[0,1]\right\}, \\
\mathcal{D}_{\mathcal{B}}(\mathcal{B}, \emptyset) & =\left\{\alpha\left(a_{1}+a_{2}+a_{3}\right): \alpha \in[0,1]\right\} .
\end{aligned}
$$

On the left hand side of Figure 2, we can see the above four 1-dimensional diagonals of \mathcal{P} (in red, purple, green, and blue, respectively). Note that, in this case, $V_{\mathcal{B}}(\mathcal{B}, \emptyset)=a_{1}+a_{2}+a_{3}, V_{\mathcal{B}}\left(\left\{a_{1}, a_{2}\right\},\left\{a_{3}\right\}\right)=a_{1}+a_{2}-a_{3}$, $V_{\mathcal{B}}\left(\left\{a_{1}, a_{3}\right\},\left\{a_{2}\right\}\right)=a_{1}-a_{2}+a_{3}$, and $V_{\mathcal{B}}\left(\left\{a_{2}, a_{3}\right\},\left\{a_{1}\right\}\right)=-a_{1}+a_{2}+a_{3}$.

In the same way, if $N=3$ and $k=2$, we could define the six 2 -dimensional diagonals of \mathcal{P}. On the right hand side of Figure 2 we see, for instance, $\mathcal{D}_{\left\{a_{1}, a_{3}\right\}}\left(\left\{a_{1}\right\},\left\{a_{3}\right\}\right)$ in red and $\mathcal{D}_{\left\{a_{2}, a_{3}\right\}}\left(\left\{a_{2}\right\},\left\{a_{2}\right\}\right)$ in blue.

3. Proof of Theorem 1.2

After introducing the notation and the basic objects involved in this work, we are now ready to prove the main result of the paper.

Let \mathcal{P} be a parallelotope generated by $\mathcal{B}=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \subseteq \mathbb{R}^{n}$. We first compute the quadratic mean of the k-dimensional measures of its k dimensional faces. We first note that for every $\mathcal{S}=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq \mathcal{B}$, the k-dimensional measure of the face $\mathcal{F}(\mathcal{S})$ is $\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|$. In the previous section we have seen that \mathcal{P} has exactly $2^{N-k}\binom{N}{k} k$-dimensional faces and moreover, there are exactly 2^{N-k} copies of each face $\mathcal{F}(\mathcal{S})$. Consequently, the quadratic mean of the k-dimensional measures of the k-dimensional faces of \mathcal{P} is:

$$
\begin{equation*}
\sqrt{\frac{2^{N-k} \sum\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|^{2}}{2^{N-k}\binom{N}{k}}} \tag{3.1}
\end{equation*}
$$

Now we have to compute the quadratic mean of the k-dimensional measures of the k-dimensional diagonals of \mathcal{P}. First of all, recall that \mathcal{P} has exactly $2^{N-k}\binom{N}{N-k+1}$ different k-dimensional diagonals. Each of them is a translation of the set generated by $\left\{V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right), w: w \in \mathcal{B} \backslash \mathcal{T}\right\}$ for exactly one choice of $\left(\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}\right)$. The k-dimensional measure of this latter set is $\left\|V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \wedge \bigwedge_{w \in \mathcal{B} \backslash \mathcal{T}} w\right\|$. Consequently, the quadratic mean of the k-dimensional measures of the k-dimensional diagonals of \mathcal{P} is:

$$
\begin{equation*}
\sqrt{\frac{\sum_{\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}}\left\|V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \wedge \bigwedge_{w \in \mathcal{B} \backslash \mathcal{T}} w\right\|^{2}}{2^{N-k}\binom{N}{N-k+1}}} \tag{3.2}
\end{equation*}
$$

Using the bilinearity of the scalar product and taking into account the definition of $V_{\mathcal{T}}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$, it can be easily seen that when we vary $\left(\mathcal{T}, \mathcal{T}_{1}, \mathcal{T}_{2}\right)$, we get the term $\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|^{2}$ exactly $2^{N-k} k$ times for every possible choice of $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subseteq \mathcal{B}$. This implies that the quadratic mean of the k-dimensional measures of the k-dimensional diagonals of \mathcal{P} (3.2) can be written as:

$$
\begin{equation*}
\sqrt{\frac{2^{N-k} k \sum\left\|a_{i_{1}} \wedge \cdots \wedge a_{i_{k}}\right\|^{2}}{2^{N-k}\binom{N}{N-k+1}}} \tag{3.3}
\end{equation*}
$$

Finally to obtain Theorem 1.2, it is enough to divide (3.3) by (3.1) to get

$$
\sqrt{\frac{k\binom{N}{k}}{\binom{N}{N-k+1}}}=\sqrt{N-k+1}
$$

References

1. Ö. Eğecioğlu, Parallelogram-law-type identities, Linear Algebra Appl. 225 (1995), 1-12.
2. A. Fonda, A generalization of the parallelogram law to higher dimensions, Ars Math. Contemp. 16 (2019), no. 2, 411-417.
3. A. Nash, A generalized parallelogram law, Amer. Math. Monthly 110 (2003), 52-57.
4. A. J. Penico, and Č. V. Stanojević, An integral analogue to parallelogram law, Proc. Amer. Math. Soc. 79 (1980), no. 3, 427-430.

Centro Universitario de la Defensa de Zaragoza
Ctra. Huesca s/n, 50090 Zaragoza, Spain
E-mail address: oller@unizar.es

[^0]: Received by the editors November 4, 2019, and in revised form December 4, 2019. 2000 Mathematics Subject Classification. 51M04, 52B05.
 Key words and phrases. Parallelogram law, parallelotope.

