Contributions to Discrete Mathematics

Volume 19, Number 3, Pages 1–26 ISSN 1715-0868

UNIFORMLY RESOLVABLE $\{P_4, C_k\}$ -DECOMPOSITION OF K_n - A COMPLETE SOLUTION

A. SHANMUGA VADIVU AND A. MUTHUSAMY

ABSTRACT. Let K_n , C_n , and P_n respectively denote the complete graph, cycle and path on n vertices. Uniformly resolvable decomposition of K_n is a decomposition of K_n into subgraphs which can be partitioned into factors containing pairwise isomorphic subgraphs. In this paper, we determine necessary and sufficient conditions for the existence of uniformly resolvable decomposition of K_n into P_4 and C_k , $k \geq 3$.

1. INTRODUCTION

All graphs considered here are finite. Let P_n , C_n , K_n , and I_n denote the path, cycle, complete graph, and independent set on n vertices, respectively. Let λG denote the λ edge-disjoint copies of G. A complete m-partite graph with partite sets $V_0, V_1, \ldots, V_{m-1}$ consisting of $n_0, n_1, \ldots, n_{m-1}$ vertices respectively is denoted as $K_{n_0,n_1,\dots,n_{m-1}}$. $K_n - I$ denotes the complete graph with a 1-factor removed when n is even.

For two graphs G and H their wreath product $G \otimes H$ has the vertex set $V(G) \times V(H)$ in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$. One can easily observe that $K_m \otimes I_n \cong K_{n,n,\dots,n}$, the complete m-partite graph in which each partite set has exactly *n* vertices. We write $G = H_1 \oplus H_2 \oplus \cdots \oplus H_l$, if H_1, H_2, \ldots, H_l are edge-disjoint subgraphs of G and $E(G) = E(H_1) \cup E(H_2) \cup \cdots \cup E(H_l)$. Note that, by the properties of the wreath product, if $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$, and $H \cong I_n$ then $G \otimes H = (H_1 \otimes I_n) \oplus (H_2 \otimes I_n) \oplus \cdots \oplus (H_k \otimes I_n)$. For more details on product graphs, see [\[18\]](#page-24-0).

For a given collection H containing simple graphs, an H -decomposition of a graph G is a set of subgraphs of G whose edge set partition $E(G)$,

This work is licensed under a [Creative Commons "Attribution-](https://creativecommons.org/licenses/by-nd/4.0/deed.en)[NoDerivatives 4.0 International"](https://creativecommons.org/licenses/by-nd/4.0/deed.en) license.

Received by the editors August 13, 2019, and in revised form January 28, 2022.

²⁰⁰⁰ Mathematics Subject Classification. 05C51, 05C38, 05C70.

Key words and phrases. Resolvable decomposition, Uniform resolution class, Cycle, Path.

The first author thanks the Department of Atomic Energy, Government of India, Mumbai for its financial support (DAE No. $2/40(22)/2016/R\&$ D-11/15245). The corresponding author thanks the University Grants Commission, New Delhi for its financial support (UGC. F.510/7/DRS-I/2016(SAP-I)).

and each subgraph is isomorphic to a graph from H . A factor of a graph G is a spanning subgraph of G. A factor is called uniform H -factor if each component of the factor is isomorphic to the same graph H . An r -factor of G is an r-regular spanning subgraph of G. An H -decomposition of a graph G is called *uniformly resolvable* H -decomposition if the subgraphs in the H -decomposition can be partitioned into uniform H -factors, for some $H \in \mathcal{H}$. Suppose $\mathcal{H} = \{H\}$, uniformly resolvable \mathcal{H} -decomposition is called H-factorization.

Recently, lots of results have been obtained on uniformly resolvable Hdecomposition of a graph K_n . The existence of uniformly resolvable \mathcal{H} decompositions of K_n has been studied in the cases, when $\mathcal{H} = \{K_k\}$ with $k = 3, 4, 5$ (for $k = 5$ there are only four undecided values of n), see [\[1\]](#page-23-0); $\mathcal{H} = \{P_k\}$ for any $k \geq 2$ [\[4,](#page-24-1) [12,](#page-24-2) [14\]](#page-24-3); H is a set of two complete graphs of order at most five $[7, 25, 26, 27, 28, 29]$ $[7, 25, 26, 27, 28, 29]$ $[7, 25, 26, 27, 28, 29]$ $[7, 25, 26, 27, 28, 29]$ $[7, 25, 26, 27, 28, 29]$ $[7, 25, 26, 27, 28, 29]$; $\mathcal H$ is a set of two paths on two, three, or four vertices [\[10,](#page-24-10) [11\]](#page-24-11); $\mathcal{H} = \{P_3, K_3 + e\}$ [\[9\]](#page-24-12); $\mathcal{H} = \{K_3, K_{1,3}\}$ [\[16\]](#page-24-13); $\mathcal{H} = \{K_2, K_{1,3}\}$ [\[15,](#page-24-14) [6\]](#page-24-15); $\mathcal{H} = \{C_4, P_3\}$ [\[23\]](#page-24-16); $\mathcal{H} = \{K_3, P_3\}$ [\[24\]](#page-24-17); $\mathcal{H} = \{P_2, P_3, P_4\}$ [\[22\]](#page-24-18); $\mathcal{H} = \{C_4, K_{1,3}\} [8]; \mathcal{H} = \{K_2, P_{2k}\}, k \geq 2 \; [17].$ $\mathcal{H} = \{C_4, K_{1,3}\} [8]; \mathcal{H} = \{K_2, P_{2k}\}, k \geq 2 \; [17].$ $\mathcal{H} = \{C_4, K_{1,3}\} [8]; \mathcal{H} = \{K_2, P_{2k}\}, k \geq 2 \; [17].$ $\mathcal{H} = \{C_4, K_{1,3}\} [8]; \mathcal{H} = \{K_2, P_{2k}\}, k \geq 2 \; [17].$ $\mathcal{H} = \{C_4, K_{1,3}\} [8]; \mathcal{H} = \{K_2, P_{2k}\}, k \geq 2 \; [17].$

In this paper, we determine necessary and sufficient conditions for the existence of uniformly resolvable decomposition of K_n into P_4 and C_k , $k \geq 3$.

2. Preliminary Results

In this section, we give some useful notations, basic results, and necessary conditions for the existence of uniformly resolvable decomposition of K_n into P_4 and C_k , $k \geq 3$.

Let (P_4, C_k) –URD $(n; r, s)$ denote the uniformly resolvable decomposition of K_n into r P_4 -factors and s C_k -factors. A (P_4, C_k) –URD (r, s) of a graph G is a uniformly resolvable decomposition of graph G into r P_4 -factors and s C_k -factors. We denote P_k , $k \geq 2$ with vertex set $\{a_1, a_2, \ldots, a_k\}$ and edge set $\{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}\$ by $[a_1, a_2, \ldots, a_k]; C_k, k \geq 3$ with vertex set $\{a_1, a_2, \ldots, a_k\}$ and edge set $\{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}, \{a_k, a_1\}\}\$ by (a_1, a_2, \ldots, a_k) . The floor function, $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x .

Theorem 2.1 ([\[2,](#page-23-1) [3,](#page-23-2) [13\]](#page-24-21)). Let n, $t \geq 3$ be integers. There is a C_t factorization of K_n (when n is odd) or $K_n - I$ (when n is even and I denotes a 1-factor of K_n) if and only if t divides n, except when $t = 3$ and $n \in \{6, 12\}.$

Theorem 2.2 ([\[20,](#page-24-22) [21\]](#page-24-23)). For $t \geq 3$ and $m \geq 2$, $K_m \otimes I_n$ has a C_t factorization if and only if mn is divisible by t, $(m-1)n$ is even, t is even if $m = 2$, and $(m, n, t) \neq (3, 2, 3), (3, 6, 3), (6, 2, 3), (2, 6, 6).$

Theorem 2.3 ([\[19\]](#page-24-24)). For $n \geq 1$ and $r \geq 3$, $C_r \otimes I_n$ has a C_{rn} -factorization.

Theorem 2.4 ([\[5\]](#page-24-25)). The graph $C_k \otimes I_t$ has a C_k -factorization for all $t \geq 1$ and $k \geq 3$ with the definite exceptions $(t, k) = (6, 3), (2, 2r + 1)$.

Theorem 2.5. For $r \geq 3$, $C_r \otimes I_4$ has a C_{2r} -factorization.

Proof. By Theorem [2.3,](#page-1-0) let $\{\mathcal{C}_{2r}^1, \mathcal{C}_{2r}^2\}$ be a C_{2r} -factorization of $C_r \otimes I_2$, where each \mathcal{C}_{2r}^i is a C_{2r} -factor of $C_r \otimes I_2$. Then

$$
C_r \otimes I_4 \cong (C_r \otimes I_2) \otimes I_2
$$

\n
$$
\cong (C_{2r}^1 \oplus C_{2r}^2) \otimes I_2 \cong (C_{2r}^1 \otimes I_2) \oplus (C_{2r}^2 \otimes I_2).
$$

By Theorem [2.4,](#page-1-1) each $\mathcal{C}_{2r}^i \otimes I_2$ has a C_{2r} -factorization (since $\mathcal{C}_{2r}^i \otimes I_2 \cong I_2$ $C_{2r} \otimes I_2$. Hence $C_r \otimes I_4$ has a C_{2r} -factorization.

Lemma 2.6. Let $k \geq 3$. If there exists a (P_4, C_k) -URD $(n; r, s)$ of K_n , then $n \equiv 0 \pmod{l}, l = \text{lcm}(4, k) \text{ and } (r, s) \in J(n) = \{(4x + 2, \frac{n-4}{2} - 3x) | x =$ $0, 1, \ldots, \left| \frac{n-4}{6} \right|$ $\frac{-4}{6}$].

Proof. Assume that there exists a (P_4, C_k) –URD $(n; r, s)$ of K_n . Then by resolvability, $n \equiv 0 \pmod{l}$, $l = \text{lcm}(4, k)$ is trivial. (i.e.) if $k \equiv 1 \pmod{2}$, then $n \equiv 0 \pmod{4k}$; if $k \equiv 2 \pmod{4}$, then $n \equiv 0 \pmod{2k}$ and if $k \equiv 0 \pmod{4}$, then $n \equiv 0 \pmod{k}$. Since there are r P_4 -factors and s C_k -factors, by edge divisibility,

$$
r\frac{n}{4}3 + s\frac{n}{k}k = \frac{n(n-1)}{2} \implies 3r + 4s = 2(n-1).
$$

Clearly, $r \equiv 2 \pmod{4}$. Let $r = 4x + 2$, $x \ge 0$. Then $s = \frac{n-4}{2} - 3x$. Hence $(r, s) \in J(n) = \{ (4x + 2, \frac{n-4}{2} - 3x) \mid x = 0, 1, \ldots, \left\lfloor \frac{n-4}{6} \right\rfloor \}$ $\frac{-4}{6}$. This completes the proof. \Box

3. CONSTRUCTIONS

In this section, we give two constructions which we use to prove our main results.

If X and Y are two sets of pairs of nonnegative integers, then $X + Y$ denotes the set $\{(x_1+y_1, x_2+y_2) | (x_1,x_2) \in X, (y_1,y_2) \in Y\}$. If X is a set of pairs of nonnegative integers and h is a positive integer, then $h * X$ denotes the set of pairs of nonnegative integers which can be obtained by adding any h elements of X together (repetitions of elements of X are allowed).

Theorem 3.1. Let $m \geq 3$ be an odd integer and t divides m. If there exists

- (1) a (P_4, C_k) –URD (r, s) of $C \otimes I_4$ with $(r, s) \in \{(4, 1), (0, 4)\}$, where $k \in \{4, t, 2t, 4t\}$ and C is a C_t-factor of K_m ; and
- (2) a (P_4, C_k) -URD(16,0) of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where C^a, C^b , and C^c are any 3 edge-disjoint C_t -factors of K_m ,

then there exists a (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in J(4m)$ = $\{(4x + 2, \frac{4m-4}{2} - 3x) \mid x = 0, 1, \ldots, \left\lfloor \frac{4m-4}{6} \right\rfloor$ $\left[\frac{a-4}{6}\right]$, where $k \in \{4, t, 2t, 4t\}.$

Proof. Assume that (1) and (2) holds. Let $A = \{(4x + 2, \frac{4m-4}{2} - 3x) \mid$ $0 \leq x \leq \frac{m-1}{2}$ $\frac{(-1)}{2}$ and $B = \{(4x + 2, \frac{4m-4}{2} - 3x) | \frac{m-1}{2} + 1 \le x \le \frac{4m-4}{6} \}$ $\frac{i-4}{6}$] }

be the partition of $J(4m)$. By Theorem [2.1,](#page-1-2) let $\{\mathcal{C}^i \mid 1 \leq i \leq \frac{m-1}{2}\}$ $\frac{-1}{2}$ be a C_t -factorization of K_m .

$$
K_{4m} \cong (K_m \otimes I_4) \oplus (I_m \otimes K_4)
$$

\n
$$
\cong ((\mathcal{C}^1 \oplus \mathcal{C}^2 \oplus \cdots \oplus \mathcal{C}^{\frac{m-1}{2}}) \otimes I_4) \oplus (I_m \otimes K_4)
$$

\n
$$
\cong ((\mathcal{C}^1 \otimes I_4) \oplus (\mathcal{C}^2 \otimes I_4) \oplus \cdots \oplus (\mathcal{C}^{\frac{m-1}{2}} \otimes I_4)) \oplus (I_m \otimes K_4).
$$

Now we prove the existence of (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in$ $J(4m) = A \cup B$, where $k \in \{4, t, 2t, 4t\}$ in two cases as follows: CASE 1: $(r, s) \in A$.

By hypothesis (1), for each *i*, there exists a (P_4, C_k) -URD (r, s) of \mathcal{C}^i \otimes I_4 , with $(r, s) \in \{(4, 1), (0, 4)\}$, where $k \in \{4, t, 2t, 4t\}$. Since K_4 has 2 P₄-factors, $I_m \otimes K_4(\cong mK_4)$ has a (P_4, C_k) –URD $(2, 0)$. This gives the existence of (P_4, C_k) -URD $(4m; r, s)$ of K_{4m} with $(r, s) \in {\frac{m-1}{2}} *$ $\{(4, 1), (0, 4)\} + \{(2, 0)\}\},\$ where $k \in \{4, t, 2t, 4t\}.$ Now consider

$$
\begin{aligned} \left\{ \frac{m-1}{2} * \{ (0,4), (4,1) \} + \{ (2,0) \} \right\} \\ &= \{ \{ (\frac{m-1}{2} - x)(0,4) + x(4,1) \mid 0 \le x \le \frac{m-1}{2} \} + \{ (2,0) \} \} \\ &= \{ (4x+2, (\frac{m-1}{2})4 - 4x + x) \mid 0 \le x \le \frac{m-1}{2} \} \\ &= \{ (4x+2, \frac{4m-4}{2} - 3x) \mid 0 \le x \le \frac{m-1}{2} \}. \end{aligned}
$$

Hence, there exists a (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in \{(4x +$ $2, \frac{4m-4}{2} - 3x) \mid 0 \leq x \leq \frac{m-1}{2}$ $\frac{(-1)}{2}$, where $k \in \{4, t, 2t, 4t\}.$ CASE $2: (r, s) \in B$.

By (1), for each *i*, there exists a (P_4, C_k) –URD(4, 1) of $\mathcal{C}^i \otimes I_4$, where $k \in$ $\{4, t, 2t, 4t\}$. Since K_4 has 2 P_4 -factors, $I_m \otimes K_4(\cong mK_4)$ has a (P_4, C_k) URD(2,0). By (2), there exists a (P_4, C_k) -URD(16,0) of $(C^a \oplus C^b \oplus C^b)$ $\mathcal{C}^c) \otimes I_4$. This gives the existence of (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in \left\{ \left\{ \left(\frac{m-1}{2} - 3y \right) * \left\{ (4, 1) \right\} + y * \left\{ (16, 0) \right\} \mid 1 \leq y \leq \left\lfloor \frac{m-1}{6} \right\rfloor \right\} + \left\{ (2, 0) \right\} \right\}.$ Now consider

$$
\left\{ \left(\frac{m-1}{2} - 3y \right) * \left\{ (4,1) \right\} + y * \left\{ (16,0) \right\} \mid 1 \le y \le \left\lfloor \frac{m-1}{6} \right\rfloor \right\} + \left\{ (2,0) \right\} \right\}
$$

=
$$
\left\{ \left(\left(\frac{m-1}{2} - 3y \right) 4 + 16y + 2, \frac{m-1}{2} - 3y \right) \mid 1 \le y \le \left\lfloor \frac{m-1}{6} \right\rfloor \right\}
$$

=
$$
\left\{ \left(4\left(\frac{m-1}{2} + y \right) + 2, \frac{m-1}{2} - 3y \right) \mid 1 \le y \le \left\lfloor \frac{m-1}{6} \right\rfloor \right\}
$$

=
$$
\left\{ \left(4x + 2, \frac{4m-4}{2} - 3x \right) \mid \frac{m-1}{2} + 1 \le x \le \left\lfloor \frac{4m-4}{6} \right\rfloor \right\}.
$$

Hence, there exists a (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in \{(4x +$ $\left(2, \frac{4m-4}{2} - 3x\right) \mid \frac{m-1}{2} + 1 \leq x \leq \left\lfloor \frac{4m-4}{6} \right\rfloor$ $\left[\frac{a-4}{6}\right]$, where $k \in \{4, t, 2t, 4t\}$. This completes the proof.

Theorem 3.2. Let $m \geq 4$ be an even integer and t divides m. If there exists

- (1) a (P_4, C_k) –URD (r, s) of $C \otimes I_4$ with $(r, s) \in \{(4, 1), (0, 4)\}$, where $k \in \{4, 8, t, 2t, 4t\}$ and C is a C_t -factor of K_m ;
- (2) a (P_4, C_k) –URD (r, s) of $(C \oplus I) \otimes I_4$ with $(r, s) \in \{(8, 0), (4, 3)\},$ where C and I are a edge-disjoint C_t -factor and 1-factor of K_m and $k \in \{4, 8, t, 2t, 4t\}$; and
- (3) a (P_4, C_k) -URD(16,0) of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where C^a, C^b , and C^c are any 3 edge-disjoint C_t -factors of K_m ,

then there exists a (P_4, C_k) –URD (r, s) of K_{4m} with (r, s) \in $J(4m) \setminus \{ (2, \frac{4m-4}{2}) \}$ $\{\frac{2^{n-4}}{2}\}\ =\ \{(4x+2,\frac{4m-4}{2}-3x)\ \mid\ x\ =\ 1,\ldots,\lfloor\frac{4m-4}{6}\rfloor\}$ $\left[\frac{a-4}{6}\right]$, where $k \in \{4, 8, t, 2t, 4t\}$, except when $t = 3$ and $m \in \{6, 12\}$.

Proof. Assume that (1) to (3) holds. Let $A = \{(4x+2, \frac{4m-4}{2} - 3x) | 1 \le x \le \frac{m}{2} \}$ $\frac{m}{2}$ and $B = \{(4x + 2, \frac{4m-4}{2} - 3x) | \frac{m}{2} + 1 \le x \le \lfloor \frac{4m-4}{6} \rfloor \}$ $\left[\frac{n-4}{6}\right]$ be the partition of $J(4m) \setminus \{ (2, \frac{4m-4}{2}) \}$ $\frac{i-4}{2}\big)\big\}.$

By Theorem [2.1,](#page-1-2) let $\{\mathcal{C}^i \mid 1 \leq i \leq \frac{m-2}{2}\}$ $\frac{(-2)}{2}$ be a C_t -factorization of $K_m - I$, where I is a 1-factor of K_m , except for $t = 3$ and $m \in \{6, 12\}$.

$$
K_{4m} \cong (K_m \otimes I_4) \oplus (I_m \otimes K_4)
$$

\n
$$
\cong ((\mathcal{C}^1 \oplus \mathcal{C}^2 \oplus \cdots \oplus \mathcal{C}^{\frac{m-2}{2}} \oplus I) \otimes I_4) \oplus (I_m \otimes K_4)
$$

\n
$$
\cong ((\mathcal{C}^1 \otimes I_4) \oplus \cdots \oplus (\mathcal{C}^{\frac{m-4}{2}} \otimes I_4) \oplus ((\mathcal{C}^{\frac{m-2}{2}} \oplus I) \otimes I_4)) \oplus (I_m \otimes K_4)
$$

Now we prove the existence of (P_4, C_k) –URD (r, s) of K_{4m} with $(r, s) \in A \cup B$, where $k \in \{4, 8, t, 2t, 4t\}$, except when $t = 3$ and $m \in \{6, 12\}$ in two cases as follows:

CASE 1: $(r, s) \in A$.

By (1), for each i, $1 \leq i \leq \frac{m-4}{2}$ $\frac{-4}{2}$, there exists a (P_4, C_k) -URD (r, s) of $\mathcal{C}^i \otimes I_4$, with $(r, s) \in \{(4, 1), (0, 4)\}$, where $k \in \{4, 8, t, 2t, 4t\}$. By (2), there exists a (P_4, C_k) -URD (r, s) of $(C^{\frac{m-2}{2}} \oplus I) \otimes I_4$ with $(r, s) \in \{(8, 0), (4, 3)\},$ where $k \in \{4, 8, t, 2t, 4t\}$. Since K_4 has $2 P_4$ -factors, $I_m \otimes K_4 (\cong mK_4)$ has a (P_4, C_k) –URD $(2, 0)$. This gives the existence of (P_4, C_k) –URD $(4m; r, s)$ with $(r, s) \in \{\frac{m-4}{2} * \{(4, 1), (0, 4)\} + \{(8, 0), (4, 3)\} + \{(2, 0)\}\}\,$, where

 $k \in \{4, 8, t, 2t, 4t\}$, except when $t = 3$ and $m \in \{6, 12\}$. Now consider

$$
\begin{aligned}\n\{\frac{m-4}{2} * \{(0,4), (4,1)\} + \{(8,0), (4,3))\} + \{(2,0)\}\} \\
&= \{\{(\frac{m-4}{2} - x)(0,4) + x(4,1) \mid 0 \le x \le \frac{m-4}{2}\} \\
&\quad + \{(4y+2, 6-3y) \mid 1 \le y \le 2\}\} \\
&= \{\{(4x, (\frac{m-4}{2})4 - 3x) \mid 0 \le x \le \frac{m-4}{2}\} \\
&\quad + \{(4y+2, 6-3y) \mid 1 \le y \le 2\}\} \\
&= \{(4(x+y)+2, (\frac{m-4}{2})4 + 6 - 3(x+y)) \\
&\quad |0 \le x \le \frac{m-4}{2} \text{ and } 1 \le y \le 2]\} \\
&= \{(4z+2, \frac{4m-4}{2} - 3z) \mid 1 \le z \le \frac{m}{2}\}.\n\end{aligned}
$$

Hence, there exists a (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in \{(4z +$ $2, \frac{4m-4}{2} - 3z) | 1 \le z \le \frac{m}{2}$ $\{\frac{m}{2}\}\text{, where }k\in\{4,8,t,2t,4t\}\text{, except when }t=3$ and $m \in \{6, 12\}.$

CASE 2: $(r, s) \in B$.

By (1), for each $i, 1 \leq i \leq \frac{m-4}{2}$ $\frac{-4}{2}$, there exists a (P_4, C_k) -URD $(4, 1)$ of $\mathcal{C}^i \otimes I_4$, where $k \in \{4, 8, t, 2t, 4t\}$. By (2), there exists a (P_4, C_k) URD (r, s) of $(C^{\frac{m-2}{2}} \oplus I) \otimes I_4$ with $(r, s) \in \{(8, 0)\}\)$. Since K_4 has 2 P_4 factors, $I_m \otimes K_4 (\cong mK_4)$ has a (P_4, C_k) –URD $(2, 0)$. By (3) , there exists a (P_4, C_k) –URD(16,0) of $(C^a \oplus C^b \oplus C^c) \otimes I_4$. This gives the existence of (P_4, C_k) –URD(4m; r, s) with $(r, s) \in \{ \{ (\frac{m-4}{2} - 3y) * \{ (4, 1) \} + y * \{ (16, 0) \} \}$ $1 \le y \le \lfloor \frac{m-4}{6} \rfloor \} + \{(8,0)\} + \{(2,0)\}\},$ except when $t = 3$ and $m \in \{6, 12\}.$ Now consider

$$
\{\{(\frac{m-4}{2} - 3y) * \{(4,1)\} + y * \{(16,0)\}\}\
$$

$$
| 1 \le y \le \left\lfloor \frac{m-4}{6} \right\rfloor\} + \{(8,0)\} + \{(2,0)\}\}
$$

$$
= \{\{((\frac{m-4}{2} - 3y)4 + 16y + 10, \frac{m-4}{2} - 3y)\}\
$$

$$
| 1 \le y \le \left\lfloor \frac{m-4}{6} \right\rfloor\}
$$

$$
= \{(4(\frac{m-4}{2} + y) + 10, \frac{m-4}{2} - 3y) | 1 \le y \le \left\lfloor \frac{m-4}{6} \right\rfloor\}
$$

$$
= \{\{(4(\frac{m}{2} + y) + 2, \frac{m-4}{2} - 3y) | 1 \le y \le \left\lfloor \frac{m-4}{6} \right\rfloor\}
$$

$$
= \{(4z + 2, \frac{4m - 4}{2} - 3z) | \frac{m}{2} + 1 \le z \le \left\lfloor \frac{4m - 4}{6} \right\rfloor\}.
$$

Hence, there exists a (P_4, C_k) –URD $(4m; r, s)$ of K_{4m} with $(r, s) \in \{(4z +$ $2, \frac{4m-4}{2} - 3z)$ | $\frac{m}{2} + 1 \leq z \leq \lfloor \frac{4m-4}{6} \rfloor$ $\left[\frac{a-4}{6}\right]$, where $k \in \{4, 8, t, 2t, 4t\}$, except when $t = 3$ and $m \in \{6, 12\}$. This completes the proof.

□

Theorem 3.3. Let $m \geq 4$ be an even integer and t divides m. Then there exists a (P_4, C_k) -URD $(4m; 2, \frac{4m-4}{2})$ $\frac{n-4}{2}$, where $k \in \{4, 8, t, 2t, 4t\}.$

Proof. We construct 2 P_4 -factors and $\frac{4m-4}{2}$ C_k -factors, where $k \in \{4, 8, t,$ 2t, 4t} of K_{4m} as follows:

Consider $K_{4m} \cong (K_m \otimes I_4) \oplus (I_m \otimes K_4)$. By Theorem [2.2,](#page-1-3) $K_m \otimes I_4$ has a C_k -factorization, where $k \in \{4, 8, t, 2t, 4t\}$. Since K_4 has 2 P_4 -factors, $I_m \otimes I_m$ $K_4(\cong mK_4)$ has a P₄-factorization. Therefore, K_{4m} has 2 P₄-factors and $\frac{4m-4}{2}$ C_k-factors, where $k \in \{4, 8, t, 2t, 4t\}$. That is, there exists a (P_4, C_k) $\overline{URD(4m; 2, \frac{4m-4}{2})}$ $\frac{2^{n-4}}{2}$, where $k \in \{4, 8, t, 2t, 4t\}.$

4.
$$
(P_2, P_4)
$$
 AND (P_2, C_k) -URD OF $C_t \otimes I_4$.

In this section, we prove the existence of uniformly resolvable decomposition of $C_t \otimes I_4$ into P_2 and P_4 or P_2 and C_k , $k \in \{t, 2t, 4t\}.$

Let $K_{n,n}$ be a complete bipartite graph with bipartition (X, Y) , where $X = \{x_1, x_2, \ldots, x_n\}, Y = \{y_1, y_2, \ldots, y_n\}.$ Now we define a 1-factor of $K_{n,n}$ as $F_i(X, Y) = \{ \{x_j, y_{(i+i)}\} \mid 1 \leq j \leq n$, where addition in the subscript is taken modulo *n* with residues 1, 2, ..., *n*}, $0 \le i \le n - 1$, then $E(K_{n,n}) = \bigcup_{i=0}^{n-1} F_i(X, Y)$. Clearly $\{F_i \mid 0 \le i \le n-1\}$ gives a 1-factorization of $K_{n,n}$.

Lemma 4.1. For any $t \geq 3$, there exists a (P_2, P_4) -URD $(2, 4)$ of $C_t \otimes I_4$.

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} X_i$, where $X_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Now we construct a (P_2, P_4) –URD $(2, 4)$ of $C_t \otimes I_4$ in two cases as follows: Case 1: t odd.

Let

$$
\mathcal{P}_2^1 = \{ [i_0, (i+1)_1], [i_2, (i+1)_3] \mid 0 \le i \le t-1 \};
$$

\n
$$
\mathcal{P}_2^2 = \{ [i_1, (i+1)_2], [i_3, (i+1)_0] \mid 0 \le i \le t-1 \};
$$

\n
$$
\mathcal{P}^1 = \{ [(t-1)_0, (t-2)_2, (t-1)_1, (t-2)_3], [(2i)_0, (2i+1)_0, (2i)_1, (2i+1)_1],
$$

\n
$$
[(2i-1)_2, (2i)_2, (2i-1)_3, (2i)_3] \mid 0 \le i \le \frac{t-3}{2} \};
$$

\n
$$
\mathcal{P}^2 = \{ [(t-1)_3, 0_1, (t-1)_2, 0_0], [(2i+1)_3, (2i)_3, (2i+1)_2, (2i)_2],
$$

\n
$$
[(2i+2)_1, (2i+1)_1, (2i+2)_0, (2i+1)_0] \mid 0 \le i \le \frac{t-3}{2} \};
$$

\n
$$
\mathcal{P}^3 = \{ [(t-1)_3, (t-2)_3, (t-1)_2, (t-2)_2], [(t-1)_0, 0_0, (t-1)_1, 0_1],
$$

\n
$$
[(i+1)_0, i_2, (i+1)_1, i_3] \mid 0 \le i \le t-3 \};
$$

\n
$$
\mathcal{P}^4 = \{ [(i+1)_2, i_0, (i+1)_3, i_1] \mid 0 \le i \le t-1 \},
$$

where the additions are taken modulo t . CASE 2: t even.

Let
\n
$$
\mathcal{P}_2^1 = \{ [i_0, (i+1)_1], [i_2, (i+1)_3] \mid 0 \le i \le t-1 \};
$$
\n
$$
\mathcal{P}_2^2 = \{ [i_1, (i+1)_2], [i_3, (i+1)_0] \mid 0 \le i \le t-1 \};
$$
\n
$$
\mathcal{P}^1 = \{ [(2i)_0, (2i+1)_0, (2i)_1, (2i+1)_1],
$$
\n
$$
[(2i)_2, (2i+1)_2, (2i)_3, (2i+1)_3] \mid 0 \le i \le \frac{t-2}{2} \};
$$
\n
$$
\mathcal{P}^2 = \{ [(2i)_1, (2i+1)_3, (2i)_0, (2i+1)_2],
$$
\n
$$
[(2i)_3, (2i+1)_1, (2i)_2, (2i+1)_0] \mid 0 \le i \le \frac{t-2}{2} \};
$$
\n
$$
\mathcal{P}^3 = \{ [(2i+1)_0, (2i+2)_0, (2i+1)_1, (2i+2)_1],
$$
\n
$$
[(2i+1)_2, (2i+2)_2, (2i+1)_3, (2i+2)_3] \mid 0 \le i \le \frac{t-2}{2} \};
$$
\n
$$
\mathcal{P}^4 = \{ [(2i+1)_1, (2i+2)_3, (2i+1)_0, (2i+2)_2],
$$
\n
$$
[(2i+1)_3, (2i+2)_1, (2i+1)_2, (2i+2)_0] \mid 0 \le i \le \frac{t-2}{2} \};
$$

where the additions are taken modulo t .

Clearly, \mathcal{P}_2^1 and \mathcal{P}_2^2 are P_2 -factors of $C_t \otimes I_4$ and each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$. Hence $\{P_2^1, P_2^2, P_1^1, P_2^2, P_3^3, P_4\}$ gives the existence of (P_2, P_4) –URD $(2, 4)$ of $C_t \otimes I_4$.

Lemma 4.2. For any $t \geq 3$, there exists a (P_2, C_t) –URD $(2, 3)$ of $C_t \otimes I_4$.

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} X_i$, where $X_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Then $E(C_t \otimes I_4) = \cup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_4} F_l(X_i, X_{i+1}).$ Now we prove the existence of (P_2, C_t) URD(2, 3) of $C_t \otimes I_4$ in two cases as follows: Case 1: t odd.

Let

$$
\mathcal{C}^{1} = F_{0}(X_{0}, X_{1}) \cup \bigcup_{i=1}^{\frac{t-1}{2}} F_{3}(X_{2i}, X_{2i+1}) \cup \bigcup_{i=1}^{\frac{t-1}{2}} F_{1}(X_{2i-1}, X_{2i});
$$
\n
$$
\mathcal{C}^{2} = F_{0}(X_{t-1}, X_{0}) \cup \bigcup_{i=0}^{\frac{t-3}{2}} F_{1}(X_{2i}, X_{2i+1}) \cup \bigcup_{i=1}^{\frac{t-1}{2}} F_{3}(X_{2i-1}, X_{2i});
$$
\n
$$
\mathcal{C}^{3} = F_{3}(X_{0}, X_{1}) \cup \bigcup_{i=1}^{t-2} F_{0}(X_{i}, X_{i+1}) \cup F_{1}(X_{t-1}, X_{0});
$$
\n
$$
\mathcal{P}_{2}^{1} = \{ [i_{0}, (i+1)_{2}], [i_{1}, (i+1)_{3}] \mid i \in \mathbb{Z}_{t} \};
$$
\n
$$
\mathcal{P}_{2}^{2} = \{ [i_{2}, (i+1)_{0}], [i_{3}, (i+1)_{1}] \mid i \in \mathbb{Z}_{t} \},
$$

where the additions are taken modulo t.

CASE 2: t even. Let

$$
\mathcal{C}^{1} = \bigcup_{i=0}^{\frac{t-2}{2}} F_{3}(X_{2i}, X_{2i+1}) \cup \bigcup_{i=0}^{\frac{t-2}{2}} F_{1}(X_{2i+1}, X_{2i+2});
$$

\n
$$
\mathcal{C}^{2} = \bigcup_{i=0}^{\frac{t-2}{2}} F_{1}(X_{2i}, X_{2i+1}) \cup \bigcup_{i=0}^{\frac{t-2}{2}} F_{3}(X_{2i+1}, X_{2i+2});
$$

\n
$$
\mathcal{C}^{3} = \bigcup_{i=0}^{t-1} F_{0}(X_{i}, X_{i+1});
$$

\n
$$
\mathcal{P}_{2}^{1} = \{ [i_{0}, (i+1)_{2}], [i_{1}, (i+1)_{3}] \mid i \in \mathbb{Z}_{t} \};
$$

\n
$$
\mathcal{P}_{2}^{2} = \{ [i_{2}, (i+1)_{0}], [i_{3}, (i+1)_{1}] \mid i \in \mathbb{Z}_{t} \},
$$

where the additions are taken modulo t .

Clearly, each \mathcal{P}^i , $i = 1, 2$ is a P_2 -factor of $C_t \otimes I_4$ and each \mathcal{C}^i , $i = 1, 2, 3$ is a C_t -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}_2^1, \mathcal{P}_2^2, \mathcal{C}^1, \mathcal{C}^2, \mathcal{C}^3\}$ gives the existence of (P_2, C_t) –URD $(2, 3)$ of $C_t \otimes I_4$.

Lemma 4.3. For any $t \geq 3$, there exists a (P_2, C_{2t}) –URD $(2, 3)$ of $C_t \otimes I_4$.

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} X_i$, where $X_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Let $U_i = \{i_0, i_1\}$ and $V_i = \{i_2, i_3\}, i \in \mathbb{Z}_t$, then $X_i = U_i \cup V_i, i \in \mathbb{Z}_t$. We write

$$
E(C_t \otimes I_4) = \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(U_i, U_{i+1}) \right\}
$$

$$
\cup \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(U_i, V_{i+1}) \right\}
$$

$$
\cup \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(V_i, V_{i+1}) \right\}
$$

$$
\cup \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(V_i, U_{i+1}) \right\}.
$$

Now we prove the existence of (P_2, C_{2t}) –URD $(2, 3)$ of $C_t \otimes I_4$ in two cases as follows:

Case 1: t odd. Let

$$
\mathcal{C}^{1} = F_{1}(U_{0}, U_{1}) \cup F_{1}(V_{0}, V_{1}) \cup F_{1}(U_{t-1}, V_{0}) \cup F_{1}(V_{t-1}, U_{0})
$$
\n
$$
\cup \left\{ \bigcup_{i=1}^{t-2} F_{0}(U_{i}, U_{i+1}) \right\} \cup \left\{ \bigcup_{i=1}^{t-2} F_{0}(V_{i}, V_{i+1}) \right\};
$$
\n
$$
\mathcal{C}^{2} = F_{0}(U_{0}, U_{1}) \cup F_{0}(V_{0}, V_{1}) \cup F_{0}(U_{t-1}, U_{0}) \cup F_{0}(V_{t-1}, V_{0})
$$
\n
$$
\cup \left\{ \bigcup_{i=1}^{t-2} F_{1}(U_{i}, V_{i+1}) \right\} \cup \left\{ \bigcup_{i=1}^{t-2} F_{1}(V_{i}, U_{i+1}) \right\};
$$
\n
$$
\mathcal{C}^{3} = F_{1}(U_{0}, V_{1}) \cup F_{1}(V_{0}, U_{1}) \cup F_{1}(U_{t-1}, U_{0}) \cup F_{1}(V_{t-1}, V_{0})
$$
\n
$$
\cup \left\{ \bigcup_{i=1}^{t-2} F_{1}(U_{i}, U_{i+1}) \right\} \cup \left\{ \bigcup_{i=1}^{t-2} F_{1}(V_{i}, V_{i+1}) \right\};
$$
\n
$$
\mathcal{P}_{2}^{1} = \bigcup_{i=0}^{t-1} F_{0}(U_{i}, V_{i+1}); \quad \mathcal{P}_{2}^{2} = \bigcup_{i=0}^{t-1} F_{0}(V_{i}, U_{i+1}),
$$

where additions in the subscript are taken modulo t .

CASE 2: t even.

Let

$$
\mathcal{C}^{1} = F_{1}(U_{t-2}, V_{t-1}) \cup F_{1}(V_{t-2}, U_{t-1}) \cup F_{0}(U_{t-1}, U_{0}) \cup F_{0}(V_{t-1}, V_{0})
$$
\n
$$
\cup \left\{ \bigcup_{i=0}^{t-3} F_{1}(U_{i}, U_{i+1}) \right\} \cup \left\{ \bigcup_{i=0}^{t-3} F_{1}(V_{i}, V_{i+1}) \right\};
$$
\n
$$
\mathcal{C}^{2} = F_{1}(U_{t-2}, U_{t-1}) \cup F_{1}(V_{t-2}, V_{t-1}) \cup F_{1}(U_{t-1}, V_{0}) \cup F_{1}(V_{t-1}, U_{0})
$$
\n
$$
\cup \left\{ \bigcup_{i=0}^{t-3} F_{1}(U_{i}, V_{i+1}) \right\} \cup \left\{ \bigcup_{i=0}^{t-3} F_{1}(V_{i}, U_{i+1}) \right\};
$$
\n
$$
\mathcal{C}^{3} = F_{1}(U_{t-1}, U_{0}) \cup F_{1}(V_{t-1}, V_{0}) \cup \left\{ \bigcup_{i=0}^{t-2} F_{0}(U_{i}, U_{i+1}) \right\} \cup \left\{ \bigcup_{i=0}^{t-2} F_{0}(V_{i}, V_{i+1}) \right\};
$$
\n
$$
\mathcal{P}^{1}_{2} = \bigcup_{i=0}^{t-1} F_{0}(U_{i}, V_{i+1}); \ \mathcal{P}^{2}_{2} = \bigcup_{i=0}^{t-1} F_{0}(V_{i}, U_{i+1}),
$$

where additions in the subscript are taken modulo $t.$

Clearly, each \mathcal{P}_2^i , $i = 1, 2$ is a P_2 -factor of $C_t \otimes I_4$ and each \mathcal{C}^i , $i = 1, 2, 3$ is a C_{2t} -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}_2^1, \mathcal{P}_2^2, \mathcal{C}^1, \mathcal{C}^2, \mathcal{C}^3\}$ gives the existence of (P_2, C_{2t}) –URD $(2, 3)$ of $C_t \otimes I_4$.

Lemma 4.4. For any $t \geq 3$, there exists a (P_2, C_{4t}) -URD $(2, 3)$ of $C_t \otimes I_4$.

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} X_i$, where $X_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Let $U_i = \{i_0, i_1\}$ and $V_i = \{i_2, i_3\}, i \in \mathbb{Z}_t$, then $X_i = U_i \cup V_i, i \in \mathbb{Z}_t$. We write

$$
E(C_t \otimes I_4) = \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(U_i, U_{i+1}) \right\} \cup \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(U_i, V_{i+1}) \right\}
$$

$$
\cup \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(V_i, V_{i+1}) \right\} \cup \left\{ \bigcup_{i \in \mathbb{Z}_t, l \in \mathbb{Z}_2} F_l(V_i, U_{i+1}) \right\}.
$$

Now we construct a (P_2, C_{4t}) –URD $(2, 3)$ of $C_t \otimes I_4$ in two cases as follows: CASE 1: t odd.

Let

$$
\mathcal{C}^{1} = F_{0}(U_{0}, V_{1}) \cup F_{1}(V_{0}, U_{1}) \cup \bigcup_{i=1}^{t-1} F_{0}(U_{i}, U_{i+1}) \cup \bigcup_{i=1}^{t-1} F_{0}(V_{i}, V_{i+1});
$$
\n
$$
\mathcal{C}^{2} = F_{0}(U_{t-1}, V_{0}) \cup F_{1}(V_{t-1}, U_{0}) \cup \bigcup_{i=0}^{t-2} F_{1}(U_{i}, U_{i+1}) \cup \bigcup_{i=0}^{t-2} F_{1}(V_{i}, V_{i+1});
$$
\n
$$
\mathcal{C}^{3} = F_{0}(U_{0}, U_{1}) \cup F_{0}(V_{0}, V_{1}) \cup F_{1}(U_{t-1}, U_{0}) \cup F_{1}(V_{t-1}, V_{0})
$$
\n
$$
\bigcup_{i=1}^{t-2} F_{0}(U_{i}, V_{i+1}) \cup \bigcup_{i=1}^{t-2} F_{1}(V_{i}, U_{i+1});
$$
\n
$$
\mathcal{P}^{1}_{2} = \bigcup_{i=0}^{t-1} F_{1}(U_{i}, V_{i+1}); \quad \mathcal{P}^{2}_{2} = \bigcup_{i=0}^{t-1} F_{0}(V_{i}, U_{i+1}),
$$

where additions in the subscript are taken modulo t . CASE 2: t even.

Let

$$
\mathcal{C}^{1} = F_{0}(U_{0}, U_{1}) \cup F_{0}(U_{0}, V_{1}) \cup F_{1}(U_{t-1}, V_{0}) \cup F_{0}(V_{t-1}, V_{0})
$$
\n
$$
\cup F_{1}(U_{t-2}, U_{t-1}) \cup F_{1}(V_{t-2}, V_{t-1})
$$
\n
$$
\cup \bigcup_{i=1}^{t-3} F_{1}(U_{i}, V_{i+1}) \cup \bigcup_{i=1}^{t-3} F_{1}(V_{i}, U_{i+1});
$$
\n
$$
\mathcal{C}^{2} = F_{1}(V_{0}, V_{1}) \cup F_{1}(V_{0}, U_{1}) \cup F_{0}(U_{t-1}, U_{0}) \cup F_{1}(V_{t-1}, U_{0})
$$
\n
$$
\cup \bigcup_{i=1}^{t-2} F_{0}(U_{i}, U_{i+1}) \cup \bigcup_{i=1}^{t-2} F_{0}(V_{i}, V_{i+1});
$$
\n
$$
\mathcal{C}^{3} = F_{0}(V_{0}, V_{1}) \cup F_{1}(U_{t-2}, V_{t-1}) \cup F_{1}(V_{t-2}, U_{t-1}) \cup F_{1}(U_{t-1}, U_{0})
$$
\n
$$
\cup F_{1}(V_{t-1}, V_{0}) \cup \bigcup_{i=0}^{t-3} F_{1}(U_{i}, U_{i+1}) \cup \bigcup_{i=1}^{t-3} F_{1}(V_{i}, V_{i+1});
$$
\n
$$
\mathcal{P}^{1}_{2} = F_{1}(U_{0}, V_{1}) \cup \bigcup_{i=1}^{t-1} F_{0}(U_{i}, V_{i+1}); \mathcal{P}^{2}_{2} = \bigcup_{i=0}^{t-1} F_{0}(V_{i}, U_{i+1}),
$$

where additions in the subscript are taken modulo t .

Clearly, each \mathcal{P}_2^i , $i = 1, 2$ is a P_2 -factor of $C_t \otimes I_4$ and each \mathcal{C}^i , $i = 1, 2, 3$ is a C_{4t} -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}_2^1, \mathcal{P}_2^2, \mathcal{C}^1, \mathcal{C}^2, \mathcal{C}^3\}$ gives the existence of (P_2, C_{4t}) –URD $(2, 3)$ of $C_t \otimes I_4$.

5.
$$
(P_4, C_k)
$$
-URD (r, s) OF $C_t \otimes I_4$.

In this section, we prove the existence of uniformly resolvable decomposition of $C_t \otimes I_4$ into P_4 and C_k , $k \in \{4, 8, t, 2t, 4t\}.$

Lemma 5.1. For any $t \geq 3$, there exists a (P_4, C_4) -URD (r, s) of $C_t \otimes I_4$ with $(r, s) \in \{(4, 1), (0, 4)\}.$

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} V_i$, where $V_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Now we construct the required number of P₄-factor and C₄-factor of $C_t \otimes I_4$ in two cases as follows:

CASE 1: $(r, s) = (4, 1)$. Subcase i: t odd. Let $\mathcal{P}^1 = \{[(2i+1)_0, (2i)_1, (2i+1)_1, (2i)_0],\}$ $[(2i)_2,(2i-1)_3,(2i)_3,(2i-1)_2],$ $[(t-2)_2, (t-1)_1, (t-2)_3, (t-1)_0] \mid 0 \leq i \leq \frac{t-3}{2}$ 2 $\}$; $\mathcal{P}^2 = \{[(2i+2)_1, (2i+1)_0, (2i+2)_0, (2i+1)_1],\}$ $[(2i+1)_3,(2i)_2,(2i+1)_2,(2i)_3],$ $[(t-1)_3, 0_0, (t-1)_2, 0_1] \mid 0 \leq i \leq \frac{t-3}{2}$ 2 $\}$; $\mathcal{P}^3 = \{[(2i)_3,(2i+1)_1,(2i)_2,(2i+1)_0],\}$ $[(2i+1)_2,(2i+2)_0,(2i+1)_3,(2i+2)_1],$ $[(t-1)_1, 0_0, (t-1)_0, 0_1], [(t-1)_2, (t-2)_3, (t-1)_3, (t-2)_2],$ $[(t-3)_3, (t-2)_1, (t-3)_2, (t-2)_0]$ | $0 \leq i \leq \frac{t-5}{2}$ 2 $\}$; $\mathcal{P}^4 = \{[(2i)_0, (2i+1)_0, (2i)_3, (2i+1)_3],$ $[(2i+1)_1,(2i+2)_1,(2i+1)_2,(2i+2)_2],$ $[(t-2)_1,(t-1)_1,0_1,(t-1)_3]$, $[(t-1)_0,(t-2)_2,(t-1)_2,0_2]$, $[(t-3)_0,(t-2)_0,(t-3)_3,(t-2)_3]$ | $0 \leq i \leq \frac{t-5}{2}$ 2 $\}$; $C^1 = \{(i_0, (i+1)_2, i_1, (i+1)_3) \mid 0 \le i \le t-1\},\$ where the additions are taken modulo t.

SUBCASE II: t even. Let

$$
\mathcal{P}^{1} = \{ [(2i+1)_0, (2i)_1, (2i+1)_1, (2i)_0],
$$

\n
$$
[(2i+1)_2, (2i)_3, (2i+1)_3, (2i)_2] \mid 0 \le i \le \frac{t-2}{2} \};
$$

\n
$$
\mathcal{P}^{2} = \{ [(2i)_1, (2i-1)_0, (2i)_0, (2i-1)_1],
$$

\n
$$
[(2i)_3, (2i-1)_2, (2i)_2, (2i-1)_3] \mid 1 \le i \le \frac{t}{2} \};
$$

\n
$$
\mathcal{P}^{3} = \{ [(2i+1)_2, (2i)_1, (2i+1)_3, (2i)_0],
$$

\n
$$
[(2i+1)_1, (2i)_2, (2i+1)_0, (2i)_3] \mid 0 \le i \le \frac{t-2}{2} \};
$$

\n
$$
\mathcal{P}^{4} = \{ [(2i+1)_0, (2i)_0, (2i+1)_2, (2i)_2],
$$

\n
$$
[(2i)_1, (2i-1)_1, (2i-2)_3, (2i-3)_3] \mid 0 \le i \le \frac{t-2}{2} \};
$$

\n
$$
\mathcal{C}^{1} = \{ ((2i-1)_0, (2i)_2, (2i-1)_1, (2i)_3),
$$

\n
$$
((2i-1)_2, (2i)_0, (2i-1)_3, (2i)_1) \mid 1 \le i \le \frac{t}{2} \},
$$

where the additions are taken modulo t.

Clearly, each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$ and \mathcal{C}^1 is a C_4 -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3, \mathcal{P}^4, \mathcal{C}^1\}$ gives the existence of (P_4, C_4) URD(4, 1) of $C_t \otimes I_4$.

CASE 2: $(r, s) = (0, 4)$.

By Theorem [2.3,](#page-1-0) let $\{\mathcal{C}_{2t}^1, \mathcal{C}_{2t}^2\}$ be a C_{2t} -factorization of $C_t \otimes I_2$, where each \mathcal{C}_{2t}^i is a C_{2t} -factor of $C_t \otimes I_2$. Then

$$
C_t \otimes I_4 \cong (C_t \otimes I_2) \otimes I_2 \cong (C_{2t}^1 \oplus C_{2t}^2) \otimes I_2
$$

\n
$$
\cong (C_{2t}^1 \otimes I_2) \oplus (C_{2t}^2 \otimes I_2) \cong ((\mathcal{I}_1^1 \oplus \mathcal{I}_2^1) \otimes I_2) \oplus ((\mathcal{I}_1^2 \oplus \mathcal{I}_2^2) \otimes I_2),
$$

\n
$$
\cong (\mathcal{I}_1^1 \otimes I_2) \oplus (\mathcal{I}_2^1 \otimes I_2) \oplus (\mathcal{I}_1^2 \otimes I_2) \oplus (\mathcal{I}_2^2 \otimes I_2),
$$

where each j, $j = 1, 2, \mathcal{I}_j^i$ is a 1-factor of \mathcal{C}_{2t}^i , $i = 1, 2$. Since $\mathcal{I}_j^i \otimes I_2 \cong I_1$ $tK_{2,2} \cong tC_4$, $C_t \otimes I_4$ has a C_4 -factorization. Hence there exists a (P_4, C_4) -URD $(0, 4)$ of $C_t \otimes I_4$.

□

Lemma 5.2. For any even $t \geq 4$, there exists a (P_4, C_8) -URD (r, s) of $C_t \otimes I_4$ with $(r, s) \in \{(4, 1), (0, 4)\}.$

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} V_i$, where $V_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Now we construct the required number of P_4 -factors and C_8 -factors of $C_t \otimes I_4$ in two cases as follows:

CASE 1:
$$
(r, s) = (4, 1)
$$
.
\nLet
\n
$$
\mathcal{P}^1 = \{ [(2i - 1)_0, (2i)_1, (2i - 1)_2, (2i)_3],
$$
\n
$$
[(2i)_0, (2i - 1)_1, (2i)_2, (2i - 1)_3] | 1 \leq i \leq \frac{t}{2} \};
$$
\n
$$
\mathcal{P}^2 = \{ [(2i - 1)_1, (2i)_3, (2i - 1)_0, (2i)_2],
$$
\n
$$
[(2i - 1)_2, (2i)_0, (2i - 1)_3, (2i)_1] | 1 \leq i \leq \frac{t}{2} \};
$$
\n
$$
\mathcal{P}^3 = \{ [(2i)_1, (2i + 1)_3, (2i)_2, (2i + 1)_0],
$$
\n
$$
[(2i)_3, (2i + 1)_1, (2i)_0, (2i + 1)_2] | 0 \leq i \leq \frac{t - 2}{2} \};
$$
\n
$$
\mathcal{C}^1 = \{ ((2i)_0, (2i + 1)_0, (2i)_1, (2i + 1)_1, (2i)_2, (2i + 1)_2, (2i)_3, (2i + 1)_3) | 0 \leq i \leq \frac{t - 2}{2} \},
$$

Clearly, each \mathcal{P}^i is a P_4 -factor of $C_t \otimes I_4$ and \mathcal{C}^1 is a C_8 -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3, \mathcal{P}^4, \mathcal{C}^1\}$ gives the existence of (P_4, C_4) –URD $(4, 1)$ of $C_t \otimes I_4.$

CASE 2: $(r, s) = (0, 4)$.

Let $\{\mathcal{I}_1, \mathcal{I}_2\}$ be a 1-factorization of C_t , since t is even. Then

 $C_t \otimes I_4 \cong (\mathcal{I}_1 \oplus \mathcal{I}_2) \otimes I_4 \cong (\mathcal{I}_1 \otimes I_4) \oplus (\mathcal{I}_2 \otimes I_4).$

Since $K_{4,4}$ has 2 C_8 -factors and each i, $i = 1, 2, \mathcal{I}_i \otimes I_4 \cong \frac{t}{2} K_{4,4}$, $C_t \otimes I_4$ has a C_8 -factorization. Hence there exist a (P_4, C_8) –URD $(0, 4)$ of $C_t \otimes I_4$. □

Lemma 5.3. For any even $t \geq 4$, there exists a (P_4, C_k) -URD $(4, 1)$ of $C_t \otimes I_4$, where $k \in \{t, 2t, 4t\}.$

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} V_i$, where $V_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Now we prove the existence of (P_4, C_k) –URD(4, 1) of $C_t \otimes I_4$ in three cases as follows:

CASE 1:
$$
k = t
$$
.
\nLet
\n
$$
\mathcal{P}^1 = \{[(2i)_0, (2i+1)_1, (2i)_2, (2i+1)_3], (2i+1)_2, (2i)_3] \mid 0 \le i \le \frac{t-2}{2}\};
$$
\n
$$
\mathcal{P}^2 = \{[(2i)_2, (2i+1)_0, (2i)_3, (2i+1)_1], (2i+1)_2, (2i)_0, (2i+1)_3, (2i)_1] \mid 0 \le i \le \frac{t-2}{2}\};
$$
\n
$$
\mathcal{P}^3 = \{[(2i+1)_0, (2i+2)_1, (2i+1)_2, (2i+2)_3], (2i+2)_3\};
$$
\n
$$
[(2i+2)_0, (2i+1)_1, (2i+2)_2, (2i+1)_3] \mid
$$
\n
$$
0 \le i \le \frac{t-2}{2}\};
$$
\n
$$
\mathcal{P}^4 = \{[(2i+1)_2, (2i+2)_0, (2i+1)_3, (2i+2)_1], (2i+2)_2, (2i+1)_1\}
$$
\n
$$
[(2i+2)_2, (2i+1)_0, (2i+2)_3, (2i+1)_1] \mid
$$
\n
$$
0 \le i \le \frac{t-2}{2}\};
$$
\n
$$
\mathcal{C}^1 = \{(0_i, 1_i, 2_i, \dots, (t-2)_i, (t-1)_i) \mid 0 \le i \le 3\},
$$

Clearly, each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$ and C^1 is a C_t -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3, \mathcal{P}^4, \mathcal{C}^1\}$ gives the existence of (P_4, C_t) URD(4, 1) of $C_t \otimes I_4$.

CASE 2: $k = 2t$.

Let

$$
\mathcal{P}^{1} = \{ [0_{0}, 1_{3}, 0_{2}, 1_{1}], [0_{3}, 1_{0}, 0_{1}, 1_{2}], [(2i)_{0}, (2i + 1)_{1}, (2i)_{2}, (2i + 1)_{3}],
$$

\n
$$
[(2i + 1)_{0}, (2i)_{1}, (2i + 1)_{2}, (2i)_{3}] | 1 \leq i \leq \frac{t - 2}{2} \};
$$

\n
$$
\mathcal{P}^{2} = \{ [0_{1}, 1_{1}, 0_{0}, 1_{0}], [0_{2}, 1_{2}, 0_{3}, 1_{3}], [(2i)_{2}, (2i + 1)_{0}, (2i)_{3}, (2i + 1)_{1}],
$$

\n
$$
[(2i + 1)_{2}, (2i)_{0}, (2i + 1)_{3}, (2i)_{1}] | 1 \leq i \leq \frac{t - 2}{2} \};
$$

\n
$$
\mathcal{C}^{1} = \{ (0_{0}, 1_{2}, 2_{2}, \ldots, (t - 1)_{2}, 0_{2}, 1_{0}, 2_{0}, \ldots, (t - 1)_{0})
$$

\n
$$
(0_{1}, 1_{3}, 2_{3}, \ldots, (t - 1)_{3}, 0_{3}, 1_{1}, 2_{1}, \ldots, (t - 1)_{1}) \},
$$

where the additions are taken modulo t. Take \mathcal{P}^3 and \mathcal{P}^4 are as in case 1. Clearly, each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$ and C^1 is a C_{2t} -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3,$ \mathcal{P}^4 , \mathcal{C}^1 gives the existence of (P_4, C_{2t}) –URD $(4, 1)$ of $C_t \otimes I_4$.

CASE 3:
$$
k = 4t
$$
.

Let
\n
$$
\mathcal{P}^1 = \{ [0_0, 1_0, 0_1, 1_1], [0_2, 1_2, 0_3, 1_3], [(2i)_0, (2i+1)_1, (2i)_2, (2i+1)_3],
$$
\n
$$
[(2i+1)_0, (2i)_1, (2i+1)_2, (2i)_3] | 1 \le i \le \frac{t-2}{2} \};
$$
\n
$$
\mathcal{P}^2 = \{ [0_1, 1_3, 0_0, 1_2], [0_3, 1_1, 0_2, 1_0], [(2i)_2, (2i+1)_0, (2i)_3, (2i+1)_1],
$$
\n
$$
[(2i+1)_2, (2i)_0, (2i+1)_3, (2i)_1] | 1 \le i \le \frac{t-2}{2} \},
$$
\n
$$
\mathcal{C}^1 = \{ (0_0, 1_1, 2_1, \dots, (t-1)_1, 0_1, 1_2, 2_2, \dots, (t-1)_2,
$$
\n
$$
0_2, 1_3, 2_3, \dots, (t-1)_3, 0_3, 1_0, 2_0, \dots, (t-1)_0) \}
$$

 \mathcal{P}^3 and \mathcal{P}^4 are same as in case 1. Clearly, each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$ and C^1 is a C_{4t} -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3,$ \mathcal{P}^4 , \mathcal{C}^1 gives the existence of (P_4, C_{4t}) –URD $(4, 1)$ of $C_t \otimes I_4$. Hence the Lemma is proved.

□

Lemma 5.4. For any odd $t \geq 3$, there exists a (P_4, C_k) –URD(4, 1) of $C_t \otimes I_4$, where $k \in \{t, 2t, 4t\}.$

Proof. Let $V(C_t \otimes I_4) = \bigcup_{i \in \mathbb{Z}_t} V_i$, where $V_i = \{i_0, i_1, i_2, i_3\}, i \in \mathbb{Z}_t$. Now we prove the existence of (P_4, C_k) –URD $(4, 1)$ of $C_t \otimes I_4$ in three cases as follows: CASE 1: $k = t$.

Let

$$
\mathcal{P}^1 = \{ [i_0, (i-1)_1, (i-2)_2, (i-3)_3] \mid 0 \le i \le t-1 \};
$$

\n
$$
\mathcal{P}^2 = \{ [i_0, (i+1)_1, (i+2)_2, (i+3)_3] \mid 0 \le i \le t-1 \};
$$

\n
$$
\mathcal{P}^3 = \{ [i_1, (i+1)_3, i_0, (i+1)_2] \mid 0 \le i \le t-1 \};
$$

\n
$$
\mathcal{P}^4 = \{ [i_2, (i+1)_0, i_3, (i+1)_1] \mid 0 \le i \le t-1 \};
$$

\n
$$
\mathcal{C}^1 = \{ (0_i, 1_i, 2_i, \dots, (t-2)_i, (t-1)_i) \mid 0 \le i \le 3 \},
$$

where the additions are taken modulo t .

Clearly, each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$ and C^1 is a C_t -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3, \mathcal{P}^4, \mathcal{C}^1\}$ gives the existence of (P_4, C_t) URD(4, 1) of $C_t \otimes I_4$.

CASE 2:
$$
k = 2t
$$
.
\nLet
\n
$$
\mathcal{P}^1 = \{[(t-2)_2, (t-1)_1, (t-2)_3, (t-1)_0], [(2i)_2, (2i-1)_3, (2i)_3, (2i-1)_2], (2i+1)_0, (2i)_1, (2i+1)_1, (2i)_0] \mid 0 \le i \le \frac{t-3}{2} \};
$$
\n
$$
\mathcal{P}^2 = \{[(t-1)_2, 0_1, (t-1)_3, 0_0], [(2i+1)_2, (2i)_3, (2i+1)_3, (2i)_2], (2i+2)_0, (2i+1)_1, (2i+2)_1, (2i+1)_0] \mid 0 \le i \le \frac{t-3}{2} \};
$$
\n
$$
\mathcal{P}^3 = \{[(t-1)_3, (t-2)_2, (t-1)_2, (t-2)_3], [(t-1)_1, 0_0, (t-1)_0, 0_1], (i+1)_1, i_2, (i+1)_0, i_3] \mid 0 \le i \le t-3 \};
$$
\n
$$
\mathcal{P}^4 = \{[(i+1)_3, i_0, (i+1)_2, i_1] \mid 0 \le i \le t-1 \};
$$
\n
$$
\mathcal{C}^1 = \{(0_0, 1_0, 2_0, \ldots, (t-2)_0, (t-1)_0, (t-2)_2, (t-3)_2, \ldots, 3_2, 2_2, 1_2, 0_2, (t-1)_2), (0_1, 1_3, 2_1, 3_3, 4_1, \ldots, (t-3)_1, (t-2)_3, (t-1)_3, (t-2)_1, (t-3)_3, (t-4)_1, \ldots, 4_3,
$$
\n
$$
3_1, 2_3, 1_1, 0_3, (t-1)_1\}
$$

Clearly, each \mathcal{P}^i , $i = 1, 2, 3, 4$ is a P_4 -factor of $C_t \otimes I_4$ and \mathcal{C}^1 is a C_{2t} -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3, \mathcal{P}^4, \mathcal{C}^1\}$ gives the existence of (P_4, C_{2t}) URD(4, 1) of $C_t \otimes I_4$.

CASE 3: $k = 4t$.

The proof of this case follows from the proof of case 1 of Lemma [4.1](#page-6-0) by taking $\mathcal{C}^1 = \mathcal{P}_2^1 \cup \mathcal{P}_2^2$. Clearly \mathcal{C}^1 is a C_{4t} -factor of $C_t \otimes I_4$. Hence $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}^3, \mathcal{P}^4, \mathcal{C}^1\}$ gives the existence of (P_4, C_{4t}) -URD(4, 1) of $C_t \otimes I_4$. Hence the Lemma is proved.

□

6. (P_4, C_k) –URD (r, s) of some product graphs

In this section, we prove the existence of uniformly resolvable decomposition of some product graphs into P_4 and C_k , $k \geq 3$.

We arrange the vertex set of K_{4m} in a $m \times 4$ array. The vertices of each row form a copy of K_4 and the vertices of 4 columns together form a $K_m \otimes I_4$. Let $K_{4,4}$ be a complete bipartite graph with bipartition (X, Y) , where X $=\{x_1, x_2, x_3, x_4\}, Y = \{y_1, y_2, y_3, y_4\}.$ Then let $\mathcal{P}^1 = \{[x_1, y_4, x_4, y_1], [x_2,$ $[y_3, x_3, y_2]$, $\mathcal{P}^2 = \{ [x_3, y_1, x_1, y_3], [x_4, y_2, x_2, y_4] \}$ and $\mathcal{P}_2^1 = \{ [x_1, y_2], [x_2, y_1],$ $[x_3, y_4], [x_4, y_3]$. Clearly $\{\mathcal{P}^1, \mathcal{P}^2, \mathcal{P}_2^1\}$ gives the existence of $(P_2,$ P_4)–URD(1, 2) of $K_{4,4}$.

Theorem 6.1. Let $t \geq 3$, $m \equiv 0 \pmod{t}$ and let C be any C_t -factor of K_m . Then there exists a (P_4, C_k) –URD (r, s) of $C \otimes I_4$ with $(r, s) \in \{(4, 1), (0, 4)\},$ where $k \in \{t, 2t, 4t\}.$

Proof. Let $m = tx$, $x \ge 1$. Since C is a C_t -factor of K_m , $C \otimes I_4 \cong x(C_t \otimes I_4)$. By Lemmas [5.3](#page-13-0) and [5.4,](#page-15-0) $C_t \otimes I_4$ has 4 P_4 -factors and a C_k -factor, where $k \in \{t, 2t, 4t\}$. That is, $C_t \otimes I_4$ has a (P_4, C_k) –URD(4, 1). Also by Theorems [2.3,](#page-1-0) [2.4,](#page-1-1) and [2.5,](#page-2-0) $C_t \otimes I_4$ has a C_k -factorization where $k \in \{t, 2t, 4t\}$. That is, (P_4, C_k) –URD $(0, 4)$ exists for $C_t \otimes I_4$. Hence $C \otimes I_4$ has a (P_4, C_k) –URD (r, s) with $(r, s) \in \{(4, 1), (0, 4)\}\,$, where $k \in \{t, 2t, 4t\}$.

Theorem 6.2. Let $t \geq 3$, $m \equiv 0 \pmod{t}$ is even. Let C and I be the edge-disjoint C_t -factor and 1-factor of K_m . Then there exists a (P_4, C_k) -URD(*r*, *s*) of (*C* ⊕ *I*) ⊗ *I*₄ with (*r*, *s*) ∈ {(4, 3), (8, 0)}, where $k \in \{t, 2t, 4t\}$.

Proof. Let $m = tx, x \geq 1$. Consider the graph $G = (\mathcal{C} \oplus I) \otimes I_4 \cong (\mathcal{C} \otimes I)$ I_4) \oplus ($I \otimes I_4$). Now we prove the existence of (P_4, C_k) –URD (r, s) of G with $(r, s) \in \{(4, 3), (8, 0)\}\,$, where $k \in \{t, 2t, 4t\}\$ in two cases as follows: CASE 1: $(r, s) = (4, 3)$.

Since C is a C_t -factor of K_m , $C \otimes I_4 \cong x(C_t \otimes I_4)$. By Lemmas [4.2,](#page-7-0) [4.3,](#page-8-0) and [4.4,](#page-9-0) $C_t \otimes I_4$ has 2 P_2 -factors and 3 C_k -factors, where $k \in \{t, 2t, 4t\}$ and hence $C \otimes I_4$ has 2 P_2 -factors, say H_1 , H_2 and 3 C_k -factors, where $k \in \{t, 2t, 4t\}$. Since $I \otimes I_4 \cong \frac{m}{2}$ $\frac{m}{2}(K_{4,4}),$ and $K_{4,4}$ has a P_2 -factor and 2 P_4 -factors, the graph $I \otimes I_4$ has a P_2 -factor and 2 P_4 -factors.

Therefore, each C_k -factor of $C \otimes I_4$ is also a C_k -factor of G, where $k \in$ $\{t, 2t, 4t\}$ and each P_4 -factor of $I \otimes I_4$ is also a P_4 -factor of G. There are 3 C_k -factors and 2 P_4 factors of G. The remaining 2 P_4 factors of G can be constructed from 2 P_2 -factors of $C \otimes I_4$ and a P_2 -factor of $I \otimes I_4$.

Each H_i , $i = 1, 2$, is a P_2 -factor between the set of vertices in the 1st and 2nd columns and the set of vertices in the 3rd and 4th columns (as per Lemmas [4.2](#page-7-0)[–4.4\)](#page-9-0). A P₂-factor of $I \otimes I_4$ is a union of a P₂-factor between the vertices in the 1st and 2nd columns and a P_2 -factor between the vertices in the 3rd and 4th columns.

The graph obtained by joining the P_2 -factor between the vertices in the 1st and 2nd columns of $I \otimes I_4$ with H_1 gives a P_4 -factor of G and the graph obtained by joining the P_2 -factor between the vertices in the 3rd and 4th columns of $I \otimes I_4$ and H_2 gives a P_4 -factor of G .

In total, there are 3 C_k -factors and 4 P_4 factors of G. That is, there exists a (P_4, C_k) –URD $(4, 3)$ of $G = (\mathcal{C} \oplus I) \otimes I_4$.

CASE 2: $(r, s) = (8, 0)$.

By Lemma [4.1,](#page-6-0) $C_t \otimes I_4$ has 2 P_2 -factors and 4 P_4 -factors. Hence $\mathcal{C} \otimes I_4$ has 2 P_2 -factors and 4 P_4 -factors. Since $I \otimes I_4 \cong \frac{m}{2}$ $\frac{m}{2}(K_{4,4})$ and $K_{4,4}$ has a P₂-factor and 2 P₄-factors, the graph $I \otimes I_4$ has a P₂-factor and 2 P4-factors.

Each P_4 -factor of $\mathcal{C} \otimes I_4$ is also a P_4 -factor of G and each P_4 -factor of $I \otimes I_4$ is also a P_4 -factor of G. So, there are 6 P_4 -factors of G. The remaining 2 P_4 -factors of G can be constructed from 2 P_2 -factors of $C \otimes I_4$ and a P₂-factor of $I \otimes I_4$.

Note that one P_2 -factor of $C \otimes I_4$ is a union of a P_2 -factor between the vertices in the 1st and 2nd columns and a P_2 -factor between the vertices in 3rd and 4th columns. Another P_2 -factor of $C \otimes I_4$ is a union of a P_2 factor between the vertices in the 2nd and 3rd columns and a P_2 -factor between the vertices in the 4th and 1st columns. Also P_2 -factor of $I \otimes I_4$ is a union of a P_2 -factor between the vertices in the 1st and 2nd columns and a P_2 -factor between the vertices in the 3rd and 4th columns.

The union of 2 P_2 -factors of $C \otimes I_4$ gives a 2-factor of $C \otimes I_4$, say H, such that it has a P_2 -factor between any two consecutive columns. Now remove the P_2 -factor between the vertices in the 2nd and 3rd columns of H, then the existing graph is a P_4 -factor of G. Joining the removed edges from H with the P₂-factor of $I \otimes I_4$, gives a P₄-factor of G.

In total, there are 8 P_4 -factors of G. That is, there exists a (P_4, C_k) URD(8,0) of $G = (\mathcal{C} \oplus I) \otimes I_4$.

□

Theorem 6.3. Let $t \geq 3$, $m \equiv 0 \pmod{t} \geq 7$ and let \mathcal{C}^1 , \mathcal{C}^2 , and \mathcal{C}^3 be any three edge-disjoint C_t -factors of K_m . Then there exists a (P_4, C_k) -URD(16,0) of $(\bigoplus_{i=1}^{3} C^i) \otimes I_4$.

Proof. Let $m = tx$, $x \ge 1$. Consider the graph $G = (\bigoplus_{i=1}^{3} C) \otimes I_4 \cong (C^1 \otimes I_4)$ I_4) \oplus ($\mathcal{C}^2 \otimes I_4$) \oplus ($\mathcal{C}^3 \otimes I_4$). Now we prove the existence of (P_4, C_k)–URD(16,0) of G as follows:

Since each \mathcal{C}^i , $i = 1, 2, 3$ is a C_t -factor of K_m , $\mathcal{C}^i \otimes I_4 \cong x(C_t \otimes I_4)$. By Lemma [4.1,](#page-6-0) $C_t \otimes I_4$ has 2 P_2 -factors and 4 P_4 -factors. Hence each $\mathcal{C}^i \otimes I_4$, $i = 1, 2, 3$ has 2 P_2 -factors and 4 P_4 -factors. These 4 P_4 -factors of each $\mathcal{C}^i \otimes I_4$, $i = 1, 2, 3$ together gives 12 P_4 -factors of G. The remaining 4 P_4 factors of G can be constructed from 2 P_2 -factors of each $\mathcal{C}^i \otimes I_4$, $i = 1, 2, 3$.

For each *i*, *i* = 1, 2, 3, adding 2 P_2 -factors of $\mathcal{C}^i \otimes I_4$ gives a 2-factor, say H_i , of $\mathcal{C}^i \otimes I_4$ such that it has a P_2 -factor between any two consecutive columns.

Now remove the P_2 -factor between the vertices in the i and $(i + 1)$ th column of each H_i , $i = 1, 2, 3$, then the remaining graph gives a P_4 -factor of G. Form a new graph by adding the removed edges from each H_i , $i = 1, 2, 3$, then the resulting graph itself is a P_4 -factor of G. Hence we get 4 P_4 -factors of G.

In total, there are 16 P_4 -factors of G. (i.e.) there exists a (P_4, C_k) -URD(16,0) of $G = (\bigoplus_{i=1}^{3} C^i) \otimes I_4.$

Theorem 6.4. Let $m \geq 4$ is even. Let C and I be the edge-disjoint C_m factor and 1-factor of K_m . Then there exists a (P_4, C_k) –URD (r, s) of $(C \oplus$ $I) \otimes I_4$ with $(r, s) \in \{(8, 0), (4, 3), (0, 6)\},$ where $k \in \{4, 8\}.$

Proof. Let $G = (C \oplus I) \otimes I_4 \cong (C \otimes I_4) \oplus (I \otimes I_4)$. Now we prove the existence of (P_4, C_k) –URD (r, s) of G with $(r, s) \in \{(8, 0), (4, 3), (0, 6)\}\,$, where $k \in \{4, 8\}$ in two cases as follows:

CASE 1: $(r, s) \in \{(4, 3), (0, 6)\}.$

Since $I \otimes I_4 \cong \frac{m}{2}$ $\frac{m}{2}(K_{4,4})$ and $K_{4,4}$ has 2 C_k -factors, $k \in \{4, 8\}$. Hence (P_4, C_k) –URD $(0, 2)$ of $I \otimes I_4$ exists, where $k \in \{4, 8\}$. By Lemmas [5.1](#page-11-0) and [5.2,](#page-12-0) $C \otimes I_4$ has a (P_4, C_k) –URD (r, s) with $(r, s) \in \{(4, 1), (0, 4)\},$ where $k \in \{4, 8\}.$ Therefore there exists a (P_4, C_k) –URD (r, s) of G with $(r, s) \in \{(4, 1),$

 $(0, 4)$ } + { $(0, 2)$ } = { $(4, 3)$, $(0, 6)$ }, where $k \in \{4, 8\}$.

CASE 2: $(r, s) = (8, 0)$.

This case follows from case 2 of Theorem [6.2.](#page-17-0)

□

7. Main Results

In this section, we prove our main results.

Theorem 7.1. There exists a (P_4, C_4) –URD $(n; r, s)$ if and only if $n \equiv$ 0 (mod 4) and $(r, s) \in J(n)$.

Proof. Necessity follows from Lemma [2.6.](#page-2-1) Conversely, let $n = 4m$, $m \geq$ 1. Since K_4 has 2 P_4 -factors, (P_4, C_4) -URD $(4, 2, 0)$ exists. We know that $K_8 \cong K_{4,4} \oplus 2K_4$, $K_{4,4}$ has 2 C_4 -factor and K_4 has 2 P_4 -factor. Hence (P_4, C_4) –URD $(8; 2, 2)$ exists.

Let $m \geq 3$ and let C be any C_m -factor of K_m . Since C is a C_m -factor of K_m , $C \otimes \overline{I_4} \cong C_m \otimes I_4$. By Lemma [5.1,](#page-11-0) $C_m \otimes \overline{I_4}$ has a (P_4, C_4) -URD (r, s) with $(r, s) \in \{(4, 1), (0, 4)\}.$ Hence $C \otimes I_4$ has a (P_4, C_4) -URD (r, s) with $(r, s) \in \{(4, 1), (0, 4)\}.$

By Theorem [6.3,](#page-18-0) there exists a (P_4, C_4) -URD $(16, 0)$ of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where \mathcal{C}^a , \mathcal{C}^b , and \mathcal{C}^c are any 3 edge-disjoint C_m -factors of K_m . When m is even, $(C \oplus I) \otimes I_4$ has a (P_4, C_4) –URD (r, s) with $(r, s) \in \{(8, 0), (4, 3)\}$ by Theorem [6.4,](#page-18-1) where I is a 1-factor of K_m edge-disjoint from C.

Applying Theorem [3.1](#page-2-2) (when m is odd) and Theorems [3.2](#page-4-0) and [3.3,](#page-6-1) (when m is even) with $t = m$ and $k = 4$, we obtain a (P_4, C_4) -URD $(4m; r, s)$ with $(r, s) \in J(4m)$. This completes the proof. □

Theorem 7.2. There exists a (P_4, C_8) -URD $(n; r, s)$ if and only if $n \equiv$ 0 (mod 8) and $(r, s) \in J(n)$.

Proof. Necessity follows from Lemma [2.6.](#page-2-1) Conversely, let $n = 8x = 4m$, $m \geq 2$ is even. We know that $K_8 \cong K_{4,4} \oplus 2K_4$, $K_{4,4}$ has 2 C_8 -factors and K_4 has 2 P_4 -factors. Hence (P_4, C_8) -URD $(8; 2, 2)$ exists.

Let $m \geq 4$ is even and let C be any C_m -factor of K_m . Since C is a C_m -factor of K_m , $C \otimes I_4 \cong C_m \otimes I_4$. By Lemma [5.2,](#page-12-0) $C_m \otimes I_4$ has a (P_4, C_8) -URD (r, s) with $(r, s) \in \{(4, 1), (0, 4)\}.$ Hence $C \otimes I_4$ has a (P_4, C_8) -URD (r, s) with $(r, s) \in \{(4, 1), (0, 4)\}.$

By Theorem [6.3,](#page-18-0) there exists a (P_4, C_8) -URD $(16, 0)$ of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where \mathcal{C}^a , \mathcal{C}^b , and \mathcal{C}^c are any 3 edge-disjoint C_m -factors of K_m . $(\mathcal{C} \oplus I) \otimes I_4$ has a (P_4, C_8) –URD (r, s) with $(r, s) \in \{(8, 0), (4, 3)\}\$ by Theorem [6.4,](#page-18-1) where I is a 1-factor of K_m edge-disjoint from C.

Applying Theorems [3.2](#page-4-0) and [3.3](#page-6-1) with $t = m$ and $k = 8$, we obtain a (P_4, C_8) –URD $(4m; r, s)$ with $(r, s) \in J(4m)$. This completes the proof. \Box

Theorem 7.3. Let $k \geq 3$ be an odd integer. Then there exists a (P_4, C_k) URD(n; r, s) if and only if $n \equiv 0 \pmod{4k}$ and $(r, s) \in J(n)$, except for $k = 3$ and $n \in \{24, 48\}.$

Proof. Necessity follows from Lemma [2.6.](#page-2-1) Conversely, let $n = 4kx, x \ge 1$.

There exists a (P_4, C_k) –URD (r, s) of $C \otimes I_4$, with $(r, s) \in \{(4, 1), (0, 4)\},$ by Theorem [6.1,](#page-16-0) where C is a C_k -factor of K_{kx} . By Theorem [6.3,](#page-18-0) there exists a (P_4, C_k) -URD(16,0) of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where C^a, C^b , and C^c are any 3 edge-disjoint C_k -factors of K_{kx} . When kx is even, $(C \oplus I) \otimes I_4$ has a (P_4, C_k) – $\text{URD}(r, s)$ with $(r, s) \in \{(8, 0), (4, 3)\}\$ by Theorem [6.2,](#page-17-0) where I is a 1-factor of K_{kx} edge-disjoint from \mathcal{C} .

Applying Theorem [3.1](#page-2-2) (when kx is odd) and Theorems [3.2](#page-4-0) and [3.3,](#page-6-1) (when kx is even) with $m = kx$ and $t = k$, we obtain a (P_4, C_k) –URD $(4kx; r, s)$ with $(r, s) \in J(4kx)$ except when $k = 3$ and $4kx \in \{24, 48\}.$

That is, there exists a (P_4, C_k) –URD (n, r, s) with $(r, s) \in J(n)$ except when $k = 3$ and $n \in \{24, 48\}$, where $k \equiv 1 \pmod{2} \geq 3$ and $n \equiv$ 0 (mod $4k$). \Box

Theorem 7.4. Let $k \equiv 2 \pmod{4} \geq 6$. Then there exists a (P_4, C_k) $\text{URD}(n; r, s)$ if and only if $n \equiv 0 \pmod{2k}$ and $(r, s) \in J(n)$, except for $k = 6$ and $n \in \{24, 48\}.$

Proof. Necessity follows from Lemma [2.6.](#page-2-1) Conversely, let $n = 2kx = 4(\frac{k}{2})x$, $x \geq 1$. Let $\frac{k}{2} = k'$, then $k' \geq 3$ is an odd integer.

Let C be any $C_{k'}$ -factor of $K_{k'x}$. Then there exists a $(P_4, C_{2k'})$ -URD (r, s) of $C\otimes I_4$, with $(r, s) \in \{(4, 1), (0, 4)\}$, by Theorem [6.1.](#page-16-0) By Theorem [6.3,](#page-18-0) there exists a $(P_4, C_{2k'})$ -URD $(16, 0)$ of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where C^a, C^b , and C^c are any 3 edge-disjoint $C_{k'}$ -factors of $K_{k'x}$. $(C \oplus I) \otimes I_4$ has a $(P_4, C_{2k'})$ -URD(*r*, *s*) with $(r, s) \in \{(8, 0), (4, 3)\}\$ by Theorem [6.2,](#page-17-0) when $k'x$ is even, where I is a 1-factor of $K_{k'x}$ edge-disjoint from C.

Applying Theorem [3.1](#page-2-2) (when $k'x$ is odd) and Theorems [3.2](#page-4-0) and [3.3,](#page-6-1) (when $k'x$ is even) with $m = k'x$, $t = k'$ and $k = 2t$, we obtain a $(P_4, C_{2k'})$ URD($4k'x; r, s$) with $(r, s) \in J(4k'x)$ except when $k' = 3$ and $4k'x \in$ ${24, 48}.$

That is, there exists a (P_4, C_k) –URD $(n; r, s)$ with $(r, s) \in J(n)$ except when $k = 6$ and $n \in \{24, 48\}$, where $k \equiv 2 \pmod{4} \ge 6$ and $n \equiv$ $0 \pmod{2k}$.

Theorem 7.5. Let $k \equiv 0 \pmod{4} \ge 12$. Then there exists a (P_4, C_k) $\text{URD}(n; r, s)$ if and only if $n \equiv 0 \pmod{k}$ and $(r, s) \in J(n)$.

Proof. Necessity follows from Lemma [2.6.](#page-2-1) Conversely, let $n = kx = 4(\frac{k}{4})x$, $x \geq 1$. Let $\frac{k}{4} = k'$ Then $n = 4k'x$, $x \geq 1$.

Let C be any $C_{k'}$ -factor of $K_{k'x}$. There exists a $(P_4, C_{4k'})$ -URD (r, s) of $C \otimes I_4$, with $(r, s) \in \{(4, 1), (0, 4)\}$, by Theorem [6.1.](#page-16-0) By Theorem [6.3,](#page-18-0) there exists a $(P_4, C_{4k'})$ -URD $(16, 0)$ of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where C^a, C^b , and C^c are any 3 edge-disjoint $C_{k'}$ -factors of $K_{k'x}$. The graph $(C \oplus I) \otimes I_4$ has a $(P_4, C_{4k'})$ -URD (r, s) with $(r, s) \in \{(8, 0), (4, 3)\}$ by Theorem [6.2,](#page-17-0) when $k'x$ is even, where I is a 1-factor of $K_{k'x}$ edge-disjoint from C.

Applying Theorem [3.1](#page-2-2) (when $k'x$ is odd) and Theorems [3.2](#page-4-0) and [3.3,](#page-6-1) (when $k'x$ is even) with $m = k'x$, $t = k'$ and $k = 4t$, we obtain a $(P_4, C_{4k'})$ URD($4kn; r, s$) with $(r, s) \in J(4k'x)$ except when $k' = 3$ and $4k'x \in \{24, 48\}.$

That is, there exists a (P_4, C_k) –URD (n, r, s) with $(r, s) \in J(n)$ except when $k = 12$ and $n \in \{24, 48\}$, where $k \equiv 0 \pmod{4} \ge 12$ and $n \equiv$ $0 \pmod{k}$.

Theorem 7.6. There exists a (P_4, C_3) -URD $(24; r, s)$ with $(r, s) \in \{(4x +$ $2, 10 - 3x$ | $x = 0, 1, 2, 3$ }.

Proof. We prove the existence of (P_4, C_3) –URD $(24; r, s)$ with $(r, s) \in \{(4x +$ $2, 10 - 3x$ | $x = 0, 1, 2, 3$ in three cases as follows: CASE 1: $(r, s) = (2, 10)$.

By Theorem [3.3,](#page-6-1) there exists a (P_4, C_3) –URD $(24; 2, 10)$. CASE 2: $(r, s) \in \{(14, 1), (10, 4)\}.$

Let $V(K_6) = \{0, 1, 2, 3, 4, 5\}$. Then $K_6 = C^1 \oplus C^2 \oplus I$, where $C^1 =$ $\{(0,1,2), (3,4,5)\},\ C^2 = \{(0,3,1,5,2,4)\}\$ and $I = \{[2,3], [1,4], [0,5]\}.$ Clearly C^1 is a C_3 -factor, C^2 is a C_6 -factor and I is a 1-factor of K_6 . Consider

$$
K_{24} \cong (K_6 \otimes I_4) \oplus (I_6 \otimes K_4)
$$

\n
$$
\cong ((\mathcal{C}^1 \otimes I_4) \oplus ((\mathcal{C}^2 \oplus I) \otimes I_4) \oplus (I_6 \otimes K_4).
$$

Since $C^1 \otimes I_4 \cong 2(C_3 \otimes I_4)$, there exists a (P_4, C_3) -URD (r, s) of $C^1 \otimes I_4$ with $(r, s) \in \{(4, 1), (0, 4)\},$ by Theorem [6.1.](#page-16-0) The graph $(\mathcal{C}^2 \oplus I) \otimes I_4$ has a (P_4, C_3) –URD (r, s) with $(r, s) = (8, 0)$, by Theorem [6.2.](#page-17-0) Since K_4 has 2 P_4 -factors, $I_6 \otimes K_4$ has a (P_4, C_3) –URD (r, s) with $(r, s) = (2, 0)$. This gives the existence of (P_4, C_3) –URD $(v; r, s)$ of K_{24} with $(r, s) \in$ $\{\{(4, 1), (0, 4)\} + \{(8, 0)\} + \{(2, 0)\}\} = \{(14, 1), (10, 4)\}.$

CASE 3: $(r, s) = (6, 7)$.

Consider $K_{24} \cong (K_3 \otimes I_8) \oplus (I_3 \otimes K_8)$. Let $V(K_3 \otimes K_8) = \bigcup_{i \in \mathbb{Z}_3} X_i$, where $X_i = \{i_j | j \in \mathbb{Z}_8\}, i \in \mathbb{Z}_3$. $E(K_3 \otimes I_8) = \bigcup_{i \in \mathbb{Z}_3, l \in \mathbb{Z}_8} F_l(X_i, X_{i+1})$ and $E(I_3 \otimes K_8) = \bigcup_{i \in \mathbb{Z}_3, 0 \leq a < b \leq 7} \{i_a, i_b\}.$ Now we construct 6 P_4 -factors of K_{24} as follows: Let

$$
\mathcal{P}^{1} = \{ [i_{1}, i_{4}, i_{0}, i_{5}], [i_{3}, i_{6}, i_{2}, i_{7}] \mid i \in \mathbb{Z}_{3} \};
$$

\n
$$
\mathcal{P}^{2} = \{ [i_{0}, i_{7}, i_{3}, i_{4}], [i_{2}, i_{5}, i_{1}, i_{6}] \mid i \in \mathbb{Z}_{3} \};
$$

\n
$$
\mathcal{P}^{3} = \{ [i_{0}, i_{6}, i_{5}, i_{3}], [i_{4}, i_{2}, i_{1}, i_{7}] \mid i \in \mathbb{Z}_{3} \};
$$

\n
$$
\mathcal{P}^{4} = \{ [i_{1}, i_{3}, i_{0}, i_{2}], [i_{6}, i_{4}, i_{7}, i_{5}] \mid i \in \mathbb{Z}_{3} \};
$$

\n
$$
\mathcal{P}^{5} = \{ [(i + 1)_{4}, i_{0}, i_{1}, (i + 1)_{5}], [(i + 1)_{6}, i_{2}, i_{3}, (i + 1)_{7}] \mid i \in \mathbb{Z}_{3} \};
$$

\n
$$
\mathcal{P}^{6} = \{ [(i + 1)_{0}, i_{4}, i_{5}, (i + 1)_{1}], [(i + 1)_{2}, i_{6}, i_{7}, (i + 1)_{3}] \mid i \in \mathbb{Z}_{3} \},
$$

where the additions are taken modulo 3. Now we construct $7 C₃$ -factors of K_{24} as follows: Let

$$
\mathcal{C}^1 = F_0(X_0, X_1) \cup F_0(X_1, X_2) \cup F_0(X_2, X_0);
$$

\n
$$
\mathcal{C}^2 = F_1(X_0, X_1) \cup F_5(X_1, X_2) \cup F_2(X_2, X_0);
$$

\n
$$
\mathcal{C}^3 = F_2(X_0, X_1) \cup F_1(X_1, X_2) \cup F_5(X_2, X_0);
$$

\n
$$
\mathcal{C}^4 = F_3(X_0, X_1) \cup F_7(X_1, X_2) \cup F_6(X_2, X_0);
$$

\n
$$
\mathcal{C}^5 = F_5(X_0, X_1) \cup F_2(X_1, X_2) \cup F_1(X_2, X_0);
$$

\n
$$
\mathcal{C}^6 = F_6(X_0, X_1) \cup F_3(X_1, X_2) \cup F_7(X_2, X_0);
$$

\n
$$
\mathcal{C}^7 = F_7(X_0, X_1) \cup F_6(X_1, X_2) \cup F_3(X_2, X_0),
$$

Hence $\{\mathcal{P}^i, \mathcal{C}^j \mid 1 \le i \le 6, 1 \le j \le 7\}$ gives a (P_4, C_3) -URD $(6, 7)$ of K_{24} . Hence there exists a (P_4, C_3) –URD $(24; r, s)$ with $(r, s) \in \{(2, 10), (6, 7),$ $(10, 4), (14, 1).$

□

Theorem 7.7. There exists a (P_4, C_3) –URD(48; r, s) with $(r, s) \in \{(4x +$ $2, 22 - 3x$ | $x = 0, 1, 2, 3, 4, 5, 6, 7$ }.

Proof. We prove the existence of (P_4, C_3) –URD $(48; r, s)$ with $(r, s) \in \{(4x +$ $2, 22 - 3x$ | $x = 0, 1, 2, 3, 4, 5, 6, 7$ } in three cases as follows: CASE 1: $(r, s) = (2, 22)$.

By Theorem [3.3,](#page-6-1) there exists a (P_4, C_3) –URD $(48; (2, 22))$.

CASE 2: $(r, s) \in \{(10, 16), (14, 13), (18, 10), (22, 7), (26, 4), (30, 1)\}.$ Let $V(K_{12}) = \{0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11\}$. Then $K_{12} = C^1 \oplus C^2 \oplus C^3 \oplus C^4$ $\mathcal{C}^4 \oplus \mathcal{C}^5 \oplus I$, where $\mathcal{C}^1 = \{(0,2,4), (1,3,5), (6,8,10), (7,9,11)\}; \mathcal{C}^2 =$ $\{(0,3,6), (1,2,7), (4,8,11), (5,9,10)\};\mathcal{C}^3 = \{(0,5,11), (1,4,10), (2,6,9),\}$ $(3,7,8)$; $C^4 = \{(0,7,10), (1,6,11), (2,8,5), (3,9,4)\}$; $C^5 = \{(0,8,1,9),$ $(2, 10, 3, 11), (4, 6, 5, 7)$ and $I = \{[0, 1], [2, 3], [5, 4], [6, 7], [8, 9], [10, 11]\}.$ Clearly each \mathcal{C}^i , $i = 1, 2, 3, 4$ is a C_3 -factor, \mathcal{C}^5 is a C_4 -factor and I is a 1-factor of K_{12} . Now

$$
K_{48} \cong (K_{12} \otimes I_4) \oplus (I_{12} \otimes K_4)
$$

\n
$$
\cong ((\mathcal{C}^1 \otimes I_4) \oplus (\mathcal{C}^2 \otimes I_4) \oplus (\mathcal{C}^3 \otimes I_4)
$$

\n
$$
\oplus (\mathcal{C}^4 \otimes I_4) \oplus ((\mathcal{C}^5 \oplus I) \otimes I_4) \oplus (I_{12} \otimes K_4).
$$

There exists a (P_4, C_3) -URD (r, s) of each $C^i \otimes I_4$, $i = 1, 2, 3, 4$ with $(r, s) \in \{(4, 1), (0, 4)\}\$ by Theorem [6.1.](#page-16-0) $(\mathcal{C}^5 \oplus I) \otimes I_4$ has a (P_4, C_3) URD(8,0) by Theorem [6.2.](#page-17-0) There exists a (P_4, C_3) –URD(16,0) of $(\bigoplus_{i=1}^{3} C^{i}) \otimes I_4$ by Theorem [6.3.](#page-18-0) Since K_4 has 2 P_4 -factor, $I_{12} \otimes K_4$ has a (P_4, C_3) –URD $(2, 0)$. This gives the existence of (P_4, C_3) –URD $(48; r, s)$ with $(r, s) \in \{(4-3x) * \{(4, 1), (0, 4)\} + x * \{(16, 0)\} + \{(8, 0)\} + \{(2, 0)\}\$ $0 \le x \le 1$ = {(10, 16), (14, 13), (18, 10), (22, 7), (26, 4), (30, 1) }.

CASE 3: $(r, s) = (6, 19)$.

Consider $K_{48} \cong (K_4 \otimes I_{12}) \oplus (I_4 \otimes K_{12})$. By Theorem [2.2,](#page-1-3) $K_4 \otimes I_{12}$ has a (P_4, C_3) –URD $(0, 18)$. There exists a (P_4, C_3) –URD $(12, 6, 1)$ by Theorem [7.3](#page-20-0) and $I_4 \otimes K_{12} \cong 4K_{12}$, $I_4 \otimes K_{12}$ has a (P_4, C_3) -URD(6, 1). This gives the existence of (P_4, C_3) –URD $(48; 6, 19)$.

Therefore, there exists a (P_4, C_3) –URD $(48; r, s)$ with $(r, s) \in \{(2, 22),$ $(6, 19), (10, 16), (14, 13), (18, 10), (22, 7), (26, 4), (30, 1)\}.$

□

Theorem 7.8. There exists a (P_4, C_k) –URD $(n; r, s)$ with $(r, s) \in J(n)$ = $\{(4x+2, \frac{n-4}{2}-3x) \mid x=0,1,\ldots, \left\lfloor \frac{n-4}{6} \right\rfloor$ $\left[\frac{-4}{6}\right]$ }, where $k \in \{6, 12\}$ and $n \in \{24, 48\}$. *Proof.* We prove the existence of (P_4, C_k) –URD (n, r, s) with $(r, s) \in J(n)$, where $k \in \{6, 12\}$ and $n \in \{24, 48\}$ in two cases as follows:

CASE 1: $n = 24$.

Let C be a C_6 -factor of $K_6 - I$, where I is a 1-factor of K_6 . There exists a (P_4, C_k) –URD (r, s) of $C \otimes I_4$, with $(r, s) \in \{(4, 1), (0, 4)\}$, by Theorem [6.1](#page-16-0) and $(C \oplus I) \otimes I_4$ has a (P_4, C_k) –URD (r, s) with $(r, s) \in \{(8, 0), (4, 3)\}\$ by Theorem [6.2,](#page-17-0) where $k \in \{6, 12\}$.

Applying Theorems [3.2](#page-4-0) and [3.3,](#page-6-1) with $t = m = 6$ and $k \in \{6, 12\}$, we obtain a (P_4, C_k) –URD $(24; r, s)$ with $(r, s) \in J(24)$, where $k \in \{6, 12\}$. CASE 2: $n = 48$.

Let C and I be edge-disjoint C_6 -factor and 1-factor of K_{12} . There exists a (P_4, C_k) –URD (r, s) of $C \otimes I_4$, with $(r, s) \in \{(4, 1), (0, 4)\}$, by Theorem [6.1](#page-16-0) and $(C \oplus I) \otimes I_4$ has a (P_4, C_k) –URD (r, s) with $(r, s) \in \{(8, 0), (4, 3)\}\$ by Theorem [6.2,](#page-17-0) where $k \in \{6, 12\}$. By Theorem [6.3,](#page-18-0) there exists a (P_4, C_k) -URD(16,0) of $(C^a \oplus C^b \oplus C^c) \otimes I_4$, where C^a, C^b , and C^c are any 3 edge-disjoint C_6 -factors of K_{12} .

Applying Theorems [3.2](#page-4-0) and [3.3,](#page-6-1) with $t = 6$, $m = 12$ and $k \in \{6, 12\}$, we obtain a (P_4, C_k) –URD(48; r, s) with $(r, s) \in J(48)$, where $k \in \{6, 12\}$.

From cases 1 and 2, there exists a (P_4, C_k) –URD $(n; r, s)$ with $(r, s) \in J(n)$, where $k \in \{6, 12\}$ and $n \in \{24, 48\}$.

8. Conclusion

Combining Theorems [7.1](#page-19-0) to [7.8,](#page-23-3) we have completely settled the existence of (P_4, C_6) –URD $(n; r, s)$ for any admissible parameters n, r, and s, where $k \geq 3$.

REFERENCES

- 1. R. J. R. Abel, G. Ge, and J. Yin, Resolvable and near-resolvable designs, in: C. J. Colbourn, J. H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, Second ed., Chapman and Hall/CRC, Boca Raton, FL, 2007, pp. 124–132.
- 2. B. Alspach and R. Häggkvist, Some observations on the Oberwolfach problem, J. Graph Theory 9 (1985), 177–187.
- 3. B. Alspach, P. J. Schellenberg, D. R. Stinson, and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), 20–43.

- 4. J. C. Bermond, K. Heinrich, and M. L. Yu, Existence of resolvable path designs, Europ. J. Combin. 11 (1990), 205–211.
- 5. H. Cao, M. Niu, and C. Tang, On the existence of cycle frames and almost resolvable cycle systems, Discrete Math. **311** (2011), $2220 - 2232$.
- 6. F. Chen and H. Cao, Uniformly resolvable decompositions of K_v into K_2 and $K_{1,3}$ graphs, Discrete Math. 339 (2016), 2056–2062.
- 7. J. H. Dinitz, A. C. H. Ling, and P. Danziger, Maximum uniformly resolvable designs with blocks sizes 2 and 4, Discrete Math. 309 (2009), 4716–4721.
- 8. M. Gionfriddo, S. Kucukcifci, S. Milici, and E. S. Yazici, Uniformly resolvable $(C_4, K_{1,3})$ -designs of index 2, Contrib. Discrete Math. 13 (2018), 23–34.
- 9. M. Gionfriddo and S. Milici, On the existence of uniformly resolvable decompositions of K_v and $K_v - I$ into paths and kites, Discrete Math. 313 (2013), 2830–2834.
- 10. $____\$, Uniformly resolvable H-designs with $\mathcal{H} = \{P_3, P_4\}$, Australas. J. Combin. 60 (2014), 325–332.
- 11. \ldots , On uniformly resolvable $\{K_2, P_k\}$ -designs with $k = \{3, 4\}$, Contrib. Discrete Math. 10 (2015), 126–133.
- 12. K. Heinrich, Path-decompositions, Le Matematiche 47 (1992), 241–258.
- 13. D. G. Hoffman and P. J. Schellenberg, The existence of C_k -factorizations of $K_{2n} - F$, Discrete Math. 97 (1991), 243–250.
- 14. J. D. Horton, Resolvable path designs, J. Combin. Theory A 39 (1985), 117–131.
- 15. S. Kucukcifci, G. Lo Faro, S. Milici, and A. Tripodi, Resolvable 3-star designs, Discrete Math. 338 (2015), 608–614.
- 16. S. Kucukcifci, S. Milici, and Zs. Tuza, Maximum Uniformly resolvable decompositions of K_v into 3-stars and 3-cycles, Discrete Math. 338 (2015), 1667–1673.
- 17. M. Ilayaraja, A. Shanmuga Vadivu and A. Muthusamy, Uniformly Resolvable Decomposition of K_n into 1-factors and P_k -factors, Bulletin of the ICA. **93** (2021), 126–142.
- 18. W. Imrich and S. Klavzar, Product graphs: Structure and Recognition, John Wiley and Sons, Inc., 2000.
- 19. R. Laskar, Decomposition of some composite graphs into hamilton cycles, in: proc. 5th Hungarian Coll. Keszthely, North Holland, 1978, pp. 705–716.
- 20. J. Liu, A generalization of the Oberwolfach problem and C_t -factorizations of complete equipartite graphs, J. Combin. Des. 8 (2000), 42–49.
- 21. $____\$ n The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), 20–34.
- 22. G. Lo Faro, S. Milici, and A. Tripodi, Uniformly resolvable decompositions of K_v into paths on two, three and four vertices, Discrete Math. 338 (2015), 2212–2219.
- 23. S. Milici, A note on uniformly resolvable decompositions of K_v and $K_v - I$ into 2-stars and 4-cycles, Australas. J. Combin. 56 (2013), 195–200.
- 24. S. Milici and Zs. Tuza, Uniformly resolvable decompositions of K_v into P_3 and K_3 graphs, Discrete Math. 331 (2014), 137–141.
- 25. R. Rees, Uniformly resolvable balanced designs with block sizes two and three, J. Combin. Theory Ser A 45 (1987), 207–225.
- 26. E. Schuster, Uniformly resolvable designs with index one and block sizes three and four with three or five parallel classes of block size four, Discrete Math. 309 (2009), 2452–2465.
- 27. \Box , Uniformly resolvable designs with index one and block sizes three and five and up to five parallel classes with block of size five, Discrete Math. 309 (2009), 4435-4442.
- 28. Small uniformly resolvable designs for block sizes 3 and 4, J. Combin. Des. 21 (2013), 481–523.
- 29. E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, Des. Codes Cryptogr. 57 (2010), 45–69.

Department of Mathematics, Periyar University, Salem, Tamil Nadu, India. $\it E\mbox{-}mail\,\,address\colon$ avshanmugaa@yahoo.com

Department of Mathematics, Periyar University, Salem, Tamil Nadu, India. $\it E\mbox{-}mail\,\,address\mbox{:}\,approx$ appumuthusamy@gmail.com