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A NEIGHBORHOOD CONDITION FOR GRAPHS TO

HAVE RESTRICTED FRACTIONAL (g, f)-FACTORS

SIZHONG ZHOU AND ZHIREN SUN

Abstract. Let h be a function defined on E(G) with h(e) ∈ [0, 1] for
any e ∈ E(G). Set dhG(x) =

∑
e3x h(e). If g(x) ≤ dhG(x) ≤ f(x) for

every x ∈ V (G), then we call the graph Fh with vertex set V (G) and
edge set Eh a fractional (g, f)-factor of G with indicator function h,
where Eh = {e : e ∈ E(G), h(e) > 0}. Let M and N be two sets of
independent edges of G with M ∩ N = ∅, |M | = m and |N | = n. If G
admits a fractional (g, f)-factor Fh such that h(e) = 1 for any e ∈M and
h(e) = 0 for any e ∈ N , then we say that G has a fractional (g, f)-factor
with the property E(m,n). In this paper, we present a neighborhood
condition for the existence of a fractional (g, f)-factor with the property
E(1, n) in a graph. Furthermore, it is shown that the neighborhood
condition is sharp.

1. Introduction

The graphs considered here will be finite and undirected simple graphs.
Let G be a graph. We denote by V (G) the vertex set of G and by E(G) the
edge set of G. For a vertex x of G, we use dG(x) to denote the degree of
x in G and use NG(x) to denote the neighborhood of x in G. For a vertex
subset X of G, we denote by G[X] the subgraph of G induced by X, and
write G−X = G[V (G) \X] and NG(X) =

⋃
x∈X NG(x). If G[X] does not

admit edges, then we call X an independent set of G. For E′ ⊆ E(G), the
graph obtained from G by deleting edges of E′ is denoted by G − E′ The
minimum degree of G is denoted by δ(G). Let c be a real number. Recall
that bcc is the greatest integer with bcc ≤ c.

Let g and f be two integer-valued functions defined on V (G) with 0 ≤
g(x) ≤ f(x) for every x ∈ V (G). A (g, f)-factor of a graph G is defined
as a spanning subgraph F of G satisfying g(x) ≤ dF (x) ≤ f(x) for any
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x ∈ V (G). A (g, f)-factor is called an [a, b]-factor if g(x) ≡ a and f(x) ≡ b.
A [k, k]-factor is simply called a k-factor.

Let h be a function defined on E(G) with h(e) ∈ [0, 1] for any e ∈ E(G).
Set dhG(x) =

∑
e3x h(e). If g(x) ≤ dhG(x) ≤ f(x) for every x ∈ V (G), then we

call the graph Fh with vertex set V (G) and edge set Eh a fractional (g, f)-
factor of G with indicator function h, where Eh = {e : e ∈ E(G), h(e) > 0}.
A fractional (g, f)-factor is called a fractional f -factor if g(x) = f(x) for
each x ∈ V (G).

Let M and N be two sets of independent edges of G with M ∩ N = ∅,
|M | = m, and |N | = n. If G admits a fractional (g, f)-factor Fh such that
h(e) = 1 for any e ∈M and h(e) = 0 for any e ∈ N , then we say that G has a
fractional (g, f)-factor with the property E(m,n). A fractional (g, f)-factor
with the property E(m,n) is called a fractional f -factor with the property
E(m,n) if g(x) ≡ f(x). Similarly, we may define a (g, f)-factor with the
property E(m,n) of G and an f -factor with the property E(m,n) of G.

Kano [5] showed a neighborhood condition for a graph to admit an [a, b]-
factor. Zhou [14] improved and generalized Kano’s result, and proved a
theorem that is generally stronger than Kano’s result. Porteous and Aldred
[11] first introduced the concept of 1-factors with the property E(m,n),
and obtained some results on the existence of 1-factors with the property
E(m,n) in graphs. Plummer and Saito [10] presented a binding number
condition for the existence of 1-factors with the property E(m,n) in graphs,
and put forward a toughness condition for the existence of 1-factors with
the property E(m,n) in graphs. Zhou [17] and Zhou, Sun, and Pan [21]
obtained two sufficient conditions for a graph to admit a fractional (g, f)-
factor with the property E(1, n). More results on factors and fractional
factors in graphs can be found in Piummer [9], Zhou and Sun [19, 20], Wang
and Zhang [12], Lv [8], Zhou [16, 18, 15, 13], Cai, Wang and Yan [1], Zhou,
Yang and Xu [24], Zhou, Zhang and Xu [25], Gao et al. [2, 3, 4], Zhou, Xu
and Sun [23], Zhou, Sun and Ye [22], and Liu and Lu [7].

In this paper, we proceed to study fractional (g, f)-factors with the prop-
erty E(m,n), and show a neighborhood condition that guarantees a graph
admitting a fractional (g, f)-factor with the property E(1, n).

Theorem 1.1. Let r ≥ 0, n ≥ 0 and 2 ≤ a ≤ b − r be four integers, let G
be a graph of order p with

p ≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2

a+ r
+

2n

a+ r − 1
,

and let g, f be two integer-valued functions defined on V (G) such that a ≤
g(x) ≤ f(x) − r ≤ b − r for every x ∈ V (G). Suppose for any subset
X ⊂ V (G), we have

NG(X) = V (G), if |X| ≥
⌊

((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
;
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or

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|, if

|X| <
⌊

((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
.

Then G contains a fractional (g, f)-factor with the property E(1, n).

If n = 0 in Theorem 1.1, then we have the following corollary.

Corollary 1.2. Let r ≥ 0 and 2 ≤ a ≤ b − r be three integers, let G be a
graph of order p with

p ≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2

a+ r
,

and let g, f be two integer-valued functions defined on V (G) such that a ≤
g(x) ≤ f(x) − r ≤ b − r for every x ∈ V (G). Suppose for any subset
X ⊂ V (G), we have

NG(X) = V (G), if |X| ≥
⌊

((a+ r)(p− 1)− 2)p

(a+ b− 1)(p− 1)

⌋
; or

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2
|X|, if |X| <

⌊
((a+ r)(p− 1)− 2)p

(a+ b− 1)(p− 1)

⌋
.

Then G contains a fractional (g, f)-factor with the property E(1, 0).

If n = 1 in Theorem 1.1, then we have the following corollary.

Corollary 1.3. Let r ≥ 0 and 2 ≤ a ≤ b − r be three integers, let G be a
graph of order p with

p ≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2

a+ r
+

2

a+ r − 1
,

and let g, f be two integer-valued functions defined on V (G) such that a ≤
g(x) ≤ f(x) − r ≤ b − r for every x ∈ V (G). Suppose for any subset
X ⊂ V (G), we have

NG(X) = V (G), if |X| ≥
⌊

((a+ r)(p− 1)− 4)p

(a+ b− 1)(p− 1)

⌋
; or

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 4
|X|, if |X| <

⌊
((a+ r)(p− 1)− 4)p

(a+ b− 1)(p− 1)

⌋
.

Then G contains a fractional (g, f)-factor with the property E(1, 1).

If r = 0 in Theorem 1.1, then we obtain the following corollary.

Corollary 1.4. Let n ≥ 0 and 2 ≤ a ≤ b be three integers, let G be a graph
of order p with

p ≥ (a+ b− 1)(a+ 2b− 4) + a+ 2

a
+

2n

a− 1
,
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and let g, f be two integer-valued functions defined on V (G) such that a ≤
g(x) ≤ f(x) ≤ b for every x ∈ V (G). Suppose for any subset X ⊂ V (G), we
have

NG(X) = V (G), if |X| ≥
⌊

(a(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
; or

|NG(X)| ≥ (a+ b− 1)(p− 1)

a(p− 1)− 2n− 2
|X|, if |X| <

⌊
(a(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
.

Then G contains a fractional (g, f)-factor with the property E(1, n).

2. The proof of Theorem 1.1

The proof of Theorem 1.1 depends heavily on the following lemmas.

Lemma 2.1 (Li, Yan, and Zhang [6]). Let G be a graph, and let g, f be
two integer-valued functions defined on V (G) such that 0 ≤ g(x) ≤ f(x) for
every x ∈ V (G). Then G has a fractional (g, f)-factor with the property
E(1, 0) if and only if

γG(S, T ) = f(S) + dG−S(T )− g(T ) ≥ ε(S, T )

for any S ⊆ V (G), where T = {x : x ∈ V (G) \ S, dG−S(x) ≤ g(x)} and
ε(S, T ) is defined as follows:

ε(S, T ) =



2, if S is not independent,

1, if S is independent and there is an edge joining S

and V (G) \ (S ∪ T ), or there is an edge e = uv

joining S and T such that dG−S(v) = g(v) for v ∈ T ,

0, otherwise.

Lemma 2.2. Let G be a graph of order p that satisfies the hypothesis of
Theorem 1.1. Then

δ(G) ≥ (b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
.

Proof. Let v ∈ V (G) with degree δ(G). Let Q = V (G) \NG(v). Obviously,
v /∈ NG(Q), that is, NG(Q) 6= V (G). Thus we obtain

(a+ b− 1)(p− 1)|Q| ≤ ((a+ r)(p− 1)− 2n− 2)|NG(Q)|
≤ ((a+ r)(p− 1)− 2n− 2)(p− 1),

which implies

(a+ b− 1)|Q| ≤ (a+ r)(p− 1)− 2n− 2.

Note that |Q| = p− δ(G). Thus we have

(a+ b− 1)(p− δ(G)) ≤ (a+ r)(p− 1)− 2n− 2,
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that is,

δ(G) ≥ (b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
.

This finishes the proof of Lemma 2.2. �

Proof of Theorem 1.1. Suppose that a graph G satisfies the hypothesis of
Theorem 1.1, but does not have a fractional (g, f)-factor with the property
E(1, n). Then there exist a set of independent edges {e1, e2, . . . , en} and
an edge e of G such that G does not contain a fractional (g, f)-factor Fh

with h(ei) = 0 for 1 ≤ i ≤ n and h(e) = 1. Set N = {e1, e2, . . . , en} and
H = G−N . Obviously, H does not have a fractional (g, f)-factor with the
property E(1, 0). By Lemma 2.1, there exists a subset S ⊆ V (H) such that

γH(S, T ) = f(S) + dH−S(T )− g(T ) ≤ ε(S, T )− 1, (1)

where T = {x : x ∈ V (H) \S, dH−S(x) ≤ g(x)}. It is easy to see that T 6= ∅
by (1). Hence, we may define

h = min{dG−S(x) : x ∈ T}.

Claim 2.3. 0 ≤ h ≤ b− r + 1.

Proof. Note that N = {e1, e2, . . . , en} is a set of independent edges of G and
H = G−N . Combining these with the definition of T , we have

0 ≤ dG−S(x) ≤ dH−S(x) + 1 ≤ g(x) + 1 ≤ b− r + 1

for each x ∈ T . In terms of the definition of h, we get 0 ≤ h ≤ b − r + 1.
Claim 2.3 is proved. �

Claim 2.4. dH−S(T ) ≥ dG−S(T )−min{2n, |T |}.

Proof. We write D = V (G)\(S∪T ) and EG(T ) = {e : e = xy ∈ E(G), x, y ∈
T}. It is obvious that 2|N ∩EG(T )|+ |N ∩EG(T,D)| ≤ min{2n, |T |}. Thus,
we have

dH−S(T ) = dG−N−S(T )

= dG−S(T )− (2|N ∩ EG(T )|+ |N ∩ EG(T,D)|)
≥ dG−S(T )−min{2n, |T |}.

Claim 2.4 is verified. �

We shall consider four cases.
Case 1: h = 0.

Set λ = |{x : x ∈ T, dG−S(x) = 0}|. It is obvious that λ ≥ 1 by h = 0.
We write X = V (G) \ S. Clearly, NG(X) 6= V (G) since λ ≥ 1. It follows
from the hypothesis of Theorem 1.1 that

p− λ ≥ |NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|

=
(a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
(p− |S|),
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which implies

|S| ≥ p− (p− λ)((a+ r)(p− 1)− 2n− 2)

(a+ b− 1)(p− 1)
. (2)

It follows from (1), (2),

p ≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2

a+ r
+

2n

a+ r − 1
,

λ ≥ 1, |S|+ |T | ≤ p, and Claim 2.4 that

ε(S, T )− 1 ≥ γH(S, T ) = f(S) + dH−S(T )− g(T )

≥ f(S) + dG−S(T )−min{2n, |T |} − g(T )

≥ (a+ r)|S|+ |T | − λ− 2n− (b− r)|T |
= (a+ r)|S| − (b− r − 1)|T | − λ− 2n

≥ (a+ r)|S| − (b− r − 1)(p− |S|)− λ− 2n

= (a+ b− 1)|S| − (b− r − 1)p− λ− 2n

≥ (a+ b− 1)
(
p− (p− λ)((a+ r)(p− 1)− 2n− 2)

(a+ b− 1)(p− 1)

)
−(b− r − 1)p− λ− 2n

=
p(2n+ 2)

p− 1
+
((a+ r)(p− 1)− 2n− 2

p− 1
− 1
)
λ− 2n

≥ p(2n+ 2)

p− 1
+

(a+ r)(p− 1)− 2n− 2

p− 1
− 1− 2n

= a+ r + 1 > 2 ≥ ε(S, T ),

which is a contradiction.
Case 2: h = 1.

Subcase 2.1: |T | >
⌊
((a+r)(p−1)−2n−2)p

(a+b−1)(p−1)

⌋
.

It is easy to see that

|T | ≥
⌊

((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
+ 1. (3)

Note that h = 1. Hence, there exists v ∈ T with dG−S(v) = h = 1, and so

v /∈ NG(T \NG(v)),

which implies

NG(T \NG(v)) 6= V (G).

Combining this with dG−S(v) = h = 1 and the hypothesis of Theorem 1.1,
we get

|T | − 1 ≤ |T \NG(v)| <
⌊

((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
,
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that is,

|T | <
⌊

((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
+ 1,

which contradicts (3).

Subcase 2.2: |T | ≤
⌊
((a+r)(p−1)−2n−2)p

(a+b−1)(p−1)

⌋
.

In terms of h = 1 and Lemma 2.2, we obtain

|S| ≥ δ(G)− 1 ≥ (b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
− 1

=
(b− r − 1)(p− 1) + 2n+ 2

a+ b− 1
,

that is,

|S| ≥ (b− r − 1)(p− 1) + 2n+ 2

a+ b− 1
. (4)

Claim 2.5. |T | ≤ (a+r)(p−1)−2n−2
a+b−1 .

Proof. We assume that

|T | > (a+ r)(p− 1)− 2n− 2

a+ b− 1
.

In light of (4), we have

|S|+ |T | > (b− r − 1)(p− 1) + 2n+ 2

a+ b− 1
+

(a+ r)(p− 1)− 2n− 2

a+ b− 1
= p− 1.

On the other hand, |S|+ |T | ≤ p. Thus, we obtain

|S|+ |T | = p. (5)

According to (4), (5),

|T | ≤
⌊

((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)

⌋
≤ ((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)
,

and Claim 2.4, we obtain

γH(S, T ) = f(S) + dH−S(T )− g(T )

≥ f(S) + dG−S(T )−min{2n, |T |} − g(T )

≥ (a+ r)|S|+ |T | − 2n− (b− r)|T |
= (a+ r)|S| − (b− r − 1)|T | − 2n

= (a+ r)(p− |T |)− (b− r − 1)|T | − 2n

= (a+ r)p− (a+ b− 1)|T | − 2n

≥ (a+ r)p− (a+ b− 1) · ((a+ r)(p− 1)− 2n− 2)p

(a+ b− 1)(p− 1)
− 2n

= (a+ r)p−
(

(a+ r)p− p(2n+ 2)

p− 1

)
− 2n
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=
p(2n+ 2)

p− 1
− 2n

> 2n+ 2− 2n = 2 ≥ ε(S, T ),

which contradicts (1). Claim 2.5 is verified. �

We write β = |{x : x ∈ T, dG−S(x) = 1}|. It is obvious that β ≥ 1 and
|T | ≥ β. In light of (4) and Claims 2.4–2.5, we have

γH(S, T ) = f(S) + dH−S(T )− g(T )

≥ f(S) + dG−S(T )−min{2n, |T |} − g(T )

≥ (a+ r)|S|+ 2|T | − β − 2n− (b− r)|T |
= (a+ r)|S| − (b− r − 2)|T | − β − 2n

≥ (a+ r) · (b− r − 1)(p− 1) + 2n+ 2

a+ b− 1

−(b− r − 2) · (a+ r)(p− 1)− 2n− 2

a+ b− 1
− β − 2n

=
(a+ r)(p− 1) + (a+ b− 2)(2n+ 2)

a+ b− 1
− β − 2n

=
(a+ r)(p− 1)− 2n− 2

a+ b− 1
+ 2n+ 2− β − 2n

≥ |T | − β + 2 ≥ 2 ≥ ε(S, T ),

which contradicts (1).
Case 3: 2 ≤ h ≤ b− r.

Note that h = min{dG−S(x) : x ∈ T}. Then there exists x1 ∈ T such that
dG−S(x1) = h. Hence, we obtain

δ(G) ≤ dG(x1) ≤ dG−S(x1) + |S| = h+ |S|.

Combining this with Lemma 2.2, we have

|S| ≥ δ(G)− h ≥ (b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
− h. (6)

In terms of (6), |S|+ |T | ≤ p, and Claim 2.4, we have

γH(S, T ) = f(S) + dH−S(T )− g(T )

≥ f(S) + dG−S(T )−min{2n, |T |} − g(T )

≥ (a+ r)|S|+ h|T | − 2n− (b− r)|T |
= (a+ r)|S| − (b− r − h)|T | − 2n

≥ (a+ r)|S| − (b− r − h)(p− |S|)− 2n

= (a+ b− h)|S| − (b− r − h)p− 2n

≥ (a+ b− h) ·
(

(b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
− h
)

−(b− r − h)p− 2n.
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Let

ϕ(h) = (a+ b−h) ·
((b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
−h
)
− (b− r−h)p− 2n.

Then we have

γH(S, T ) ≥ ϕ(h). (7)

By 2 ≤ h ≤ b− r and

p ≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2

a+ r
+

2n

a+ r − 1
,

we get

ϕ′(h) = −
((b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
− h
)
− (a+ b− h) + p

=
(a+ r)p− a− r − 2n− 2

a+ b− 1
+ 2h− (a+ b)

≥ a+ 2b− r − 4 + 4− (a+ b)

= b− r ≥ a > 0,

and so, ϕ(h) attains its minimum value at h = 2 by 2 ≤ h ≤ b−r. Combining
this with (7) and

p ≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2

a+ r
+

2n

a+ r − 1
,

we obtain

γH(S, T ) ≥ ϕ(h) ≥ ϕ(2)

= (a+ b− 2) ·
((b− r − 1)p+ a+ r + 2n+ 2

a+ b− 1
− 2
)

− (b− r − 2)p− 2n

=
(a+ r)p

a+ b− 1
+

(a+ b− 2)(a+ r + 2n+ 2)

a+ b− 1
− 2(a+ b− 2)− 2n

≥ (a+ b− 1)(a+ 2b− r − 4) + a+ r + 2n+ 2

a+ b− 1

+
(a+ b− 2)(a+ r + 2n+ 2)

a+ b− 1
− 2(a+ b− 2)− 2n

= 2 ≥ ε(S, T ),

which contradicts (1).
Case 4: h = b− r + 1.



RESTRICTED FRACTIONAL (g, f)-FACTORS 147

It follows from (1) and Claim 2.4 that

ε(S, T )− 1 ≥ γH(S, T ) = f(S) + dH−S(T )− g(T )

≥ f(S) + dG−S(T )−min{2n, |T |} − g(T )

≥ (a+ r)|S|+ h|T | − |T | − (b− r)|T |
= (a+ r)|S| − (b− r + 1− h)|T |
= (a+ r)|S| ≥ |S| ≥ ε(S, T ),

which is a contradiction. This completes the proof of Theorem 1.1. �

3. Remark

In this section, we claim that the assumption on the neighborhood in
Theorem 1.1 is the best possible, which cannot be replaced by NG(X) =
V (G) or

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|

for any X ⊆ V (G).
Let a, b, r, n be four nonnegative integers such that 2 ≤ a = b− r, b is odd

and (2n+ 2)/b is an integer. We construct a graph

G = K(a−1)m+ 2n+2
b
∨
(bm+ 1

2
K2

)
of order p, where m is an enough large positive integer, m is odd, and ∨
means “join”. It is easy to see that p = (a − 1)m + bm + 1 + ((2n + 2)/b).
We write

S = V
(
K(a−1)m+ 2n+2

b

)
and

T = V
(bm+ 1

2
K2

)
.

We first show that the assumption NG(X) = V (G) or

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|

for any X ⊆ V (G) holds. Let any X ⊆ V (G). It is easy to see that if
|X ∩ S| ≥ 2, or |X ∩ S| = 1 and |X ∩ T | ≥ 1, then NG(X) = V (G). Of
course, if |X| = 1 and X ⊆ S, then we easily obtain

|NG(X)| = |V (G)| − 1 = p− 1 >
(a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|.

Therefore, we may assume that X ⊆ T . Note that

|NG(X)| = |S|+ |X| = (a− 1)m+
2n+ 2

b
+ |X|.

Hence,

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|
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holds if and only if

(a− 1)m+
2n+ 2

b
+ |X| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|.

This inequality is equivalent to |X| ≤ bm. Thus if X 6= T and X ⊂ T , then
we have

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|

for any X ⊂ V (G). If X = T , then it is obvious that NG(X) = V (G).
Consequently, NG(X) = V (G) or

|NG(X)| ≥ (a+ b− 1)(p− 1)

(a+ r)(p− 1)− 2n− 2
|X|

for any X ⊆ V (G) holds.
Let g, f be two integer-valued functions defined on V (G) with g(x) = a

and f(x) = b = a + r for every x ∈ V (G). Let N = {e1, e2, . . . , en} ⊆
E( bm+1

2 K2) be a set of independent edges of G. We write H = G − N .
Next, we show that H does not have a fractional (g, f)-factor with the
property E(1, 0). For above S and T , we have |S| = (a−1)m+((2n+ 2)/b),
|T | = bm+ 1, dH−S(T ) = bm+ 1− 2n and ε(S, T ) = 2. Thus, we have

γH(S, T ) = f(S) + dH−S(T )− g(T )

= b|S|+ dH−S(T )− a|T |

= b ·
(

(a− 1)m+
2n+ 2

b

)
+ bm+ 1− 2n− a · (bm+ 1)

= 3− a ≤ 1 < 2 = ε(S, T ).

In light of Lemma 2.1, H does not admit a fractional (g, f)-factor with the
property E(1, 0), and so, G does not admit a fractional (g, f)-factor with
the property E(1, n).
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