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k-FORCING NUMBER FOR THE CARTESIAN PRODUCT

OF SOME GRAPHS

ZEINAB MONTAZERI AND NASRIN SOLTANKHAH

Abstract. k-Forcing is an iterative graph coloring process based on
a color change rule that describes how to color the vertices. k-Forcing
is a generalization of zero forcing that is useful in multiple scientific
branches, such as quantum control. In this paper, we investigate the
k-forcing number of the Cartesian product of some graphs. The main
contribution of this paper is to determine the k-forcing number of the
Cartesian product of two complete bipartite graphs using a new repre-
sentation of this graph.

1. Introduction

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. The
order of G, denoted |G|, is the number of vertices of G. Throughout this
paper, all graphs are simple, undirected, and have finite nonempty vertex
sets. The Cartesian product of two graphs G and H, denoted G�H, is the
graph with the vertex set VG × VH and two vertices (g1, h1) and (g2, h2)
are adjacent if and only if either g1 = g2 and h1h2 ∈ EH , or h1 = h2 and
g1g2 ∈ EG. For other graph-theoretic terminology, we refer to [10]. The
k-forcing number of a graph G was introduced in [1] to generalize the zero
forcing number of G. The k-forcing number is the minimum number of
vertices that need to be initially black so that all vertices eventually become
black during the discrete dynamical process described by the following color
change rule. Let k be a positive integer and G be a graph with each vertex
colored either white or black. If a black vertex of G has at most k white
neighbors, then each of its white neighbors becomes black. The initial set
of black vertices is called a k-forcing set if by iterating this process, all of
the vertices in G become black. The k-forcing number, denoted Fk(G), is
the minimum of |B| over all k-forcing sets B ⊆ VG. We will call the discrete
dynamical process of applying the color change rule to B and G the k-forcing
process.
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When k = 1, the k-forcing number is equivalent to the definition of the
zero forcing number. Zero forcing was introduced in [7] to bound the max-
imum nullity of the family of symmetric matrices associated with a graph.
This concept was also studied in quantum physics [4], theoretical computer
science [11], and other scientific branches [2, 3, 5, 8, 12]. The definition of
k-forcing number is more than just a generalization of the zero forcing num-
ber. It is related to some other graph parameters such as the k-domination
number and the k-power domination number [1, 6].

Checker Pattern. A graph can be formed from an m × n chessboard
if taking the squares as the vertices and two vertices (e.g., vi and vj) are
adjacent if a chess piece situated on one square (vi), can be transferred to
the other square (vj) using the chess rules. Rook’s graph is an example of
this kind of graph. The rook’s graph Rmn has mn squares as vertices, and
two vertices are adjacent if they are on the same row or column. In other
words, this graph describes all possible movements of a rook in an m × n
chessboard. We can see that rook’s graph is a Kn�Km graph, which is the
Cartesian product of two complete graphs. The square (i, j) indicates the
vertex located on the ith copy of Kn and the jth copy of Km at the same
time.

We introduced a similar representation for the Cartesian product of two
complete bipartite graphs in [9]. Actually, we introduced generalized rook’s
graph as a generalization of rook’s graph, corresponding to the graph Km,n�
Km′,n′ . Consider the graph Km,n�Km′,n′ . Form an (m′ + n′) × (m + n)
generalized chessboard from four smaller chessboards and denote them by
C1 to C4. We denote the m′×m chessboard in the left top corner by C1, the
m′×n chessboard in the right top corner by C2, the n′×n chessboard in the
right bottom by C3, and the n′×m chessboard in the left bottom by C4 (see
Figure 1). Hence, C2 and C4 indicate even chessboards and C1 and C3 odd
chessboards. The square (i, j) indicates the vertex that is in the ith copy
of Km,n and in the jth copy of Km′,n′ at the same time. The neighbors of
the vertex (i, j) where 1 ≤ i ≤ m′ and 1 ≤ j ≤ m are the vertices (i, j′) and
(i′, j) with m+ 1 ≤ j′ ≤ m+n and m′+ 1 ≤ i′ ≤ m′+n′. Furthermore, the
neighbors of the vertex (i, j) where m′+1 ≤ i ≤ m′+n′ and m+1 ≤ j ≤ m+n
are the vertices (i, j′) and (i′, j) with 1 ≤ j′ ≤ m and 1 ≤ i′ ≤ m′. Thus,
the neighbors of each vertex in an odd (even) chessboard are in the even
(odd) chessboard. Obviously, each smaller chessboard corresponds to an
independent set in the graph Km,n�Km′,n′ .

In [9], we computed the zero forcing number of Km,n�Km′,n′ and obtained
some bounds about this graph using checker pattern. The main contribution
of this paper is computing the k-forcing number of this graph.
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Figure 1. The location of chessboards in the generalized
chessboard corresponding to the Cartesian product of two
complete bipartite graphs.

2. Main results

In this section, we introduce two new concepts related to Fk(G), denoted
mFk(G) and F ∗k (G). Then, we determine Fk(G) and F ∗k (G), where G is
Kn�Km or Km,n�Km′,n′ .

For a graph G with k-forcing number Fk(G) (for k ≥ 1), define mFk(G) =
|G|−Fk(G). Notice that, mFk(G) is the number of white vertices in a black-
white coloring of G, where the set of black vertices is a minimum k-forcing
set of G.

We also introduce another graph parameter similar to Fk(G). Consider
the definition of Fk(G), we modify its color-change rule: every black vertex
with exactly k white neighbors will cause each white neighbor to become
black. We denote this parameter by F ∗k (G) and the set of initial black
vertices by k∗-forcing set. Obviously, each k∗-forcing set is a k-forcing set.
Thus for each graph G, Fk(G) ≤ F ∗k (G).

Now, we use the checker pattern to compute the k-forcing number of
some graphs. In the corresponding chessboard of the rook’s graph, the color
change rule of the k-forcing process is as follows. If a square (i, j) is black
and there exist at most k white squares in both the row i and the column
j, then (i, j) will force all these white squares at the same time.

Theorem 2.1. Suppose that m,n, k are integers with m,n > k ≥ 1. Then,

Fk(Kn�Km) = mn− k(m + n) + k2 + k.



92 ZEINAB MONTAZERI AND NASRIN SOLTANKHAH

Proof. Let B be a k-forcing set for Km�Kn that is demonstrated with black
squares in Figure 2. By applying the color change rule to B, all the white
squares will be colored black after two steps.

Figure 2. The corresponding m × n chessboard of graph
Kn�Km. The black squares representing the k-forcing set
B.

Then we have

Fk(Kn�Km) ≤ (m− k)(n− k) + k

= mn− k(m + n) + k2 + k.

On the other hand, we claim that mfk(Kn�Km) ≤ k(m+n−k−1). For a
contradiction, assume that mfk(Kn�Km) ≥ k(m+n−k−1)+1. Consider a
black-white coloring of the m×n chessboard corresponding to Kn�Km with
a set of black squares representing a minimum k-forcing set. Assume that
a black square (i, j) can force its white neighbors. Therefore, in row i and
column j, there exist at most k white squares altogether. Then, the other
white squares are out of these two lines. This means that there exist at least
k(m+n−k− 1) + 1−k white squares in a smaller chessboard, in which the
sum of its dimensions is m+ n− 2. The k-forcing process continues if there
exists at least one line with at most k white squares or two lines (one row
and one column) with at most k white squares together in this chessboard.
Hence, there exist at least k(m+n−k−1)+1−2k white squares in a smaller
chessboard, in which the sum of its dimensions is at most m + n − 3. By
continuing this procedure for t steps (where 1 ≤ t ≤ m+n−2k−3), we reach
a chessboard with the sum of its dimensions is at most m+n−1− t and has
at least k(m+n−k−1)+1−tk white squares. Thus, after m+n−2k−3 steps,
we reach a chessboard in which the sum of its dimensions is at most 2(k+1)
and has at least (k + 1)2 white squares. An i× (2k + 2− i) chessboard, for
1 ≤ i ≤ k, does not have (k+1)2 squares so we reach a (k+1)×(k+1) white
chessboard. It means the initial chessboard has k+1 rows and k+1 columns
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that have white squares in their crossing. Now, the color change rule cannot
change the color of these squares, which is a contradiction. Then,

mfk(Kn�Km) ≤ k(m + n− k − 1)

= k(m + n)− k2 − k.

Therefore, Fk(Kn�Km) ≥ mn−k(m+n)+k2+k, and the equality holds. �

Corollary 2.2. Let m,n, k be integers that m,n > k ≥ 1. Then,

F ∗k (Kn�Km) = Fk(Kn�Km) = mn− k(m + n) + k2 + k.

Proof. In each step of the k-forcing process on the k-forcing set B that is
shown in Figure 2, we have exactly k white squares that become black.
Thus, F ∗k (Kn�Km) ≤ mn − k(m + n) + k2 + k, and since Fk(G) ≤ F ∗k (G)
for every graph G, the equality holds. �

Here, we use the checker pattern of G = Km,n�Km′,n′ and determine the
k-forcing number of this graph. Consider the corresponding (m′+n′)×(m+
n) generalized chessboard and every Ci for i ∈ {1, 2, 3, 4}. Let all squares be
initially colored black or white. Then, in a k-forcing process of G, a black
square (i, j) of C1 (resp. C3) can force its white neighbors if there are at
most k white squares in the ith row of C2 (resp. C4) and jth column of C4)
(resp. C2). Moreover, a black square (i, j) of C2 (resp. C4) can force its
white neighbors if there are at most k white squares in the jth column of
C3 (resp. C1) and ith row of C1 (resp. C3).

Now, we present some lemmas needed to compute the k-forcing number
of Km,n�Km′,n′ .

Lemma 2.3. Consider the generalized chessboard, which demonstrates the
graph G = Km,n�Km′,n′. In every minimum k-forcing set of G, there exist
four lines in odd chessboards C1 and C3 (also in even chessboards C2 and
C4) that have at most 2k white squares together.

Proof. Consider a black-white coloring of the generalized chessboard corre-
sponding to graph Km,n�Km′,n′ with the black squares representing a min-
imum k-forcing set. Recall that the white squares in the odd chessboards
can be forced by the black squares in the even chessboards. Without loss of
generality, assume that the first color change in the odd chessboards done
by the vertex (i, j) of C2. So the ith row of C1 and the jth column of C3

have at most k white squares together. The number of white squares in odd
chessboards will decrease if all the color changes in these chessboards occur
only on the black squares of C2. Since the black squares form a minimum
k-forcing set of G, some color changes in the odd chessboards must be done
by some black squares of C4. Assume that the first black square of C4 that
forces some squares is the square (i′, j′). So the j′-th row of C3 and the i′-th
column of C1 have at most k white squares together. Hence, C1 and C3

have four lines that have at most 2k white squares together. By the same
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argument, the even chessboards have four lines that have at most 2k white
squares altogether. �

Lemma 2.4. Let m,n,m′, and n′ be integers greater than integer k ≥ 1.
Then,

mfk(Km,n�Km′,n′) ≤ 2k(m + n + m′ + n′)− 4k2 − 4k.

Proof. Consider a black-white coloring of the generalized chessboard cor-
respondent to Km,n�Km′,n′ with the black squares representing a mini-
mum k-forcing set. According to Lemma 2.3, eight lines (four rows and
four columns) have at most 4k white squares together. So the other white
squares are in four smaller chessboards ((m′−1)×(m−1), (m′−1)×(n−1),
(n′−1)×(n−1), (n′−1)×(m−1) chessboards). At most k white squares in
one line (a row or a column) or two lines (a row and a column) will be black
in each application of the color change rule. If at most one line (a row or
a column) of each Ci becomes black in each application of the color change
rule, then the number of white squares in the chessboard can be maximized.
Therefore, after the first step, the k-forcing process continues for each Ci,
i ∈ {1, 2, 3, 4}, independently. Hence, using Theorem 2.1 for each Ci, there
are at most 2k(m+n+m′+n′)− 4k2− 8k white squares in the chessboard
after the first step. Thus,

mfk(Km,n�Km′,n′) ≤ 2k(m + n + m′ + n′)− 4k2 − 4k.

�

Theorem 2.5. Let m,n,m′, and n′ be integers greater than the integer
k ≥ 1. Then,

Fk(Km,n�Km′,n′) = (m + n)(m′ + n′)− 2k(m + n + m′ + n′) + 4k2 + 4k.

Proof. By Lemma 2.4, we have

(m + n)(m′ + n′)− Fk(Km,n�Km′,n′) = mfk(Km,n�Km′,n′)

≤ 2k(m + n + m′ + n′)− 4k2 − 4k.

Thus, it suffices to prove that F (Km,n�Km′,n′) ≤ (m+n)(m′+n′)−2k(m+
n + m′ + n′) + 4k2 + 4k.

Without loss of generality, we assume that m ≥ n, m′ ≥ n′, and m ≥ m′.
We color the generalized chessboard of Km,n�Km′,n′ (where m ≥ n ≥ m′ ≥
n′) by using the pattern, which is given in Figure 3, and the other cases are
similar. It is easy to see that the black squares in this coloring demonstrate
a k-forcing set for the graph Km,n�Km′,n′ .

The number of black squares in C1, C2, C3, and C4 are k2 − k(m +
m′) + mm′, k2 − k(m′ + n) + nm′, (k + 1)2 + nn′ − k(n + n′) − 1, and
(k + 1)2 + mn′ − k(m + n′)− 1, respectively. Thus,

Fk(Km,n�Km′,n′) ≤ (m + n)(m′ + n′)− 2k(m + n + m′ + n′) + 4k2 + 4k,

and the equality holds. �
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Figure 3. The corresponding generalized chessboard of
graph Km,n�Km′,n′ (where m ≥ n ≥ m′ ≥ n′). The black
squares representing a k-forcing set.

To clarify how the k-forcing process starts and continues, we write two
steps of this process for the coloring pattern in Figure 3. We consider the
(m′+n′)× (m+n) generalized chessboard and x −→ (x1, x2, . . . , xk) means
the vertex x forces the vertices x1, x2, . . . , xk at the same time.

Step 1:

x(m′+n′),1 −→ (x(m′−k+1),1, . . . , xm′,1)
x(m′+n′),(m+n) −→ (x(m′−k+1),(m+n), . . . , xm′,(m+n))
x1,1 −→ (x1,(m+n−m′+1), . . . , x1,(m+n−m′+k)

x1,(m+n) −→ (x1,(m′−k+1), . . . , x1,m′)

x(m′+n′),(m′+1) −→ (x2,(m′+1), . . . , x(k+1),(m′+1))
x(m′+n′),(m′+2) −→ (x2,(m′+2), . . . , x(k+1),(m′+2)

...
x(m′+n′),(m+n−m′) −→ (x2,(m+n−m′), . . . , x(k+1),(m+n−m′))

Step 2:

x1,2 −→ (x(m′,2), . . . , x(m′+k),2)
x1,(m+n−1) −→ (x(m′+1),(m+n−1), . . . , x(m′+k),(m+n−1))
xm′,1 −→ (xm′,(m+n−k), . . . , xm′,(m+n−1))
xm′,(m+n) −→ (xm′,2, . . . , xm′,(k+1))
x(m′+n′),m′ −→ (x2,m′ , . . . , x(k+1),m′)
x(m′+n′),(m+n−m′+1) −→ (x2,(m+n−m′+1), . . . , x(k+1),(m+n−m′+1))
x1,(n′+1) −→ (x(m′+n′−k),(n′+1), . . . , x(m′+n′−1),(n′+1))
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Figure 4. The corresponding chessboard of K9,8�K7,6.

x1,(n′+2) −→ (x(m′+n′−k),(n′+2), . . . , x(m′+n′−1),(n′+2))
...

x1,(m+n−n′) −→ (x(m′+n′−k),(m+n−n′), . . . , x(m′+n′−1),(m+n−n′))

Corollary 2.6. Let m,n,m′, and n′ be integers greater than integer k ≥ 1.
Then,

F ∗k (Km,n�Km′,n′) = Fk(Km,n�Km′,n′)

= (m + n)(m′ + n′)− 2k(m + n + m′ + n′) + 4k2 + 4k.

Proof. Since for every graph G, F (G) ≤ F ∗(G), it is suffices to show

F ∗(Km,n�Km′,n′) ≤ F (Km,n�Km′,n′).

As seen in the above steps, for each application of the k-forcing process
for the coloring pattern of Theorem 2.5, we have exactly k white squares
that become black. Hence, F ∗k (Km,n�Km′,n′) ≤ Fk(Km,n�Km′,n′) and the
equality holds. �

Example 2.7. Figure 4 shows the corresponding generalized chessboard of
K9,8�K7,6. The black squares demonstrate a minimum 4-forcing set (also a
minimum 4∗-forcing set) which is obtained by Theorem 2.5 and the number
in each of the white squares indicate the step that it will become black.
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