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SOME COMBINATORIAL PROPERTIES OF HEXAGONAL

LATTICES

LILI MU

Abstract. In this paper, we consider the combinatorial properties of
the hexagonal lattice. Let e(n) be the number of n-element order ideals
in a hexagonal lattice. We give the enumeration of e(n) by showing a
bijection between the order ideals and Schröder paths. Further, we get
formulae for the flag f - and h-vectors of the hexagonal lattice.

1. Introduction

Hexagonal systems are very important in mathematics and chemistry [1,
10]. Various topological properties of hexagonal systems are extensively
studied by mathematicians and chemists. In this paper, we investigate some
combinatorial properties of hexagonal lattices.

Readers may find the poset notations and terminologies we use in this
paper from [9, Ch. 3]. Still, we wish to pick out some definitions to emphasize
that will frequently appear in what follows. Let P be a finite poset of rank
n with rank function ρ : P → [0, n]. An order ideal of P is a subset I of P
such that if A ∈ I and B ≤ A, then B ∈ I. If S ⊆ [0, n], then define the
subposet PS = {t ∈ P : ρ(t) ∈ S}, called the S-rank-selected subposet of P .

Now define f̃P (S) (or simply f̃(S)) to be the number of maximal chains of

PS . For instance, f̃(i) (short for f̃({i})) is the number of elements of P of

rank i. The function f̃ : 2[0,n] → Z is called the flag f -vector of P . Also
define h̃P (S) = h̃(S) by h̃(S) =

∑
T⊆S(−1)](S−T )f̃(T ). The function h̃ is

called the flag h-vector of P . These two functions f̃ and h̃ occur naturally
in diverse areas of mathematics and have been widely studied [3, 5, 6, 7, 8].

A lattice is a poset L for which every pair of elements has a least upper
bound and a greatest lower bound. Let Sq be the square lattice determined
by the set N × N (here N = {1, 2, . . .}) and the relation (a′, b′) ≤ (a, b)
if and only if a′ ≤ a and b′ ≤ b. Fig. 1 is the Hasse diagram of Sq. The
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square lattice has many interesting combinatorial properties. For example,
the number of n-element order ideals of Sq is the number of partitions of
n, and the flag h-vector of Sq has a nice combinatorial interpretation under
the theory of P -partitions [9]. Research on properties of Sq has drawn our
attention to study other lattices similar to Sq.

Let Hex be the Hexagonal lattice defined by its Hasse diagram, see Fig. 2
and [4]. Then Hex has a unique minimal element and in general, b(i+ 2)/2c
elements of rank i for i ≥ 0. Fig. 1 and Fig. 2 show that Hex is a kind of
“stretched” version of Sq. Since there has been a considerable amount of
research on Sq, this motivates further research on Hex. In [4], Propp inves-
tigated the generating function of the numbers of n-element order ideals of
Hex by using Ferrers diagrams. By rewriting the generating function, the
n-element order ideals of Hex can be enumerated by the partitions of n into
parts not congruent to 2 (mod 4). In this note, we will give another com-
binatorial interpretation of the n-element order ideals of Hex. Furthermore,
we will study the flag h-vector of Hex.

Figure 1. The square lattice Sq

Figure 2. The hexagonal lattice Hex

2. Main Results

We start our main work from enumerating the number of n-element order
ideals in Hex by showing a bijection between the order ideals and Schröder
paths. Commonly, a Schröder path is a lattice path in the xy-plane from
(0, 0) to (n, n), n ≥ 0, consisting of three kinds of elementary steps, (1, 0),
(0, 1), and (1, 1) without traveling above the line y = x. The number of
such paths are counted by the large Schröder numbers. Let p be a Schröder
path. Define its weight w(p) to be twice the area between p and the line
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y = x. We double the area so that w(p) will always be an integer. Let
w̄(p) = n2 − w(p) be the reversed weight of p.

Let e(n) be the number of n-element order ideals in Hex. Then e(n) can
be given by a bijection between the Schröder paths p with weights w̄(p) in
the xy-plane and the order ideals in Hex.
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Figure 3. Labelling of the xy-plane and Hex lattice

Theorem 2.1. Let e(n) and w̄(p) be defined as above. Then e(n) is the
number of Schröder paths with reversed weight w̄(p) = n in the xy-plane.

Proof. To define the bijection between Schröder paths with reversed weight
w̄(p) = n in the xy-plane and n-element order ideals of Hex, we first present
a labelling of the elements of Hex and some triangles between the line y = x
and the x-axis in the xy-plane. Label Hex by letting l(A) = i − 1 (or ∅) if
A ∈ Hex in level i ≥ 1 (or i = 0). Next we label the triangles in the xy-plane.
Consider the axis-parallel unit squares with the property that their vertices
are nonnegative integers and one of their diagonals lies on the line y = x− i,
where i = 0, 1, . . . , n − 1. The line y = x − i dissects each such square into
two triangles; we call the triangle above the line y = x − i an up-triangle,
and the triangle below the line a down-triangle. Let l(a) = 2n− 2i− 2 if a
is an up-triangle of the line y = x− i, 1 ≤ i ≤ n− 1. Let l(a) = 2n− 2i− 3
if a is a down-triangle of the line y = x − i, 0 ≤ i ≤ n − 2. Let l(a) = ∅ if
a is a down-triangle of the line y = x− n+ 1. See Fig. 3 as an example for
labelling. Then every element of the Hex lattice corresponds to one triangle
of the xy-plane by the same number of labels. It is easy to check that two
triangles a and b share a common side if and only if their corresponding
elements A and B in Hex are comparable.

We now show that every Schröder path of the xy-plane corresponds to an
ideal of Hex. Let p be a Schröder path from (0, 0) to (n, n). By the definition
of a Schröder path, p only contains northeast steps (0, 1), east steps (1, 0),
and north steps (1, 1). This means that if the triangle a is under path p,
then any triangle either adjacent to, or under a, must be under path p when
their labels are less than a. Hence, the elements in Hex corresponding to
the triangles under path p form an ideal. We show that every ideal of Hex
corresponds to a Schröder path of the xy-plane. Let I be an n-element ideal
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in Hex. Then define the path p as follows. The first step of p depends on
whether the element A corresponding to the leftmost down-triangle with
label 2n − 3 is in I or not. If A ∈ I, then the first step is northeast (0, 1).
Otherwise the first step is east (1, 0). The second step is decided by the
elements B and C corresponding to the leftmost triangles with label 2n− 4
and 2n − 5, respectively. If B ∈ I, then the second step is north (1, 1). If
B /∈ I but C ∈ I, then the second step is northeast (0, 1). If B /∈ I and
C /∈ I, then the second step is east (1, 0). Continuing this process we then
get a Schröder path from (0, 0) to (n, n). Hence, the number of elements in
the ideal in Hex is equal to the number of triangles under its corresponding
Schröder path p. Therefore, e(n) is equal to the number of Schröder paths
with reversed weight w̄(p) = n. �

Define f(Hex; q) =
∑∞

n=0 e(n)qn, and let rn(q) =
∑
qw̄(p), where the sum

is over all Schröder paths from (0, 0) to (n, n). Then by [2, Cor. 2], we have
the following result which also appears in [4, Thm. 2].

Theorem 2.2.

f(Hex; q) = lim
n→∞

rn(q) =

∞∏
n=1

1 + q2n−1

1− q2n
.

In the following, we consider the formula for the flag f - and h-vector of
Hex. For simplicity, we denote f̃Hex(S) and h̃Hex(S) by f̃(S) and h̃(S).
Throughout this paper we suppose that i1, . . . , it are integers, and 1 ≤ i1 <
i2 < · · · < it ≤ n.

Theorem 2.3. Let S = {i1, . . . , it} and ij = 2nj +mj, where mj ≤ 1. Then

f̃(S) = (n1 + 1)(n2 − n1 + 1)(n3 − n2 + 1) · · · (nt − nt−1 + 1),(2.1)

h̃(S) = n1(n2 − n1 − 1)(n3 − n2 − 1) · · · (nt − nt−1 − 1).

Proof. Assume that i1 = 2n1 +m1, where m1 ≤ 1. There are n1 +1 elements
with rank i1 in Hex, i.e., f̃(i1) = n1 + 1. The formula for f̃(S) is true for

t = 1. We use induction on t − 1, i.e., f̃(i1, . . . , it−1) = (n1 + 1)(n2 − n1 +
1) · · · (nt−1 − nt−2 + 1), and consider the induction step from t− 1 to t. For
every element A with rank it−1, there are nt − nt−1 + 1 elements with rank
it which are comparable with A. Hence, we get the formula for f̃(S) by the
induction hypothesis.

Since

h̃(i1) = f̃(i1)− 1 = n1,

and

h̃(i1, i2) = 1− f̃(i1)− f̃(i2) + f̃(i1, i2) = n1(n2 − n1 − 1),

it remains to show that the formula of h̃(S) holds for t > 2. Let S = S0 =
{i1, . . . , it} and Sk = {i1, . . . , it−k}, where t > 2. We use induction on k and
assume that
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h̃(Sk) = n1(n2 − n1 − 1)(n3 − n2 − 1) · · · (nt−k − nt−k−1 − 1),(2.2)

for k > 0. Then we need to prove that this equality is true for k = 0. By
the definition of the flag h-vector,

h̃(S) = (−1)t + (−1)t−1
t∑

j=1

f̃(ij) + (−1)t−2
∑
j<p

f̃(ij , ip) + · · ·+ f̃(S)

= −h̃(S1) + (−1)t−1f̃(it) + (−1)t−2
t−1∑
j=1

f̃(ij , it) + · · ·+ f̃(S).

If we could prove the following identity,

(−1)t−1f̃(it) + (−1)t−2
t−1∑
j=1

f̃(ij , it) + (−1)t−3
∑
j<p

f̃(ij , ip, it) + · · ·+ f̃(S)

(2.3)

= h̃(S1)(nt − nt−1),

then the theorem follows from the fact that

h̃(S) = −h̃(S1) + h̃(S1)(nt − nt−1) = h̃(S1)(nt − nt−1 − 1).

We next use induction on t to prove (2.3). Note that t > 2, so first
consider the case t = 3. The LHS of (2.3) becomes

f̃(i3)− f̃(i1, i3)− f̃(i2, i3) + f̃(i1, i2, i3) = n1(n2 − n1 − 1)(n3 − n2),

which is equal to the RHS of (2.3). Before considering the induction step,
we prove two necessary identities.

Claim 2.4.

f̃(it)− f̃(im, it) = −nm(nt − nm)

and

f̃(i1, . . . , ir, it)− f̃(i1, . . . , ir, it−1, it) = −f̃(i1, . . . , ir)(nt−nt−1)(nt−1−nr).

Proof of Claim 2.4. By (2.1), it is easy to check that

f̃(it)− f̃(im, it) = nt + 1− (nm + 1)(nt − nm + 1) = −nm(nt − nm)

and

f̃(i1, . . . , ir, it)− f̃(i1, . . . , ir, it−1, it)

= f̃(i1, . . . , ir)(nt − nr + 1)− f̃(i1, . . . , ir)(nt−1 − nr + 1)(nt − nt−1 + 1)

= −f̃(i1, . . . , ir)(nt − nt−1)(nt−1 − nr).

�
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By rearranging the sum on the LHS of (2.3) and using Claim 2.4, the LHS
of (2.3) equals

(−1)t−1f̃(it) + (−1)t−2
t−1∑
j=1

f̃(ij , it) + · · ·+ f̃(S)

= (−1)t−1
(
f̃(it)− f̃(it−1, it)

)
+ (−1)t−2

∑
j<t−1

(
f̃(ij , it)− f̃(ij , it−1, it)

)
+ · · ·+ (−1)

(
f̃(i1, . . . , it−2, it)− f̃(S)

)
= (−1)tnt−1(nt − nt−1) + (−1)t−1

∑
j<t−1

f̃(ij)(nt−1 − nj)(nt − nt−1)

+ · · ·+ f̃(i1, . . . , it−2)(nt−1 − nt−2)(nt − nt−1)

= (nt − nt−1)((−1)tnt−1 + (−1)t−1
∑

j<t−1

f̃(ij)(nt−1 − nj)

+ · · ·+ f̃(i1, . . . , it−2)(nt−1 − nt−2)).

Hence the final step is to prove the following identity:

(−1)tnt−1 + (−1)t−1
∑

j<t−1

f̃(ij)(nt−1 − nj) + · · ·(2.4)

+ f̃(i1, . . . , it−2)(nt−1 − nt−2) = h̃(S1).

By simplifying the LHS of (2.4), it is not difficult to get

nt−1h̃(S2) + (−1)t−2
∑

j<t−1

f̃(ij)nj + (−1)t−3
∑

j<p<t−1

f̃(ij , ip)np

+ · · ·+ (−1)f̃(i1, . . . , it−2)nt−2.

We will use the following claim to finish the proof of (2.4).

Claim 2.5.

(−1)t−1
∑

j<t−1

f̃(ij)nj + (−1)t−2
∑

j<p<t−1

f̃(ij , ip)np + · · ·

+ f̃(i1, . . . , it−2)nt−2 = h̃(S2)(nt−2 + 1).

Proof of Claim 2.5. We use induction on t. As above, we only need to con-
sider t > 2. It is not difficult to check that the case when t = 3 is true. For
the induction step, assume that the result is true for t− 1, i.e.,

(−1)t−2
∑

j<t−2

f̃(ij)nj + (−1)t−3
∑

j<p<t−2

f̃(ij , ip)np + · · ·

+ f̃(i1, . . . , it−3)nt−3 = h̃(S3)(nt−3 + 1).
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Then

(−1)t−1
∑

j<t−1

f̃(ij)nj + (−1)t−2
∑

j<p<t−1

f̃(ij , ip)np + · · ·

+ f̃(i1, . . . , it−2)nt−2 = −h̃(S3)(nt−3 + 1)+

nt−2

(−1)t−1f̃(it−2) + (−1)t−2
∑

j<t−2

f̃(ij , it−2) + · · ·+ f̃(i1, . . . , it−2)

 .

Applying the induction hypothesis on (2.3), we have

(−1)t−3f̃(it−2) + (−1)t−4
∑

j<t−2

f̃(ij , it−2) + · · ·+ f̃(i1, . . . , it−2)

= h̃(S3)(nt−2 − nt−3).

Then

(−1)t−1
∑

j<t−1

f̃(ij)nj + (−1)t−2
∑

j<p<t−1

f̃(ij , ip)np + · · ·

+ f̃(i1, . . . , it−2)nt−2

= −h̃(S3)(nt−3 + 1) + nt−2h̃(S3)(nt−2 − nt−3)

= h̃(S2)(nt−2 + 1),

where the last equality follows from (2.2). �

From Claim 2.5, the RHS of (2.4) equals

nt−1h̃(S2)− h̃(S2)(nt−2 + 1) = h̃(S2)(nt−1 − nt−2 − 1) = h̃(S1).

This completes the proof. �

The formula for the values of the flag h-vector shows that these values
are no longer necessarily nonnegative. Nevertheless, we can determine their
signs from the formula.

Corollary 2.6. Let S = {i1, . . . , it} and ij = 2nj + mj, where mj ≤ 1.

Suppose that n is the number of pairs satisfying ni = nj. Then h̃(S) ≥ 0 if

n is even and h̃(S) ≤ 0 if n is odd.

3. Remark

As previously mentioned, Hex is a kind of stretched version of Sq. What
if we “stretch” Hex again, i.e., we put a single vertex on each vertical line of
Hex? Furthermore, what if we put k vertices on each vertical line of Hex?
Denote such a lattice by H ′. We can also consider the flag f - and h- vectors
in the new lattice H ′. Then we have the same result for the new lattice H ′.
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Theorem 3.1. Let S = {i1, . . . , it} and ij = (k + 2)nj + mj, where mj ≤
k + 1. Then

f̃H′(S) = (n1 + 1)(n2 − n1 + 1)(n3 − n2 + 1) · · · (nt − nt−1 + 1),

h̃H′(S) = n1(n2 − n1 − 1)(n3 − n2 − 1) · · · (nt − nt−1 − 1).

From the above theorem, it is easy to determine the sign of the flag h-
vectors of H ′.

Corollary 3.2. Let S = {i1, . . . , it} and ij = (k + 2)nj + mj, where mj ≤
k + 1. Suppose that n is the number of pairs satisfying ni = nj. Then

h̃H′(S) ≥ 0 if n is even and h̃H′(S) ≤ 0 if n is odd.
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