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ON THE UNIFORMITY OF THE APPROXIMATION FOR

r-ASSOCIATED STIRLING NUMBERS OF THE SECOND

KIND

HAROLD CONNAMACHER AND JULIA DOBROSOTSKAYA

Abstract. The r-associated Stirling numbers of the second kind are
a natural extension of Stirling numbers of the second kind. A combi-
natorial interpretation of r-associated Stirling numbers of the second
kind is the number of ways to partition n elements into m subsets such
that each subset contains at least r elements. Calculating the associated
Stirling numbers is typically done with a recurrence relation or a gener-
ating function that are computationally expensive or alternatively with a
closed-form that is practical for only a limited parameter range. In 1994
Hennecart proposed an approximation for the r-associated Stirling num-
bers that is fast to compute, is amenable to analysis over a wide range of
parameters, and is conjectured to be asymptotically tight. There are a
few other approximations for the associated Stirling numbers, but none
of them are as general as Hennecart’s. However, until this work, Hen-
necart’s approximation had been utilized without a proper justification
due to the absence of a rigorous proof. This work provides a proof of
the uniformity of the Hennecart approximation.

1. Introduction

In a 1994 paper [11], Hennecart proposed an approximation for the r-
associated Stirling numbers of the second kind, and conjectured that the
approximation was asymptotically tight for a wide range of parameters.
This approximation has been successfully used in a number of applications
(see, for example, [5, 7]). However, a proper justification has never appeared
in literature.

Let
{
n
m

}
denote the Stirling number of the second kind. Stirling num-

bers of the second kind have been studied extensively with applications to
combinatorics, probability, and analysis. (See [1] for a short history of their
discovery.) Stirling numbers of the second kind can be defined in a number
of ways. Combinatorially, we can define them as the number of ways to
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partition n labeled elements into m nonempty unlabeled subsets. A more
common definition defines them as the coefficients of the generating function

(exp(x)− 1)m

m!
=
∞∑
n=m

{
n

m

}
xn

n!
.

Other definitions include the closed-form formula{
n

m

}
=

1

m!

m∑
k=0

(−1)k
(
m

k

)
(m− k)n

and the recurrence relation{
n

m

}
= m

{
n− 1

m

}
+

{
n− 1

m− 1

}
with the initial conditions

{
n
m

}
= 0 if m = 0 or n < m and

{
n
m

}
= 1 if

n = m.
A large number of generalizations and restrictions to Stirling numbers

have been created. One natural generalization is
{
n
m

}
≥r, the r-associated

Stirling number of the second kind. Combinatorially, we define
{
n
m

}
≥r as

the number of ways to partition n labeled elements into m unlabeled subsets
such that each subset contains at least r elements. This definition gives the
recurrence relation

(1.1)

{
n

m

}
≥r

= m

{
n− 1

m

}
≥r

+

(
n− 1

r − 1

){
n− r
m− 1

}
≥r

with the initial conditions
{
n
m

}
≥r = 0 if m = 0 or n < rm, and

{
n
m

}
≥r = 1

if n = rm.
Just as with the usual Stirling numbers, the r-associated Stirling numbers

of the second kind appear as the coefficients of a generating function

(1.2)

(
exp(x)−

∑r−1
k=0

xk

k!

)m
m!

=

∞∑
n=mr

{
n

m

}
≥r

xn

n!
.

There are several closed-form formulas for
{
n
m

}
≥r including

(1.3)

{
n

m

}
≥r

=
∑

u1+...+um=n
ui≥r

n!

m!u1!u2! . . . um!
,

and
(1.4){
n

m

}
≥r

=
1

m!

m∑
k=0

(−1)k
(
m

k

) r−1∑
l1,l2,...,lk=0

n!(m− k)n−l1−l1−···−lk

l1!l2! . . . lk!(n− l1 − l2 − · · · − lk)!
.

The last equation can be found in [11]. The case r = 1 provides the closed-
form equation for a usual Stirling number of the second kind.
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The r-associated Stirling numbers of the second kind first appear in [20]
where both equations (1.2) and (1.1) are given, and in [23] where they were
used to compute unbiased estimators for truncated Poisson distributions.
Prior to these works, 2-associated Stirling numbers of the second kind were
used in [26] and [16] for analyzing Stirling numbers. For a survey of the
associated Stirling numbers, see [13]. The r-associated Stirling numbers of
the second kind are related to several combinatorial series including gen-
eralized Bell numbers [8, 25], Bernoulli numbers [12, 28], and incomplete
poly-Bernoulli numbers [17].

In practical applications, the r-associated Stirling numbers of the second
kind show up in series expansions of the Lambert W function [15, 6], in the
analysis of error correcting codes for flash memory [10], and in the study
of threshold behavior in both spin-glass models of statistical physics [4], as
well as constraint satisfaction problems of computer science [7, 5].

As with other Stirling number definitions, computing r-associated Stir-
ling numbers exactly is computationally expensive. For example, the recent
works [14, 9] compare the computational cost of equations (1.2) and (1.1)
for various values of the parameters. Equation (1.3), though, is generally
more efficient than the other two approaches, but it is still impractical for
either large r or large m. An alternative to computing the exact value of{
n
m

}
≥r is to utilize an approximation that is sufficiently precise and is faster

to compute than either the closed-form or the recurrence relation. Ideally,
such an approximation would be more practical than the exact definitions
for both analysis and numerical evaluation.

In a 1994 paper [11], Hennecart developed such an approximation for the
r-associated Stirling numbers of the second kind, and conjectured that the
approximation was asymptotically tight for a wide range of parameters. The
proposed approximation is:

(1.5)

{
n

m

}
≥r
∼ n!

m!(n−mr)!

(
n−mr

e

)n−mr Bm(z0, r)

zn+1
0

√
mt0
φ′′(z0)

where

B(x, r) = exp(x)−
r−1∑
k=0

xk

k!
,

φ(z) = −n ln z +m lnB(z, r),

t0 = (n−mr)/m,

and z0 is the positive real solution of the equation

z0B
′(z0, r)

B(z0, r)
=

n

m
.

This approximation has been used in several applications [5, 7] that analyze
the asymptotic behavior of constraint satisfaction problems. Unfortunately,
[11] does not give a rigorous proof that this approximation (1.5) is uniform.
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Instead, [11] calculates the approximation for a number of different positive
integer values for n, m, and r to demonstrate a uniform behavior. Without
a rigorous proof, the approximation (1.5) is of limited utility, and the works
[7, 5] that rely on (1.5) are conditionally valid.

Since [11], there has been some limited additional work on approxima-
tions for the associated Stirling numbers. In particular, [3] shows that 2-
associated Stirling numbers of the second kind are asymptotically close to
a normal distribution, and [28] gives asymptotically tight approximations
to summations involving 2-associated Stirling numbers of the second kind.
However, (1.5) is the only approximation we have found for all positive r.
The purpose of this paper is to make (1.5) rigorous.

Theorem 1.1. Let r be a fixed positive integer. Approximation (1.5) holds
uniformly as n → ∞ for all δ1n < m < (1 − δ2)n/r where n and m are
integers and δ1 and δ2 are any positive constants.

We note that [5, 7] both assume r is a fixed integer and m and n are both
integers with m = Θ(n). Therefore, Theorem 1.1 confirms both of these
applications.

In Section 2, we give an approximation for the r-associated Stirling num-
bers of the second kind that is more general than (1.5), and we prove that
this more general approximation is uniform. In Section 3 we prove some
technical lemmas needed in the proof of Section 2, and a couple of these
concern the behavior of the tail of the Maclaurin series for exp(z), z ∈ C.
Finally, in Section 4, we give the proof of Theorem 1.1 by successfully trun-
cating the more general approximation of Section 2.

2. The main approximation lemma

The Hennecart [11] approximation (1.5) for
{
n
m

}
≥r is based on an approx-

imation for
{
n
m

}
proposed by Temme [24] and proven uniform in Chelluri,

Richmond, and Temme [2]. The proof in [2] takes the error bounds for in-
teger n and m of a slightly different approximation for

{
n
m

}
by Moser and

Wyman [19] and proves that these bounds also apply to the approximation
of [24]. In addition, [2] extends the proof of [19] to prove that the [24]
approximation is also uniform for real and complex parameters.

This paper follows a strategy analogous to [2]. We develop an approxi-
mation for the r-associated Stirling numbers of the second kind that is more
general though less computationally efficient than (1.5) but also closer to the
approximation of [19] for regular Stirling numbers of the second kind. We
adapt the [19] proof to work with our approximation, and we perform simi-
lar modifications as [2]. However, we stop once we prove the approximation
is uniform for integer parameters, and we do not make a similar extension
in this paper as [2] does to noninteger parameters. We believe that such
an extension to real and complex parameters should hold, but the location
of the zeros of the function B(z, r) will make the extension very tedious to
calculate. We give a more detailed explanation at the end of this section.
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We extend the [19] approximation for
{
n
m

}
to
{
n
m

}
≥r by following the

framework of the [19] proof and with the help of findings from [18], [21], and
[27] plus several new lemmas. The result is as follows.

Lemma 2.1.

(2.1)

{
n

m

}
≥r
∼ n!Bm(z0, r)

2πm!zn0
√
mz0H(z0)

( ∞∑
k=0

(∫ ∞
−∞

exp(−η2)b2kdη
)
/(mz0)

k

)
where B(x, r) = exp(x)−

∑r−1
k=0 x

k/k!,

H(x) =
B(x, r − 1)B(x, r) + xB(x, r − 2)B(x, r)− xB2(x, r − 1)

2B2(x, r)

and b is a polynomial in η with b0 = 1. This approximation holds uniformly
over integer n and m with m = Θ(n).

Proof. A standard technique in the analysis of Stirling numbers is to convert
the generating function

(exp(x)− 1)m

m!
=

∞∑
n=m

{
n

m

}
xn

n!
,

to the contour integral{
n

m

}
=

n!

m!

1

2πi

∫
C

(exp(x)− 1)m

xn+1
dx.

We follow the same technique here. From the generating function (1.2), we
have the contour integral

(2.2)

{
n

m

}
≥r

=
n!

m!

1

2πi

∫
C

Bm(x, r)

xn+1
dx.

Because n and m are positive integer values, we can let C be a circle about
the origin.

Using the technique of [19] we let x = R exp(iθ) and this replacement
gives {

n

m

}
≥r

= A

∫ π

−π
exp[mg(θ,R)]dθ

where

A =
n!(B(R, r))m

2πm!Rn

and

g(θ,R) = ln(B(R exp(iθ), r))− ln(B(R, r))− n

m
iθ.

As done in [19], we let F (iθ, R) be the first derivative of g(θ,R) with
respect to R, letting z = iθ to shorten the presentation:

F (z,R) =
exp(z)B(R exp(z), r − 1)

B(R exp(z), r)
− B(R, r − 1)

B(R, r)
.
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Let

G(z,R) =

∫ R

0
F (z, x)dx.

As limR→0B(R exp(z), r)/B(R, r) = exp(rz),

G(z,R) = ln(B(R exp(z), r))− ln(B(R, r))− rz,
and so

g(θ,R) = G(iθ, R) + iθ
(
r − n

m

)
.

Notice that for any r ∈ N there exists αr > 0 such that F (z,R) is a
regular function of z in the domains |z| ≤ αr and R ≥ 0. This is a corollary
of the fact that function B(x, r) does not have zeros in the domains {x ∈
C : |x exp(1− x)| > 1} [27] and {x ∈ C : Im(x/r)2 < 4(Re(x/r) + 1)} [21].

Next, we note that

lim
R→0

F (z,R) =

((
2r
r

)
−
(

2r
r−1
))

exp((r + 1)z)−
((

2r
r

)
−
(

2r
r−1
))

exp(rz)(
2r
r

)
exp(rz)

=
exp(z)− 1

r + 1

and, if |z| ≤ αr, Re(exp(z)) > 0 and limR→∞ F (z,R) = exp(z) − 1. Thus,
we know that F (z,R) is a bounded function in the domains |z| ≤ αr and
R ≥ 0. As a result, we can apply the proof of Lemma 3.2 of [19] to prove
that, given the MacLaurin expansion of G about z = 0,

G(z,R) =

∞∑
k=1

Ck(R)zk,

and there exists a constant M independent of k and R such that

(2.3) |Ck(R)/R| ≤ M

αkr

for all values of k and R.
The first derivative of g(θ,R) with respect to θ is

iR exp(iθ)
B(R exp(iθ), r − 1)

B(R exp(iθ), r)
− i n

m
,

and the second derivative with respect to θ is

−R exp(iθ)
B(R exp(iθ), r − 1)

B(R exp(iθ), r)
−R2 exp(2iθ)

B(R exp(iθ), r − 2)

B(R exp(iθ), r)

+R2 exp(2iθ)
B(R exp(iθ), r − 1)2

B(R exp(iθ), r)2
.

The MacLaurin expansion of g(θ,R) about θ = 0 is

g(θ,R) = iB∗θ −RH(R)θ2 +
∞∑
k=3

Ck(R)(iθ)k
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where

B∗ =
RB(R, r − 1)

B(R, r)
− n

m

and

H(x) =
B(x, r − 1)B(x, r) + xB(x, r − 2)B(x, r)− xB(x, r − 1)2

2B(x, r)2
.

We let R = z0 be the solution to B∗ = 0. We have

g(θ, z0) = −z0θ2H(z0) +
∞∑
k=3

Ck(z0)(iθ)
k.

Next, we proceed as in [19] and show that the value of
∫ π
−π exp [g(θ, z0)] dθ

is concentrated about θ = 0. Consider the integral J defined as

J =

∫ π

ε
exp(mg(θ, z0))dθ

where we define ε as ε = (mz0)
−3/8. From Lemma 3.2, RB(R, r−1)/B(R, r)

is a strictly increasing function of R. Therefore the same reasoning as the
proof of Lemma 3.1 of [19] shows that limn→∞mz0 = ∞ (and thus ε → 0)
for m between δ1n and (1− δ2)n/r for any positive constants δ1 and δ2.

We prove that J is exponentially small.

J =

∫ π

ε
exp(mg(θ, z0))dθ

=

∫ π

ε
exp

(
m
(
G(iθ, z0) + iθ

(
r − n

m

)))
dθ

=

∫ π

ε
exp

(
m
(

lnB(z0 exp(iθ), r)− lnB(z0, r)− iθ
n

m

))
dθ

=

∫ π

ε

exp(m lnB(z0 exp(iθ), r))

exp(m lnB(z0, r)) · exp(iθn)
dθ

=

∫ π

ε

(
B(z0 exp(iθ), r)

B(z0, r)

)m
· 1

exp(iθn)
dθ.

Therefore,

|J | ≤
∫ π

ε

∣∣∣∣B(z0 exp(iθ), r)

B(z0, r)

∣∣∣∣m dθ
=

∫ π

ε

∣∣∣∣exp(−az0 exp(iθ))B(z0 exp(iθ), r)

B(z0, r)
· exp(az0 exp(iθ))

∣∣∣∣m dθ
for some real a ∈ (0, 1).

From Lemma 3.1 below, for any complex number x, there exists a real
number a ∈ (0, 1) such that

|exp(−ax)B(x, r)| ≤ exp(−a|x|)B(|x|, r).
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Thus,

|J | ≤
∫ π

ε

(
exp(−az0)B(z0, r)

B(z0, r)
· |exp(az0 exp(iθ))|

)m
dθ

=

∫ π

ε
(exp (−az0) · |exp (az0(cos θ + i sin θ))|)m dθ

=

∫ π

ε
exp (maz0(cos θ − 1)) dθ.

Since cos θ in the domain [ε, π] has a maximum at θ = ε, we have

|J | ≤ π exp (maz0(cos ε− 1)) = π exp
(
−maz02 sin2 (ε/2)

)
.

As | sinx| ≤ |x| and ε = (mz0)
−3/8,

|J | ≤ π exp
(
−maz0(mz0)−3/4

)
= −Kπ exp((mz0)

1/4)

for some constant K > 0.
As a result, we have

(2.4)

{
n

m

}
≥r
∼ A

∫ ε

−ε
exp(mg(θ, z0))dθ

where

g(θ, z0) = −z0θ2H(z0) +
∞∑
k=3

Ck(z0)(iθ)
k.

The next step of the conversion is completely analogous to the one in [19]:

A

∫ ε

−ε
exp(mg(θ, z0))dθ

= A

∫ ε

−ε
exp

(
−θ2mz0H(z0) +

∞∑
k=1

Ck+2(z0)m(iθ)k+2

)
dθ

= A

∫ ε

−ε
exp

(
− θ2mz0H(z0)

+

∞∑
k=1

Ck+2(z0)m(iθ)k+2 · m
k/2(z0H(z0))

(k+2)/2

mk/2(z0H(z0))(k+2)/2

)
dθ

= A

∫ ε

−ε
exp

(
− θ2mz0H(z0)

+

∞∑
k=1

Ck+2(z0)i
k+2(θ2mz0H(z0))

(k+2)/2

z0H(z0)(k+2)/2
(mz0)

−k/2

)
dθ

=
A√

mz0H(z0)

∫ h

−h
exp

(
−η2 +

∞∑
k=1

akζ
k

)
dη
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where η = θ
√
mz0H(z0), h = ε

√
mz0H(z0), ak =

Ck+2(z0)(iη)
k+2

z0H(z0)(k+2)/2 , and ζ =

(mz0)
−1/2.

As done in [19], we temporarily consider exp
(∑∞

k=1 akζ
k
)

as a function
of three independent variables: ζ, z0, and η. In this context, we can write
the function as a MacLaurin series about ζ = 0:

(2.5) exp

( ∞∑
k=1

akζ
k

)
=
∞∑
k=0

bkζ
k

where bk is a function of z0 and η. Note that b0 = 1, b1 = a1, and in

general bk =
∑k

j=1 cja
r1,j
1 . . . a

rk,j
k for some nonnegative constants cj , and

ri,j with 1 ≤ i, j ≤ k. Applying the chain rule to the summation for bk

gives bk+1 =
∑k

j=1

(
a1 +

∑k
l=1 rl,jal+1 / al

)
cja

r1,j
1 . . . a

rk,j
k , and we can form

bk+1 by multiplying each term in the summation for bk by a polynomial
containing only odd powers of η. As a result, b2k is a polynomial containing
only even powers of η and b2k+1 is a polynomial containing only odd powers
of η.

For large enough n, ζ = (mz0)
−1/2 lies within the domain of convergence

for
∑∞

k=0 bkζ
k. The proof of this fact is similar to the proof of Lemma 3.3

below. Alternatively, one may use the root test with the fact that η < h.
Therefore, (2.5) is valid, and we have{

n

m

}
≥r
∼ A√

mz0H(z0)

∫ h

−h

(
exp(−η2)

∞∑
k=0

bkζ
k

)
dη.

To achieve the approximation (2.1) we need to move the summation outside

of the integral. From Lemma 3.3 below,
∫ h
−h exp(−η2)

∑∞
k=s bkζ

kdη = O(ζs).
Thus,{

n

m

}
≥r
∼ A√

mz0H(z0)

(∫ h

−h

(
exp(−η2)

s−1∑
k=0

bkζ
k

)
dη + O(ζs)

)
.

Lemma 3.3 is valid for any h, and as h is Θ(m1/8) extending the integration
to the entire real line leads to{

n

m

}
≥r
∼ A√

mz0H(z0)

(∫ ∞
−∞

(
exp(−η2)

s−1∑
k=0

bkζ
k

)
dη + O(ζs)

)
.

Lemma 3.3 also implies that the integral on the right hand side is absolutely
convergent. Thus we can switch the summation and integral:{

n

m

}
≥r
∼ A√

mz0H(z0)

(
s−1∑
k=0

∫ ∞
−∞

(
exp(−η2)bkζk

)
dη + O(ζs)

)
.
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Recall that the original integration (2.4) is performed with respect to θ.
While ζ and η are not mutually independent, ζ is independent of θ, and so
we can treat ζ as a scalar.{

n

m

}
≥r
∼ A√

mz0H(z0)

(
s−1∑
k=0

∫ ∞
−∞

(
exp(−η2)bkdη

)
ζk + O(ζs)

)
.

Now, as s→∞,{
n

m

}
≥r
∼ A√

mz0H(z0)

( ∞∑
k=0

∫ ∞
−∞

(
exp(−η2)bkdη

)
ζk

)
.

Recall that b2k+1 is a polynomial containing only odd powers of η. Thus,
its integral is 0.{

n

m

}
≥r
∼ A√

mz0H(z0)

( ∞∑
k=0

(∫ ∞
−∞

exp(−η2)b2kdη
)
/(mz0)

k

)
.

�

This completes the proof for integer n and m. While it may be possible
to further generalize this approximation to noninteger n and m, similar to
the result of [2] for Stirling numbers of the second kind, the calculations
involved appear to be very tedious. To generalize the [24] approximation,
[2] deforms the contour of integration in order to avoid zeros of B(x, 1). It
is straightforward to prove that there are no zeros of B(x, 1) with |x| > 0
and |arg(x)| < π/2. As a result, the contour can include a nearly complete
semicircle in the right half plane. Using a semicircle lets [2] complete the rest
of the contour with Re(x) < ε1 and |x| > π− ε2 for arbitrarily small positive
constants ε1 and ε2, and thus the integral over the rest of the contour is
exponentially small. Such a contour is not possible with (2.2). As r grows,
there may exist zeros of B(x, r) with |x| > 0 and |arg(x)| < π/2. Worse,
[22] proves that the roots of B(x, r) converge toward a curve that intersects
with the region |x| > 0 and | arg x| < 1, and we have numerically identified
such a zero with r = 4.

3. Technical Lemmas

In this section, we present a number of lemmas used in the proofs of
Lemma 2.1 of Section 2 and Theorem 1.1 in Section 4.

Lemma 3.1. For any complex number z, there exists real a ∈ (0, 1) such
that

(3.1) |exp(−az)B(z, r)| ≤ exp(−a|z|)B(|z|, r).

Proof. Notice that whenever B(z, r) = 0 any a ∈ (0, 1) provides (3.1). Let
us assume that B(z, r) 6= 0. Proving (3.1) is equivalent to proving

ea(|z|−Rez) ≤ B(|z|, r)
|B(z, r)|

,
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or

a(|z| − Rez) ≤ ln
B(|z|, r)
|B(z, r)|

,

where B(|z|, r)/|B(z, r)| ≥ 1 by the triangle inequality.
We show that B(|z|, r)/|B(z, r)| = 1 if and only if z is positive and real.

Implication in one direction is obvious, so assume B(|z|, r)/|B(z, r)| = 1.
Then

∣∣∑∞
k=r z

k/k!
∣∣ =

∑∞
k=r |z|k/k!, and repeated applications of the triangle

inequality give∣∣∣∣∣
∞∑
k=r

zk

k!

∣∣∣∣∣ =
|z|r

r!
+

∣∣∣∣∣
∞∑

k=r+1

zk

k!

∣∣∣∣∣ = · · · =
K∑
k=r

|z|k

k!
+

∣∣∣∣∣
∞∑

k=K+1

zk

k!

∣∣∣∣∣ =
∞∑
k=r

|z|k

k!
.

Furthermore, for this sequence of equalities to hold, with any two terms
zk1/k1! and zk2/k2! the triangle inequality turns into the equality |zk1/k1!
+zk2/k2!| =

∣∣zk1/k1!∣∣ +
∣∣zk2/k2!∣∣, and zk1/k1! and zk2/k2! must lie on the

same line through the origin. For all the terms to lie on the same line through
the origin, we require kArgz = Θ + πnk for some angle Θ and integer nk,
i.e. (kArgz − Θ)/π ∈ Z. As this condition is true for any two consecutive
terms we see that Argz and Θ must be integer multiples of π, requiring z
to be real. Negative reals lead to sign alternating in power series, and thus
the triangle equality cannot be achieved. Hence, z is a nonnegative real
number. Therefore, if B(|z|, r)/|B(z, r)| = 1, then Rez > 0 and Imz = 0
and inequality (3.1) is true for any a ∈ (0, 1).

If B(|z|, r)/|B(z, r)| > 1, we have |z| − Rez > 0, and it suffices to pick
any

0 < a < min

{
1,

1

|z| − Rez
ln
B(|z|, r)
|B(z, r)|

}
to satisfy (3.1).

�

Lemma 3.2. Let B(x, r) = exp(x) −
∑r−1

k=0 x
k/k!, and let Q(x, r) = xB(x,

r − 1)/B(x, r). For positive integer r and x > 0, Q(x, r) is a strictly in-
creasing function of x, and 1/(r + 1) ≤ Q′(x, r) ≤ 1.

Proof. That Q is monotone increasing follows directly from the positive
lower bound on Q′. The proof for r = 1 is straightforward: Q′(x, 1) =
exp(x)(exp(x)− 1− x)/(exp(x)− 1)2. Thus, Q′(x, 1) > 0, and limx→0Q

′(x,
1) = 1/2 and limx→∞Q

′(x, 1) = 1.
Let r > 1. Note that

Q′(x, r) =
B(x, r − 1)B(x, r) + xB(x, r − 2)B(x, r)− xB(x, r − 1)2

B(x, r)2
.
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Further note that B(x, r − 1) = B(x, r) + xr−1/(r − 1)! and B(x, r − 2) =
B(x, r) + xr−1/(r − 1)! + xr−2/(r − 2)!. Therefore,

Q′(x, r)

=
B(x, r) + xr−1/(r − 1)! + x(B(x, r) + xr−1/(r − 1)! + xr−2/(r − 2)!)

B(x, r)

− x(B(x, r) + xr−1/(r − 1)!)2

B(x, r)2

= 1 +
xr−1/(r − 1)! + x(−xr−1/(r − 1)! + xr−2/(r − 2)!)

B(x, r)

− x(xr−1/(r − 1)!)2

B(x, r)2

= 1 +
( r
x
− 1
) xr/(r − 1)!

B(x, r)
− 1

x

(xr/(r − 1)!)2

B(x, r)2
.

Denote v(x, r) = xr/(r−1)!
B(x,r) , then

Q′(x, r) = 1 +
( r
x
− 1
)
v(x, r)− v(x, r)2

x
,

and note that

(3.2) v(x, r) =
r

r!
∑∞

k=r
xk−r

k!

=
r(

1 + x
(r+1) + x2

(r+1)(r+2) + . . .
) .

Notice that limx→0 v(x, r) = r, while v(x, r) ≤ r for any x > 0, and v
is decreasing with respect to x and decreases to 0 as x → ∞. Since v is
continuously differentiable with respect to x when x ∈ [0,+∞), v′(x, r) ≤ 0
for any x ∈ [0,+∞).

We observe that

dv

dx
=
r

x
v(x, r)− v(x, r)− v(x, r)2

x
= Q′(x, r)− 1.

Thus Q′(x, r) ≤ 1, and we have the upper bound of the lemma.
We make an aside remark that the derivative v′(0) is indeed negative even

though we only stated above that the function decreases for values of x in
[0,+∞). In fact, v′(0) = −r/(r+1), and this is easy to see from the formulas
appearing below in the proof of the positive lower bound.

To prove that Q′(x, r) has a positive lower bound, it suffices to show that
there exists a constant α > 0 such that v′(x) > −1+α for all x. Using (3.2),
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v′(x) = −rD
′(x)

D2(x)
, where

D(x) = r!
∞∑
k=r

xk−r

k!
= 1 +

∞∑
k=1

xk

(r + 1) · · · · · (r + k)

= 1 +
x

(r + 1)
+

x2

(r + 1)(r + 2)
+ . . . .

D′(x) =

∞∑
k=1

kxk−1

(r + 1) · · · · · (r + k)
=

1

(r + 1)
+

2x

(r + 1)(r + 2)
+ . . .

1

r + 1
D2(x) =

1

r + 1

(
1 +

∞∑
k=1

xk

(r + 1) · · · · · (r + k)

)2

=
1

r + 1

1 +
∞∑
k=1

xk
k∑
q=0

1∏q
l=1(r + l)

1∏k−q
l=1 (r + l)


=

1

r + 1
+

∞∑
k=1

xk
k∑
q=0

1

(r + 1)
∏q
l=1(r + l)

∏k−q
l=1 (r + l)

.

Here we assume the convention that
∏0
t=1 t = 1.

Comparing the terms of respective coefficients of the power series repre-
senting D′(x) and D2(x)/(r+ 1), we prove that D′(x) ≤ D2(x)/(r+ 1). For
both series, the first term is 1/(x+ 1). For the next two terms of the power
series, it is straightforward to verify that 2/((r+ 1)(r+ 2)) ≤ 2/(r+ 1)2 and
3/((r + 1)(r + 2)(r + 3)) ≤ 1/(r + 1)3 + 2/

(
(r + 1)2(r + 2)

)
. Consider the

coefficient of the xk term in D2(x)(r + 1):

k∑
q=0

(
(r + 1)

q∏
l=1

(r + l)

k−q∏
l=1

(r + l)

)−1
.

The sum has exactly (k+ 1) terms, and each denominator can be rewritten
in the form (r + 1)p1+1(r + 2)p2 . . . (r + k)pk , where p1 + · · · + pk = k and
p1 ≥ p2 ≥ · · · ≥ pk, and so p1 ≥ 1, . . . , pk ≤ 1. Regrouping the multiples,
we can state that the right hand side contains exactly k+ 1 fractions of the
form ((r + r1)(r + r2) . . . (r + rk+1))

−1 with rj ≤ j. Therefore

k + 1

(r + 1) · · · · · (r + k + 1)
≤

k∑
q=0

1

(r + 1)
∏q
l=1(r + l)

∏k−q
l=1 (r + l)

,

and we have D′(x) ≤ D2(x)/(r + 1). As a result,

D′(x)
1
rD

2(x)
≤ r

r + 1
,
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and that implies

v′(x) = −rD
′(x)

D2(x)
≥ − r

r + 1
= −1 +

1

r + 1
.

In other words, the desired estimate is true with α = 1/(r + 1). Hence,
Q′(x, r) ≥ 1/(r + 1) when x ∈ [0,+∞). �

Lemma 3.3. ∫ h

−h
exp(−η2)

∞∑
k=s

bkζ
kdη = O(ζs),

where bk is a function of η and z0. (Please see the exposition above equation
(2.5) for the definitions of the terms.)

Proof. The proof uses the framework of an analogous proof in [19] but with
adjustments required by the differences in the definition of H and its neigh-

borhood of regularity near z = 0. Recall that ak =
Ck+2(z0)(iη)

k+2

z0H(z0)(k+2)/2 . From

(2.3),

|ak| ≤
∣∣∣∣ M(iη)k+2

H(z0)(k+2)/2

∣∣∣∣ .
From Lemma 3.2 with 2H(z0) = Q′, we have

|ak| ≤M
√

2(r + 1)
|η|k+2

αkr
.

From [18],

|bk| ≤M

∣∣∣√2(r + 1)η
∣∣∣k+2

αkr

(
1 +

2(r + 1)Mη2

α2
r

)k−1
.

Let T =

∣∣∣∣√2(r+1)η

αr

∣∣∣∣ (1 + 2(r+1)Mη2

α2
r

)
. Thus

∣∣∣∣∣
∞∑
k=s

bkζ
k

∣∣∣∣∣ ≤
∞∑
k=s

|bk|ζk

≤
(

M2(r + 1)η2

α2
r + 2(r + 1)Mη2

) ∞∑
k=s

T kζk.

Note that Tζ = O(|η|ζ+ |η|3ζ). From the limits of the integral, |η| ≤ h, and

we have |η|ζ + |η|3ζ ≤ (h+ h3)ζ = O
(
(mz0)

−1/8). Thus for large enough n,
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Tζ < 1/2, and(
M2(r + 1)η2

αkr + 2(r + 1)Mη2

) ∞∑
k=s

T kζk

=

(
M2(r + 1)η2

αkr + 2(r + 1)Mη2

)
T sζs

1− Tζ

<

(
M2(r + 1)η2

αkr + 2(r + 1)Mη2

)
2(Tζ)s

= 2M

∣∣∣∣∣
√

2(r + 1)η

αr

∣∣∣∣∣
s+2(

1 +
2(r + 1)Mη2

α2
r

)s−1
ζs

=
2M

α3s
r

∣∣∣√2(r + 1)η
∣∣∣s+2 (

α2
r + 2(r + 1)Mη2

)s−1
ζs.

Thus∫ h

−h
exp(−η2)

∞∑
k=s

bkζ
kdη

≤
∫ h

−h
exp(−η2)

(
2M

α3s
r

∣∣∣√2(r + 1)η
∣∣∣s+2 (

α2
r + 2(r + 1)Mη2

)s−1)
ζsdη

≤ ζs
∫ ∞
−∞

exp(−η2)
(

2M

α3s
r

∣∣∣√2(r + 1)η
∣∣∣s+2 (

α2
r + 2(r + 1)Mη2

)s−1)
dη

= O(ζs).

�

4. The Main Result

We are now prepared to prove the main result of this paper, Theo-
rem 1.1, to rigorously show the uniformity of the Hennecart approximation
for
{
n
m

}
≥r, as given in [11], and listed above as equation (1.5).

Proof of Theorem 1.1. From Lemma 2.1 we have equation (2.1) that we re-
state here:{

n

m

}
≥r
∼ n!Bm(z0, r)

2πm!zn0
√
mz0H(z0)

( ∞∑
k=0

(∫ ∞
−∞

exp(−η2)b2kdη
)
/(mz0)

k

)
.

(2.1)
In Lemma 3.3 we prove∫ h

−h
exp(−η2)

∞∑
k=s

bkζ
kdη = O(ζs)

for any h with h = Θ
(
m1/8

)
. Using the same arguments as at the end

of Lemma 2.1, the term in the integral is absolutely convergent so we can
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interchange the summation and integral. Also, while ζ and η are not inde-
pendent, only η contains θ and so we can treat ζ as a scalar and move it
outside the integration. This gives

∞∑
k=s

(∫ ∞
−∞

exp(−η2)bkdη
)
/(mz0)

k/2 = O
(

(mz0)
−s/2

)
.

Since b2k+1 only contains odd powers of η, the integral is 0 for odd k. With
a change of variables, we have

∞∑
k=t

(∫ ∞
−∞

exp(−η2)b2kdη
)
/(mz0)

k = O
(
(mz0)

−t) .
For t = 1, this summation is O

(
(mz0)

−1). Since limn,m→∞ z0 ≤ n/m with

m being O(n), we infer that (mz0)
−1 is O(n−1).

Given b0 = 1, and as
∫∞
−∞ exp(−η2)dη =

√
π, the result of computing one

term from the summation of (2.1) is

(4.1)

{
n

m

}
≥r
∼ n!Bm(z0, r)

2m!zn0
√
mπz0H(z0)

(
1 + O(n−1)

)
.

We recall that [11] used the following notations (given above immediately
following (1.5)), t0 = (n − mr)/m, φ(z) = −n ln z + m lnB(z, r) where

B(x, r) = exp(x) −
∑r−1

k=0 x
k/k!, and z0 is the positive real solution of the

equation z0B
′(z0, r)/B(z0, r) = n/m.

Applying Stirling’s approximation,

(n−mr)! ∼ ((n−mr)/e)n−mr
√

2π(n−mr)
to (4.1), we get:{

n

m

}
≥r
∼ n!Bm(z0, r)

2m!zn0
√
mπz0H(z0)

(
n−mr

e

)n−mr√
2π(n−mr) 1

(n−mr)!

=
n!

m!(n−mr)!

(
n−mr

e

)n−mr Bm(z0, r)

zn0

√
n−mr

2mz0H(z0)

=
n!

m!(n−mr)!

(
n−mr

e

)n−mr Bm(z0, r)

zn+1
0

√
z0t0

2H(z0)
.(4.2)

Note that

z0
m
φ
′′
(z0) =

n

mz0
+ z0

B(z0, r)B(z0, r − 2)−B2(z0, r − 1)

B2(z0, r)
,

and note that B′(z0, r) = B(z0, r − 1). This gives (z0/m)φ
′′
(z0) = 2H(z0),

and if we apply this substitution to (4.2) we get the Hennecart approxima-
tion (1.5):{

n

m

}
≥r
∼ n!

m!(n−mr)!

(
n−mr

e

)n−mr Bm(z0, r)

zn+1
0

√
mt0
φ′′(z0)

.
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The error term from applying Stirling’s approximation to (n − rm)! is
O((n − rm)−1), and this approximation is asymptotically tight as n → ∞
with n−rm > δ2n for δ2 a positive constant. The error term from truncating
the summation of (2.1) is O(n−1). Therefore, we can conclude that (1.5) is
uniform for all δ1n < m < (1−δ2)n/r as n→∞ with δ1 and δ2 any positive
constants. �

5. Conclusion

In summary, Hennecart [11] provides a very useful approximation for{
n
m

}
≥r, the r-associated Stirling numbers of the second kind, but does not

give a rigorous proof of the approximation. This paper develops and proves
an approximation for

{
n
m

}
≥r that is similar to the approximation of [19] for

regular Stirling numbers of the second kind. The proof that our approxima-
tion is uniform follows the general form of [19], but several additional lemmas
concerning the behavior of the tails of the Maclaurin series for exp(z), z ∈ C,
are needed to make that framework valid in the new context. Truncating
our new approximation leads to the Hennecart formula, and the error is well
controlled. The result is the needed proof that the Hennecart approximation
is uniform for any fixed integer r, and integer n and m with m = Θ(n). All
the uses of the Hennecart approximation that we have found in the literature
are covered by this range of the parameters. Therefore, our proof confirms
the validity of those applications.
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