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UNIFORMLY RESOLVABLE {P4, Ck}-DECOMPOSITION OF

Kn - A COMPLETE SOLUTION

A. SHANMUGA VADIVU AND A. MUTHUSAMY

Abstract. LetKn, Cn, and Pn respectively denote the complete graph,
cycle and path on n vertices. Uniformly resolvable decomposition of
Kn is a decomposition of Kn into subgraphs which can be partitioned
into factors containing pairwise isomorphic subgraphs. In this paper,
we determine necessary and sufficient conditions for the existence of
uniformly resolvable decomposition of Kn into P4 and Ck, k ≥ 3.

1. Introduction

All graphs considered here are finite. Let Pn, Cn, Kn, and In denote the
path, cycle, complete graph, and independent set on n vertices, respectively.
Let λG denote the λ edge-disjoint copies of G. A complete m-partite graph
with partite sets V0, V1, . . . , Vm−1 consisting of n0, n1, . . . , nm−1 vertices re-
spectively is denoted as Kn0,n1,...,nm−1 . Kn − I denotes the complete graph
with a 1-factor removed when n is even.

For two graphs G and H their wreath product G ⊗ H has the vertex
set V (G) × V (H) in which two vertices (g1, h1) and (g2, h2) are adjacent
whenever g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H). One can easily observe
thatKm⊗In ∼= Kn,n,...,n, the completem-partite graph in which each partite
set has exactly n vertices. We write G = H1⊕H2⊕· · ·⊕Hl, if H1, H2, . . . ,Hl

are edge-disjoint subgraphs of G and E(G) = E(H1)∪E(H2)∪ · · · ∪E(Hl).
Note that, by the properties of the wreath product, if G = H1⊕H2⊕· · ·⊕Hk,
and H ∼= In then G ⊗ H = (H1 ⊗ In) ⊕ (H2 ⊗ In) ⊕ · · · ⊕ (Hk ⊗ In). For
more details on product graphs, see [18].

For a given collection H containing simple graphs, an H-decomposition
of a graph G is a set of subgraphs of G whose edge set partition E(G),
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and each subgraph is isomorphic to a graph from H. A factor of a graph
G is a spanning subgraph of G. A factor is called uniform H-factor if each
component of the factor is isomorphic to the same graph H. An r-factor
of G is an r-regular spanning subgraph of G. An H-decomposition of a
graph G is called uniformly resolvable H-decomposition if the subgraphs in
the H-decomposition can be partitioned into uniform H-factors, for some
H ∈ H. Suppose H = {H}, uniformly resolvable H-decomposition is called
H-factorization.

Recently, lots of results have been obtained on uniformly resolvable H-
decomposition of a graph Kn. The existence of uniformly resolvable H-
decompositions of Kn has been studied in the cases, when H = {Kk} with
k = 3, 4, 5 (for k = 5 there are only four undecided values of n), see [1];
H = {Pk} for any k ≥ 2 [4, 12, 14]; H is a set of two complete graphs of order
at most five [7, 25, 26, 27, 28, 29]; H is a set of two paths on two, three, or four
vertices [10, 11]; H = {P3,K3+ e} [9]; H = {K3,K1,3} [16]; H = {K2,K1,3}
[15, 6]; H = {C4, P3}[23]; H = {K3, P3} [24]; H = {P2, P3, P4} [22];
H = {C4,K1,3}[8]; H = {K2, P2k}, k ≥ 2 [17].

In this paper, we determine necessary and sufficient conditions for the
existence of uniformly resolvable decomposition ofKn into P4 and Ck, k ≥ 3.

2. Preliminary Results

In this section, we give some useful notations, basic results, and necessary
conditions for the existence of uniformly resolvable decomposition of Kn into
P4 and Ck, k ≥ 3.

Let (P4, Ck)–URD(n; r, s) denote the uniformly resolvable decomposition
of Kn into r P4-factors and s Ck-factors. A (P4, Ck)–URD(r, s) of a graph G
is a uniformly resolvable decomposition of graph G into r P4-factors and s
Ck-factors. We denote Pk, k ≥ 2 with vertex set {a1, a2, . . . , ak} and edge set
{{a1, a2}, {a2, a3}, . . . , {ak−1, ak}} by [a1, a2, . . . , ak]; Ck, k ≥ 3 with vertex
set {a1, a2, . . . , ak} and edge set {{a1, a2}, {a2, a3}, . . . , {ak−1, ak}, {ak, a1}}
by (a1, a2, . . . , ak). The floor function, ⌊x⌋ denotes the greatest integer that
is less than or equal to x.

Theorem 2.1 ([2, 3, 13]). Let n, t ≥ 3 be integers. There is a Ct-
factorization of Kn (when n is odd) or Kn − I (when n is even and I
denotes a 1-factor of Kn) if and only if t divides n, except when t = 3
and n ∈ {6, 12}.

Theorem 2.2 ([20, 21]). For t ≥ 3 and m ≥ 2, Km ⊗ In has a Ct-
factorization if and only if mn is divisible by t, (m− 1)n is even, t is even
if m = 2, and (m,n, t) ̸= (3, 2, 3), (3, 6, 3), (6, 2, 3), (2, 6, 6).

Theorem 2.3 ([19]). For n ≥ 1 and r ≥ 3, Cr⊗In has a Crn-factorization.

Theorem 2.4 ([5]). The graph Ck ⊗ It has a Ck-factorization for all t ≥ 1
and k ≥ 3 with the definite exceptions (t, k) = (6, 3), (2, 2r + 1).
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Theorem 2.5. For r ≥ 3, Cr ⊗ I4 has a C2r-factorization.

Proof. By Theorem 2.3, let {C1
2r, C2

2r} be a C2r-factorization of Cr⊗I2, where
each Ci

2r is a C2r-factor of Cr ⊗ I2. Then

Cr ⊗ I4 ∼= (Cr ⊗ I2)⊗ I2
∼= (C1

2r ⊕ C2
2r)⊗ I2 ∼= (C1

2r ⊗ I2)⊕ (C2
2r ⊗ I2).

By Theorem 2.4, each Ci
2r ⊗ I2 has a C2r-factorization (since Ci

2r ⊗ I2 ∼=
C2r ⊗ I2). Hence Cr ⊗ I4 has a C2r-factorization. □

Lemma 2.6. Let k ≥ 3. If there exists a (P4, Ck)–URD(n; r, s) of Kn, then
n ≡ 0 (mod l) , l = lcm(4, k) and (r, s) ∈ J(n) = {(4x+ 2, n−4

2 − 3x) | x =

0, 1, . . . ,
⌊
n−4
6

⌋
}.

Proof. Assume that there exists a (P4, Ck)–URD(n; r, s) of Kn. Then by
resolvability, n ≡ 0 (mod l) , l = lcm(4, k) is trivial. (i.e.) if k ≡ 1 (mod 2),
then n ≡ 0 (mod 4k) ; if k ≡ 2 (mod 4), then n ≡ 0 (mod 2k) and if
k ≡ 0 (mod 4), then n ≡ 0 (mod k) . Since there are r P4-factors and s
Ck-factors, by edge divisibility,

r
n

4
3 + s

n

k
k =

n(n− 1)

2
=⇒ 3r + 4s = 2(n− 1).

Clearly, r ≡ 2 (mod 4) . Let r = 4x+ 2, x ≥ 0. Then s = n−4
2 − 3x. Hence

(r, s) ∈ J(n) = {(4x + 2, n−4
2 − 3x) | x = 0, 1, . . . ,

⌊
n−4
6

⌋
}. This completes

the proof. □

3. Constructions

In this section, we give two constructions which we use to prove our main
results.

If X and Y are two sets of pairs of nonnegative integers, then X + Y
denotes the set {(x1+ y1, x2+ y2) | (x1, x2) ∈ X, (y1, y2) ∈ Y }. If X is a set
of pairs of nonnegative integers and h is a positive integer, then h∗X denotes
the set of pairs of nonnegative integers which can be obtained by adding any
h elements of X together (repetitions of elements of X are allowed).

Theorem 3.1. Let m ≥ 3 be an odd integer and t divides m. If there exists

(1) a (P4, Ck)–URD(r, s) of C ⊗ I4 with (r, s) ∈ {(4, 1), (0, 4)}, where
k ∈ {4, t, 2t, 4t} and C is a Ct-factor of Km; and

(2) a (P4, Ck)–URD(16, 0) of (Ca ⊕ Cb ⊕ Cc) ⊗ I4, where Ca, Cb, and Cc

are any 3 edge-disjoint Ct-factors of Km,

then there exists a (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈ J(4m) =
{(4x+ 2, 4m−4

2 − 3x) | x = 0, 1, . . . ,
⌊
4m−4

6

⌋
}, where k ∈ {4, t, 2t, 4t}.

Proof. Assume that (1) and (2) holds. Let A = {(4x + 2, 4m−4
2 − 3x) |

0 ≤ x ≤ m−1
2 } and B = {(4x + 2, 4m−4

2 − 3x) | m−1
2 + 1 ≤ x ≤

⌊
4m−4

6

⌋
}
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be the partition of J(4m). By Theorem 2.1, let {Ci | 1 ≤ i ≤ m−1
2 } be a

Ct-factorization of Km.

K4m
∼= (Km ⊗ I4)⊕ (Im ⊗K4)

∼= ((C1 ⊕ C2 ⊕ · · · ⊕ C
m−1

2 )⊗ I4)⊕ (Im ⊗K4)

∼= ((C1 ⊗ I4)⊕ (C2 ⊗ I4)⊕ · · · ⊕ (C
m−1

2 ⊗ I4))⊕ (Im ⊗K4).

Now we prove the existence of (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈
J(4m) = A ∪B, where k ∈ {4, t, 2t, 4t} in two cases as follows:
Case 1: (r, s) ∈ A.

By hypothesis (1), for each i, there exists a (P4, Ck)–URD(r, s) of Ci ⊗
I4, with (r, s) ∈ {(4, 1), (0, 4)}, where k ∈ {4, t, 2t, 4t}. Since K4 has
2 P4-factors, Im ⊗ K4(∼= mK4) has a (P4, Ck)–URD(2, 0). This gives
the existence of (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈ {m−1

2 ∗
{(4, 1), (0, 4)}+ {(2, 0)}}, where k ∈ {4, t, 2t, 4t}. Now consider

{m− 1

2
∗ {(0, 4), (4, 1)}+ {(2, 0)}}

= {{(m− 1

2
− x)(0, 4) + x(4, 1) | 0 ≤ x ≤ m− 1

2
}+ {(2, 0)}}

= {(4x+ 2, (
m− 1

2
)4− 4x+ x) | 0 ≤ x ≤ m− 1

2
}

= {(4x+ 2,
4m− 4

2
− 3x) | 0 ≤ x ≤ m− 1

2
}.

Hence, there exists a (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈ {(4x+
2, 4m−4

2 − 3x) | 0 ≤ x ≤ m−1
2 }, where k ∈ {4, t, 2t, 4t}.

Case 2: (r, s) ∈ B.
By (1), for each i, there exists a (P4, Ck)–URD(4, 1) of Ci⊗I4, where k ∈
{4, t, 2t, 4t}. Since K4 has 2 P4-factors, Im⊗K4(∼= mK4) has a (P4, Ck)–
URD(2, 0). By (2), there exists a (P4, Ck)–URD(16, 0) of (Ca ⊕ Cb ⊕
Cc)⊗ I4. This gives the existence of (P4, Ck)–URD(4m; r, s) of K4m with
(r, s) ∈ {{(m−1

2 −3y)∗{(4, 1)}+y∗{(16, 0)} | 1 ≤ y ≤
⌊
m−1
6

⌋
}+{(2, 0)}}.

Now consider

{(m− 1

2
− 3y) ∗ {(4, 1)}+ y ∗ {(16, 0)} | 1 ≤ y ≤

⌊
m− 1

6

⌋
}+ {(2, 0)}}

= {((m− 1

2
− 3y)4 + 16y + 2,

m− 1

2
− 3y) | 1 ≤ y ≤

⌊
m− 1

6

⌋
}

= {(4(m− 1

2
+ y) + 2,

m− 1

2
− 3y) | 1 ≤ y ≤

⌊
m− 1

6

⌋
}

= {(4x+ 2,
4m− 4

2
− 3x) | m− 1

2
+ 1 ≤ x ≤

⌊
4m− 4

6

⌋
}.

Hence, there exists a (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈ {(4x+
2, 4m−4

2 − 3x) | m−1
2 + 1 ≤ x ≤

⌊
4m−4

6

⌋
}, where k ∈ {4, t, 2t, 4t}. This

completes the proof.
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□

Theorem 3.2. Let m ≥ 4 be an even integer and t divides m. If there exists

(1) a (P4, Ck)–URD(r, s) of C ⊗ I4 with (r, s) ∈ {(4, 1), (0, 4)}, where
k ∈ {4, 8, t, 2t, 4t} and C is a Ct-factor of Km;

(2) a (P4, Ck)–URD(r, s) of (C ⊕ I) ⊗ I4 with (r, s) ∈ {(8, 0), (4, 3)},
where C and I are a edge-disjoint Ct-factor and 1-factor of Km and
k ∈ {4, 8, t, 2t, 4t}; and

(3) a (P4, Ck)–URD(16, 0) of (Ca ⊕ Cb ⊕ Cc) ⊗ I4, where Ca, Cb, and Cc

are any 3 edge-disjoint Ct-factors of Km,

then there exists a (P4, Ck)–URD(r, s) of K4m with (r, s) ∈
J(4m) \ {(2, 4m−4

2 )} = {(4x + 2, 4m−4
2 − 3x) | x = 1, . . . ,

⌊
4m−4

6

⌋
}, where

k ∈ {4, 8, t, 2t, 4t}, except when t = 3 and m ∈ {6, 12}.

Proof. Assume that (1) to (3) holds. Let A = {(4x+2, 4m−4
2 −3x) | 1 ≤ x ≤

m
2 } and B = {(4x+ 2, 4m−4

2 − 3x) | m
2 + 1 ≤ x ≤

⌊
4m−4

6

⌋
} be the partition

of J(4m) \ {(2, 4m−4
2 )}.

By Theorem 2.1, let {Ci | 1 ≤ i ≤ m−2
2 } be a Ct-factorization of Km − I,

where I is a 1-factor of Km, except for t = 3 and m ∈ {6, 12}.

K4m
∼= (Km ⊗ I4)⊕ (Im ⊗K4)

∼= ((C1 ⊕ C2 ⊕ · · · ⊕ C
m−2

2 ⊕ I)⊗ I4)⊕ (Im ⊗K4)

∼= ((C1 ⊗ I4)⊕ · · · ⊕ (C
m−4

2 ⊗ I4)⊕ ((C
m−2

2 ⊕ I)⊗ I4))⊕ (Im ⊗K4)

Now we prove the existence of (P4, Ck)–URD(r, s) ofK4m with (r, s) ∈ A∪B,
where k ∈ {4, 8, t, 2t, 4t}, except when t = 3 and m ∈ {6, 12} in two cases as
follows:
Case 1: (r, s) ∈ A.

By (1), for each i, 1 ≤ i ≤ m−4
2 , there exists a (P4, Ck)–URD(r, s) of

Ci⊗I4, with (r, s) ∈ {(4, 1), (0, 4)}, where k ∈ {4, 8, t, 2t, 4t}. By (2), there

exists a (P4, Ck)–URD(r, s) of (C
m−2

2 ⊕I)⊗I4 with (r, s) ∈ {(8, 0), (4, 3)},
where k ∈ {4, 8, t, 2t, 4t}. SinceK4 has 2 P4-factors, Im⊗K4(∼= mK4) has
a (P4, Ck)–URD(2, 0). This gives the existence of (P4, Ck)–URD(4m; r, s)
with (r, s) ∈ {m−4

2 ∗ {(4, 1), (0, 4)} + {(8, 0), (4, 3)} + {(2, 0)}}, where
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k ∈ {4, 8, t, 2t, 4t}, except when t = 3 and m ∈ {6, 12}. Now consider

{m− 4

2
∗ {(0, 4), (4, 1)}+ {(8, 0), (4, 3))}+ {(2, 0)}}

= {{(m− 4

2
− x)(0, 4) + x(4, 1) | 0 ≤ x ≤ m− 4

2
}

+ {(4y + 2, 6− 3y) | 1 ≤ y ≤ 2}}

= {{(4x, (m− 4

2
)4− 3x) | 0 ≤ x ≤ m− 4

2
}

+ {(4y + 2, 6− 3y) | 1 ≤ y ≤ 2}}

= {(4(x+ y) + 2, (
m− 4

2
)4 + 6− 3(x+ y))

| 0 ≤ x ≤ m− 4

2
and 1 ≤ y ≤ 2]}

= {(4z + 2,
4m− 4

2
− 3z) | 1 ≤ z ≤ m

2
}.

Hence, there exists a (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈ {(4z+
2, 4m−4

2 − 3z) | 1 ≤ z ≤ m
2 }, where k ∈ {4, 8, t, 2t, 4t}, except when t = 3

and m ∈ {6, 12}.
Case 2: (r, s) ∈ B.

By (1), for each i, 1 ≤ i ≤ m−4
2 , there exists a (P4, Ck)–URD(4, 1)

of Ci ⊗ I4, where k ∈ {4, 8, t, 2t, 4t}. By (2), there exists a (P4, Ck)–

URD(r, s) of (C
m−2

2 ⊕ I) ⊗ I4 with (r, s) ∈ {(8, 0)}. Since K4 has 2 P4-
factors, Im ⊗K4(∼= mK4) has a (P4, Ck)–URD(2, 0). By (3), there exists
a (P4, Ck)–URD(16, 0) of (Ca ⊕Cb ⊕Cc)⊗ I4. This gives the existence of
(P4, Ck)–URD(4m; r, s) with (r, s) ∈ {{(m−4

2 −3y)∗{(4, 1)}+y∗{(16, 0)} |
1 ≤ y ≤

⌊
m−4
6

⌋
}+{(8, 0)}+{(2, 0)}}, except when t = 3 andm ∈ {6, 12}.

Now consider

{{(m− 4

2
− 3y) ∗ {(4, 1)}+ y ∗ {(16, 0)}

| 1 ≤ y ≤
⌊
m− 4

6

⌋
}+ {(8, 0)}+ {(2, 0)}}

= {{((m− 4

2
− 3y)4 + 16y + 10,

m− 4

2
− 3y)

| 1 ≤ y ≤
⌊
m− 4

6

⌋
}

= {(4(m− 4

2
+ y) + 10,

m− 4

2
− 3y) | 1 ≤ y ≤

⌊
m− 4

6

⌋
}

= {{(4(m
2

+ y) + 2,
m− 4

2
− 3y) | 1 ≤ y ≤

⌊
m− 4

6

⌋
}

= {(4z + 2,
4m− 4

2
− 3z) | m

2
+ 1 ≤ z ≤

⌊
4m− 4

6

⌋
}.
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Hence, there exists a (P4, Ck)–URD(4m; r, s) of K4m with (r, s) ∈ {(4z+
2, 4m−4

2 − 3z) | m
2 + 1 ≤ z ≤

⌊
4m−4

6

⌋
}, where k ∈ {4, 8, t, 2t, 4t}, except

when t = 3 and m ∈ {6, 12}. This completes the proof.
□

Theorem 3.3. Let m ≥ 4 be an even integer and t divides m. Then there
exists a (P4, Ck)–URD(4m; 2, 4m−4

2 ), where k ∈ {4, 8, t, 2t, 4t}.

Proof. We construct 2 P4-factors and 4m−4
2 Ck-factors, where k ∈ {4, 8, t,

2t, 4t} of K4m as follows:
Consider K4m

∼= (Km ⊗ I4)⊕ (Im ⊗K4). By Theorem 2.2, Km ⊗ I4 has a
Ck-factorization, where k ∈ {4, 8, t, 2t, 4t}. Since K4 has 2 P4-factors, Im ⊗
K4(∼= mK4) has a P4-factorization. Therefore, K4m has 2 P4-factors and
4m−4

2 Ck-factors, where k ∈ {4, 8, t, 2t, 4t}. That is, there exists a (P4, Ck)–

URD(4m; 2, 4m−4
2 ), where k ∈ {4, 8, t, 2t, 4t}. □

4. (P2, P4) and (P2, Ck)–URD of Ct ⊗ I4.

In this section, we prove the existence of uniformly resolvable decompo-
sition of Ct ⊗ I4 into P2 and P4 or P2 and Ck, k ∈ {t, 2t, 4t}.
Let Kn, n be a complete bipartite graph with bipartition (X, Y ), where
X = {x1, x2, . . ., xn}, Y = {y1, y2, . . . , yn}. Now we define a 1-factor
of Kn, n as Fi(X,Y ) = {{xj , y(i+j)} | 1 ≤ j ≤ n, where addition in the
subscript is taken modulo n with residues 1, 2, . . . , n}, 0 ≤ i ≤ n − 1,

then E(Kn, n) =
⋃n−1

i=0 Fi(X, Y ). Clearly {Fi | 0 ≤ i ≤ n − 1} gives a
1-factorization of Kn, n.

Lemma 4.1. For any t ≥ 3, there exists a (P2, P4)–URD(2, 4) of Ct ⊗ I4.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtXi, where Xi = {i0, i1, i2, i3}, i ∈ Zt. Now we
construct a (P2, P4)–URD(2, 4) of Ct ⊗ I4 in two cases as follows:
Case 1: t odd.

Let

P1
2 =

{
[i0, (i+ 1)1], [i2, (i+ 1)3] | 0 ≤ i ≤ t− 1

}
;

P2
2 =

{
[i1, (i+ 1)2], [i3, (i+ 1)0] | 0 ≤ i ≤ t− 1

}
;

P1 =
{
[(t− 1)0, (t− 2)2, (t− 1)1, (t− 2)3], [(2i)0, (2i+ 1)0, (2i)1, (2i+ 1)1],

[(2i− 1)2, (2i)2, (2i− 1)3, (2i)3] | 0 ≤ i ≤ t− 3

2

}
;

P2 =
{
[(t− 1)3, 01, (t− 1)2, 00], [(2i+ 1)3, (2i)3, (2i+ 1)2, (2i)2],

[(2i+ 2)1, (2i+ 1)1, (2i+ 2)0, (2i+ 1)0] | 0 ≤ i ≤ t− 3

2

}
;

P3 =
{
[(t− 1)3, (t− 2)3, (t− 1)2, (t− 2)2], [(t− 1)0, 00, (t− 1)1, 01],

[(i+ 1)0, i2, (i+ 1)1, i3] | 0 ≤ i ≤ t− 3
}
;

P4 =
{
[(i+ 1)2, i0, (i+ 1)3, i1] | 0 ≤ i ≤ t− 1

}
,
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where the additions are taken modulo t.
Case 2: t even.

Let

P1
2 =

{
[i0, (i+ 1)1], [i2, (i+ 1)3] | 0 ≤ i ≤ t− 1

}
;

P2
2 =

{
[i1, (i+ 1)2], [i3, (i+ 1)0] | 0 ≤ i ≤ t− 1

}
;

P1 =
{
[(2i)0, (2i+ 1)0, (2i)1, (2i+ 1)1],

[(2i)2, (2i+ 1)2, (2i)3, (2i+ 1)3] | 0 ≤ i ≤ t− 2

2

}
;

P2 =
{
[(2i)1, (2i+ 1)3, (2i)0, (2i+ 1)2],

[(2i)3, (2i+ 1)1, (2i)2, (2i+ 1)0] | 0 ≤ i ≤ t− 2

2

}
;

P3 =
{
[(2i+ 1)0, (2i+ 2)0, (2i+ 1)1, (2i+ 2)1],

[(2i+ 1)2, (2i+ 2)2, (2i+ 1)3, (2i+ 2)3] | 0 ≤ i ≤ t− 2

2

}
;

P4 =
{
[(2i+ 1)1, (2i+ 2)3, (2i+ 1)0, (2i+ 2)2],

[(2i+ 1)3, (2i+ 2)1, (2i+ 1)2, (2i+ 2)0] | 0 ≤ i ≤ t− 2

2

}
,

where the additions are taken modulo t.
Clearly, P1

2 and P2
2 are P2-factors of Ct ⊗ I4 and each P i, i = 1, 2, 3, 4 is

a P4-factor of Ct ⊗ I4. Hence {P1
2 ,P2

2 ,P1,P2,P3,P4} gives the existence of
(P2, P4)–URD(2, 4) of Ct ⊗ I4. □

Lemma 4.2. For any t ≥ 3, there exists a (P2, Ct)–URD(2, 3) of Ct ⊗ I4.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtXi, where Xi = {i0, i1, i2, i3}, i ∈ Zt. Then
E(Ct⊗I4) = ∪i∈Zt,l∈Z4Fl(Xi, Xi+1). Now we prove the existence of (P2, Ct)–
URD(2, 3) of Ct ⊗ I4 in two cases as follows:
Case 1: t odd.

Let

C1 = F0(X0, X1) ∪

t−1
2⋃

i=1

F3(X2i, X2i+1) ∪

t−1
2⋃

i=1

F1(X2i−1, X2i);

C2 = F0(Xt−1, X0) ∪

t−3
2⋃

i=0

F1(X2i, X2i+1) ∪

t−1
2⋃

i=1

F3(X2i−1, X2i);

C3 = F3(X0, X1) ∪
t−2⋃
i=1

F0(Xi, Xi+1) ∪ F1(Xt−1, X0);

P1
2 = {[i0, (i+ 1)2], [i1, (i+ 1)3] | i ∈ Zt};

P2
2 = {[i2, (i+ 1)0], [i3, (i+ 1)1] | i ∈ Zt},

where the additions are taken modulo t.
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Case 2: t even.
Let

C1 =

t−2
2⋃

i=0

F3(X2i, X2i+1) ∪

t−2
2⋃

i=0

F1(X2i+1, X2i+2);

C2 =

t−2
2⋃

i=0

F1(X2i, X2i+1) ∪

t−2
2⋃

i=0

F3(X2i+1, X2i+2);

C3 =

t−1⋃
i=0

F0(Xi, Xi+1);

P1
2 = {[i0, (i+ 1)2], [i1, (i+ 1)3] | i ∈ Zt};

P2
2 = {[i2, (i+ 1)0], [i3, (i+ 1)1] | i ∈ Zt},

where the additions are taken modulo t.
Clearly, each P i, i = 1, 2 is a P2-factor of Ct ⊗ I4 and each Ci, i = 1, 2, 3

is a Ct-factor of Ct ⊗ I4. Hence {P1
2 ,P2

2 , C1, C2, C3} gives the existence of
(P2, Ct)–URD(2, 3) of Ct ⊗ I4. □

Lemma 4.3. For any t ≥ 3, there exists a (P2, C2t)–URD(2, 3) of Ct ⊗ I4.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtXi, where Xi = {i0, i1, i2, i3}, i ∈ Zt. Let
Ui = {i0, i1} and Vi = {i2, i3}, i ∈ Zt, then Xi = Ui ∪ Vi, i ∈ Zt. We write

E(Ct ⊗ I4) =
{ ⋃
i∈Zt,l∈Z2

Fl(Ui, Ui+1)
}

∪
{ ⋃
i∈Zt,l∈Z2

Fl(Ui, Vi+1)
}

∪
{ ⋃
i∈Zt,l∈Z2

Fl(Vi, Vi+1)
}

∪
{ ⋃
i∈Zt,l∈Z2

Fl(Vi, Ui+1)
}
.

Now we prove the existence of (P2, C2t)–URD(2, 3) of Ct ⊗ I4 in two cases
as follows:
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Case 1: t odd.
Let

C1 = F1(U0, U1) ∪ F1(V0, V1) ∪ F1(Ut−1, V0) ∪ F1(Vt−1, U0)

∪
{ t−2⋃

i=1

F0(Ui, Ui+1)
}
∪
{ t−2⋃

i=1

F0(Vi, Vi+1)
}
;

C2 = F0(U0, U1) ∪ F0(V0, V1) ∪ F0(Ut−1, U0) ∪ F0(Vt−1, V0)

∪
{ t−2⋃

i=1

F1(Ui, Vi+1)
}
∪
{ t−2⋃

i=1

F1(Vi, Ui+1)
}
;

C3 = F1(U0, V1) ∪ F1(V0, U1) ∪ F1(Ut−1, U0) ∪ F1(Vt−1, V0)

∪
{ t−2⋃

i=1

F1(Ui, Ui+1)
}
∪
{ t−2⋃

i=1

F1(Vi, Vi+1)
}
;

P1
2 =

t−1⋃
i=0

F0(Ui, Vi+1); P2
2 =

t−1⋃
i=0

F0(Vi, Ui+1),

where additions in the subscript are taken modulo t.
Case 2: t even.

Let

C1 = F1(Ut−2, Vt−1) ∪ F1(Vt−2, Ut−1) ∪ F0(Ut−1, U0) ∪ F0(Vt−1, V0)

∪
{ t−3⋃

i=0

F1(Ui, Ui+1)
}
∪
{ t−3⋃

i=0

F1(Vi, Vi+1)
}
;

C2 = F1(Ut−2, Ut−1) ∪ F1(Vt−2, Vt−1) ∪ F1(Ut−1, V0) ∪ F1(Vt−1, U0)

∪
{ t−3⋃

i=0

F1(Ui, Vi+1)
}
∪
{ t−3⋃

i=0

F1(Vi, Ui+1)
}
;

C3 = F1(Ut−1, U0) ∪ F1(Vt−1, V0) ∪
{ t−2⋃

i=0

F0(Ui, Ui+1)
}
∪
{ t−2⋃

i=0

F0(Vi, Vi+1)
}
;

P1
2 =

t−1⋃
i=0

F0(Ui, Vi+1); P2
2 =

t−1⋃
i=0

F0(Vi, Ui+1),

where additions in the subscript are taken modulo t.
Clearly, each P i

2, i = 1, 2 is a P2-factor of Ct ⊗ I4 and each Ci, i = 1, 2, 3
is a C2t-factor of Ct ⊗ I4. Hence {P1

2 ,P2
2 , C1, C2, C3} gives the existence of

(P2, C2t)–URD(2, 3) of Ct ⊗ I4. □

Lemma 4.4. For any t ≥ 3, there exists a (P2, C4t)–URD(2, 3) of Ct ⊗ I4.
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Proof. Let V (Ct ⊗ I4) = ∪i∈ZtXi, where Xi = {i0, i1, i2, i3}, i ∈ Zt. Let
Ui = {i0, i1} and Vi = {i2, i3}, i ∈ Zt, then Xi = Ui ∪ Vi, i ∈ Zt. We write

E(Ct ⊗ I4) =
{ ⋃
i∈Zt,l∈Z2

Fl(Ui, Ui+1)
}
∪
{ ⋃
i∈Zt,l∈Z2

Fl(Ui, Vi+1)
}

∪
{ ⋃
i∈Zt,l∈Z2

Fl(Vi, Vi+1)
}
∪
{ ⋃
i∈Zt,l∈Z2

Fl(Vi, Ui+1)
}
.

Now we construct a (P2, C4t)–URD(2, 3) of Ct ⊗ I4 in two cases as follows:
Case 1: t odd.

Let

C1 = F0(U0, V1) ∪ F1(V0, U1) ∪
t−1⋃
i=1

F0(Ui, Ui+1) ∪
t−1⋃
i=1

F0(Vi, Vi+1);

C2 = F0(Ut−1, V0) ∪ F1(Vt−1, U0) ∪
t−2⋃
i=0

F1(Ui, Ui+1) ∪
t−2⋃
i=0

F1(Vi, Vi+1);

C3 = F0(U0, U1) ∪ F0(V0, V1) ∪ F1(Ut−1, U0) ∪ F1(Vt−1, V0)

∪
t−2⋃
i=1

F0(Ui, Vi+1) ∪
t−2⋃
i=1

F1(Vi, Ui+1);

P1
2 =

t−1⋃
i=0

F1(Ui, Vi+1); P2
2 =

t−1⋃
i=0

F0(Vi, Ui+1),

where additions in the subscript are taken modulo t.
Case 2: t even.

Let

C1 = F0(U0, U1) ∪ F0(U0, V1) ∪ F1(Ut−1, V0) ∪ F0(Vt−1, V0)

∪ F1(Ut−2, Ut−1) ∪ F1(Vt−2, Vt−1)

∪
t−3⋃
i=1

F1(Ui, Vi+1) ∪
t−3⋃
i=1

F1(Vi, Ui+1);

C2 = F1(V0, V1) ∪ F1(V0, U1) ∪ F0(Ut−1, U0) ∪ F1(Vt−1, U0)

∪
t−2⋃
i=1

F0(Ui, Ui+1) ∪
t−2⋃
i=1

F0(Vi, Vi+1);

C3 = F0(V0, V1) ∪ F1(Ut−2, Vt−1) ∪ F1(Vt−2, Ut−1) ∪ F1(Ut−1, U0)

∪ F1(Vt−1, V0) ∪
t−3⋃
i=0

F1(Ui, Ui+1) ∪
t−3⋃
i=1

F1(Vi, Vi+1);

P1
2 = F1(U0, V1) ∪

t−1⋃
i=1

F0(Ui, Vi+1); P2
2 =

t−1⋃
i=0

F0(Vi, Ui+1),
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where additions in the subscript are taken modulo t.
Clearly, each P i

2, i = 1, 2 is a P2-factor of Ct ⊗ I4 and each Ci, i = 1, 2, 3
is a C4t-factor of Ct ⊗ I4. Hence {P1

2 ,P2
2 , C1, C2, C3} gives the existence of

(P2, C4t)–URD(2, 3) of Ct ⊗ I4. □

5. (P4, Ck)–URD(r, s) of Ct ⊗ I4.

In this section, we prove the existence of uniformly resolvable decompo-
sition of Ct ⊗ I4 into P4 and Ck, k ∈ {4, 8, t, 2t, 4t}.

Lemma 5.1. For any t ≥ 3, there exists a (P4, C4)–URD(r, s) of Ct ⊗ I4
with (r, s) ∈ {(4, 1), (0, 4)}.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtVi, where Vi = {i0, i1, i2, i3}, i ∈ Zt. Now we
construct the required number of P4-factor and C4-factor of Ct ⊗ I4 in two
cases as follows:
Case 1: (r, s) = (4, 1).

Subcase i: t odd.
Let

P1 =
{
[(2i+ 1)0, (2i)1, (2i+ 1)1, (2i)0],

[(2i)2, (2i− 1)3, (2i)3, (2i− 1)2],

[(t− 2)2, (t− 1)1, (t− 2)3, (t− 1)0] | 0 ≤ i ≤ t− 3

2

}
;

P2 =
{
[(2i+ 2)1, (2i+ 1)0, (2i+ 2)0, (2i+ 1)1],

[(2i+ 1)3, (2i)2, (2i+ 1)2, (2i)3],

[(t− 1)3, 00, (t− 1)2, 01] | 0 ≤ i ≤ t− 3

2

}
;

P3 =
{
[(2i)3, (2i+ 1)1, (2i)2, (2i+ 1)0],

[(2i+ 1)2, (2i+ 2)0, (2i+ 1)3, (2i+ 2)1],

[(t− 1)1, 00, (t− 1)0, 01], [(t− 1)2, (t− 2)3, (t− 1)3, (t− 2)2],

[(t− 3)3, (t− 2)1, (t− 3)2, (t− 2)0] | 0 ≤ i ≤ t− 5

2

}
;

P4 =
{
[(2i)0, (2i+ 1)0, (2i)3, (2i+ 1)3],

[(2i+ 1)1, (2i+ 2)1, (2i+ 1)2, (2i+ 2)2],

[(t− 2)1, (t− 1)1, 01, (t− 1)3], [(t− 1)0, (t− 2)2, (t− 1)2, 02],

[(t− 3)0, (t− 2)0, (t− 3)3, (t− 2)3] | 0 ≤ i ≤ t− 5

2

}
;

C1 =
{
(i0, (i+ 1)2, i1, (i+ 1)3) | 0 ≤ i ≤ t− 1

}
,

where the additions are taken modulo t.
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Subcase ii: t even.
Let

P1 =
{
[(2i+ 1)0, (2i)1, (2i+ 1)1, (2i)0],

[(2i+ 1)2, (2i)3, (2i+ 1)3, (2i)2] | 0 ≤ i ≤ t− 2

2

}
;

P2 =
{
[(2i)1, (2i− 1)0, (2i)0, (2i− 1)1],

[(2i)3, (2i− 1)2, (2i)2, (2i− 1)3] | 1 ≤ i ≤ t

2

}
;

P3 =
{
[(2i+ 1)2, (2i)1, (2i+ 1)3, (2i)0],

[(2i+ 1)1, (2i)2, (2i+ 1)0, (2i)3] | 0 ≤ i ≤ t− 2

2

}
;

P4 =
{
[(2i+ 1)0, (2i)0, (2i+ 1)2, (2i)2],

[(2i)1, (2i− 1)1, (2i− 2)3, (2i− 3)3] | 0 ≤ i ≤ t− 2

2

}
;

C1 =
{
((2i− 1)0, (2i)2, (2i− 1)1, (2i)3),

((2i− 1)2, (2i)0, (2i− 1)3, (2i)1) | 1 ≤ i ≤ t

2

}
,

where the additions are taken modulo t.
Clearly, each P i, i = 1, 2, 3, 4 is a P4-factor of Ct⊗I4 and C1 is a C4-factor
of Ct ⊗ I4. Hence {P1,P2,P3,P4, C1} gives the existence of (P4, C4)–
URD(4, 1) of Ct ⊗ I4.

Case 2: (r, s) = (0, 4).
By Theorem 2.3, let {C1

2t, C2
2t} be a C2t-factorization of Ct ⊗ I2, where

each Ci
2t is a C2t-factor of Ct ⊗ I2. Then

Ct ⊗ I4 ∼= (Ct ⊗ I2)⊗ I2 ∼= (C1
2t ⊕ C2

2t)⊗ I2
∼= (C1

2t ⊗ I2)⊕ (C2
2t ⊗ I2) ∼= ((I1

1 ⊕ I1
2 )⊗ I2)⊕ ((I2

1 ⊕ I2
2 )⊗ I2),

∼= (I1
1 ⊗ I2)⊕ (I1

2 ⊗ I2)⊕ (I2
1 ⊗ I2)⊕ (I2

2 ⊗ I2),

where each j, j = 1, 2, Ii
j is a 1-factor of Ci

2t, i = 1, 2. Since Ii
j ⊗ I2 ∼=

tK2,2
∼= tC4, Ct⊗I4 has a C4-factorization. Hence there exists a (P4, C4)–

URD(0, 4) of Ct ⊗ I4.
□

Lemma 5.2. For any even t ≥ 4, there exists a (P4, C8)–URD(r, s) of Ct⊗I4
with (r, s) ∈ {(4, 1), (0, 4)}.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtVi, where Vi = {i0, i1, i2, i3}, i ∈ Zt. Now we
construct the required number of P4-factors and C8-factors of Ct⊗ I4 in two
cases as follows:
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Case 1: (r, s) = (4, 1).
Let

P1 =
{
[(2i− 1)0, (2i)1, (2i− 1)2, (2i)3],

[(2i)0, (2i− 1)1, (2i)2, (2i− 1)3] | 1 ≤ i ≤ t

2

}
;

P2 =
{
[(2i− 1)1, (2i)3, (2i− 1)0, (2i)2],

[(2i− 1)2, (2i)0, (2i− 1)3, (2i)1] | 1 ≤ i ≤ t

2

}
;

P3 =
{
[(2i)1, (2i+ 1)3, (2i)2, (2i+ 1)0],

[(2i)3, (2i+ 1)1, (2i)0, (2i+ 1)2] | 0 ≤ i ≤ t− 2

2

}
;

C1 =
{
((2i)0, (2i+ 1)0, (2i)1, (2i+ 1)1, (2i)2,

(2i+ 1)2, (2i)3, (2i+ 1)3) | 0 ≤ i ≤ t− 2

2

}
,

where the additions are taken modulo t.
Clearly, each P i is a P4-factor of Ct⊗ I4 and C1 is a C8-factor of Ct⊗ I4.
Hence {P1,P2,P3,P4, C1} gives the existence of (P4, C4)–URD(4, 1) of
Ct ⊗ I4.

Case 2: (r, s) = (0, 4).
Let {I1, I2} be a 1-factorization of Ct, since t is even. Then

Ct ⊗ I4 ∼= (I1 ⊕ I2)⊗ I4 ∼= (I1 ⊗ I4)⊕ (I2 ⊗ I4).

Since K4,4 has 2 C8-factors and each i, i = 1, 2, Ii ⊗ I4 ∼= t
2K4,4, Ct ⊗ I4

has a C8-factorization. Hence there exist a (P4, C8)–URD(0, 4) of Ct⊗I4.
□

Lemma 5.3. For any even t ≥ 4, there exists a (P4, Ck)–URD(4, 1) of
Ct ⊗ I4, where k ∈ {t, 2t, 4t}.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtVi, where Vi = {i0, i1, i2, i3}, i ∈ Zt. Now we
prove the existence of (P4, Ck)–URD(4, 1) of Ct⊗I4 in three cases as follows:
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Case 1: k = t.
Let

P1 =
{
[(2i)0, (2i+ 1)1, (2i)2, (2i+ 1)3],

[(2i+ 1)0, (2i)1, (2i+ 1)2, (2i)3] | 0 ≤ i ≤ t− 2

2

}
;

P2 =
{
[(2i)2, (2i+ 1)0, (2i)3, (2i+ 1)1],

[(2i+ 1)2, (2i)0, (2i+ 1)3, (2i)1] | 0 ≤ i ≤ t− 2

2

}
;

P3 =
{
[(2i+ 1)0, (2i+ 2)1, (2i+ 1)2, (2i+ 2)3],

[(2i+ 2)0, (2i+ 1)1, (2i+ 2)2, (2i+ 1)3] |

0 ≤ i ≤ t− 2

2

}
;

P4 =
{
[(2i+ 1)2, (2i+ 2)0, (2i+ 1)3, (2i+ 2)1],

[(2i+ 2)2, (2i+ 1)0, (2i+ 2)3, (2i+ 1)1] |

0 ≤ i ≤ t− 2

2

}
;

C1 =
{
(0i, 1i, 2i, . . . , (t− 2)i, (t− 1)i) | 0 ≤ i ≤ 3

}
,

where the additions are taken modulo t.
Clearly, each P i, i = 1, 2, 3, 4 is a P4-factor of Ct⊗I4 and C1 is a Ct-factor
of Ct ⊗ I4. Hence {P1,P2,P3,P4, C1} gives the existence of (P4, Ct)–
URD(4, 1) of Ct ⊗ I4.

Case 2: k = 2t.
Let

P1 =
{
[00, 13, 02, 11], [03, 10, 01, 12], [(2i)0, (2i+ 1)1, (2i)2, (2i+ 1)3],

[(2i+ 1)0, (2i)1, (2i+ 1)2, (2i)3] | 1 ≤ i ≤ t− 2

2

}
;

P2 =
{
[01, 11, 00, 10], [02, 12, 03, 13], [(2i)2, (2i+ 1)0, (2i)3, (2i+ 1)1],

[(2i+ 1)2, (2i)0, (2i+ 1)3, (2i)1] | 1 ≤ i ≤ t− 2

2

}
;

C1 =
{
(00, 12, 22, . . . , (t− 1)2, 02, 10, 20, . . . , (t− 1)0)

(01, 13, 23, . . . , (t− 1)3, 03, 11, 21, . . . , (t− 1)1)
}
,

where the additions are taken modulo t.
Take P3 and P4 are as in case 1. Clearly, each P i, i = 1, 2, 3, 4 is a
P4-factor of Ct⊗ I4 and C1 is a C2t-factor of Ct⊗ I4. Hence {P1, P2, P3,
P4, C1} gives the existence of (P4, C2t)–URD(4, 1) of Ct ⊗ I4.
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Case 3: k = 4t.
Let

P1 =
{
[00, 10, 01, 11], [02, 12, 03, 13], [(2i)0, (2i+ 1)1, (2i)2, (2i+ 1)3],

[(2i+ 1)0, (2i)1, (2i+ 1)2, (2i)3] | 1 ≤ i ≤ t− 2

2

}
;

P2 =
{
[01, 13, 00, 12], [03, 11, 02, 10], [(2i)2, (2i+ 1)0, (2i)3, (2i+ 1)1],

[(2i+ 1)2, (2i)0, (2i+ 1)3, (2i)1] | 1 ≤ i ≤ t− 2

2

}
,

C1 =
{
(00, 11, 21, . . . , (t− 1)1, 01, 12, 22, . . . , (t− 1)2,

02, 13, 23, . . . , (t− 1)3, 03, 10, 20, . . . , (t− 1)0)
}

where the additions are taken modulo t.
P3 and P4 are same as in case 1. Clearly, each P i, i = 1, 2, 3, 4 is a
P4-factor of Ct⊗ I4 and C1 is a C4t-factor of Ct⊗ I4. Hence {P1, P2, P3,
P4, C1} gives the existence of (P4, C4t)–URD(4, 1) of Ct ⊗ I4. Hence the
Lemma is proved.

□

Lemma 5.4. For any odd t ≥ 3, there exists a (P4, Ck)–URD(4, 1) of Ct⊗I4,
where k ∈ {t, 2t, 4t}.

Proof. Let V (Ct ⊗ I4) = ∪i∈ZtVi, where Vi = {i0, i1, i2, i3}, i ∈ Zt. Now we
prove the existence of (P4, Ck)–URD(4, 1) of Ct⊗I4 in three cases as follows:
Case 1: k = t.

Let

P1 =
{
[i0, (i− 1)1, (i− 2)2, (i− 3)3] | 0 ≤ i ≤ t− 1

}
;

P2 =
{
[i0, (i+ 1)1, (i+ 2)2, (i+ 3)3] | 0 ≤ i ≤ t− 1

}
;

P3 =
{
[i1, (i+ 1)3, i0, (i+ 1)2] | 0 ≤ i ≤ t− 1

}
;

P4 =
{
[i2, (i+ 1)0, i3, (i+ 1)1] | 0 ≤ i ≤ t− 1

}
;

C1 =
{
(0i, 1i, 2i, . . . , (t− 2)i, (t− 1)i) | 0 ≤ i ≤ 3

}
,

where the additions are taken modulo t.
Clearly, each P i, i = 1, 2, 3, 4 is a P4-factor of Ct⊗I4 and C1 is a Ct-factor
of Ct ⊗ I4. Hence {P1,P2,P3,P4, C1} gives the existence of (P4, Ct)–
URD(4, 1) of Ct ⊗ I4.
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Case 2: k = 2t.
Let

P1 =
{
[(t− 2)2, (t− 1)1, (t− 2)3, (t− 1)0], [(2i)2, (2i− 1)3, (2i)3, (2i− 1)2],

[(2i+ 1)0, (2i)1, (2i+ 1)1, (2i)0] | 0 ≤ i ≤ t− 3

2

}
;

P2 =
{
[(t− 1)2, 01, (t− 1)3, 00], [(2i+ 1)2, (2i)3, (2i+ 1)3, (2i)2],

[(2i+ 2)0, (2i+ 1)1, (2i+ 2)1, (2i+ 1)0] | 0 ≤ i ≤ t− 3

2

}
;

P3 =
{
[(t− 1)3, (t− 2)2, (t− 1)2, (t− 2)3], [(t− 1)1, 00, (t− 1)0, 01],

[(i+ 1)1, i2, (i+ 1)0, i3] | 0 ≤ i ≤ t− 3
}
;

P4 =
{
[(i+ 1)3, i0, (i+ 1)2, i1] | 0 ≤ i ≤ t− 1

}
;

C1 =
{
(00, 10, 20, . . . , (t− 2)0, (t− 1)0, (t− 2)2, (t− 3)2, . . . , 32, 22, 12, 02,

(t− 1)2), (01, 13, 21, 33, 41 . . . , (t− 3)1, (t− 2)3,

(t− 1)3, (t− 2)1, (t− 3)3, (t− 4)1, . . . , 43,

31, 23, 11, 03, (t− 1)1)
}
,

where the additions are taken modulo t.
Clearly, each P i, i = 1, 2, 3, 4 is a P4-factor of Ct⊗I4 and C1 is a C2t-factor
of Ct ⊗ I4. Hence {P1,P2,P3,P4, C1} gives the existence of (P4, C2t)–
URD(4, 1) of Ct ⊗ I4.

Case 3: k = 4t.
The proof of this case follows from the proof of case 1 of Lemma 4.1
by taking C1 = P1

2 ∪ P2
2 . Clearly C1 is a C4t-factor of Ct ⊗ I4. Hence

{P1,P2,P3,P4, C1} gives the existence of (P4, C4t)–URD(4, 1) of Ct⊗I4.
Hence the Lemma is proved.

□

6. (P4, Ck)–URD(r, s) of some product graphs

In this section, we prove the existence of uniformly resolvable decompo-
sition of some product graphs into P4 and Ck, k ≥ 3.

We arrange the vertex set of K4m in a m× 4 array. The vertices of each
row form a copy of K4 and the vertices of 4 columns together form a Km⊗I4.
Let K4, 4 be a complete bipartite graph with bipartition (X, Y ), where X
= {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}. Then let P1 = {[x1, y4, x4, y1], [x2,
y3, x3, y2]}, P2 = {[x3, y1, x1, y3], [x4, y2, x2, y4]} and P1

2 = {[x1, y2], [x2, y1],
[x3, y4], [x4, y3]}. Clearly {P1,P2,P1

2} gives the existence of (P2,
P4)–URD(1, 2) of K4, 4.

Theorem 6.1. Let t ≥ 3, m ≡ 0 (mod t) and let C be any Ct-factor of Km.
Then there exists a (P4, Ck)–URD(r, s) of C ⊗ I4 with (r, s) ∈ {(4, 1), (0, 4)},
where k ∈ {t, 2t, 4t}.
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Proof. Let m = tx, x ≥ 1. Since C is a Ct-factor of Km, C ⊗ I4 ∼= x(Ct⊗ I4).
By Lemmas 5.3 and 5.4, Ct ⊗ I4 has 4 P4-factors and a Ck-factor, where
k ∈ {t, 2t, 4t}. That is, Ct⊗ I4 has a (P4, Ck)–URD(4, 1). Also by Theorems
2.3, 2.4, and 2.5, Ct⊗I4 has a Ck-factorization where k ∈ {t, 2t, 4t}. That is,
(P4, Ck)–URD(0, 4) exists for Ct⊗I4. Hence C⊗I4 has a (P4, Ck)–URD(r, s)
with (r, s) ∈ {(4, 1), (0, 4)}, where k ∈ {t, 2t, 4t}. □

Theorem 6.2. Let t ≥ 3, m ≡ 0 (mod t) is even. Let C and I be the
edge-disjoint Ct-factor and 1-factor of Km. Then there exists a (P4, Ck)–
URD(r, s) of (C ⊕ I)⊗ I4 with (r, s) ∈ {(4, 3), (8, 0)}, where k ∈ {t, 2t, 4t}.

Proof. Let m = tx, x ≥ 1. Consider the graph G = (C ⊕ I) ⊗ I4 ∼= (C ⊗
I4)⊕ (I ⊗ I4). Now we prove the existence of (P4, Ck)–URD(r, s) of G with
(r, s) ∈ {(4, 3), (8, 0)}, where k ∈ {t, 2t, 4t} in two cases as follows:
Case 1: (r, s) = (4, 3).

Since C is a Ct-factor of Km, C ⊗ I4 ∼= x(Ct ⊗ I4). By Lemmas 4.2, 4.3,
and 4.4, Ct ⊗ I4 has 2 P2-factors and 3 Ck-factors, where k ∈ {t, 2t, 4t}
and hence C ⊗ I4 has 2 P2-factors, say H1, H2 and 3 Ck-factors, where
k ∈ {t, 2t, 4t}. Since I ⊗ I4 ∼= m

2 (K4,4), and K4,4 has a P2-factor and 2
P4-factors, the graph I ⊗ I4 has a P2-factor and 2 P4-factors.
Therefore, each Ck-factor of C ⊗ I4 is also a Ck-factor of G, where k ∈
{t, 2t, 4t} and each P4-factor of I ⊗ I4 is also a P4-factor of G. There are
3 Ck-factors and 2 P4 factors of G. The remaining 2 P4 factors of G can
be constructed from 2 P2-factors of C ⊗ I4 and a P2-factor of I ⊗ I4.
Each Hi, i = 1, 2, is a P2-factor between the set of vertices in the 1st and
2nd columns and the set of vertices in the 3rd and 4th columns (as per
Lemmas 4.2–4.4). A P2-factor of I⊗ I4 is a union of a P2-factor between
the vertices in the 1st and 2nd columns and a P2-factor between the
vertices in the 3rd and 4th columns.
The graph obtained by joining the P2-factor between the vertices in the
1st and 2nd columns of I ⊗ I4 with H1 gives a P4-factor of G and the
graph obtained by joining the P2-factor between the vertices in the 3rd
and 4th columns of I ⊗ I4 and H2 gives a P4-factor of G.
In total, there are 3 Ck-factors and 4 P4 factors of G. That is, there
exists a (P4, Ck)–URD(4, 3) of G = (C ⊕ I)⊗ I4.

Case 2: (r, s) = (8, 0).
By Lemma 4.1, Ct ⊗ I4 has 2 P2-factors and 4 P4-factors. Hence C ⊗ I4
has 2 P2-factors and 4 P4-factors. Since I ⊗ I4 ∼= m

2 (K4,4) and K4,4

has a P2-factor and 2 P4-factors, the graph I ⊗ I4 has a P2-factor and 2
P4-factors.
Each P4-factor of C⊗I4 is also a P4-factor of G and each P4-factor of I⊗I4
is also a P4-factor of G. So, there are 6 P4-factors of G. The remaining
2 P4-factors of G can be constructed from 2 P2-factors of C ⊗ I4 and a
P2-factor of I ⊗ I4.
Note that one P2-factor of C ⊗ I4 is a union of a P2-factor between the
vertices in the 1st and 2nd columns and a P2-factor between the vertices
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in 3rd and 4th columns. Another P2-factor of C ⊗ I4 is a union of a P2-
factor between the vertices in the 2nd and 3rd columns and a P2-factor
between the vertices in the 4th and 1st columns. Also P2-factor of I⊗ I4
is a union of a P2-factor between the vertices in the 1st and 2nd columns
and a P2-factor between the vertices in the 3rd and 4th columns.
The union of 2 P2-factors of C ⊗ I4 gives a 2-factor of C ⊗ I4, say H,
such that it has a P2-factor between any two consecutive columns. Now
remove the P2-factor between the vertices in the 2nd and 3rd columns
of H, then the existing graph is a P4-factor of G. Joining the removed
edges from H with the P2-factor of I ⊗ I4, gives a P4-factor of G.
In total, there are 8 P4-factors of G. That is, there exists a (P4, Ck)–
URD(8, 0) of G = (C ⊕ I)⊗ I4.

□

Theorem 6.3. Let t ≥ 3, m ≡ 0 (mod t) ≥ 7 and let C1, C2, and C3

be any three edge-disjoint Ct-factors of Km. Then there exists a (P4, Ck)–
URD(16, 0) of (⊕3

i=1Ci)⊗ I4.

Proof. Let m = tx, x ≥ 1. Consider the graph G = (⊕3
i=1C) ⊗ I4 ∼= (C1 ⊗

I4)⊕(C2⊗I4)⊕(C3⊗I4). Now we prove the existence of (P4, Ck)–URD(16, 0)
of G as follows:

Since each Ci, i = 1, 2, 3 is a Ct-factor of Km, Ci ⊗ I4 ∼= x(Ct ⊗ I4).
By Lemma 4.1, Ct ⊗ I4 has 2 P2-factors and 4 P4-factors. Hence each
Ci ⊗ I4, i = 1, 2, 3 has 2 P2-factors and 4 P4-factors. These 4 P4-factors of
each Ci⊗I4, i = 1, 2, 3 together gives 12 P4-factors of G. The remaining 4 P4-
factors of G can be constructed from 2 P2-factors of each Ci ⊗ I4, i = 1, 2, 3.

For each i, i = 1, 2, 3, adding 2 P2-factors of Ci ⊗ I4 gives a 2-factor,
say Hi, of Ci ⊗ I4 such that it has a P2-factor between any two consecutive
columns.

Now remove the P2-factor between the vertices in the i and (i + 1)th
column of each Hi, i = 1, 2, 3, then the remaining graph gives a P4-factor of
G. Form a new graph by adding the removed edges from each Hi, i = 1, 2, 3,
then the resulting graph itself is a P4-factor of G. Hence we get 4 P4-factors
of G.

In total, there are 16 P4-factors of G. (i.e.) there exists a (P4, Ck)–
URD(16, 0) of G = (⊕3

i=1Ci)⊗ I4. □

Theorem 6.4. Let m ≥ 4 is even. Let C and I be the edge-disjoint Cm-
factor and 1-factor of Km. Then there exists a (P4, Ck)–URD(r, s) of (C ⊕
I)⊗ I4 with (r, s) ∈ {(8, 0), (4, 3), (0, 6)}, where k ∈ {4, 8}.

Proof. Let G = (C⊕I)⊗I4 ∼= (C⊗I4)⊕(I⊗I4). Now we prove the existence of
(P4, Ck)–URD(r, s) of G with (r, s) ∈ {(8, 0), (4, 3), (0, 6)}, where k ∈ {4, 8}
in two cases as follows:
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Case 1: (r, s) ∈ {(4, 3), (0, 6)}.
Since I ⊗ I4 ∼= m

2 (K4,4) and K4,4 has 2 Ck-factors, k ∈ {4, 8}. Hence
(P4, Ck)–URD(0, 2) of I ⊗ I4 exists, where k ∈ {4, 8}. By Lemmas 5.1
and 5.2, C ⊗ I4 has a (P4, Ck)–URD(r, s) with (r, s) ∈ {(4, 1), (0, 4)},
where k ∈ {4, 8}.
Therefore there exists a (P4, Ck)–URD(r, s) of G with (r, s) ∈ {(4, 1),
(0, 4)}+ {(0, 2)} = {(4, 3), (0, 6)}, where k ∈ {4, 8}.

Case 2: (r, s) = (8, 0).
This case follows from case 2 of Theorem 6.2.

□

7. Main Results

In this section, we prove our main results.

Theorem 7.1. There exists a (P4, C4)–URD(n; r, s) if and only if n ≡
0 (mod 4) and (r, s) ∈ J(n).

Proof. Necessity follows from Lemma 2.6. Conversely, let n = 4m, m ≥
1. Since K4 has 2 P4-factors, (P4, C4)–URD(4; 2, 0) exists. We know that
K8

∼= K4,4 ⊕ 2K4, K4,4 has 2 C4-factor and K4 has 2 P4-factor. Hence
(P4, C4)–URD(8; 2, 2) exists.

Let m ≥ 3 and let C be any Cm-factor of Km. Since C is a Cm-factor of
Km, C ⊗ I4 ∼= Cm ⊗ I4. By Lemma 5.1, Cm ⊗ I4 has a (P4, C4)–URD(r, s)
with (r, s) ∈ {(4, 1), (0, 4)}. Hence C ⊗ I4 has a (P4, C4)–URD(r, s) with
(r, s) ∈ {(4, 1), (0, 4)}.

By Theorem 6.3, there exists a (P4, C4)–URD(16, 0) of (Ca⊕Cb⊕Cc)⊗I4,
where Ca, Cb, and Cc are any 3 edge-disjoint Cm-factors of Km. When m is
even, (C ⊕ I) ⊗ I4 has a (P4, C4)–URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)} by
Theorem 6.4, where I is a 1-factor of Km edge-disjoint from C.

Applying Theorem 3.1 (when m is odd) and Theorems 3.2 and 3.3, (when
m is even) with t = m and k = 4, we obtain a (P4, C4)–URD(4m; r, s) with
(r, s) ∈ J(4m). This completes the proof. □

Theorem 7.2. There exists a (P4, C8)–URD(n; r, s) if and only if n ≡
0 (mod 8) and (r, s) ∈ J(n).

Proof. Necessity follows from Lemma 2.6. Conversely, let n = 8x = 4m,
m ≥ 2 is even. We know that K8

∼= K4,4 ⊕ 2K4, K4,4 has 2 C8-factors and
K4 has 2 P4-factors. Hence (P4, C8)–URD(8; 2, 2) exists.

Letm ≥ 4 is even and let C be any Cm-factor ofKm. Since C is a Cm-factor
of Km, C ⊗ I4 ∼= Cm ⊗ I4. By Lemma 5.2, Cm ⊗ I4 has a (P4, C8)–URD(r, s)
with (r, s) ∈ {(4, 1), (0, 4)}. Hence C ⊗ I4 has a (P4, C8)–URD(r, s) with
(r, s) ∈ {(4, 1), (0, 4)}.

By Theorem 6.3, there exists a (P4, C8)–URD(16, 0) of (Ca⊕Cb⊕Cc)⊗I4,
where Ca, Cb, and Cc are any 3 edge-disjoint Cm-factors of Km. (C ⊕ I)⊗ I4
has a (P4, C8)–URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)} by Theorem 6.4, where
I is a 1-factor of Km edge-disjoint from C.
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Applying Theorems 3.2 and 3.3 with t = m and k = 8, we obtain a
(P4, C8)–URD(4m; r, s) with (r, s) ∈ J(4m). This completes the proof. □

Theorem 7.3. Let k ≥ 3 be an odd integer. Then there exists a (P4, Ck)–
URD(n; r, s) if and only if n ≡ 0 (mod 4k) and (r, s) ∈ J(n), except for
k = 3 and n ∈ {24, 48}.

Proof. Necessity follows from Lemma 2.6. Conversely, let n = 4kx, x ≥ 1.
There exists a (P4, Ck)–URD(r, s) of C ⊗ I4, with (r, s) ∈ {(4, 1), (0, 4)},

by Theorem 6.1, where C is a Ck-factor of Kkx. By Theorem 6.3, there exists
a (P4, Ck)–URD(16, 0) of (Ca⊕Cb⊕Cc)⊗ I4, where Ca, Cb, and Cc are any 3
edge-disjoint Ck-factors of Kkx. When kx is even, (C⊕I)⊗I4 has a (P4, Ck)–
URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)} by Theorem 6.2, where I is a 1-factor
of Kkx edge-disjoint from C.

Applying Theorem 3.1 (when kx is odd) and Theorems 3.2 and 3.3, (when
kx is even) with m = kx and t = k, we obtain a (P4, Ck)–URD(4kx; r, s)
with (r, s) ∈ J(4kx) except when k = 3 and 4kx ∈ {24, 48}.

That is, there exists a (P4, Ck)–URD(n; r, s) with (r, s) ∈ J(n) except
when k = 3 and n ∈ {24, 48}, where k ≡ 1 (mod 2) ≥ 3 and n ≡
0 (mod 4k) . □

Theorem 7.4. Let k ≡ 2 (mod 4) ≥ 6. Then there exists a (P4, Ck)–
URD(n; r, s) if and only if n ≡ 0 (mod 2k) and (r, s) ∈ J(n), except for
k = 6 and n ∈ {24, 48}.

Proof. Necessity follows from Lemma 2.6. Conversely, let n = 2kx = 4(k2 )x,

x ≥ 1. Let k
2 = k′, then k′ ≥ 3 is an odd integer.

Let C be any Ck′-factor of Kk′x. Then there exists a (P4, C2k′)–URD(r, s)
of C⊗I4, with (r, s) ∈ {(4, 1), (0, 4)}, by Theorem 6.1. By Theorem 6.3, there
exists a (P4, C2k′)–URD(16, 0)) of (Ca ⊕ Cb ⊕ Cc)⊗ I4, where Ca, Cb, and Cc

are any 3 edge-disjoint Ck′-factors of Kk′x. (C ⊕ I) ⊗ I4 has a (P4, C2k′)–
URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)} by Theorem 6.2, when k′x is even,
where I is a 1-factor of Kk′x edge-disjoint from C.

Applying Theorem 3.1 (when k′x is odd) and Theorems 3.2 and 3.3, (when
k′x is even) with m = k′x, t = k′ and k = 2t, we obtain a (P4, C2k′)–
URD(4k′x; r, s) with (r, s) ∈ J(4k′x) except when k′ = 3 and 4k′x ∈
{24, 48}.

That is, there exists a (P4, Ck)–URD(n; r, s) with (r, s) ∈ J(n) except
when k = 6 and n ∈ {24, 48}, where k ≡ 2 (mod 4) ≥ 6 and n ≡
0 (mod 2k) . □

Theorem 7.5. Let k ≡ 0 (mod 4) ≥ 12. Then there exists a (P4, Ck)–
URD(n; r, s) if and only if n ≡ 0 (mod k) and (r, s) ∈ J(n).

Proof. Necessity follows from Lemma 2.6. Conversely, let n = kx = 4(k4 )x,

x ≥ 1. Let k
4 = k′ Then n = 4k′x, x ≥ 1.

Let C be any Ck′-factor of Kk′x. There exists a (P4, C4k′)–URD(r, s) of
C ⊗ I4, with (r, s) ∈ {(4, 1), (0, 4)}, by Theorem 6.1. By Theorem 6.3, there
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exists a (P4, C4k′)–URD(16, 0) of (Ca ⊕ Cb ⊕ Cc) ⊗ I4, where Ca, Cb, and Cc

are any 3 edge-disjoint Ck′-factors of Kk′x. The graph (C ⊕ I) ⊗ I4 has a
(P4, C4k′)–URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)} by Theorem 6.2, when k′x
is even, where I is a 1-factor of Kk′x edge-disjoint from C.

Applying Theorem 3.1 (when k′x is odd) and Theorems 3.2 and 3.3, (when
k′x is even) with m = k′x, t = k′ and k = 4t, we obtain a (P4, C4k′)–
URD(4kn; r, s) with (r, s) ∈ J(4k′x) except when k′ = 3 and 4k′x ∈ {24, 48}.

That is, there exists a (P4, Ck)–URD(n; r, s) with (r, s) ∈ J(n) except
when k = 12 and n ∈ {24, 48}, where k ≡ 0 (mod 4) ≥ 12 and n ≡
0 (mod k) . □

Theorem 7.6. There exists a (P4, C3)–URD(24; r, s) with (r, s) ∈ {(4x +
2, 10− 3x) | x = 0, 1, 2, 3}.

Proof. We prove the existence of (P4, C3)–URD(24; r, s) with (r, s) ∈ {(4x+
2, 10− 3x) | x = 0, 1, 2, 3} in three cases as follows:
Case 1: (r, s) = (2, 10).

By Theorem 3.3, there exists a (P4, C3)–URD(24; 2, 10).
Case 2: (r, s) ∈ {(14, 1), (10, 4)}.

Let V (K6) = {0, 1, 2, 3, 4, 5}. Then K6 = C1 ⊕ C2 ⊕ I, where C1 =
{(0, 1, 2), (3, 4, 5)}, C2 = {(0, 3, 1, 5, 2, 4)} and I = {[2, 3], [1, 4], [0, 5]}.
Clearly C1 is a C3-factor, C2 is a C6-factor and I is a 1-factor of K6.
Consider

K24
∼= (K6 ⊗ I4)⊕ (I6 ⊗K4)

∼= ((C1 ⊗ I4)⊕ ((C2 ⊕ I)⊗ I4)⊕ (I6 ⊗K4).

Since C1 ⊗ I4 ∼= 2(C3 ⊗ I4), there exists a (P4, C3)–URD(r, s) of C1 ⊗ I4
with (r, s) ∈ {(4, 1), (0, 4)}, by Theorem 6.1. The graph (C2 ⊕ I) ⊗ I4
has a (P4, C3)–URD(r, s) with (r, s) = (8, 0), by Theorem 6.2. Since K4

has 2 P4-factors, I6 ⊗ K4 has a (P4, C3)–URD(r, s) with (r, s) = (2, 0).
This gives the existence of (P4, C3)–URD(v; r, s) of K24 with (r, s) ∈
{{(4, 1), (0, 4)}+ {(8, 0)}+ {(2, 0)}} = {(14, 1), (10, 4)}.

Case 3: (r, s) = (6, 7).
Consider K24

∼= (K3 ⊗ I8) ⊕ (I3 ⊗ K8). Let V (K3 ⊗ K8) = ∪i∈Z3Xi,
where Xi = {ij | j ∈ Z8}, i ∈ Z3. E(K3 ⊗ I8) = ∪i∈Z3,l∈Z8Fl(Xi, Xi+1)
and E(I3 ⊗K8) = ∪i∈Z3,0≤a<b≤7{ia, ib}. Now we construct 6 P4-factors
of K24 as follows: Let

P1 = {[i1, i4, i0, i5], [i3, i6, i2, i7] | i ∈ Z3};
P2 = {[i0, i7, i3, i4], [i2, i5, i1, i6] | i ∈ Z3};
P3 = {[i0, i6, i5, i3], [i4, i2, i1, i7] | i ∈ Z3};
P4 = {[i1, i3, i0, i2], [i6, i4, i7, i5] | i ∈ Z3};
P5 = {[(i+ 1)4, i0, i1, (i+ 1)5], [(i+ 1)6, i2, i3, (i+ 1)7] | i ∈ Z3};
P6 = {[(i+ 1)0, i4, i5, (i+ 1)1], [(i+ 1)2, i6, i7, (i+ 1)3] | i ∈ Z3},
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where the additions are taken modulo 3. Now we construct 7 C3-factors
of K24 as follows: Let

C1 = F0(X0, X1) ∪ F0(X1, X2) ∪ F0(X2, X0);

C2 = F1(X0, X1) ∪ F5(X1, X2) ∪ F2(X2, X0);

C3 = F2(X0, X1) ∪ F1(X1, X2) ∪ F5(X2, X0);

C4 = F3(X0, X1) ∪ F7(X1, X2) ∪ F6(X2, X0);

C5 = F5(X0, X1) ∪ F2(X1, X2) ∪ F1(X2, X0);

C6 = F6(X0, X1) ∪ F3(X1, X2) ∪ F7(X2, X0);

C7 = F7(X0, X1) ∪ F6(X1, X2) ∪ F3(X2, X0),

Hence {P i, Cj | 1 ≤ i ≤ 6, 1 ≤ j ≤ 7} gives a (P4, C3)–URD(6, 7) of K24.
Hence there exists a (P4, C3)–URD(24; r, s) with (r, s) ∈ {(2, 10), (6, 7),
(10, 4), (14, 1)}.

□

Theorem 7.7. There exists a (P4, C3)–URD(48; r, s) with (r, s) ∈ {(4x +
2, 22− 3x) | x = 0, 1, 2, 3, 4, 5, 6, 7}.

Proof. We prove the existence of (P4, C3)–URD(48; r, s) with (r, s) ∈ {(4x+
2, 22− 3x) | x = 0, 1, 2, 3, 4, 5, 6, 7} in three cases as follows:
Case 1: (r, s) = (2, 22).

By Theorem 3.3, there exists a (P4, C3)–URD(48; (2, 22)).
Case 2: (r, s) ∈ {(10, 16), (14, 13), (18, 10), (22, 7), (26, 4), (30, 1)}.

Let V (K12) = {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11}. Then K12 = C1 ⊕ C2 ⊕ C3 ⊕
C4 ⊕ C5 ⊕ I, where C1 = {(0, 2, 4), (1, 3, 5), (6, 8, 10), (7, 9, 11)}; C2 =
{(0, 3, 6), (1, 2, 7), (4, 8, 11), (5, 9, 10)}; C3 = {(0, 5, 11), (1, 4, 10), (2, 6, 9),
(3, 7, 8)}; C4 = {(0, 7, 10), (1, 6, 11), (2, 8, 5), (3, 9, 4)}; C5 = {(0, 8, 1, 9),
(2, 10, 3, 11), (4, 6, 5, 7)} and I = {[0, 1], [2, 3], [5, 4], [6, 7].[8, 9], [10, 11]}.
Clearly each Ci, i = 1, 2, 3, 4 is a C3-factor, C5 is a C4-factor and I is a
1-factor of K12. Now

K48
∼= (K12 ⊗ I4)⊕ (I12 ⊗K4)

∼= ((C1 ⊗ I4)⊕ (C2 ⊗ I4)⊕ (C3 ⊗ I4)

⊕ (C4 ⊗ I4)⊕ ((C5 ⊕ I)⊗ I4)⊕ (I12 ⊗K4).

There exists a (P4, C3)–URD(r, s) of each Ci ⊗ I4, i = 1, 2, 3, 4 with
(r, s) ∈ {(4, 1), (0, 4)} by Theorem 6.1. (C5 ⊕ I) ⊗ I4 has a (P4, C3)–
URD(8, 0) by Theorem 6.2. There exists a (P4, C3)–URD(16, 0) of
(⊕3

i=1Ci) ⊗ I4 by Theorem 6.3. Since K4 has 2 P4-factor, I12 ⊗ K4 has
a (P4, C3)–URD(2, 0). This gives the existence of (P4, C3)–URD(48; r, s)
with (r, s) ∈ {(4−3x)∗{(4, 1), (0, 4)}+x∗{(16, 0)}+{(8, 0)}+{(2, 0)} |
0 ≤ x ≤ 1} = {(10, 16), (14, 13), (18, 10), (22, 7), (26, 4), (30, 1)}.
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Case 3: (r, s) = (6, 19).
Consider K48

∼= (K4⊗ I12)⊕ (I4⊗K12). By Theorem 2.2, K4⊗ I12 has a
(P4, C3)–URD(0, 18). There exists a (P4, C3)–URD(12; 6, 1) by Theorem
7.3 and I4 ⊗K12

∼= 4K12, I4 ⊗K12 has a (P4, C3)–URD(6, 1). This gives
the existence of (P4, C3)–URD(48; 6, 19).
Therefore, there exists a (P4, C3)–URD(48; r, s) with (r, s) ∈ {(2, 22),
(6, 19), (10, 16), (14, 13), (18, 10), (22, 7), (26, 4), (30, 1)}.

□

Theorem 7.8. There exists a (P4, Ck)–URD(n; r, s) with (r, s) ∈ J(n) =
{(4x+2, n−4

2 −3x) | x = 0, 1, . . . ,
⌊
n−4
6

⌋
}, where k ∈ {6, 12} and n ∈ {24, 48}.

Proof. We prove the existence of (P4, Ck)–URD(n; r, s) with (r, s) ∈ J(n),
where k ∈ {6, 12} and n ∈ {24, 48} in two cases as follows:
Case 1: n = 24.

Let C be a C6-factor of K6 − I, where I is a 1-factor of K6. There exists
a (P4, Ck)–URD(r, s) of C ⊗ I4, with (r, s) ∈ {(4, 1), (0, 4)}, by Theorem
6.1 and (C ⊕ I)⊗ I4 has a (P4, Ck)–URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)}
by Theorem 6.2, where k ∈ {6, 12}.
Applying Theorems 3.2 and 3.3, with t = m = 6 and k ∈ {6, 12}, we
obtain a (P4, Ck)–URD(24; r, s) with (r, s) ∈ J(24), where k ∈ {6, 12}.

Case 2: n = 48.
Let C and I be edge-disjoint C6-factor and 1-factor of K12. There exists
a (P4, Ck)–URD(r, s) of C ⊗ I4, with (r, s) ∈ {(4, 1), (0, 4)}, by Theorem
6.1 and (C ⊕ I)⊗ I4 has a (P4, Ck)–URD(r, s) with (r, s) ∈ {(8, 0), (4, 3)}
by Theorem 6.2, where k ∈ {6, 12}. By Theorem 6.3, there exists a
(P4, Ck)–URD(16, 0) of (Ca⊕Cb⊕Cc)⊗ I4, where Ca, Cb, and Cc are any
3 edge-disjoint C6-factors of K12.
Applying Theorems 3.2 and 3.3, with t = 6, m = 12 and k ∈ {6, 12}, we
obtain a (P4, Ck)–URD(48; r, s) with (r, s) ∈ J(48), where k ∈ {6, 12}.
From cases 1 and 2, there exists a (P4, Ck)–URD(n; r, s) with (r, s) ∈ J(n),

where k ∈ {6, 12} and n ∈ {24, 48}. □

8. Conclusion

Combining Theorems 7.1 to 7.8, we have completely settled the existence
of (P4, Ck)–URD(n; r, s) for any admissible parameters n, r, and s, where
k ≥ 3.
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