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HYPERBALL PACKINGS RELATED TO TRUNCATED

CUBE AND OCTAHEDRON TILINGS IN HYPERBOLIC

SPACE

JENŐ SZIRMAI

Abstract. In this paper, we study congruent and noncongruent hyper-
ball (hypersphere) packings to the truncated regular cube and octahe-
dron tilings. These are derived from the Coxeter truncated orthoscheme
tilings {4, 3, p} (6 < p ∈ N) and {3, 4, p} (4 < p ∈ N), respectively,
by their Coxeter reflection groups in hyperbolic space H3. We deter-
mine the densest hyperball packing arrangement and its density with
congruent and noncongruent hyperballs.

We prove that the locally densest (noncongruent half) hyperball con-
figuration belongs to the truncated cube with a density of approximately
0.86145 if we allow 6 < p ∈ R for the dihedral angle 2π/p. This local
density is larger than the Böröczky–Florian density upper bound for
balls and horoballs. But our locally optimal noncongruent hyperball
packing configuration cannot be extended to the entire hyperbolic space
H3. We determine the extendable densest noncongruent hyperball pack-
ing arrangement to the truncated cube tiling {4, 3, p = 7} with a density
of approximately 0.84931.

1. Introduction

In n-dimensional hyperbolic space Hn (n ≥ 2), there are 3 kinds of “balls
(spheres)”: the classical balls (spheres), horoballs (horospheres) and hyper-
balls (hyperspheres).

In this paper we consider the hyperballs and their packings in 3-dimen-
sional hyperbolic space H3. First we briefly survey previous results related
to this topic.

In the hyperbolic plane H2, I. Vermes proved the universal upper bound
of the congruent hypercycle packing density is 3/π in [21]. He initiated
this topic and also determined the universal lower bound of the congruent
hypercycle covering density is equal to equal to

√
12/π in [22],

In [13] and [14] we analysed regular prism tilings (simple truncated Cox-
eter orthoscheme tilings) and the corresponding optimal hyperball packings
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in Hn (n = 3, 4, 5). Recently (to the best of author’s knowledge) these have
been the densest packings with congruent hyperballs.

In [15] we studied the n-dimensional hyperbolic regular prism honeycombs
and the corresponding coverings by congruent hyperballs where we deter-
mined their least dense covering densities. Furthermore, we formulated con-
jectures for the candidates of the least dense covering by congruent hyper-
balls in the 3 and 5-dimensional hyperbolic space.

In [18] we discussed congruent and noncongruent hyperball packings to the
truncated regular tetrahedron tilings. These are derived from the truncated
Coxeter simplex tilings {3, 3, p} (7 ≤ p ∈ N) and {3, 3, 3, 3, 5} in 3 and
5-dimensional hyperbolic space, respectively. We determined the densest
packing arrangement and its density with congruent hyperballs in H5 and
determined the smallest density upper bounds of noncongruent hyperball
packings generated by the above tilings.

In [17] we deal with such packings by horoballs and hyperballs (briefly
hyp-hor packings) in Hn (n = 2, 3) which form a new class of classical
packing problems.

In [16] we studied a large class of hyperball packings in H3 that can be
derived from truncated tetrahedron tilings (see e.g. [12]). We proved that if
the truncated tetrahedron is regular {3, 3, p}, but we also allow 6 < p ∈ R,
then the density of the locally densest packing is approximately 0.86338.
This is larger than the Böröczky–Florian density upper bound but our lo-
cally optimal hyperball packing configuration cannot be extended to the
entirety of H3. However, we described a hyperball packing construction by
the regular truncated tetrahedron tiling under the extended Coxeter group
{3, 3, 7} with maximal density of approximately 0.82251.

In [19] we developed a decomposition algorithm that for each saturated
hyperball packing provides a decomposition of H3 into truncated tetrahedra.
Therefore, to get a density upper bound for hyperball packings, it is sufficient
to determine the density upper bound of hyperball packings in truncated
simplices.

In [20] we proved that the density upper bound of the saturated congru-
ent hyperball packings, related to the corresponding truncated tetrahedron
cells, is locally realized in a regular truncated tetrahedron with a density of
approximately 0.86338, but then 6 < p ∈ R is allowed as well. Furthermore,
we proved that the density of locally optimal congruent hyperball arrange-
ment in a regular truncated tetrahedron is not a monotonically increasing
function of the height of the corresponding optimal hyperball, contrary to
the ball radius in the ball packings.

Now, we consider hyperball packings related to truncated regular cube
and octahedron tilings that are derived from the Coxeter truncated or-
thoscheme tilings {4, 3, p} (6 < p ∈ N) and {3, 4, p} (4 < p ∈ N) in hy-
perbolic space H3. If we allow p ∈ R as well, then the locally densest
(noncongruent half) hyperball configuration belongs to the truncated cube
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with a density of approximately 0.86145. This is larger than the Böröczky–
Florian density upper bound for balls and horoballs, but our locally optimal
noncongruent hyperball packing configuration cannot be extended to the
entire H3. We determine the extendable densest noncongruent hyperball
packing arrangement related to the truncated cube tiling {4, 3, 7} with a
density of approximately 0.84931.

The main results are summarized in Theorem 3.2, 3.6–3.9, and Corollary
3.3 for truncated cube tilings, and in Theorem 3.12 and Corollary 3.13 for
truncated octahedron tilings.

2. Basic notions

We use for H3 (and analogously for Hn, n ≥ 3) the projective model in the
Lorentz space E1,3 that denotes the real vector space V4 equipped with the
bilinear form of signature (1, 3), 〈x,y〉 = −x0y0 +x1y1 +x2y2 +x3y3, where
the nonzero vectors x = (x0, x1, x2, x3) ∈ V4 and y = (y0, y1, y2, y3) ∈ V4

are determined up to real factors, for representing points of P3(R). Then
H3 can be interpreted as the interior of the conical quadric Q = {(x) ∈
P3|〈x, x〉 = 0} =: ∂H3 in the real projective space P3(V4,V4) (here V4 is
the dual space of V4). Namely, for an interior point y there holds 〈y, y〉 <
0. Restricting this model to the hyperplane x0 = 1, we obtain the usual
collinear, i.e., Beltrami–Cayley–Klein model also in Euclidean space, as we
shall use later on.

Points of the boundary ∂H3 in P3 are called points at infinity, or at the
absolute of H3. Points lying outside ∂H3 are said to be outer points of H3

relative to Q. Let (x) ∈ P3, a point (y) ∈ P3 is said to be conjugate to (x)
relative to Q if 〈x, y〉 = 0 holds. The set of all points which are conjugate to
(x) form a projective (polar) hyperplane pol(x) := {(y) ∈ P3|〈x, y〉 = 0}.
Thus, the quadric Q induces a bijection (linear polarity V4 → V4) from the
points of P3 onto their polar hyperplanes.

Point X(x) and hyperplane α(a) = {(x0, x1, x2, x3)|
∑3

i=0 x
iai = 0} are

incident if xa = 0 (x ∈ V4 \ {0}, a ∈ V 4 \ {0}). Or, with the above scalar
product, 〈x, a〉 = 0 with the pole (a) of plane (a)

The hypersphere (or equidistant surface) is a quadratic surface at a con-
stant distance from a plane (base plane) in both halfspaces. The infinite
body bounded by the hypersphere, containing the base plane, is called a
hyperball.

The half hyperball (i.e., the part of the hyperball lying on one side of its
base plane) with distance h to a base plane β is denoted by +Hh. The
volume of the intersection of +Hh(A) and the right prism with base a 2-
polygon A ⊂ β can be determined by the classical formula of J. Bolyai
[2].

(2.1) Vol(+Hh(A)) =
1

4
Area(A)

[
k sinh

2h

k
+ 2h

]
.
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The constant k =
√
−1/K is the natural length unit in H3, where K denotes

the constant negative sectional curvature. In the following we may assume
that k = 1.

2.1. Complete orthoschemes. The orthoschemes in H3 are bounded by 4
(hyper)planes H0, H1, . . . ,H3 such that H i ⊥ Hj for j 6= i−1, i, i+ 1. For
a usual (classical) orthoscheme we denote the face opposite to the vertex
Ai by H i (0 ≤ i ≤ 3). An orthoscheme O has 3 dihedral angles which
are not right angles. Let βij denote the dihedral angle of O between the
faces H i and Hj . Then we have βij = π/2, if 0 ≤ i < j − 1 ≤ 3. The 3
remaining dihedral angles βi,i+1, (0 ≤ i ≤ 2) are called the essential angles
of O. Geometrically, complete orthoschemes of degree m can be described
as follows:

(1) For m = 0, they coincide with the class of classical orthoschemes
introduced by Schläfli. The initial and final vertices, A0 and A3 of
the orthogonal edge-path AiAi+1, i = 0, 1, 2, are called principal
vertices of the orthoscheme.

(2) A complete orthoscheme of degree m = 1 can be interpreted as
an orthoscheme with one outer principal vertex, say A0, which is
truncated by its polar plane pol(A0) (see Fig. 1 and 3).

(3) A complete orthoscheme of degree m = 2 can be interpreted as
an orthoscheme with two outer principal vertices, A0, A3, which is
truncated by its polar planes pol(A0) and pol(A3). In this case, the
orthoscheme is called doubly truncated. We distinguish two different
types of orthoschemes but will not enter into the details (see [7], [8]).

The ordered set {k01, k12, k23} of natural numbers, bigger than 2, is said
to be the Coxeter–Schläfli symbol of the simplex tiling P generated by the
Coxeter reflection group of O. To every scheme there is a corresponding
symmetric matrix (bij) of size 4×4 where bii = 1 and, for i 6= j ∈ {0, 1, 2, 3},
bij equals − cos(π/kij) with all angles between the facets i,j of O.

For example, (bij) below is the so called Coxeter–Schläfli matrix of the
orthoscheme O in hyperbolic space H3 with parameters k01 = u, k12 = v,
k23 = w:

(2.2) (bij) = 〈bi, bj〉 :=


1 − cos πu 0 0

− cos πu 1 − cos πv 0
0 − cos πv 1 − cos π

w
0 0 − cos π

w 1

 .

In general, the complete Coxeter orthoschemes were classified by Im Hof in
[7] by generalizing the method of Coxeter and Böhm, who showed that they
exist only for dimensions up to 9. From this classification, it follows that
the complete orthoschemes of degree m = 1 exist up to 5 dimensions.

In this paper we consider some tilings generated by Coxeter reflection
groups of orthoschemes of degree 1, where the initial vertex A0 is an outer
point regarding the quadric Q. That is, we allow w = p > 6 for the truncated
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cube or w = p > 4 for the truncated octahedron, but we examine p ∈ R as
well.

In hyperbolic space H3 it can be seen (Fig. 1) that if O = A1A2A3 P1P2P3

is a complete orthoscheme with degree m = 1 where A0 is an outer vertex
of H3, then the points P1, P2, P3 lie on the polar hyperplane a0 of A0 (see
Fig. 1). The images of O under reflections on its side facets generate a tiling

A0

b
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23
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B
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a

A
0

0

a. b.

Figure 1. a. A 3-dimensional complete orthoscheme of de-
gree m = 1 (simple frustum or truncated orthoscheme) with
outer vertex A0. This orthoscheme is truncated by its polar
plane a0 = pol(A0). b. Two reflected simple orthoschemes for
a hyperball with base plane a0 = P1P2P3.

in H3. Our polyhedron A1A2A3P1P2P3 is a simple truncated orthoscheme
with outer vertex A0 (see Fig. 1) whose volume can be calculated by the
following theorem of R. Kellerhals [8]:

Theorem 2.1. The volume of a three-dimensional hyperbolic complete or-
thoscheme O is expressed with the essential angles β01, β12, β23, (0 ≤ βij ≤
π/2) (Fig. 1) in the following form:

Vol3(O) =
1

4
{L(β01 + θ)− L(β01 − θ) + L(

π

2
+ β12 − θ)+

+ L(
π

2
− β12 − θ) + L(β23 + θ)− L(β23 − θ) + 2L(

π

2
− θ)},(2.3)

where θ ∈ [0, π/2) is defined by the following formula:

tan(θ) =

√
cos2 β12 − sin2 β01 sin2 β23

cosβ01 cosβ23

and where L(x) := −
∫ x
0 log |2 sin t| dt denotes the Lobachevsky function (in

J. Milnor’s interpretation).

In (2.2) we have: β01 = π/u, β12 = π/v, β23 = π/w .
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3. On hyperball packings to truncated cube and octahedron
tilings

Similar to the truncated tetrahedral cases (see [18], [19]) it is interesting
to examine and to construct at least locally optimal congruent and non-
congruent hyperball packings and coverings relating to suitable truncated
polyhedron tilings in 3- and higher dimensions as well.

In this paper we consider the 3-dimensional regular truncated cube and oc-
tahedron tilings that are derived from the Coxeter truncated simplex tilings
{4, 3, p} for 6 < p ∈ N and {3, 4, p} for 4 < p ∈ N, extended to p ∈ R as
well.

3.1. Packings with congruent hyperballs to truncated cube tilings
{4, 3, p}. We consider a truncated cube tiling T (Cr(p)) with Schläfli symbol
{4, 3, p} (7 ≤ p ∈ N). These can be considered by duality as Coxeter tilings
{p, 3, 4} and in a complete analogy of p-gonal prism tiling as Fig. 1 shows
(compare also with Fig. 2.a.b). One tile of Cr(p) (a truncated cube) is
illustrated in Fig. 2.a.b which can also be derived by truncation from a
regular Euclidean cube centred at the origin with vertices Ci (i ∈ {1, . . . , 8}).
The truncating planes γi are the polar planes of outer vertices Ci that can be
the ultraparallel base planes of hyperballs Hsi (i ∈ {1, . . . , 8}) with height
s. The nonorthogonal dihedral angles of Cr(p) are equal to 2π/p. The
distances between two base planes are equal to d(γi, γj) =: eij = 2h(p)
(i < j, i, j ∈ {1, . . . 8}) (d is the hyperbolic distance function). Therefore
the height of a hyperball is at most h(p) (see Fig. 2.a.b). It is clear, that in
the congruent, densest case, the heights of the hyperballs are h(p), i.e., the
neighbouring hyperballs touch each other.

We consider a saturated congruent hyperball packing Bh(p) of hyperballs

Hh(p)i related to the above truncated cube {4, 3, p} for 6 < p ∈ R as well.
The volume of the truncated cube Cr(p) is denoted by Vol(Cr(p)) and we
introduce the local density function δ(Cr(h(p))) related to Cr(p):

Definition 3.1.

δ(Cr(h(p))) :=

∑8
i=1 Vol(+Hh(p)i ∩ Cr(p))

Vol(Cr(p))
=

8 ·Vol(+Hh(p)i ∩ Cr(p))
Vol(Cr(p))

.

If the parameter p is given, then the common length of the common
perpendiculars 2h(p) = eij (i < j, i, j ∈ {1, . . . , 8}) can be determined by
the machinery of projective geometry (see e.g. [10]).

(3.1) coshh(p) = coshA1P1 =
−〈a1,p1〉√
〈a1,a1〉〈p1,p1〉

=

√
1− a201

a00a11
.

where aij (i, j = 0, 1, 2, 3)) is the inverse of the corresponding Coxeter–
Schläfli matrix (see (2.2), where u = 4, v = 3, and w = p) of the orthoscheme
P1P2P3A1A2A3 (see Fig. 2.b).
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Figure 2. a. Regular truncated cube. b. Truncated cube
with complete orthoscheme of degree m = 1 (simple frustum
orthoscheme) with outer vertex C2 = A0. This orthoscheme
is truncated by its polar plane γ2 = pol(C2).

The volume Vol(Cr(p)) can be calculated by Theorem 2.1 and the vol-
ume of the hyperball pieces lying in Cr(p) can be computed by the formula
(2.1) for each given parameter p, therefore the maximal height h(p) of the

congruent hyperballs and the
∑8

i=1 Vol(+Hh(p)i ∩Cr(p))) depend only on the
parameter p of the truncated regular cube Cr(p).

Thus, the density δ(Cr(h(p))) depends only on the parameter p for 6 <
p ∈ R.

Finally, we obtain after careful analysis of the smooth density function
(see [16] and Fig. 3) the following

Theorem 3.2. The density function δ(Cr(h(p))) (p ∈ (6,∞)) attains its
maximum at popt ≈ 6.33962. It is strictly increasing on the interval (6, popt)
and strictly decreasing on the interval (popt,∞). Moreover, the optimal den-
sity δopt(Cr(h(popt))) ≈ 0.70427, however these hyperball packing configura-
tions are only locally optimal and cannot be extended to the entirety of H3

(see Fig. 3).

Corollary 3.3. The density function δ(Cr(h(p))) (7 ≤ p ∈ N) attains its

maximum at the parameter p = 7. The congruent hyperball packing Bh(7)
related to the truncated cube tilings can be extended to the entire H3. The
maximal density is δ(Cr(h(7))) ≈ 0.68839.

Remark: We note here that these results coincide with the hyperball pack-
ings to the regular prism tilings in H3 with Schläfli symbols {p, 3, 4} which
are discussed in [13].

For completeness, in the following table we summarize the data of the
hyperball packings for some parameters p (7 ≥ p ∈ N).



HYPERBALL PACKINGS TO SOME TILINGS 49

a. b.

Figure 3. a. Density function δ(Cr(h(p))), (p ∈ [6, 7]).
b. Density function δ(Cr(h(p))), (p ∈ [7, 10]).

Table 1, {4, 3, p}
p h(p) Vol(Cr)/48 Vol(+Hh(p) ∩ Cr(p))/6 δopt(Cr(h(p)))

7 1.03799291 0.16297337 0.11218983 0.68839367

8 0.76428546 0.18789693 0.12193107 0.64892530

9 0.62216938 0.20295023 0.12372607 0.60963750
...

...
...

...
...

20 0.23086908 0.24206876 0.08613744 0.35583872
...

...
...

...
...

50 0.08938872 0.24956032 0.04129724 0.16547999
...

...
...

...
...

100 0.04449475 0.25061105 0.02191401 0.08744233

p→∞ 0 0.25096025 0 0

3.2. Packings with noncongruent hyperballs in truncated cube. We
consider, similar to the above subsection, a truncated cube tiling T (Cr(p))
with Schläfli symbol {4, 3, p} (7 ≤ p ∈ N) and we will use the same notation
(see Fig. 2.a.b).

The distances of the plane γi (i ∈ {1, . . . 8}) from rectangular octagon
faces of the cube Cr(p) whose planes do not contain the vertex Ci are equal.
This distance is denoted by w(p) and can be calculated by an analogous
formula to (3.1) (see Fig. 2.a.b).

We would like to construct noncongruent hyperball packings to T (Cr(p))
tilings. Therefore the hyperballs have to satisfy the following requirements:

(1) The base plane γi of the hyperball Hhi(p)i (with height hi(p)) is the
polar plane of the vertex Ci (see Fig. 2).

(2) The hyperballs have disjoint interiors.
(3) For the above distances, w(p) ≥ hi(p) holds.
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If the hyperballs satisfy the above requirements then we obtain congruent or
noncongruent hyperball packings in the cube Cr(p) and if we extend them
by the structure of the considered Coxeter cube tilings T (Cr(p)), then we
get hyperball packings B(p) in hyperbolic 3-space.

We introduce the local density function δ(Cr(p)) related to above pack-
ings:

Definition 3.5.

δ(Cr(p)) :=

∑8
i=1 Vol(+Hhi(p)i ∩ Cr(p))

Vol(Cr(p))
.

We will use that if a packing is locally optimal (i.e., its density is locally
maximal), then it is locally stable (i.e., each hyperball is fixed by the other
ones so that no hyperball of packing can be moved alone without overlapping
another one, or by other requirements of the tiling).

To get the locally optimal (noncongruent half) hyperball packing arrange-
ment for packing a fixed truncated cube, we distinguish three essential cases:

Case 1. We set up from the optimal congruent half hyperball arrangement
(see former subsection), where the edge adjacent congruent hyperballs touch
each other at the “edge midpoints” of Cr(p).

We choose two opposite hyperballs (e.g., Hh(p)2 and Hh(p)8 ) and blow up

these hyperballs keeping the hyperballs Hhi(p)i (p) (i ∈ {1, 3, 4, 5, 6, 7}) tan-
gent to them upto their heigths h2(p) = h8(p) = min{2h(p), w(p), t(p), s(p)}
where s(p) = d(A2, P2) and t(p) = d(A3, P3) (see Fig. 2.a.b). During this

expansion the heights of hyperballs Hhj(p)j (j = 2, 8) are hj(p) = h(p) + x

where x ∈ [0, min{2h(p), w(p), t(p)} − h(p)]. The heights of further hyper-
balls are h1(p) = h3(p) = h4(p) = h5(p) = h6(p) = h7(p) = h(p) − x. (If
x = 0 then the hyperballs are congruent.)

We extend this procedure to images of the hyperballs or half hyperballs

+Hhi(p)i (i ∈ {1, . . . , 8}) under the considered Coxeter reflection group and
obtain noncongruent hyperball arrangements Bx1 (p).

Applying Definition 3.5 we obtain the density function δ1(Cr(x, p)):

(3.2) δ1(Cr(x, p)) =
2 ·Vol(+Hh(p)+x ∩ Cr(p)) + 6 ·Vol(+Hh(p)−x ∩ Cr(p))

Vol(Cr(p))
,

where x ∈ [0,min{2h(p), w(p), t(p)} − h(p)].

Case 2. Now, we start from the noncongruent ball arrangement where two
opposite “larger hyperballs” with base planes γ2 and γ8 are tangent at the
centre A3 of the cube, while hyperballs at the remaining six vertices touch
the corresponding “larger” hyperball. The point of tangency of the above
two larger hyperballs on line C2C8 is denoted by A3 = I(0). We blow

up the hyperball Ht(p)2 with base plane γ2 keeping the hyperballs Hhi(p)i

(i = 1, 3, 6, 8) tangent to it while the hyperballs Hhi(p)i (i = 4, 5, 7) are blown

up to touch the hyperball Hh8(p)8 . The point of tangency of the hyperballs
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a. b.

Figure 4. a. Density function δ1(x, 7)) (x ∈ [0, t(7) −
h(7)], 7). If x = 0 then the density is approximately 0.68839.
The density in the endpoint of the above interval is approxi-
mately 0.64805 less than before. b. The congruent hyperball
arrangement with the first data.

Hh2(p)2 and Hh8(p)8 along the line C2C8 is denoted by I(x), where x is the
hyperbolic distance between A3 = I(0) and I(x). During this expansion the

height of hyperball Hh2(p) is h2(p) = t(p) + x where x ∈ [0,min{2h(p) −
t(0), t(p), w(p) − t(p), s(p) − h(p)}. We note here, that w(p) ≥ 2h(p) and

t(p) ≥ s(p) ≥ h(p). Therefore the hyperball Hh2(p)2 can be blown up at
most to the hypersphere touching the planes γi (i = 1, 2, 3, 4). We extend

this procedure to images of the hyperballs Hhi(p)i (i ∈ {1, . . . , 8}) by the
considered Coxeter group and obtain noncongruent hyperball arrangements
Bx2 (p). Applying Definition 3.5 we obtain the density function δ2(Cr(x, p)):

(3.3)

δ2(Cr(x, p)) = (Vol(+Ht(p)+x ∩ Cr(p))+

+ Vol(+Ht(p)−x ∩ Cr(p)) + 3 ·Vol(+H2h(p)−t(p)−x ∩ Cr(p))+

+3 ·Vol(+H2h(p)−t(p)+x ∩ Cr(p)))/Vol(Cr(p)),

where x ∈ [0,min{2h(p)− t(0), t(p), w(p)− t(p), s(p)− h(p)}.
Case 3. We set up from the congruent ball arrangement (see the previous
section) where the neighbouring congruent hyperballs touch each other at
the “midpoints” of the edges of Cr(p). We distinguish two different classes
of hyperballs related to two complementary tetrahedral sublattices of cube

vertices. E.g. the hyperballs Hhi(p)i (i ∈ {1, 3, 6, 8}) form the first class and
the remaining hyperballs form the second class. We blow up the hyperballs
of the first class keeping the remaining hyperballs tangent to them up to their
heights h1(p) = h3(p) = h4(p) = h7(p) = min{2h(p), s(p)} (see Fig. 2.b).
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a. b.

Figure 5. a. The density function δ2(x, 7)) (x ∈ [0, w(7) −
t(7)], 7). If x = w(7) − t(7) ≈ 0.40530 then the density is
approximately 0.81542. The density in the starting point is
approximately 0.64805 less than before. b. The noncongruent
hyperball arrangement with the first data.

During this expansion, the heights of hyperballs Hhi(p)i (i ∈ {1, 3, 6, 8}) are

hi(p) = h(p) + x and Hhj(p)j (j ∈ {2, 4, 5, 7}) are hj(p) = h(p) − x, where

x ∈ [0,min{h(p), s(p)− h(p)].

We extend this procedure to images of Hhi(p)i (i ∈ {1, . . . , 8}) by the
considered Coxeter group and obtain noncongruent hyperball arrangements
Bx3 (p). Applying Definition 3.5 we get the density function δ3(Cr(x, p)):

(3.4) δ3(Cr(x, p)) =
4 Vol(+Hh(p)+x ∩ Cr(p)) + 4 ·Vol(+Hh(p)−x ∩ Cr(p))

Vol(Cr(p))
,

where x ∈ [0,min{h(p), s(p)− h(p)].
The main problem is: what is the maximum of the above density functions

δi(Cr(x, p)) (i ∈ {1, 2, 3}) for given integer parameters p ≥ 7, where x ∈ R
belongs to the corresponding intervals during these expansion processes?

3.2.1. Computations. Every 3-dimensional hyperbolic truncated cube can
be derived from a 3-dimensional regular Euclidean cube (see Fig. 2). We
introduce a projective coordinate system (see Section 2 and Fig. 2.a) and
a unit sphere S2 centred at the origin which is interpreted as the ideal

boundary of H3
in Beltrami–Cayley–Klein’s ball model.

Besides the computations for (2.2), the next ones will also be important
for the visualization.

Now, we consider a 3-dimensional regular Euclidean cube centred at the
origin with outer vertices regarding the Beltrami–Cayley–Klein’s ball model.
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The projective coordinates of the vertices of this cube are
(3.5)

C1 = (1, y,−y,−y); C2 = (1, y, y,−y); B3 = (1,−y, y,−y);

BC = (1,−y,−y,−y); C5 = (1, y,−y, y);

C6 = (1, y, y, y); C7 = (1,−y, y, y); C8 = (1,−y,−y, y) where
1√
3
< y ∈ R.

The truncated cube Cr(p) can be derived from the above cube by cuttings
with the polar planes of vertices Ci (i ∈ {1, . . . , 8}). The images of Cr(p)
under reflections on its side facets generate a tiling in H3 if its nonright
dihedral angles are 2π/p for 6 < p ∈ N and 6 < p ∈ R, respectively. It is
straightforward to see that if the parameter p is given, then

(3.6) y =

√√√√ cos 2π
p

cos 2π
p + 1

.

We have to determine for any parameter p the distances h(p), t(p), s(p), and
w(p). The values of h(p) can be derived from formula (3.1). The distances
t(p) and s(p) can be determined similarly to (3.1). Then w(p) follows from
the next formula (similarly to (3.1)):

a. b.

Figure 6. a. The density function δ3(x, 7)) (x ∈ [0, s(7) −
h(7)], 7). If s(7) − h(7) ≈ 0.41108 then the density is ap-
proximately 0.84931. The density in the starting point is
≈ 0.68839. b. The noncongruent hyperball arrangement with
the above data.

(3.7) sinhw(p) =

√
3y4 + 1

(1− 3y2)(y2 − 1)
.
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If p = 7 then we obtain the following results:

2h(7) ≈ 2.07599;w(7) ≈ 2.07599⇒ w(7) = 2h(7);

t(7) ≈ 1.67069, s(7) ≈ 1.03799.

During the expansion processes we can compute the densities δi(Cr(x, 7))
(i ∈ {1, 2, 3}) (see Definition 3.5) of the considered packings as functions of
x using formulas (2.1), (3.1)–(3.4), (3.6), (3.7), and Theorem 2.1.

We find δ1(Cr(x, 7)) by (3.2) where

(3.8) x ∈ [0,min{2h(7), w(7), t(7)} − h(7)} ≈ 0.63270].

The graph of δ1(Cr(x, 7)) is described in Fig. 4.a.
We find δ2(Cr(x, 7)) by (3.3), where

(3.9) x ∈ [0,min{2h(7)− t(0), t(7), w(7)− t(7), s(7)− h(7)} ≈ 0.40530].

The graph of δ2(Cr(x, 7)) is described in Fig. 5.a.
We find δ3(Cr(x, 7)) by (3.4), where

(3.10) x ∈ [0,min{h(7), s(7)− h(7)} ≈ 0.41108].

The graph of δ3(Cr(x, 7)) is described in Fig. 6.a.
Similar to the above discussions, we obtain that if p = 8, then the maximal

density belongs to δ3(Cr(x, 8)) (x ∈ [0, s(p) − h(p) ≈ 0.45994]). Analysing
the above density function, we get the maximal density at the endpoint of
the above interval with density δ3(Cr(s(7)− h(p) ≈ 0.45994, 8)) ≈ 0.82259.

If p > 8, then 2h(p) < t(p) < w(p). We have to examine only the density
functions δi(Cr(x, p)) (i ∈ {1, 3}). Similar to the above computations, we can
analyse the density functions and their maxima of noncongruent hyperball
packings generated by considered truncated cube tilings (or Coxeter tilings
{4, 3, p}) for all possible integer parameters p > 8. Using Theorem 3.2 and
Corollary 3.3 we can summarize our results in the following

Theorem 3.6. (1) The maximum of the density function δ1(Cr(x, p))
attains at the starting point of the corresponding interval x ∈ [0,
min{h(p), t(p)−h(p)] depending on the given integer parameter p ≥
7, i.e., the congruent hyperball packing provides the densest hyperball
packing.

(2) If p = 7, 8, then the maximum of δ2(Cr(x, p)) is achieved at the
endpoint of the interval [0, 2h(p)− t(p)]. If p > 8 then this case does
not occur because 2h(p) < t(p) < w(p).

(3) The maximum of δ3(Cr(x, p)) is attained at the endpoint of the corre-
sponding intervals x ∈ [0, s(p)−h(p)], where p ≥ 7 is a given integer
parameter.

Theorem 3.7. The maximum of the density functions δi(Cr(x, p)), p ≥ 7 ∈
N, i ∈ {1, 2, 3} is achieved at the parameters x = s(p)−h(p) ≈ 0.41108, p =
7. Therefore, the density upper bound of the congruent and noncongruent
hyperball packings, related to the truncated cube tilings {4, 3, p} (N 3 p ≥ 7),
is approximately 0.84931.
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3.2.2. On nonextendable noncongruent hyperball packings (6 < p < 7). The
computation method described in the previous sections are suitable to deter-
mine the densities of congruent and noncongruent hyperball packings related
to truncated cubes with parameters 6 < p < 7, p ∈ R. For any p we can de-
termine the corresponding densities of their optimal half hyperball packings.
But these packings cannot be extended to 3-dimensional space. Analysing
these nonextendable packings for parameters 6 < p < 7, p ∈ R we obtain
the following

Theorem 3.8. (1) The maximum of the density function δ1(Cr(x, p))
(6 < p < 7, p ∈ R) is attained at the starting point of the corre-
sponding interval x ∈ [0, t(p) − h(p)], i.e., the congruent hyperball
packing provides the densest hyperball packing (Fig. 7.a shows the
graph of δ1(Cr(0, p)) if p ∈ (6, 7)). This function attains its maxi-
mum at p1 ≈ 6.33962 where δ1(Cr(0, p1)) ≈ 0.70427.

(2) The maximum of δ2(Cr(x, p)) (6 < p < 7, p ∈ R) is attained at
the endpoint of the interval [0, w(p)− t(p)] (Fig. 7.b shows the graph
of the function δ2(Cr(w(p) − t(p), p)) if p ∈ (6, 7)). This function
attains its maximum at p2 ≈ 6.10563, where δ2(Cr(0, p2)) ≈ 0.85684.

(3) The density function δ3(Cr(x, p)) attains its maximum at the end-
point of the corresponding interval x ∈ [0, s(p) − h(p)] where 6 <
p < 7 (Fig. 7.c shows the graph of the function δ3(Cr(s(p)−h(p), p))
if p ∈ (6, 7)). Thus we get the maximum at p3 ≈ 6.26384 where
δ3(Cr(s(p3)− h(p3), p3)) ≈ 0.86145.

Theorem 3.9. The maximum of the density functions δi(Cr(x, p)) (6 <
p < 7, p ∈ R, i ∈ {1, 2, 3}) is achieved at the parameters x = s(p)− h(p) ≈
0.36563, p3 ≈ 6.26384. Therefore, the density upper bound of the congruent
and noncongruent hyperball packings related to the truncated cube {4, 3, p}
(6 < p < 7, p ∈ R) is approximately 0.86145.

a. b. c.

Figure 7. The graphs of the densities δ1(Cr(0, p)),
δ2(Cr(w(p)− t(p), p)), δ3(Cr(s(p)−h(p), p)), respectively, de-
scribed in Theorems 3.8 and 3.9.
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Figure 8. Regular truncated octahedron with complete or-
thoscheme of degree m = 1 (simple frustum orthoscheme)
and outer vertex C5 = A0. This orthoscheme is truncated by
its polar plane γ5 = pol(C5).

Remark: In our case limp→6(δi(Cr(x, p))) (i ∈ {2, 3}) is equal to the Böröcz-
ky–Florian upper bound of the ball and horoball packings in H3 (see [4],
[9]).

The locally optimal hyperball configurations δ2(Cr(0, p2 ≈ 6.10563)) ≈
0.85684 and δ3(Cr(s(p3) − h(p3), p3 ≈ 6.26384)) ≈ 0.86145 provide larger
densities that the Böröczky–Florian density upper bound δBF ≈ 0.85328 for
ball and horoball packings ([4]) but these hyperball packing configurations
are only locally optimal and cannot be extended to the entire hyperbolic
space H3.

3.3. Hyperball packings to regular truncated octahedron tiling {3,
4, p}. We consider a regular truncated octahedron tiling T (Or(p)) with
Schläfli symbol {3, 4, p}, 4 < p ∈ N, and 4 < p ∈ R, respectively. One
tile of Or(p) is illustrated in Fig. 9. This truncated octahedron can also be
derived by truncation from a regular Euclidean octahedron centred at the
origin with vertices Ci (i ∈ {1, . . . , 6}). The truncating planes γi are the
polar planes of outer vertices Ci that can be the ultraparallel base planes of

hyperballs Hhi(p)i (i ∈ {1, . . . , 6}) with heights hi(p).
The distances between two adjacent base planes d(γi, γj) =: eij are equal

(i < j, i, j ∈ {1, . . . 6}). Moreover, the volume of the truncated simplex
Or(p) is denoted by Vol(Or(p)), similar to the above section.

The distances of the plane γi (i ∈ {1, . . . 6}) from rectangular hexagon
faces of the octahedron Or(p), whose planes do not contain the vertex Ci,
are equal and denoted by w(p) (and computed by (3.1), see Fig. 9).

We construct noncongruent hyperball packings to T (Or(p)) tilings, there-
fore the hyperballs have to satisfy the following requirements:
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(1) The base plane γi of the hyperball Hhi(p)i (with height hi(p)) is the
polar plane of the vertex Ci (see Fig. 2 and 9).

(2) The hyperballs have disjoint interiors.
(3) For the above distances, w(p) ≥ hi(p) holds.

If the hyperballs satisfy the above requirements, then we obtain congruent
or noncongruent hyperball packings B(Or(p)) in hyperbolic 3-space derived
by the structure of {3, 4, p}.

We introduce the local density function δ(Or(p)) related to Or(p):

Definition 3.11.

δ(Or(p)) :=

∑6
i=1 Vol(+Hhi(p)i ∩ Or(p))

Vol(Or(p))
.

The main problem is: what is the maximum of density functions δi(Or(p))
(i = 1, 2) for given integer parameters p ≥ 5?

Similar to the above “truncated cube case”, after careful analysis of the
density function δ(Or(h(p))) we get the following:

Theorem 3.12. The density function δ(Or(h(p))) (p ∈ (4,∞)) attains its
maximum if the hyperballs are congruent and popt ≈ 4.11320. In the congru-
ent case, the density function is strictly increasing on the interval (4, popt)
and strictly decreasing on the interval (popt,∞). Moreover, the optimal den-
sity is δopt(Or(h(popt))) ≈ 0.83173. However, these hyperball packing con-
figurations are only locally optimal and cannot be extended to the entirety of
H3.

Corollary 3.13. The density function δ(Or(h(p))) (N 3 p ≥ 5) attains its
maximum if the hyperballs are congruent and p = 5. The corresponding
congruent hyperball packing Bh(5) related to the regular truncated octahedra
can be extended to H3. The maximal density is δ(Or(h(5))) ≈ 0.76893 (see
Fig. 9.a.)

Remark: These coincide with the hyperball packings to the regular prism
tilings in H3 with Schläfli symbols {p, 4, 3} which are discussed in [13].

For completeness, in the following Table we summarize the data of the
hyperball packings for some parameters p, 5 ≤ p ∈ N.
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Table 2, {3, 4, p}
p h(p) Vol(Or(p))/48 Vol(Hh(p) ∩ Or(p))/8 δopt(Or(h(p)))

5 0.69128565 0.16596371 0.12761435 0.76892924

6 0.48121183 0.19616337 0.13616563 0.69414405

7 0.37938071 0.21217704 0.13400462 0.63156984
...

...
...

...
...

20 0.11318462 0.24655736 0.07142045 0.28967074
...

...
...

...
...

50 0.04456095 0.25026133 0.03221956 0.12874366
...

...
...

...
...

100 0.02223088 0.25078571 0.01676445 0.06684770

p→∞ 0 0.25096025 0 0

a. b. c.

Figure 9. a. The densest packing configuration with an ap-
proximate density of 0.76893. Here the hyperballs are con-
gruent. b. The packing arrangement of parameters p = 5,
with an approximate density of 0.72624 where the two op-
posite “larger hyperballs” with base planes γ5 and γ6 are
tangent at the centre A3 of the octahedron. c. The largest

hypersphere Hh5(5)5 (5) touches the planes γi (i = 1, 2, 3, 4)

and the opposite hypersphere Hh6(5)6 (5).

The problem of finding the densest hyperball (hypersphere) packing with
congruent or noncongruent hyperballs in n-dimensional hyperbolic space
(n ≥ 3) is not settled yet. For H3 at this time, the densest hyperball packing
with congruent hyperballs is derived by the regular truncated tetrahedron
tiling {3, 3, 7} with an approximate density of 0.82251 and with noncongru-
ent hyperballs the packing is derived by the truncated cube tiling {4, 3, 7}
with an approximate density of 0.84931 as in the present paper.

But, as we have seen, locally there are hyperball packings with larger
density than the Böröczky–Florian density upper bound for ball and horoball
packings (see e.g. [9], [10], [11], [17]).
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4. K. Böröczky and A. Florian, Über die dichteste Kugelpackung im hyperbolischen Raum,
Acta Math. Acad. Sci. Hungar., 15 (1964), 237–245.
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(2018), no. 117, 129–146, DOI: 10.2298/PIM1817129M.

11. L. Németh, On the hyperbolic Pascal pyramid, Beitr. Algebra Geom., 57 (2016), no. 4,
913–927.

12. M. Stojanović, Hyperbolic space groups with truncated simplices as fundamental do-
mains, Filomat, 33 (2019), no. 4 (to appear).

13. J. Szirmai, The p-gonal prism tilings and their optimal hypersphere packings in the
hyperbolic 3-space, Acta Math. Hungar. 111 (2006), 65–76.

14. , The regular prism tilings and their optimal hyperball packings in the hyperbolic
n-space, Publ. Math. Debrecen 69 (2006), no. 1, 195–207.

15. , The least dense hyperball covering to the regular prism tilings in the hyperbolic
n-space, Ann. Mat. Pur. Appl., 195 (2016), 235-248, DOI: 10.1007/s10231-014-0460-0.

16. , Hyperball packings in hyperbolic 3-space, Mat. Vesnik 70 (2018), no. 3, 211–
221.

17. , Packings with horo- and hyperballs generated by simple frustum orthoschemes,
Acta Math. Hungar., 152 (2017), no. 2, 365–382, DOI:10.1007/s10474-017-0728-0.

18. , Density upper bound of congruent and noncongruent hyperball packings gen-
erated by truncated regular simplex tilings, Rend. Circ. Mat. Palermo (2), 67 (2018),
307–322, DOI: 10.1007/s12215-017-0316-8.

19. , Decomposition method related to saturated hyperball packings, Ars Math. Con-
temp., 16 (2019), 349–358, DOI: 10.26493/1855-3974.1485.0b1.

20. , Upper bound of density for packing of congruent hyperballs in hyperbolic
3−space, Submitted manuscript, (2019).
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