## Contributions to Discrete Mathematics

# A NEIGHBORHOOD CONDITION FOR GRAPHS TO HAVE RESTRICTED FRACTIONAL $(g, f)$-FACTORS 

SIZHONG ZHOU AND ZHIREN SUN


#### Abstract

Let $h$ be a function defined on $E(G)$ with $h(e) \in[0,1]$ for any $e \in E(G)$. Set $d_{G}^{h}(x)=\sum_{e \ni x} h(e)$. If $g(x) \leq d_{G}^{h}(x) \leq f(x)$ for every $x \in V(G)$, then we call the graph $F_{h}$ with vertex set $V(G)$ and edge set $E_{h}$ a fractional $(g, f)$-factor of $G$ with indicator function $h$, where $E_{h}=\{e: e \in E(G), h(e)>0\}$. Let $M$ and $N$ be two sets of independent edges of $G$ with $M \cap N=\emptyset,|M|=m$ and $|N|=n$. If $G$ admits a fractional $(g, f)$-factor $F_{h}$ such that $h(e)=1$ for any $e \in M$ and $h(e)=0$ for any $e \in N$, then we say that $G$ has a fractional $(g, f)$-factor with the property $E(m, n)$. In this paper, we present a neighborhood condition for the existence of a fractional $(g, f)$-factor with the property $E(1, n)$ in a graph. Furthermore, it is shown that the neighborhood condition is sharp.


## 1. Introduction

The graphs considered here will be finite and undirected simple graphs. Let $G$ be a graph. We denote by $V(G)$ the vertex set of $G$ and by $E(G)$ the edge set of $G$. For a vertex $x$ of $G$, we use $d_{G}(x)$ to denote the degree of $x$ in $G$ and use $N_{G}(x)$ to denote the neighborhood of $x$ in $G$. For a vertex subset $X$ of $G$, we denote by $G[X]$ the subgraph of $G$ induced by $X$, and write $G-X=G[V(G) \backslash X]$ and $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. If $G[X]$ does not admit edges, then we call $X$ an independent set of $G$. For $E^{\prime} \subseteq E(G)$, the graph obtained from $G$ by deleting edges of $E^{\prime}$ is denoted by $G-E^{\prime}$ The minimum degree of $G$ is denoted by $\delta(G)$. Let $c$ be a real number. Recall that $\lfloor c\rfloor$ is the greatest integer with $\lfloor c\rfloor \leq c$.

Let $g$ and $f$ be two integer-valued functions defined on $V(G)$ with $0 \leq$ $g(x) \leq f(x)$ for every $x \in V(G)$. A $(g, f)$-factor of a graph $G$ is defined as a spanning subgraph $F$ of $G$ satisfying $g(x) \leq d_{F}(x) \leq f(x)$ for any

[^0]$x \in V(G)$. A $(g, f)$-factor is called an $[a, b]$-factor if $g(x) \equiv a$ and $f(x) \equiv b$. A $[k, k]$-factor is simply called a $k$-factor.

Let $h$ be a function defined on $E(G)$ with $h(e) \in[0,1]$ for any $e \in E(G)$. Set $d_{G}^{h}(x)=\sum_{e \ni x} h(e)$. If $g(x) \leq d_{G}^{h}(x) \leq f(x)$ for every $x \in V(G)$, then we call the graph $F_{h}$ with vertex set $V(G)$ and edge set $E_{h}$ a fractional $(g, f)$ factor of $G$ with indicator function $h$, where $E_{h}=\{e: e \in E(G), h(e)>0\}$. A fractional $(g, f)$-factor is called a fractional $f$-factor if $g(x)=f(x)$ for each $x \in V(G)$.

Let $M$ and $N$ be two sets of independent edges of $G$ with $M \cap N=\emptyset$, $|M|=m$, and $|N|=n$. If $G$ admits a fractional $(g, f)$-factor $F_{h}$ such that $h(e)=1$ for any $e \in M$ and $h(e)=0$ for any $e \in N$, then we say that $G$ has a fractional $(g, f)$-factor with the property $E(m, n)$. A fractional $(g, f)$-factor with the property $E(m, n)$ is called a fractional $f$-factor with the property $E(m, n)$ if $g(x) \equiv f(x)$. Similarly, we may define a $(g, f)$-factor with the property $E(m, n)$ of $G$ and an $f$-factor with the property $E(m, n)$ of $G$.

Kano [5] showed a neighborhood condition for a graph to admit an $[a, b]-$ factor. Zhou [14] improved and generalized Kano's result, and proved a theorem that is generally stronger than Kano's result. Porteous and Aldred [11] first introduced the concept of 1-factors with the property $E(m, n)$, and obtained some results on the existence of 1 -factors with the property $E(m, n)$ in graphs. Plummer and Saito [10] presented a binding number condition for the existence of 1-factors with the property $E(m, n)$ in graphs, and put forward a toughness condition for the existence of 1-factors with the property $E(m, n)$ in graphs. Zhou [17] and Zhou, Sun, and Pan [21] obtained two sufficient conditions for a graph to admit a fractional $(g, f)$ factor with the property $E(1, n)$. More results on factors and fractional factors in graphs can be found in Piummer [9], Zhou and Sun [19, 20], Wang and Zhang [12], Lv [8], Zhou [16, 18, 15, 13], Cai, Wang and Yan [1], Zhou, Yang and Xu [24], Zhou, Zhang and Xu [25], Gao et al. [2, 3, 4], Zhou, Xu and Sun [23], Zhou, Sun and Ye [22], and Liu and Lu [7].

In this paper, we proceed to study fractional $(g, f)$-factors with the property $E(m, n)$, and show a neighborhood condition that guarantees a graph admitting a fractional $(g, f)$-factor with the property $E(1, n)$.

Theorem 1.1. Let $r \geq 0, n \geq 0$ and $2 \leq a \leq b-r$ be four integers, let $G$ be a graph of order $p$ with

$$
p \geq \frac{(a+b-1)(a+2 b-r-4)+a+r+2}{a+r}+\frac{2 n}{a+r-1},
$$

and let $g$, $f$ be two integer-valued functions defined on $V(G)$ such that $a \leq$ $g(x) \leq f(x)-r \leq b-r$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$
N_{G}(X)=V(G), \text { if }|X| \geq\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor
$$

or

$$
\begin{aligned}
\left|N_{G}(X)\right| & \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X|, \text { if } \\
|X| & <\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor
\end{aligned}
$$

Then $G$ contains a fractional $(g, f)$-factor with the property $E(1, n)$.
If $n=0$ in Theorem 1.1, then we have the following corollary.
Corollary 1.2. Let $r \geq 0$ and $2 \leq a \leq b-r$ be three integers, let $G$ be $a$ graph of order $p$ with

$$
p \geq \frac{(a+b-1)(a+2 b-r-4)+a+r+2}{a+r},
$$

and let $g, f$ be two integer-valued functions defined on $V(G)$ such that $a \leq$ $g(x) \leq f(x)-r \leq b-r$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$
\begin{gathered}
N_{G}(X)=V(G), \text { if }|X| \geq\left\lfloor\frac{((a+r)(p-1)-2) p}{(a+b-1)(p-1)}\right\rfloor \text {; or } \\
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2}|X|, \text { if }|X|<\left\lfloor\frac{((a+r)(p-1)-2) p}{(a+b-1)(p-1)}\right\rfloor .
\end{gathered}
$$

Then $G$ contains a fractional $(g, f)$-factor with the property $E(1,0)$.
If $n=1$ in Theorem 1.1, then we have the following corollary.
Corollary 1.3. Let $r \geq 0$ and $2 \leq a \leq b-r$ be three integers, let $G$ be $a$ graph of order $p$ with

$$
p \geq \frac{(a+b-1)(a+2 b-r-4)+a+r+2}{a+r}+\frac{2}{a+r-1},
$$

and let $g, f$ be two integer-valued functions defined on $V(G)$ such that $a \leq$ $g(x) \leq f(x)-r \leq b-r$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$
\begin{gathered}
N_{G}(X)=V(G), \text { if }|X| \geq\left\lfloor\frac{((a+r)(p-1)-4) p}{(a+b-1)(p-1)}\right\rfloor \text {; or } \\
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-4}|X| \text {, if }|X|<\left\lfloor\frac{((a+r)(p-1)-4) p}{(a+b-1)(p-1)}\right\rfloor .
\end{gathered}
$$

Then $G$ contains a fractional $(g, f)$-factor with the property $E(1,1)$.
If $r=0$ in Theorem 1.1, then we obtain the following corollary.
Corollary 1.4. Let $n \geq 0$ and $2 \leq a \leq b$ be three integers, let $G$ be a graph of order $p$ with

$$
p \geq \frac{(a+b-1)(a+2 b-4)+a+2}{a}+\frac{2 n}{a-1},
$$

and let $g, f$ be two integer-valued functions defined on $V(G)$ such that $a \leq$ $g(x) \leq f(x) \leq b$ for every $x \in V(G)$. Suppose for any subset $X \subset V(G)$, we have

$$
\begin{gathered}
N_{G}(X)=V(G), \text { if }|X| \geq\left\lfloor\frac{(a(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor ; \text { or } \\
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{a(p-1)-2 n-2}|X|, \quad \text { if }|X|<\left\lfloor\frac{(a(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor
\end{gathered}
$$

Then $G$ contains a fractional $(g, f)$-factor with the property $E(1, n)$.

## 2. The proof of Theorem 1.1

The proof of Theorem 1.1 depends heavily on the following lemmas.
Lemma 2.1 (Li, Yan, and Zhang [6]). Let $G$ be a graph, and let $g, f$ be two integer-valued functions defined on $V(G)$ such that $0 \leq g(x) \leq f(x)$ for every $x \in V(G)$. Then $G$ has a fractional $(g, f)$-factor with the property $E(1,0)$ if and only if

$$
\gamma_{G}(S, T)=f(S)+d_{G-S}(T)-g(T) \geq \varepsilon(S, T)
$$

for any $S \subseteq V(G)$, where $T=\left\{x: x \in V(G) \backslash S, d_{G-S}(x) \leq g(x)\right\}$ and $\varepsilon(S, T)$ is defined as follows:

$$
\varepsilon(S, T)= \begin{cases}2, & \text { if } S \text { is not independent, } \\ 1, & \text { if } S \text { is independent and there is an edge joining } S \\ & \text { and } V(G) \backslash(S \cup T), \text { or there is an edge } e=u v \\ & \text { joining } S \text { and } T \text { such that } d_{G-S}(v)=g(v) \text { for } v \in T, \\ 0, & \text { otherwise. }\end{cases}
$$

Lemma 2.2. Let $G$ be a graph of order $p$ that satisfies the hypothesis of Theorem 1.1. Then

$$
\delta(G) \geq \frac{(b-r-1) p+a+r+2 n+2}{a+b-1}
$$

Proof. Let $v \in V(G)$ with degree $\delta(G)$. Let $Q=V(G) \backslash N_{G}(v)$. Obviously, $v \notin N_{G}(Q)$, that is, $N_{G}(Q) \neq V(G)$. Thus we obtain

$$
\begin{aligned}
(a+b-1)(p-1)|Q| & \leq((a+r)(p-1)-2 n-2)\left|N_{G}(Q)\right| \\
& \leq((a+r)(p-1)-2 n-2)(p-1)
\end{aligned}
$$

which implies

$$
(a+b-1)|Q| \leq(a+r)(p-1)-2 n-2
$$

Note that $|Q|=p-\delta(G)$. Thus we have

$$
(a+b-1)(p-\delta(G)) \leq(a+r)(p-1)-2 n-2
$$

that is,

$$
\delta(G) \geq \frac{(b-r-1) p+a+r+2 n+2}{a+b-1}
$$

This finishes the proof of Lemma 2.2.
Proof of Theorem 1.1. Suppose that a graph $G$ satisfies the hypothesis of Theorem 1.1, but does not have a fractional $(g, f)$-factor with the property $E(1, n)$. Then there exist a set of independent edges $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and an edge $e$ of $G$ such that $G$ does not contain a fractional $(g, f)$-factor $F_{h}$ with $h\left(e_{i}\right)=0$ for $1 \leq i \leq n$ and $h(e)=1$. Set $N=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $H=G-N$. Obviously, $H$ does not have a fractional $(g, f)$-factor with the property $E(1,0)$. By Lemma 2.1 , there exists a subset $S \subseteq V(H)$ such that

$$
\begin{equation*}
\gamma_{H}(S, T)=f(S)+d_{H-S}(T)-g(T) \leq \varepsilon(S, T)-1 \tag{1}
\end{equation*}
$$

where $T=\left\{x: x \in V(H) \backslash S, d_{H-S}(x) \leq g(x)\right\}$. It is easy to see that $T \neq \emptyset$ by (1). Hence, we may define

$$
h=\min \left\{d_{G-S}(x): x \in T\right\}
$$

Claim 2.3. $0 \leq h \leq b-r+1$.
Proof. Note that $N=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a set of independent edges of $G$ and $H=G-N$. Combining these with the definition of $T$, we have

$$
0 \leq d_{G-S}(x) \leq d_{H-S}(x)+1 \leq g(x)+1 \leq b-r+1
$$

for each $x \in T$. In terms of the definition of $h$, we get $0 \leq h \leq b-r+1$. Claim 2.3 is proved.

Claim 2.4. $d_{H-S}(T) \geq d_{G-S}(T)-\min \{2 n,|T|\}$.
Proof. We write $D=V(G) \backslash(S \cup T)$ and $E_{G}(T)=\{e: e=x y \in E(G), x, y \in$ $T\}$. It is obvious that $2\left|N \cap E_{G}(T)\right|+\left|N \cap E_{G}(T, D)\right| \leq \min \{2 n,|T|\}$. Thus, we have

$$
\begin{aligned}
d_{H-S}(T) & =d_{G-N-S}(T) \\
& =d_{G-S}(T)-\left(2\left|N \cap E_{G}(T)\right|+\left|N \cap E_{G}(T, D)\right|\right) \\
& \geq d_{G-S}(T)-\min \{2 n,|T|\}
\end{aligned}
$$

Claim 2.4 is verified.
We shall consider four cases.
Case 1: $h=0$.
Set $\lambda=\left|\left\{x: x \in T, d_{G-S}(x)=0\right\}\right|$. It is obvious that $\lambda \geq 1$ by $h=0$. We write $X=V(G) \backslash S$. Clearly, $N_{G}(X) \neq V(G)$ since $\lambda \geq 1$. It follows from the hypothesis of Theorem 1.1 that

$$
\begin{aligned}
p-\lambda & \geq\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X| \\
& =\frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}(p-|S|),
\end{aligned}
$$

which implies

$$
\begin{equation*}
|S| \geq p-\frac{(p-\lambda)((a+r)(p-1)-2 n-2)}{(a+b-1)(p-1)} \tag{2}
\end{equation*}
$$

It follows from (1), (2),

$$
p \geq \frac{(a+b-1)(a+2 b-r-4)+a+r+2}{a+r}+\frac{2 n}{a+r-1},
$$

$\lambda \geq 1,|S|+|T| \leq p$, and Claim 2.4 that

$$
\begin{aligned}
\varepsilon(S, T)-1 \geq & \gamma_{H}(S, T)=f(S)+d_{H-S}(T)-g(T) \\
\geq & f(S)+d_{G-S}(T)-\min \{2 n,|T|\}-g(T) \\
\geq & (a+r)|S|+|T|-\lambda-2 n-(b-r)|T| \\
= & (a+r)|S|-(b-r-1)|T|-\lambda-2 n \\
\geq & (a+r)|S|-(b-r-1)(p-|S|)-\lambda-2 n \\
= & (a+b-1)|S|-(b-r-1) p-\lambda-2 n \\
\geq & (a+b-1)\left(p-\frac{(p-\lambda)((a+r)(p-1)-2 n-2)}{(a+b-1)(p-1)}\right) \\
& -(b-r-1) p-\lambda-2 n \\
= & \frac{p(2 n+2)}{p-1}+\left(\frac{(a+r)(p-1)-2 n-2}{p-1}-1\right) \lambda-2 n \\
\geq & \frac{p(2 n+2)}{p-1}+\frac{(a+r)(p-1)-2 n-2}{p-1}-1-2 n \\
= & a+r+1>2 \geq \varepsilon(S, T),
\end{aligned}
$$

which is a contradiction.
Case 2: $h=1$.
Subcase 2.1: $|T|>\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor$.
It is easy to see that

$$
\begin{equation*}
|T| \geq\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor+1 \tag{3}
\end{equation*}
$$

Note that $h=1$. Hence, there exists $v \in T$ with $d_{G-S}(v)=h=1$, and so

$$
v \notin N_{G}\left(T \backslash N_{G}(v)\right),
$$

which implies

$$
N_{G}\left(T \backslash N_{G}(v)\right) \neq V(G) .
$$

Combining this with $d_{G-S}(v)=h=1$ and the hypothesis of Theorem 1.1, we get

$$
|T|-1 \leq\left|T \backslash N_{G}(v)\right|<\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor,
$$

that is,

$$
|T|<\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor+1
$$

which contradicts (3).
Subcase 2.2: $|T| \leq\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor$.
In terms of $h=1$ and Lemma 2.2, we obtain

$$
\begin{aligned}
|S| & \geq \delta(G)-1 \geq \frac{(b-r-1) p+a+r+2 n+2}{a+b-1}-1 \\
& =\frac{(b-r-1)(p-1)+2 n+2}{a+b-1},
\end{aligned}
$$

that is,

$$
\begin{equation*}
|S| \geq \frac{(b-r-1)(p-1)+2 n+2}{a+b-1} . \tag{4}
\end{equation*}
$$

Claim 2.5. $|T| \leq \frac{(a+r)(p-1)-2 n-2}{a+b-1}$.
Proof. We assume that

$$
|T|>\frac{(a+r)(p-1)-2 n-2}{a+b-1} .
$$

In light of (4), we have

$$
|S|+|T|>\frac{(b-r-1)(p-1)+2 n+2}{a+b-1}+\frac{(a+r)(p-1)-2 n-2}{a+b-1}=p-1 .
$$

On the other hand, $|S|+|T| \leq p$. Thus, we obtain

$$
\begin{equation*}
|S|+|T|=p \tag{5}
\end{equation*}
$$

According to (4), (5),

$$
|T| \leq\left\lfloor\frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}\right\rfloor \leq \frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}
$$

and Claim 2.4, we obtain

$$
\begin{aligned}
\gamma_{H}(S, T) & =f(S)+d_{H-S}(T)-g(T) \\
& \geq f(S)+d_{G-S}(T)-\min \{2 n,|T|\}-g(T) \\
& \geq(a+r)|S|+|T|-2 n-(b-r)|T| \\
& =(a+r)|S|-(b-r-1)|T|-2 n \\
& =(a+r)(p-|T|)-(b-r-1)|T|-2 n \\
& =(a+r) p-(a+b-1)|T|-2 n \\
& \geq(a+r) p-(a+b-1) \cdot \frac{((a+r)(p-1)-2 n-2) p}{(a+b-1)(p-1)}-2 n \\
& =(a+r) p-\left((a+r) p-\frac{p(2 n+2)}{p-1}\right)-2 n
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{p(2 n+2)}{p-1}-2 n \\
& >2 n+2-2 n=2 \geq \varepsilon(S, T)
\end{aligned}
$$

which contradicts (1). Claim 2.5 is verified.
We write $\beta=\left|\left\{x: x \in T, d_{G-S}(x)=1\right\}\right|$. It is obvious that $\beta \geq 1$ and $|T| \geq \beta$. In light of (4) and Claims 2.4-2.5, we have

$$
\begin{aligned}
\gamma_{H}(S, T)= & f(S)+d_{H-S}(T)-g(T) \\
\geq & f(S)+d_{G-S}(T)-\min \{2 n,|T|\}-g(T) \\
\geq & (a+r)|S|+2|T|-\beta-2 n-(b-r)|T| \\
= & (a+r)|S|-(b-r-2)|T|-\beta-2 n \\
\geq & (a+r) \cdot \frac{(b-r-1)(p-1)+2 n+2}{a+b-1} \\
& -(b-r-2) \cdot \frac{(a+r)(p-1)-2 n-2}{a+b-1}-\beta-2 n \\
= & \frac{(a+r)(p-1)+(a+b-2)(2 n+2)}{a+b-1}-\beta-2 n \\
= & \frac{(a+r)(p-1)-2 n-2}{a+b-1}+2 n+2-\beta-2 n \\
\geq & |T|-\beta+2 \geq 2 \geq \varepsilon(S, T),
\end{aligned}
$$

which contradicts (1).
Case 3: $2 \leq h \leq b-r$.
Note that $h=\min \left\{d_{G-S}(x): x \in T\right\}$. Then there exists $x_{1} \in T$ such that $d_{G-S}\left(x_{1}\right)=h$. Hence, we obtain

$$
\delta(G) \leq d_{G}\left(x_{1}\right) \leq d_{G-S}\left(x_{1}\right)+|S|=h+|S| .
$$

Combining this with Lemma 2.2, we have

$$
\begin{equation*}
|S| \geq \delta(G)-h \geq \frac{(b-r-1) p+a+r+2 n+2}{a+b-1}-h . \tag{6}
\end{equation*}
$$

In terms of (6), $|S|+|T| \leq p$, and Claim 2.4, we have

$$
\begin{aligned}
\gamma_{H}(S, T) \geq & f(S)+d_{H-S}(T)-g(T) \\
\geq & f(S)+d_{G-S}(T)-\min \{2 n,|T|\}-g(T) \\
\geq & (a+r)|S|+h|T|-2 n-(b-r)|T| \\
= & (a+r)|S|-(b-r-h)|T|-2 n \\
\geq & (a+r)|S|-(b-r-h)(p-|S|)-2 n \\
= & (a+b-h)|S|-(b-r-h) p-2 n \\
\geq & (a+b-h) \cdot\left(\frac{(b-r-1) p+a+r+2 n+2}{a+b-1}-h\right) \\
& -(b-r-h) p-2 n .
\end{aligned}
$$

Let

$$
\varphi(h)=(a+b-h) \cdot\left(\frac{(b-r-1) p+a+r+2 n+2}{a+b-1}-h\right)-(b-r-h) p-2 n .
$$

Then we have

$$
\begin{equation*}
\gamma_{H}(S, T) \geq \varphi(h) \tag{7}
\end{equation*}
$$

By $2 \leq h \leq b-r$ and

$$
p \geq \frac{(a+b-1)(a+2 b-r-4)+a+r+2}{a+r}+\frac{2 n}{a+r-1}
$$

we get

$$
\begin{aligned}
\varphi^{\prime}(h) & =-\left(\frac{(b-r-1) p+a+r+2 n+2}{a+b-1}-h\right)-(a+b-h)+p \\
& =\frac{(a+r) p-a-r-2 n-2}{a+b-1}+2 h-(a+b) \\
& \geq a+2 b-r-4+4-(a+b) \\
& =b-r \geq a>0
\end{aligned}
$$

and so, $\varphi(h)$ attains its minimum value at $h=2$ by $2 \leq h \leq b-r$. Combining this with (7) and

$$
p \geq \frac{(a+b-1)(a+2 b-r-4)+a+r+2}{a+r}+\frac{2 n}{a+r-1}
$$

we obtain

$$
\begin{aligned}
\gamma_{H}(S, T) \geq & \varphi(h) \geq \varphi(2) \\
= & (a+b-2) \cdot\left(\frac{(b-r-1) p+a+r+2 n+2}{a+b-1}-2\right) \\
& \quad-(b-r-2) p-2 n \\
= & \frac{(a+r) p}{a+b-1}+\frac{(a+b-2)(a+r+2 n+2)}{a+b-1} \\
& \quad-2(a+b-2)-2 n \\
\geq & \frac{(a+b-1)(a+2 b-r-4)+a+r+2 n+2}{a+b-1} \\
& \quad+\frac{(a+b-2)(a+r+2 n+2)}{a+b-1}-2(a+b-2)-2 n \\
= & 2 \geq \varepsilon(S, T),
\end{aligned}
$$

which contradicts (1).
Case 4: $h=b-r+1$.

It follows from (1) and Claim 2.4 that

$$
\begin{aligned}
\varepsilon(S, T)-1 & \geq \gamma_{H}(S, T)=f(S)+d_{H-S}(T)-g(T) \\
& \geq f(S)+d_{G-S}(T)-\min \{2 n,|T|\}-g(T) \\
& \geq(a+r)|S|+h|T|-|T|-(b-r)|T| \\
& =(a+r)|S|-(b-r+1-h)|T| \\
& =(a+r)|S| \geq|S| \geq \varepsilon(S, T),
\end{aligned}
$$

which is a contradiction. This completes the proof of Theorem 1.1.

## 3. Remark

In this section, we claim that the assumption on the neighborhood in Theorem 1.1 is the best possible, which cannot be replaced by $N_{G}(X)=$ $V(G)$ or

$$
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X|
$$

for any $X \subseteq V(G)$.
Let $a, b, r, n$ be four nonnegative integers such that $2 \leq a=b-r, b$ is odd and $(2 n+2) / b$ is an integer. We construct a graph

$$
G=K_{(a-1) m+\frac{2 n+2}{b}} \vee\left(\frac{b m+1}{2} K_{2}\right)
$$

of order $p$, where $m$ is an enough large positive integer, $m$ is odd, and $\vee$ means "join". It is easy to see that $p=(a-1) m+b m+1+((2 n+2) / b)$. We write

$$
S=V\left(K_{(a-1) m+\frac{2 n+2}{b}}\right)
$$

and

$$
T=V\left(\frac{b m+1}{2} K_{2}\right)
$$

We first show that the assumption $N_{G}(X)=V(G)$ or

$$
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X|
$$

for any $X \subseteq V(G)$ holds. Let any $X \subseteq V(G)$. It is easy to see that if $|X \cap S| \geq 2$, or $|X \cap S|=1$ and $|X \cap T| \geq 1$, then $N_{G}(X)=V(G)$. Of course, if $|X|=1$ and $X \subseteq S$, then we easily obtain

$$
\left|N_{G}(X)\right|=|V(G)|-1=p-1>\frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X| .
$$

Therefore, we may assume that $X \subseteq T$. Note that

$$
\left|N_{G}(X)\right|=|S|+|X|=(a-1) m+\frac{2 n+2}{b}+|X| .
$$

Hence,

$$
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X|
$$

holds if and only if

$$
(a-1) m+\frac{2 n+2}{b}+|X| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X| .
$$

This inequality is equivalent to $|X| \leq b m$. Thus if $X \neq T$ and $X \subset T$, then we have

$$
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X|
$$

for any $X \subset V(G)$. If $X=T$, then it is obvious that $N_{G}(X)=V(G)$. Consequently, $N_{G}(X)=V(G)$ or

$$
\left|N_{G}(X)\right| \geq \frac{(a+b-1)(p-1)}{(a+r)(p-1)-2 n-2}|X|
$$

for any $X \subseteq V(G)$ holds.
Let $g, f$ be two integer-valued functions defined on $V(G)$ with $g(x)=a$ and $f(x)=b=a+r$ for every $x \in V(G)$. Let $N=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \subseteq$ $E\left(\frac{b m+1}{2} K_{2}\right)$ be a set of independent edges of $G$. We write $H=G-N$. Next, we show that $H$ does not have a fractional $(g, f)$-factor with the property $E(1,0)$. For above $S$ and $T$, we have $|S|=(a-1) m+((2 n+2) / b)$, $|T|=b m+1, d_{H-S}(T)=b m+1-2 n$ and $\varepsilon(S, T)=2$. Thus, we have

$$
\begin{aligned}
\gamma_{H}(S, T) & =f(S)+d_{H-S}(T)-g(T) \\
& =b|S|+d_{H-S}(T)-a|T| \\
& =b \cdot\left((a-1) m+\frac{2 n+2}{b}\right)+b m+1-2 n-a \cdot(b m+1) \\
& =3-a \leq 1<2=\varepsilon(S, T) .
\end{aligned}
$$

In light of Lemma 2.1, $H$ does not admit a fractional $(g, f)$-factor with the property $E(1,0)$, and so, $G$ does not admit a fractional $(g, f)$-factor with the property $E(1, n)$.

## Acknowledgements

The authors thank the anonymous referees and the managing editor for their helpful comments and suggestions in improving this paper.

## References

1. J. Cai, X. Wang, and G. Yan, A note on the existence of fractional $f$-factors in random graphs, Acta Math. Appl. Sin. Engl. Ser. 30 (2014), no. 3, 677-680.
2. W. Gao, J. Guirao, and H. Wu, Two tight independent set conditions for fractional ( $g, f, m$ )-deleted graphs systems, Qual. Theory Dyn. Syst. 17 (2018), no. 1, 231-243.
3. W. Gao and W. Wang, New isolated toughness condition for fractional ( $g, f, n$ )-critical graphs, Colloq. Math. 147 (2017), 55-66.
4. __ A tight neighborhood union condition on fractional ( $g, f, n^{\prime}, m$ )-critical deleted graphs, Colloq. Math. 149 (2017), 291-298.
5. M. Kano, A sufficient condition for a graph to have $[a, b]$-factors, Graphs Combin. 6 (1990), 245-251.
6. Z. Li, G. Yan, and X. Zhang, On fractional ( $g, f$ )-covered graphs, OR Transactions (China) 6 (2002), no. 4, 65-68.
7. H. Liu and H. Lu, A degree condition for a graph to have ( $a, b$ )-parity factors, Discrete Math. 341 (2018), 244-252.
8. X. Lv, A degree condition for fractional ( $g, f, n$ )-critical covered graphs, AIMS Mathematics 5 (2020), no. 2, 872-878.
9. M. Plummer, Graph factors and factorizations 1985-2003: A survey, Discrete Math. 307 (2007), 791-821.
10. M. Plummer and A. Saito, Toughness, binding number and restricted matching extension in a graph, Discrete Math. 340 (2017), 2665-2672.
11. M. Porteous and R. Aldred, Matching extensions with prescribed and forbidden edges, Australasian Journal of Combinatorics 13 (1996), 163-174.
12. S. Wang and W. Zhang, Research on fractional critical covered graphs, Probl. Inf. Transm. 56 (2020), no. 3, 270-277.
13. S. Zhou, Some results on path-factor critical avoidable graphs, Discussiones Mathematicae Graph Theory, doi: 10.7151/dmgt.2364.
14. , A sufficient condition for a graph to be an ( $a, b, k$ )-critical graph, Int. J. Comput. Math. 87 (2010), no. 10, 2202-2211.
15. , Remarks on orthogonal factorizations of digraphs, International Journal of Computer Mathematics 91 (2014), no. 10, 2109-2117.
16. , Some results about component factors in graphs, RAIRO-Operations Research 53 (2019), no. 3, 723-730.
17. , Binding numbers and restricted fractional ( $g, f$ )-factors in graphs, Discrete Appl. Math. (2020), doi: 10.1016/j.dam.2020.10.017.
18. _, Remarks on path factors in graphs, RAIRO-Operations Research 54 (2020), no. 6, 1827-1834.
19. S. Zhou and Z. Sun, Binding number conditions for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor uniform graphs, Discrete Math. 343 (2020), no. 3, doi: 10.1016/j.disc.2019.111715.
20. , Some existence theorems on path factors with given properties in graphs, Acta. Math. Sin.-English Ser. 36 (2020), no. 8, 917-928.
21. S. Zhou, Z. Sun, and Q. Pan, A sufficient condition for the existence of restrictedfractional $(g, f)$-factors in graphs, Probl. Inf. Transm. 56 (2020), no. 4, doi: 10.1134/S0032946020040043.
22. S. Zhou, Z. Sun, and H. Ye, A toughness condition for fractional ( $k, m$ )-deleted graphs, Inform. Process. Lett. 113 (2013), no. 8, 255-259.
23. S. Zhou, Y. Xu, and Z. Sun, Degree conditions for fractional ( $a, b, k$ )-critical covered graphs, Inform. Process. Lett. 152 (2019), doi: 10.1016/j.ipl.2019.105838.
24. S. Zhou, F. Yang, and L. Xu, Two sufficient conditions for the existence of path factorsin graphs, Scientia Iranica 26 (2019), no. 6, 3510-3514.
25. S. Zhou, T. Zhang, and Z. Xu, Subgraphs with orthogonal factorizations in graphs, Discrete Appl. Math. 286 (2020), 29-34.

School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
E-mail address: zsz_cumt@163.com, zhousizhong@just.edu.cn
School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
E-mail address: 05119@njnu.edu.cn


[^0]:    Received by the editors April 11, 2019, and in revised form November 29, 2020.
    2000 Mathematics Subject Classification. 05C70.
    Key words and phrases. graph; neighborhood; fractional ( $g, f$ )-factor; restricted fractional $(g, f)$-factors.

    This work is supported by Six Big Talent Peak in Jiangsu Province, China (grant no. JY-022).

