
Volume 20, Number 2, Pages 508–523
ISSN 1715-0868

,

THE ASYMMETRIC INDEX OF A GRAPH

ALEJANDRA BREWER CASTANO, EMMA FARNSWORTH, NATALIE GOMEZ,
ADAM GREGORY, QUINDEL JONES, HERLANDT LINO, BRENDAN ROONEY,

AND DARREN A. NARAYAN

Abstract. A graph G is asymmetric if its automorphism group is trivial.
Asymmetric graphs were introduced by Erdős and Rényi (1963). They sug-

gested the problem of starting with an asymmetric graph and removing some
number r of edges and/or adding some number s of edges so that the resulting

graph is nonasymmetric. Erdős and Rényi defined the degree of asymmetry of

a graph to be the minimum value of r + s. In this paper, we define another
property that measures how close a given nonasymmetric graph is to being

asymmetric. We define the asymmetric index of a graph G, denoted ai(G),

to be the minimum of r + s so that the resulting graph G is asymmetric. We
investigate the asymmetric index of both connected and disconnected graphs.

We prove that for any nonnegative integer k, there exists a graph G where

ai(G) = k. We show that the asymmetric index of a cycle with at least six
vertices is two, and provide a complete characterization of all possible pairs of

edges that can be added to a cycle to create an asymmetric graph. In addition

we determine the asymmetric index of paths, certain circulant graphs, Carte-
sian products involving paths and cycles, and bounds for complete graphs, and

complete bipartite graphs.

1. Introduction

We consider undirected graphs without multiple edges or loops. A graph G is
asymmetric if its automorphism group is trivial. To avoid confusion with symmet-
ric (or arc-transitive) graphs where the automorphism group acts transitively on
ordered pairs of adjacent vertices, a graph with a nontrivial automorphism group of
vertices will be referred to as nonasymmetric. Asymmetric graphs were introduced
by Erdős and Rényi [1] in 1963. Any asymmetric graph can be made nonasym-
metric by removing some r number of edges and adding some s number of edges.
Erdős and Rényi defined the degree of asymmetry A(G) of a graph G to be the
minimum of r + s. In this paper, we define a property that measures how close a
nonasymmetric graph is to being asymmetric. We define the asymmetric index of
a graph G, denoted ai(G), to be the minimum of r + s so that the resulting graph
G is asymmetric. At first glance it might appear that calculating the degree of
asymmetry of a graph is the inverse problem of calculating the asymmetric index:
one might think that adding (removing) edges to (from) an asymmetric graph to
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obtain a nonasymmetric graph would be the same as removing (adding) edges from
(to) a nonasymmetric graph to obtain an asymmetric graph. However, Erdős and
Rényi [1] sought the minimum value of r+s to create symmetry, while in this paper
we are seeking the minimum value of r + s to eliminate symmetry. In problems
involving the degree of asymmetry, graphs that are far from being asymmetric, such
as complete graphs, are not encountered. In fact, if we let n denote the number of
vertices in a graph, we will show that when n ≥ 6, ai (Kn) ≥ 6n

7 but Erdős and
Rényi showed that the degree of asymmetry of a graph with n vertices is less than
or equal to

⌈
n−1
2

⌉
for all graphs G.

For a graph G we will use V (G) to denote the set of vertices, and E(G) to
denote the set of edges. The edge between vertices u and v will be denoted uv.
Two graphs G and H are isomorphic if there is a bijection f : G → H where
uv ∈ E(G) ⇔ f(u)f(v) ∈ E(H). Recall that f is an automorphism if it is an
isomorphism from a graph to itself, and the set of all automorphisms of a graph
forms a permutation group under function composition. We will use Aut(G) to
denote the automorphism group of a graph G. The complement of a graph G will
be denoted G.

A vertex will be referred to as fixed if it is fixed under every automorphism of
G. The degree of a vertex v is the number of edges incident to v. The distance
between two vertices u and v is the number of edges in a shortest path between u
and v and will be denoted d(u, v). For graphs G and H with disjoint vertex sets,
G + H will simply be the disjoint union of the two graphs. For graphs G and H
with disjoint vertex sets, the join of G and H is denoted G ∨ H and is a graph
with the vertices and edges of G and H, along with edges between each vertex of
G and each vertex of H. Given two graphs H and K, with vertex sets V (H) and
V (K) the Cartesian product G = H□K is a graph where V (G) = {(ui, vj) where
ui ∈ V (H) and vj ∈ V (K)}, and E(G) = {(ui, vj), (uk, vl)} if and only if i = k and
vj and vl are adjacent in K or j = l and ui and uk are adjacent in H. For any
undefined notation, please see the text [7] by West.

Many papers on asymmetric graphs have followed the seminal paper by Erdős
and Rényi [1]. These include papers by Schweitzer and Schweitzer [6], and L.
Quintas [5]. A comprehensive treatment of asymmetric graphs is given in the text
by Godsil and Royle [2].

In this paper we investigate the asymmetric index of a graph for several families
of graphs.

We prove that in some cases vertex-transitive graphs and asymmetric graphs
are separated by as few as two edges. We show that the asymmetric index of a
cycle with at least six vertices is two, and provide a complete characterization of
all possible pairs of edges that can be added to a cycle to create an asymmetric
graph. In addition, we obtain the asymmetric index for certain circulant graphs,
Cartesian products involving paths and cycles, and bounds for complete graphs.

2. The Asymmetric Index

We begin by restating an elementary property regarding asymmetric graphs.

Proposition 2.1. Given any graph G, Aut(G) = Aut(G).

As a consequence, if G is an asymmetric graph, then the complementary graph
G is also asymmetric. This leads to the following proposition.
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Proposition 2.2. Given any graph G, ai(G) = ai(G).

Proof. Suppose G can be made into an asymmetric graph by removing some set R
with r edges and adding some set S with s edges. Then by definition of G, if we
now add those same r edges in R to G and remove the same s edges in S from G,
we produce an asymmetric graph. □

We continue by presenting two elementary results involving the join and disjoint
union of two nonisomorphic asymmetric graphs.

Proposition 2.3. If G and H are nonisomorphic asymmetric graphs then G ∨H
is asymmetric.

Proof. Since G is an asymmetric graph, and in G ∨H, each vertex u in G has the
same adjacencies to vertices in H, each vertex of G will be fixed in G∨H. Similarly
each vertex in H will be fixed in G ∨H. □

Proposition 2.4. If G and H are nonisomorphic asymmetric graphs then G+H
is asymmetric.

Proof. By Proposition 2.1, if G and H are asymmetric then G and H are asym-
metric. Then by Proposition 2.3, G ∨ H is asymmetric. Since G ∨ H = G+H,
by Proposition 2.1, G+H is asymmetric. □

Other than the trivial case of a single vertex, it was shown by Erdős and Rényi
[1] that the next smallest asymmetric graph has six vertices. Hence any graph with
five or fewer vertices cannot be made asymmetric by removing or adding edges.

There is only one asymmetric tree on six vertices [1] only one asymmetric tree
on seven vertices [5] and only one asymmetric tree on eight vertices. In a graph G,
two vertices u and v can be transposed if there exists an automorphism σ : G → G
in which σ(u) = v and σ(v) = u. In a graph G, a vertex is fixed if and only if it is
fixed under every automorphism. Note that a graph G is asymmetric, if all of its
vertices are fixed.

Lemma 2.5. Every asymmetric graph on n ≥ 6 vertices can be extended to an
asymmetric graph on n+ 1 vertices by adding a single vertex and a single edge.

Proof. Let G be an asymmetric graph without a pendant vertex. Let G′ be a graph
obtained by adding a new vertex u and an edge uv, where v is a vertex of maximum
degree in G. We claim that G′ is asymmetric. If G′ is not asymmetric then there
exists an automorphism f where two vertices in G′ can be transposed. We note
that any automorphism of V (G′) must send v to itself since it is the only vertex of
degree ∆(G) + 1 and f must send u to itself since it is the only vertex of degree
1. Let vi and vj be two vertices that can be transposed by the automorphism f .
Since removing the vertex u will impact vi and vj in exactly the same way, then
there exists an automorphism of V (G) in which vi and vj could be switched. This
would contradict the fact that G is asymmetric.

If G has a vertex of degree one, then we choose a vertex u with degree one that
has a greatest distance d from a vertex of degree greater than or equal to 3. Then
we can create a new graph G∗ where a vertex z and edge uz are added to G. We
next show that G∗ is asymmetric. Since G is asymmetric, each vertex in G− u has
a property that each of the other vertices does not. The vertex u is the only vertex
in G∗ that has degree 2 and is adjacent to z which has the greatest distance d+ 1
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to a vertex of degree of 3 or more. Hence u and z will both be fixed in G∗, making
G∗ asymmetric. □

The above observations can be stated in the following theorem.

Theorem 2.6. The asymmetric index is well-defined for any graph G consisting
of a single vertex or having six or more vertices.

In the next theorem we show that there exist graphs where the asymmetric index
is arbitrarily large.

Theorem 2.7. For any positive integer k, there exists a graph G where ai(G) = k.

Proof. We first begin with small cases. Let T7 be the asymmetric tree with 7
vertices. Starting with 8K1 and adding the six edges of T7 shows that ai(8K1) = 6.
Successively removing pendant edges will create graphs with asymmetric index i
for 2 ≤ i ≤ 5. It is clear that to obtain asymmetric graphs in each of these cases
edges must only be added and adding any smaller positive number of edges will
result in a graph with at most five edges which cannot be asymmetric.

Starting with tK1 where 9 ≤ t ≤ 15 and first adding the edges of T7 and then
extending the longest path incident to the vertex of degree 3 will create graphs with
asymmetric index i for 7 ≤ i ≤ 13. We note that in each of these cases the number
of edges in the resulting tree equals the asymmetric index. Starting with tK1 and
adding fewer than t − 2 edges will either leave at least two isolated vertices or a
component with between 1 and 5 edges which cannot be asymmetric. It is tempting
to continue in this manner, starting with 16K1 and adding the edges of T7 and then
extend the longest path incident to a vertex of degree 3 by eight edges. This will
create a graph which shows ai(16K1) ≤ 14. However, it is possible to improve this
bound by using the disjoint union of two different nontrivial asymmetric trees. If
we start with 16K1 and add the edges of the asymmetric tree with 7 vertices, and
the edges of the asymmetric tree with 8 vertices, and leave one isolated vertex, we
have an asymmetric graph with 13 edges (see the figure below). Since the trees
have a total of 13 edges, we have that ai(15K1) ≤ 13. To show equality, we note
that 12 or fewer edges will either be a graph with at least two isolated vertices or
a component that has between 1 and 5 edges, which cannot be asymmetric.

To create graphs G with ai(G) ≥ 14, we use the disjoint union of nonisomorphic
asymmetric trees. We first note that 16K1 is the smallest graph for which we can
add the edges of two nontrivial nonisomorphic asymmetric trees and result in an
asymmetric graph. Since there is a unique asymmetric tree on 7 vertices and a
unique asymmetric tree on 8 vertices, the smallest graph for which we can add the
edges of three nontrivial nonisomorphic asymmetric trees will contain asymmetric
trees on 7, 8, and 9 vertices along with an isolated vertex. This graph will have
25 vertices and contain 21 edges. Hence ai(25K1) = 21. Above we showed that
ai(16K1) = 13, where we added the edges of T7 and T8. To create graphs with
asymmetric indices between 14 and 20, we start with tK1 where 17 ≤ t ≤ 23
respectively. Then we successively add edges to extend the longest path in T8

incident to the vertex of degree 3 to create trees with j vertices where 9 ≤ j ≤ 15.
In each of these graphs the largest tree will be asymmetric by Proposition 1.

We will use Tr to denote a tree with r vertices. Consider the set of nonisomorphic
asymmetric trees Ta1

, Ta2
, . . . , Tak

where a1 ≤ a2 ≤ · · · ≤ an. In all cases a1 = 1
and a2 ≥ 6. There must exist a smallest integer n1 such that the edges of the trees
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Figure 1. An asymmetric graph with 16 vertices

Ta1
, Ta2

, . . . , Tak
can be added to n1K1 so that the resulting graphG1 is asymmetric.

This graph will have
∑k

i=1 ai vertices and (
∑k

i=1 ai)− k edges and hence ai(G1) ≤
n1 − k. There must also exist a smallest integer n2 such that the edges of the trees
Ta1

, Ta2
, . . . , Tak

, Tak+1
can be added to n2K1 so that the resulting graph G2 is

asymmetric. This graph will have
∑k+1

i=1 ai vertices and (
∑k+1

i=1 ai)− (k + 1) edges
and hence ai(G2) ≤ n2 − (k + 1). We note that in both cases any smaller set of
edges will result in a graph with more than one isolated vertex or a tree with fewer
than or equal to five edges. Hence ai(G1) = n1−k and ai(G2) = n2−(k + 1). Next
we can construct graphs with asymmetric index j for all n1 − k < j < n2 − (k + 1)
by appending a path with q edges for 1 ≤ q ≤ (ak+1) − 2, to the longest path
incident to a vertex of degree 3 in G1. This completes the proof. □

We note that we can also create connected graphs with ai(G) = k for any
nonnegative integer k. For 1 ≤ k ≤ 6 we use a similar construction to the one
described above starting with K7 and removing edges of Gi 1 ≤ i ≤ 6. For cases
when k ≥ 7 we start with Kn where n ≥ 7 and remove the edges shown in Figure
2.

3. Calculating the asymmetric index of a graph

In this section we investigate the asymmetric index of several families of graphs.
We begin with the family of paths.

3.1. Paths. We consider paths, Pn where n ≥ 6. Removing any number of edges
will leave a nonasymmetric graph, in the form of shorter paths. We will show that
the addition of a single edge can make the resulting graph asymmetric.



513

Proposition 3.1. For n ≥ 6, ai(Pn) = 1.

Proof. Consider a path on n ≥ 6 vertices with consecutive labels v1, v2, . . . , vn.
Adding the edge v2v4 will produce a cycle with two pendant paths of different
lengths, which is asymmetric. This implies that ai(Pn) = 1. □

An example of this fact can be seen in Figure 2.

∼=

Figure 2. Adding a single edge to a path on six vertices

We next investigate the different possibilities for a single edge to be added to a
path to make the resulting graph asymmetric.

Theorem 3.2. The number of asymmetric graphs obtained by adding an edge to a

path Pn is
⌊
(n−4)2

4

⌋
.

Proof. Let the vertices of Pn be v0, v1, ..., v(n−1). We first note that adding an edge
incident to either v0 or vn−1 will result in a graph that is not asymmetric. We first
consider when n is even, n = 2k. Then v1 has n − 5 possibilities excluding edges
to v0, v1, v2, vn−2, and vn−1. Similarly vn

2 −1 has n − 5 possibilities. Then vi for
all 1 ≤ i ≤ n

2 − 2 have n − 6 possibilities excluding edges to v0, vi−1, vi, vi+1, and

vn−1. Hence the total number of cases is 2 +
∑n

2 −1
i=1 (n− 6) = 2 +

∑k−1
i=1 (2k − 6) =

2k2 − 8k + 8. After dividing by 2 to account for reflections, the total number of
graphs is k2 − 4k + 4.

Next, we consider when n is odd, n = 2k + 1. Then v1 has n − 5 possibilities
excluding edges to v0, v1, v2, vn−2, and vn−1. Similarly vn−1

2
has n − 5 possibili-

ties. Then vi for all 1 ≤ i ≤ n−1
2 − 1 have n − 6 possibilities excluding edges to

v0, vi−1, vi, vi+1, and vn−1. Hence the total number of cases is 2 +
∑n−1

2
i=1 (n− 6) =

2 +
∑k

i=1(2k + 1− 6) = 2k2 − 5k + 2. Then we add in the cases for the remaining

vertices, which gives 1 +
∑2k−1

i=k+1(2k − 5) = 2k2 − 7k + 5. This gives a total of

4k2 − 12k+ 7. Then to adjust for double counting all but one of the cases we have

2k2−6k+4. Then the total number of graphs is k2−3k+2. Noting that (2k−4)2

4 =

k2−4k+4 and (2k+1−4)2

4 = k2−3k+ 9
4 we combine both cases to obtain

⌊
(n−4)2

4

⌋
.

□

3.2. Cycles. A cycle, Cn, is both vertex and edge transitive and Aut(Cn) is the
dihedral group Dn. We first note that ai(Cn) > 1, since deletion of a single edge
will result in a path, which is nonasymmetric and adding a single edge will result
in a graph with a reflective line of symmetry that bisects the added edge.

We will show next that for n ≥ 6, ai(Cn) = 2. We consider adding two edges to
Cn where n ≥ 6. The following three theorems give necessary and sufficient condi-
tions for two edges to be added to a cycle to make the resulting graph asymmetric.
There are three ways to add a pair of edges to a cycle to create an asymmetric
graph: (i) Adding two noncrossing edges that are incident, (ii) two noncrossing
edges that are not incident, and (iii) two crossing edges. These three cases are
considered in the following three theorems.
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w

v

u

Cm

Ck

Figure 3. A cycle with two chords that are incident to the same vertex

Recall that a vertex v is called fixed if v is fixed under every automorphism of
G.

Theorem 3.3. Let G be the graph where two noncrossing edges are added to the
cycle Cn so that the resulting graph has three chordless cycles Ck, Cm, and Cl,
where Cm is the subgraph sharing edges with both Ck and Cl and k+m+ l = n+4.
Then the resulting graph is asymmetric if and only if k ̸= l.

Proof. Assume that k ̸= l. Let v be the vertex that is incident to both chords,
let u be the vertex that is part of both Ck and Cm, and let w be the vertex that
is part of both Cl and Cm. The vertices u,v, and w are fixed since they are the
only vertices contained in two of the three cycles Ck, Cm, and Cl. Each vertex x
in Ck is fixed since the pairs (d(x, u), d(x, v)) are different for each vertex x. Each
vertex y in Cl is fixed since the pairs (d(y, u), d(y, w)) are different for each vertex
y. Each vertex z in Cl is fixed since the pairs (d(z, v), d(z, w)) are different for each
vertex y. For the converse note that if k = l then there is an axis of symmetry
that passes through the vertex of degree 4 and the middle of the arc opposite this
vertex. Hence G is nonasymmetric. □

In the following theorems for vertices x and y on the cycle Cn we use (x, y)
to denote the vertices and edges on the minor arc between x and y and l(x, y) to
denote the number of edges on the minor arc of the cycle Cn between x and y.

Theorem 3.4. Let G be the graph where two noncrossing, nonincident edges are
added to the cycle Cn and the resulting graph has three chordless Ck, Cm, and Cl ,
where Cm is the subgraph between Ck and Cl and k+m+ l = n+4. Let t and w be
the vertices in both Ck and Cm and let u and v be the vertices in both Cm and Cl.
Then the resulting graph is asymmetric if and only if k ̸= l and l (v, w) ̸= l (t, u).

Proof. First assume that k ̸= l and l (v, w) ̸= l (t, u). We will proceed to show that
every vertex in G is fixed. We first note that vertices t and w are the only vertices
of degree 3 that are contained in both Ck and Cm. Since l (v, w) ̸= l (t, u), t and
w have different distances to a vertex in Cl. Hence t and w are fixed. Next note
that vertices u and v are the only vertices of degree 3 that are contained in both
Cm and Cl. Since l (v, w) ̸= l (t, u), u and v have different distances to a vertex in
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Figure 4. A cycle with two chords that do not cross

u

w

v

x

Figure 5. A cycle with two chords that cross

Ck. Hence u and v are fixed. Then all of the other vertices are fixed since no two
vertices on any of the arcs t, u, u, v, v, w, and w, t have the same pair of distances
to the end vertices of the arcs they are on. For the reverse direction first note that
if k = l then there is an axis of symmetry that passes through the middle of the
arc u,w and the middle of the arc w − t. If k ̸= l and l (v, w) = l (t, u) then G has
an axis of symmetry that passes through the middle of the arc v, w and the middle
of the arc t, u. Hence G is asymmetric. □

Theorem 3.5. Let G be the graph with two crossing chords so that the resulting
graph has three chordless Ck, Cm, and Cl , where Cm is the subgraph that shares
edges with both Ck and Cl and k +m+ l = n+ 4. Furthermore the two edges have
vertices u and v, and w and x, and the resulting graph has four arcs along the cycle,
u,w, w, v, v, x, and x, u. Then the resulting graph is asymmetric if and only if:

(i) l(v, x) ̸= l(x, u) or l(w, v) ̸= l(u,w), and
(ii) l (u,w) ̸= l (v, x) and l (w, v) ̸= l (x, u).

Proof. We first show that if (i) and (ii) both hold the graph is asymmetric. We will
show that each vertex is fixed. If (i) holds the graph cannot have any reflectional
symmetry about the chord from x to w. Then since l(u,w) ̸= l(v, x) and l(w, v) ̸=
l(x, u) we have that u, v, w, and x are all fixed. Then all of the other vertices are
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fixed since no two vertices on the same arc have the same pair of distances to the
two end vertices on the arcs. Hence G is asymmetric.

We next consider if either (i) or (ii) does not hold. If (i) does not hold then
l(v, x) = l(x, u) and l(w, v) = l(u,w) then the graph has a line of reflection and is
therefore nonasymmetric. Next we consider if (ii) does not hold. If l (u,w) = l (v, x),
then the graph has an axis of symmetry through the middle of the arcs x, u and
v, w. The other case involving arcs w, v and x, u is similar. □

Next we will investigate the asymmetric index of wheel graphs. A wheel graph
has n vertices and is formed with a universal vertex and an outer cycle.

Theorem 3.6. For n ≥ 6, ai(Wn) = 2.

Proof. We will first show that ai(Wn) > 1. If we remove an edge incident to the
vertex of degree n − 1, this results in a vertex of degree two and the neighbors of
this vertex are not fixed. Similarly, if we remove an edge whose endpoints are both
degree three, we are left with two vertices of degree two that are each not fixed.
Now if an edge is added to the graph, it must be added between two vertices of
degree three. These vertices now have degree four and are each not fixed. It has
now been established that ai(Wn) is at least two.

Next we show the bound is tight. Removing an edge that is incident to one of
these vertices of degree two, as well as incident to the vertex of degree n− 1, then
the resulting graph is asymmetric (see Figure 3). □

Figure 6. Changing a wheel into an asymmetric graph

3.3. A Class of Circulant Graphs. We extend our observations about cycles
to a specific class of circulant graphs. The graph Cn(L) has vertex set Zn, and
connection set L ⊆ Zn \{0} satisfying −L = L. Two vertices i, j ∈ Zn are adjacent
in Cn(L) if and only if i− j ∈ L (since −L = L, i− j ∈ L if and only if j − i ∈ L,
so this relation is symmetric). The cycle Cn can alternatively be described as the
circulant Cn({1,−1}).

We note the following observation from [3].

Lemma 3.7. If a graph G has order n, and Aut(G) contains an element of order
n, then G is a circulant graph.

In particular, any graph G on n vertices with Aut(G) ∼= Dn is a circulant. The
converse does not hold in general, as the automorphism group of Cn(Zn\{0}) ∼= Kn

is isomorphic to Sn. Our goal is to show that every graph G with Aut(G) ∼= Dn has
asymmetric index 2. We will establish this by showing that for most such graphs,
there is a “wedge” of nonedges that can be added to break all of the symmetries.
We begin by defining these “wedges”.
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Suppose G has order n, and Aut(G) contains an element σ of order n. Choose
an arbitrary vertex v ∈ V (G), and consider the bijection φ : V (G) → Zn defined
by φ(u) = i where u = σi(v). Note that the statement of Lemma 3.7 now follows
as φ is an isomorphism from G to Cn(L) where L = {i : σi(v) ↔ v}. Moreover,
since σ ∈ Aut(G) has order n, L must contain some i that is relatively prime to n.
So the edges defined by i give a subgraph of G isomorphic to Cn. This now implies
that the map k 7→ k · i is an automorphism of Cn(L) that sends i to 1. So without
loss of generality, we can assume that 1 ∈ L.

A wedge of nonedges for G is a pair of nonedges {a, b} and {b, c} so that |φ(a)−
φ(b)| ̸= |φ(b) − φ(c)|. That is, the distance between the images of a and b along
the cycle defined by σ is different than the distance between the images of b and c.
The following lemma guarantees the existence of a wedge of nonedges in a class of
circulants.

Lemma 3.8. If G has order n ≥ 6, G ≇ Cn, and Aut(G) ∼= Dn, then G has a
wedge of nonedges.

Proof. Let v ∈ V (G), σ ∈ Aut(G), and φ be as described above, and let Cn(L) ∼= G
be the resulting circulant. We show that there is a wedge of nonedges for Cn(L) of
the form {0, i}, {0, j} for 1 ≤ i < j ≤ ⌊n/2⌋.

First, note that since Aut(G) ≇ Sn, Cn(L) is not complete. So there is some
i ∈ Zn so that 0 and i are not adjacent. Since Cn(L) is a circulant, this implies
that there is some 1 ≤ i ≤ ⌊n/2⌋ so that 0 and i are not adjacent. If there is any
j ̸= i not adjacent to 0 with 1 ≤ j ≤ ⌊n/2⌋, then we have our desired wedge.

Suppose no such j exists. Then L = Zn \ {0, j,−j}. Thus the complement of
Cn(L) is Cn({j,−j}). Since G ≇ Cn, we have Cn({j,−j}) ≇ Cn. So gcd(j, n) > 1,
and Cn({j,−j}) is isomorphic to a disjoint collection of j copies of Cn/j (unless
j = n/2, in which case Cn({j,−j}) = Cn({n/2}) is a disjoint collection of n/2
copies of K2). So the automorphism group of Cn({j,−j}) is the direct product of
j copies of Dn/j (or if j = n/2, the direct product of n/2 copies of S2). In any case

we see that Aut(Cn({j,−j})) ≇ Dn. However, since Aut(G) ∼= Aut(G) we have a
contradiction. □

We are now prepared to prove the main theorem in this section.

Theorem 3.9. If G has order n ≥ 6, and Aut(G) ∼= Dn, then the asymmetric
index of G is 2. If G ≇ Cn, then some addition of two edges to G results in an

asymmetric graph. If G ∼= Cn, then some deletion of two edges from G results in
an asymmetric graph.

Proof. Suppose G ≇ Cn. From Lemma 3.8, G has a wedge of nonedges {a, b} and
{b, c}. Again, we consider the circulant Cn(L) isomorphic to G constructed by
applying σ ∈ Aut(G) of order n repeatedly to the vertex b. Recall that without loss
of generality, 1 ∈ L. So there is a subgraph H of G with H ∼= Cn, and since {a, b}
and {b, c} form a wedge, the distance between a and b on H is distinct from the
distance between b and c. Now from Theorem 3.3, H+{{a, b}, {b, c}} is asymmetric.
Thus G+ {{a, b}, {b, c}} is asymmetric.

Now suppose G ∼= Cn. Since the graph obtained from Cn by deleting any
two edges is never asymmetric, adding any pair of edges to G never results in
an asymmetric graph. However, if e, f is any pair of edges so that G + {e, f} is
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asymmetric, then G \ {e, f} is asymmetric. Theorem 3.3 (for instance) guarantees
the existence of such a pair of edges. □

Figure 7. A wedge of nonedges (in red) is added to C12 to create
an asymmetric graph

For example, Figure 7 gives a demonstration of Theorem 3.9. We also note that
the Möbius ladder graphs satisfy the hypotheses of Theorem 3.9.

Corollary 3.10. Let n ≥ 4 and let ML2n be the Möbius ladder graph with 2n
vertices. Then ai (ML2n) = 2. □

3.4. Complete graphs. We next investigate complete graphs Kn (and their com-
plements nK1 known as null graphs) and show they have higher asymmetric indices
than other graphs we have encountered. This is expected as the automorphism
group of Kn is Sn and the automorphism group of an asymmetric graph is triv-
ial. We note that ai (K1) = 0, and ai (Kn) is not defined when 2 ≤ n ≤ 5. To
determine ai (K6) we start with six isolated vertices and add the edges of the asym-
metric graph on six vertices (shown in Figure 2). To determine ai (K7) we start with

Figure 8. A möbius ladder graph
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Figure 9. An asymmetric graph with 43 vertices and 37 edges

seven isolated vertices and add the edges of the asymmetric graph on six vertices. In
both cases using any fewer edges results in a graph that is not asymmetric. Hence
ai (6K1) = 6 and ai (7K1) = 6. By Proposition 2.1, ai (K6) = 6 and ai (K7) = 6.
We have shown in the proof of Theorem 2.7 when 8 ≤ n ≤ 15, ai (Kn) = n− 2. It
is not too difficult to establish an upper bound for ai(Kn). There exists an asym-
metric tree H with seven vertices and six edges. By Proposition 2.4 and Lemma
2.5 H can be extended to an asymmetric graph Hn consisting of a tree with n− 1
vertices along with an isolated vertex. Then by Proposition 2.1, Kn −Hn will be
asymmetric. We have shown that for n ≥ 8, ai(Kn) ≤ n − 2. For larger cases
this bound can be improved, as there exists a larger number of nonisomorphic trees
with a total of n vertices. As mentioned in the proof of Theorem 2.7, ai (K16) = 13
since there exist three distinct asymmetric trees with a total of 16 vertices.

We continue with a larger example. Consider ai(K43). It is known that there is a
single asymmetric tree with 7 vertices and a single asymmetric tree with 8 vertices
and there are three nonisomorphic asymmetric trees on 9 vertices. By starting with
43 isolated vertices we can add the edges necessary to construct each of these trees.
This graph has five nontrivial trees and an isolated vertex, and a total of 37 edges
(see Figure 9).

Since removing any edge will result in two vertices that are each not fixed, it
follows that ai(43K1) = 37 which by Proposition 2.1 implies that ai(K43) = 37.
What led to this improvement over ai(Kn) = n − 2 is the presence of multiple
nonisomorphic asymmetric graphs of the same order. The more of these graphs
the better the bound will be. In general when n ≥ 15, ai (Kn) = n − tn where
tn is the number of distinct asymmetric trees that exist on a total of n vertices.
We note that in general, tn is not known. In fact, tn relies on the number of
asymmetric trees on a fixed number of vertices, which is unknown. Noe and Heinz
computed the number of asymmetric trees on n vertices for n = 1, . . ., 1000 (OEIS
A000220 [4]). We can create a rough general lower bound using multiple copies of
the asymmetric tree with seven vertices and six edges. This bound can be improved
by taking graphs that are not isomorphic (if they can be identified). Let G be a
graph with n vertices. We first isolate a single vertex. Then we construct

⌊
n−1
7

⌋
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sets with seven vertices and one remaining set with n− 1− 7
⌊
n−1
7

⌋
vertices. From

this we create
⌊
n−1
7

⌋
− 1 asymmetric trees with seven vertices and one asymmetric

tree with n − 1 − 7
(⌊

n−1
7

⌋
− 1

)
vertices. The total number of edges in this graph

will be 6
⌊
n−1
7

⌋
− 1 + n− 1− 7

(⌊
n−1
7

⌋
− 1

)
− 1 = n−

⌊
1
7n− 1

7

⌋
+ 4.

Hence we have proved the following general formula which for specific cases can
be improved.

Theorem 3.11. For n ≥ 16, n−
⌊
1
7n− 1

7

⌋
+ 4 ≤ ai(Kn) ≤ n− 2.

By taking the disjoint union of nonisomorphic asymmetric trees we can construct
graphs that have a relatively larger asymmetric index. For example, if we were
to take the disjoint union of all nonisomorphic asymmetric trees up to 17 vertices
(quantities given by Noe and Heinz [4]) we would create a graph with 43,914 vertices

and 41,196 edges. Here ai(G)
n ≈ 0.938. It appears that by taking the disjoint union

of all nonisomorphic asymmetric trees with larger orders, ai(G)
n → 1.

3.5. Complete bipartite graphs. We begin with a lemma which will be useful
in our next two theorems.

Lemma 3.12. If a graph G has a set of t vertices where any pair can be transposed,
then ai(G) ≥

⌊
t−1
2

⌋
.

Proof. Let T be a set of t vertices, any two of which can be transposed. To eliminate
all symmetries in G we must either add or remove an edge incident to each vertex
in T . Since the addition of an edge can be incident to two vertices, the minimum
number of edges that needs to be added or removed is equal to

⌊
t−1
2

⌋
. □

We next present bounds for complete bipartite graphs, Ka,b.

Theorem 3.13. For n ≥ 6,
⌊
n−1
2

⌋
≤ ai (K1,n−1) ≤ n− 1.

Proof. The lower bound follows from Lemma 3.12. For the upper bound, It may
be helpful to refer to the third graph in Figure 6. We start by adding edges so that
n− 1 of the vertices that are not the universal vertex will be connected by a path
with n− 2 edges. Then removing the edge between an end vertex on the path and
the universal vertex will result in an asymmetric graph. □

Figure 10. An asymmetric tree with seven vertices

Next we present bounds for complete bipartite graphs with at least 6 vertices.

Theorem 3.14. Let G = Ka,b. Then

(1) If a = 2 then 1 +
⌊
b
2

⌋
≤ ai(K2,i) ≤ 2i− 4
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(2) If a = 3 and b = 3, 2 ≤ ai(K3,3) ≤ 6.

(3) When a ≥ 3 and b ≥ 4,
⌊
a
2

⌋
+

⌊
b
2

⌋
≤ ai (Ka,b) ≤ ab− 6.

Proof. The lower bounds follow from Lemma 3.12.
We next prove 1. Starting with K2,i remove but five edges and then add in the

dashed edge to form an asymmetric graph with six edges.
For 2, we remove three edges so that the resulting graph is P6. Then we add a

single edge to create the asymmetric graph with six vertices and six edges. A graph
for the case where i = 4 is shown in Figure 11.

For 3, the lower bound follows Lemma 3.12. □

Figure 11. A construction for K2,4 showing that ai(K2,4) ≤ 4

3.6. Cartesian products of paths and cycles. We next investigate the asym-
metric index for grids and cylinders.

Theorem 3.15. Let G = (Ps□Pt). Then

(1) ai(P2□P3) = 2.
(2) If s, t ≥ 3 then ai(Ps□Pt) = 1.

Proof. For 1, we first note that the removal of any single edge results in a graph
that has either horizontal or vertical symmetry. Next we show that the asymmetric
index of this graph equals 2. We first remove the edge between (2, 0) and (2, 1).
Then we add an edge between (1, 0) and (2, 1) to create an asymmetric graph.

For 2, note that all automorphisms of a grid graph Ps□Pt are compositions of
horizontal or vertical reflections about the midlines of the grid. As a result we can
remove the edge between (0.0) and (1, 0) and the resulting graph will be asymmetric.

□

We next consider cylinders, the Cartesian product of paths and cycles.

Theorem 3.16. For all s ≥ 2 and t ≥ 3, ai(Ps□Ct) = 2.

Proof. The only automorphisms of a cylinder are reflections and rotations. For the
lower bound note that if we remove a single edge uv from G then there is a line of
symmetry passing through the missing edge. Hence ai(Ps□Ct) ≥ 2.

It may be helpful to refer to Figure 12. For the upper bound we remove the
edges uv and uw from Ps□Ct. This creates a graph without reflections or rotational
symmetries.

□
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u w

v

Figure 12. A cylinder (where the left side and right side are the same)

4. Conclusion

We have shown that there exist infinite families of graphs with a small asym-
metric index, including those with an asymmetric index of 1. However the largest
possible asymmetric index for a graph of order n is not known. We pose this as the
following open problem
Problem. Determine for graphs with n vertices, which graphs have the highest
asymmetric index.

In Section 3.3 we investigated a specialized class of circulant graphs. It would
be interesting to investigate the asymmetric index of other families of circulant
graphs. For more information on automorphism groups of circulant graphs the
reader is referred to [3].
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