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ON PARITY AND RECURRENCES FOR CERTAIN

PARTITION FUNCTIONS

DARLISON NYIRENDA

Abstract. In this paper, parity and recurrence formulas for some par-
tition functions are given. In particular, a new recurrence for the number
of partitions of a positive integer into distinct parts is derived and some
identities reminiscent of Legendre’s partition-theoretic interpretation of
Euler’s pentagonal numbers theorem are obtained.

1. Introduction

A partition of a positive integer n is a representation (λ1, λ2, λ3, . . . ) where
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 1 and

∑
i≥1 λi = n. The number of partitions of

n , usually denoted by p(n), has been well studied. In particular, there
are several recurrence formulas for p(n) (for instance, see [5]). Finding
exact formulas for the parity of p(n) remains a thorny issue, although its
recurrences can be used to recursively deduce p(n) (mod 2). There are
also known parity recurrence formulas for p(n) (see [4], [2]). At times,
focus is on restricted partition functions. In this case, certain conditions are
imposed on the parts of partitions, and the resulting enumerating function
is studied. One such function is the number of partitions of n into distinct
parts. Denote this number by c(n). It is much easier to deduce parity of c(n)
by considering Euler’s pentagonal numbers theorem. If ce(n) (resp. co(n))
denotes the number of c(n)-partitions into an even (resp. odd) number of
parts, then it turns out that

(1.1) ce(n)− co(n) =

{
(−1)j , n = j

2(3j ± 1), j ≥ 0;

0, otherwise.

The above identity is the partition-theoretic interpretation of Euler’s pen-
tagonal numbers theorem due to Legendre [3]. Since c(n) = ce(n) + co(n) ≡
ce(n)− co(n) (mod 2), we have an exact parity formula for c(n).
In this note, we derive parity and recurrence formulas for certain restricted
partition functions. As it will turn out, parity shall follow from identities
in the spirit of (1.1). In particular, we obtain a recurrence formula for the
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number of partitions of n into distinct parts. Our main tools involve the
following well-known q-identities.

(1.2)
∞∏
n=1

1− qn

1 + qn
=

∞∑
n=−∞

(−1)nqn
2
,

(1.3)

∞∏
n=1

(1− qn)(1 + zqn)(1 + z−1qn−1) =

∞∑
n=0

znqn(n+1)/2,

(1.4)

∞∏
n=1

(1− qn)3 =

∞∑
n=0

(−1)n(2n+ 1)q
n(n+1)

2 .

2. Results

Lemma 2.1. Let k ∈ Z≥2. Then
∞∏
n=1

(1− qn)3 ≡

∞∏
n=1

(
1 + q2

kn
)1 +

2k−1−1∑
j=1

q(2n−1)j

 2k−2−1∏
j=1

(
1 + q2

k−1n−2j)
)

(mod 2) .

Proof.
∞∏
n=1

(1− qn)3 =

∞∏
n=1

(1 + q2
kn)

(1 + q2kn)

(1− qn)4

(1− qn)

≡
∞∏
n=1

(1 + q2
kn)(1− q4n)

(1 + q2k−1n)(1 + q2k−1n)(1− qn)
(mod 2)

=
∞∏
n=1

(1 + q2
kn)(1− q4n)(1− q2k−1(2n−1))

(1 + q2k−1n)(1− qn)

=

∞∏
n=1

(1 + q2
kn)(1− q4n)

(1 + q2k−1n)(1− q2k−1n)(1− q2k−1n−1)

× (1− q2k−1(2n−1))

(1− q2k−1n−2) . . . (1− q2k−1n−2k−1+1)

=
∞∏
n=1

(1 + q2
kn)(1− q2k−1(2n−1))

(1 + q2k−1n)(1− q2n−1)(1− q2k−1n)

× (1− q4n)∏2k−2−1
j=1 (1− q2k−1n−2j)

=
∞∏
n=1

(1 + q2
kn)(1− q2k−1(2n−1))(1− q4n)

(1− q2kn)(1− q2n−1)
∏2k−2−1

j=1 (1− q2k−1n−2j)
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=
∞∏
n=1

(1 + q2
kn)(1− q2k−1(2n−1))(1− q2kn)

(1− q2kn)(1− q2n−1)

× (1− q2kn−4)(1− q2kn−8) . . . (1− q2kn−2k+4)∏2k−2−1
j=1 (1− q2k−1n−2j)

=

∞∏
n=1

(1− q2k+1n)(1− q2k−1(2n−1))
∏2k−2−1

j=1 (1− q2kn−4j)

(1− q2kn)(1− q2n−1)
∏2k−2−1

j=1 (1− q2k−1n−2j)

=

∞∏
n=1

(1− q2(2kn))
(1− q2kn)

(1− q2k−1(2n−1))

(1− q2n−1)

2k−2−1∏
j=1

(1− q2(2k−1n−2j))

(1− q2k−1n−2j)

=

∞∏
n=1

(1 + q2
kn)(1 + q2n−1 + q2(2n−1) + . . .+ q(2

k−1−1)(2n−1))

×
2k−2−1∏
j=1

(1 + q2
k−1n−2j)).

�

In fact, the above proposition has a direct combinatorial interpretation in
terms of partitions. Define s(n, k) as the number of partitions of n in which
even parts are distinct and congruent to 0

(
mod 2k

)
,−2j

(
mod 2k−1

)
where

j = 1, 2, . . . , 2k−2 − 1, and odd parts appear at most 2k−1 − 1 times. Then
the following theorem is an immediate consequence of Lemma 2.1 and (1.4).

Theorem 2.2. For all integers k ≥ 2,

s(n, k) ≡

{
1 (mod 2) , if n = m(m+1)

2 ,m ≥ 0;

0 (mod 2) , otherwise.

Now set k = 2, we have

∞∑
n=0

s(n, 2)qn =

∞∏
n=1

(1 + q4n)(1 + q2n−1).

If we use the notation se(n, 2) (resp. so(n, 2)) to denote the number of s(n, 2)-
partitions into an even (resp. odd) number of even parts, it is clear that
s(n, 2) ≡ se(n, 2) − so(n, 2) (mod 2) but in the spirit of (1.1), we have the
following:

Theorem 2.3. For n ≥ 0, we have

se(n, 2)− so(n, 2) =

{
1, if n = m(m+1)

2 ,m ≥ 0;

0, otherwise.
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Proof.

∞∑
n=0

(se(n, 2)− so(n, 2))qn =
∞∏
n=1

(1− q4n)(1 + q2n−1)

=

∞∏
n=1

(1− q4n)(1 + q4n−1)(1 + q4n−3)

=
∞∑

n=−∞
q2n

2+n (by (1.3) with q := q4, z := q−1)

=
∞∑
n=0

qn(2n±1).

�

The proof above where (1.3) is invoked points towards some sort of gen-
eralisation. Set q := q2 in (1.3) so that

∞∑
n=−∞

(zq)nqn
2

=
∞∏

m=1

(1− q2m)(1 + zq2m)(1 + z−1q2m).

Now replace zq by z in the preceding identity; we obtain

(2.1)

∞∑
n=−∞

znqn
2

=

∞∏
m=1

(1− q2m)(1 + zq2m−1)(1 + z−1q2m−1).

Let q := q2r and z := q in (2.1) so that

(2.2)

∞∑
n=−∞

q2rn
2+n =

∞∏
m=1

(1− q4rm)(1 + q4rm−(2r−1))(1 + q4km−(2r+1)),

whose partition-theoretic consequence is given in the following theorem.

Theorem 2.4. Let d(n, r) denote the number of partitions of n into distinct
parts that are congruent to 0, 2r±1 (mod 4r). Let de(n, r) enumerate those
d(n, r)-partitions in which the number of parts congruent to 0 (mod 4r) is
even. Similarly, do(n, r) for odd number of aforesaid parts. Then

de(n, r)− do(n, r) =

{
1, if n = m(2rm± 1),m ≥ 0;

0, otherwise.

Corollary 2.5. For all n ≥ 1, d(n, r) ≡ 1 (mod 2) if and only if n =
j(2rj ± 1) for some j ∈ Z≥0.
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Observe that Theorem 2.4 generalises Theorem 2.3 (r = 1). From (2.2),
we have

∞∑
n=−∞

q2rn
2+n =

∞∏
m=1

1− q4rm

1 + q4rm

×
∞∏

m=1

(1 + q4rm)(1 + q4rm−(2r−1))(1 + q4km−(2r+1))

=
∞∏

m=1

1− q4rm

1 + q4rm

∞∑
n=0

d(n, r)qn

=

∞∑
m=−∞

(−1)mq4rm
2
∞∑
n=0

d(n, r)qn by (1.2)

=

(
1 + 2

∞∑
m=1

(−1)mq4rm
2

) ∞∑
n=0

d(n, r)qn

=
∞∑
n=0

d(n, r)qn + 2

( ∞∑
n=1

(−1)nq4rn
2

) ∞∑
n=0

d(n, r)qn

=
∞∑
n=0

d(n, r)qn + 2
∞∑
n=0

b
√

n
4r
c∑

m=1

(−1)md(n− 4rm2, r)

 qn

=
∞∑
n=0

d(n, r) + 2

b
√

n
4r
c∑

m=1

(−1)md(n− 4rm2, r)

 qn.

By comparing the coefficients on the right and left-hand sides, we obtain
the following recurrence.

Theorem 2.6.

d(n, r) =


1 + 2

b
√

n
4r
c∑

m=1
(−1)m+1d(n− 4rm2, r), if n = j(2rj ± 1), j ≥ 0;

2
b
√

n
4r
c∑

m=1
(−1)m+1d(n− 4rm2, r), otherwise;

where d(0, r) := 1.

We look at an example demonstrating the above recurrence.

Example 2.7. Consider n = 10 and r = 1.

Using the formula, we have

d(10, 1) = 1 + 2d(6, 1) = 1 + 2(1 + 2d(2)) = 1 + 2(1 + 2(0)) = 3.
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However, the d(10, 1)-partitions are; (9, 1), (7, 3), (5, 4, 1). In either case, the
answer is 3. Furthermore, from (2.2), we observed that

∞∑
n=−∞

q2rn
2+n =

∞∏
m=1

1− q4rm

1 + q4rm

×
∞∏

m=1

(1 + q4rm)(1 + q4rm−(2r−1))(1 + q4km−(2r+1)).

This means
∞∑
n=0

(de(n, r)− do(n, r))qn =

∞∑
m=−∞

(−1)mq4rm
2
∞∑
n=0

d(n, r)qn

so that
∞∑
n=0

(de(n, r)+do(n, r))q
n =

∞∑
m=−∞

(−1)mq4rm
2
∞∑
n=0

d(n, r)qn+2
∞∑
n=0

do(n, r)q
n,

i.e.,

∞∑
n=0

d(n, r)qn =
∞∑
n=0

d(n, r) + 2

b
√

n
4r
c∑

m=1

(−1)md(n− 4rm2, r)

 qn

+ 2

∞∑
n=0

do(n, r)q
n.

Thus the following formula follows.

Corollary 2.8. For all n ≥ 1, we have

do(n, r) =

b
√

n
4r
c∑

m=1

(−1)m+1d(n− 4rm2, r).

Besides, one can simply use the fact that de(n, r) = d(n, r) − do(n, r) to
derive a similar formula as in the above corollary for de(n, r).

In Theorem 2.4, the modulus 4r is even, similarly, for odd moduli, let
q := 2r + 1, z := q in (2.1) so that

∞∑
n=−∞

qn+(2r+1)n2
=
∞∏

m=1

(1− q(4r+2)m)(1 + q(4r+2)m−2r)(1 + q(4r+2)m−2r−2).

Now set q := q
1
2 in the preceding identity to obtain

(2.3)
∞∑

n=−∞
q(n+(2r+1)n2)/2 =

∞∏
m=1

(1− q(2r+1)m)(1 + q(2r+1)m−k)(1 + q(2r+1)m−r−1).

Thus the following theorem follows.
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Theorem 2.9. Let c(n, r) denote the number of partitions of n into distinct
parts that are congruent to 0,±r (mod 2r + 1). Let ce(n, r) enumerate those
c(n, r)-partitions with an even number of parts congruent to 0 (mod 2r + 1).
Similarly, co(n, r) for odd number of the aforesaid parts. Then

ce(n, r)− co(n, r) =

{
1, if n = m

2 [(2r + 1)m± 1],m ≥ 0;

0, otherwise.

Remark. The partition function c(n, r) is well-known (see [1]) as it is used
to generalise Legendre’s partition theoretic interpretation of Euler’s pentag-
onal numbers theorem. In this paper, we have considered it in a different
way by effecting parity restriction only on those parts divisible by 2r + 1,
while in the known case, parity affects all parts.

We now obtain a recurrence for c(n, r). Equation (2.3) implies

∞∑
n=−∞

q(n+(2r+1)n2)/2 =
∞∏

m=1

1− q(2r+1)m

1 + q(2r+1)m

∞∏
m=1

(1 + q(2r+1)m)(1 + q(2r+1)m−k)

×
∞∏

m=1

(1 + q(2r+1)m−r−1)

=

∞∏
m=1

1− q(2r+1)m

1 + q(2r+1)m

∞∑
n=0

c(n, r)qn.

Proceeding in the same manner as done in deriving the recurrence in Theo-
rem 2.6, we obtain the following theorem.

Theorem 2.10.

c(n, r) =



1 + 2
b
√

n
2r+1

c∑
m=1

(−1)m+1c(n− (2r + 1)m2, r),

if n = j
2 [(2r + 1)j ± 1], j ≥ 0;

2
b
√

n
2r+1

c∑
m=1

(−1)m+1c(n− (2r + 1)m2, r),

otherwise;

where c(0, r) := 1.

Remark. Observe that c(n, 1) is the number of partitions of n into distinct
parts. Thus we have a new recurrence for this popular partition function.
Furthermore, formulas expressing ce(n, r) and ce(n, r) in terms of c(n, r) can
be derived via a similar approach to the one used in arriving at Corollary
2.8.
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