
Volume 17, Number 1, Pages 56–69
ISSN 1715-0868

PUSHES IN WORDS—A PRIMITIVE SORTING

ALGORITHM

M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER,
AND T. MANSOUR

Abstract. We define the statistic of a push for words on an alphabet
[k] and use this to obtain a generating function measuring the degree to
which an arbitrary word deviates from sorted order. Several subsidiary
concepts are investigated: the number of cells that are not pushed, the
number of already sorted columns, the number of cells that coincide be-
fore and after pushing, the fixed cells in words and finally, the frictionless
pushes.

1. Introduction

In this paper, we investigate a statistic which measures the extent to
which a given word deviates from its representation in nondecreasing sorted
order.
An earlier such statistic is inversions in words as first studied by MacMahon,
(see Andrews [1], Theorem 3.6). Other statistics on words have recently been
studied as seen in [2, 3, 4, 6, 7, 8, 9, 10]. This paper provides another of the
deviations from sorted order by exploring the parameter “number of pushes”
for an arbitrary word over an alphabet [k].
For an arbitrary word W over an alphabet [k], let us define a push in the
following way: suppose the leftmost element in the word which is not a weak
left-to-right maximum occurs in position i and has height v(i). A weak left-
to-right maximum is a part which is greater than or equal to all parts to
its left. We define a cell to be a single square in any part as illustrated in
Figure 1. Shift all cells in W which are to the left of i and above the level
of v(i), one horizontal position to the right. We call this shifting process
a push and illustrate the concept in Figure 2. Also, we give an example in

Received by the editors March 14, 2019, and in revised form July 23, 2021.
2000 Mathematics Subject Classification. Primary: 05A15, Secondary: 05A05.
Key words and phrases. words, generating function, sorting, asymptotics.
This material is based upon work supported by the National Research Foundation under

grant numbers 89147, 86329 and 81021 for M. Archibald, C. Brennan and A. Knopfmacher
respectively.

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

56

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 57

Figure 1 of an original word and the sorted order after the push sequence is
completed.

Original word Pushed word

Figure 1. The sorted order of the word 2,1,7,4,3,5,1,6,2,2
resulting from the the pushing process.

A1
parts
≤ t

A2
parts ∈
(t, s]

t

s

A3

any word
PUSH

Weakly increasing
word

A3

any wordA1

A2t

ss

Weakly increasing
word

Figure 2. The pushing process illustrated.

We apply a sequence of pushes to a word and the successively pushed
words that result. The sequence terminates once a weakly increasing word
has been obtained. We obtain a generating function which tracks the number
of pushes required for words of length n over an alphabet [k].

Remark: We see that the total number of pushes required to generate a
weakly increasing word is equal to the number of parts minus the number
of weak left-to-right maxima.

For example, consider the word: 1,2,1,3,3,2,4,2,1. It has 9 parts, 5 weak
left-to-right maxima indicated in bold thus 4 pushes.

We also study associated concepts such as the generating function for
the total number of cells which do not move in the pushing process (see
section 3); the number of already sorted columns in arbitrary words (see
section 4); the total number of cells that coincide before and after the full
push sequence (see section 5); and finally a generating function for the so-
called frictionless pushes (defined in section 6).

58 M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER ET AL.

2. The number of pushes

Let G1(u, x) be the generating function for the number of pushes where
x marks the length of the word and u the parts in the word that are not
weak left-to-right maxima. The question of weak left-to-right maxima was
previously studied in [11, 12]. For the convenience of the reader, we derive
the result in full. By Remark 1.1 above, u also marks the number of pushes.
We have the symbolic decomposition, see [13, 14],

(2.1) 1∗ (2(< 2)∗)∗ (3(< 3)∗)∗ · · · (k(< k)∗)∗

for all words in which all possible weak left-to-right maxima are shown in
bold. Here i(< i)∗ stands for a single element i followed by a sequence which
may be empty that consist of parts in the set {1, 2, . . . , i−1} with generating
function

x

1− u(i− 1)x
,

and thus (i(< i)∗)∗ has the generating function

1

1− x
1−u(i−1)x

.

Using the symbolic decomposition (2.1) we have

G1(u, x) =
k∏

i=1

1

1− x
1−u(i−1)x

=
k∏

i=1

1− (i− 1)ux

1− (i− 1)ux− x
.

In order to find the total number of pushes for words of length n we compute

∂

∂u
G1(u, x)

∣∣∣∣
u=1

=
1

1− kx
×

k∑
j=1

1− (j − 1)ux− x

1− (j − 1)ux

∂

∂u

(
1− (j − 1)ux

1− (j − 1)ux− x

) ∣∣∣∣
u=1

=
1

1− kx

k∑
j=1

1− jx

1− (j − 1)x

(j − 1)x2

(1− jx)2

=
1

1− kx

k∑
j=1

(j − 1)x2

(1− (j − 1)x)(1− jx)
.(2.2)

Partial fractions for the case j = k in equation (2.2) gives

−1 + k

k(1− kx)2
+

(1− k)(1 + k)

k(1− kx)
− 1− k

1 + y − kx
.

Extracting the coefficient [xn] gives

(−1 + k)1+n − (−1 + k) k−1+n (k − n).

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 59

Partial fractions for 1 ≤ j < k in equation (2.2) gives

− 1− j

(1− j + k)(1 + (1− j)x)
+

(1− j)

(k − j)(1− jx)
+

1− j

(1− j + k)(j − k)(1− kx)
.

Extracting the coefficient [xn] gives

(1− j)(−(−1 + j)nj + j1+n + (−1 + j)nk + kn − jn(1 + k))

(1− j + k)(j − k)
.

Replacing j by k − i leads to

−(−1−i+k)n+(−i+k)n−k(kn − (−1− i+ k)n)

1 + i
+
(−1 + k)(kn − (−i+ k)n

i
.

Thus the total number of pushes for all words of length n is

(−1 + k)1+n + (1− k)k−1+n(k − n)

+

k−1∑
i=1

(
− (−1− i+ k)n + (−i+ k)n

−k(kn − (−1− i+ k)n)

1 + i
+

(−1 + k)(kn − (−i+ k)n)

i

)
.

This simplifies yielding the following result:

Theorem 2.1. The total number of pushes in all words of length n over the
alphabet [k] is equal to

kn
(
(k − 1)n

k
−Hk−1

)
+

k−1∑
i=1

(k − i)n

i
,

where Hk =
∑k

j=1 1/j is the Harmonic number.

For the average we divide by kn to find

Corollary 2.2. The average number of pushes in all words of length n over
the alphabet [k] is equal to

n(k − 1)

k
−Hk−1 +O

((
k − 1

k

)n)
, as n → ∞.

3. Number of cells that do not move

In this section, we calculate the total number of cells that do not move in
the pushing process over all words of length n on alphabet [k].

As an example, consider the word 61552142654 drawn in Figure 3. In this
case, there are 22 cells that do not move in the pushing process. They are
indicated with dots in the diagram.

It can be seen that the cells that do not move during the pushing process
will necessarily form a weakly increasing word, and this is the basis of the
proof. We divide this word into blocks ending in a strict right-to-left mini-
mum. In the example in Figure 3, there are three strict right-to-left minima

60 M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER ET AL.

(4, 2 and 1), indicated in bold. So there are three blocks (of length 3, 2 and
6 respectively), giving a total of 4× 3 + 2× 2 + 1× 6 = 22.

6 1 5 5 2 1 4 2 6 5 4
• • • • • • • • • • •

• • • • •
• • •
• • •

Figure 3. Word 61552142654 indicating cells not pushed.

Theorem 3.1. Given the set of words of length n over alphabet [k], the total
number of cells that do not move during the pushing process is

(n+ 1)kn + (k − 1)n+1 − kn+1

−
k∑

m=2

m(k −m+ 1)n+1 − (m− 1)(k −m)n+1 − kn+1

m− 1
.

Asymptotically, the average number of cells that do not move during the
pushing process is

n+ 1 + k(Hk−1 − 1) +O

((
k − 1

k

)n)
, as n → ∞.

Proof. To prove Theorem 3.1, decompose each word into blocks according
to the size of the strict right-to-left minima. In each block, the number of
cells that do not move are these left-to-right minima values multiplied by
the number of parts in that block, as shown in Figure 3. A schema of the
decomposition is given in Figure 4.

If there is a strict right-to-left minimum of size m, then its block B (see
Figure 4), consists of a (possibly empty) sequence of letters of size between
m and k, where the rightmost letter has size exactly m.

We let the variable z track the number of cells in the word and we let
y track the number of columns (parts/letters) in the word. In addition,
we introduce a variable u which will count the number of cells in the word
that do not move. The generating function for the letter of size m (a strict
right-to-left minimum) is umyzm, and for any other letter is

umy(zm − zk+1)

1− z
.

The generating function for a block B is then

bm(z, y, u) :=
umyzm

1− umy(zm−zk+1)
1−z

.

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 61

@
@
@@R

The last R-L minimum

A
A
A
A
AU

The second strict R-L minimum

The first strict R-L minimum

A
A
A
A
AU

B B B B

. . .

� - � -� -� -

Figure 4. The decomposition schema for words indicating
strict right-to-left minima.

For the generating function of the whole word, we have a sequence of these
blocks (each with their corresponding right-to-left minimum), any of which
may be empty. This gives an overall generating function of

G2(z, y, u) :=
k∏

m=1

(
1 +

umyzm

1− umy(zm−zk+1)
1−z

)
.

To calculate the total number of cells that do not move, we differentiate
with respect to u and let u = 1. This yields

∂

∂u
G2(z, y, u)

∣∣∣∣
u=1

=

k∑
m=1

my(1− z)3zm

(yzk+1 − (y + 1)z + 1)(yzm − yzk+1 + z − 1)(yzm+1 − yzk+1 + z − 1)
.

To count the cells that do not move, we no longer require the variable z, so
we let z → 1, and get

1

1− ky

k∑
m=1

my

(1 + (m− k − 1)y)(1 +my − ky)
.

The coefficient of yn in the above two formulae gives the number of cells
which do not move in a word of length n over alphabet [k]. For the term

y

(1 + (1− k)y)(1− ky)2

where m = 1, the coefficient of yn is

(n+ 1)kn + (k − 1)n+1 − kn+1.

62 M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER ET AL.

For m ≥ 2, the coefficient of the term

1

1− ky

my

(1 + (m− k − 1)y)(1 +my − ky)

is

−m(k −m+ 1)n+1 − (m− 1)(k −m)n+1 − kn+1

m− 1
.

The final coefficient is

[yn]
∂G2(1, y, u)

∂u

∣∣∣∣
u=1

= (n+ 1)kn + (k − 1)n+1 − kn+1

−
k∑

m=2

m(k −m+ 1)n+1 − (m− 1)(k −m)n+1 − kn+1

m− 1
.

To find the average we must divide this total by kn. This concludes the
proof of Theorem 3.1. □

4. The number of already sorted columns

We consider the number of nondecreasing columns to the left of the word
prior to any pushing. For example, the word 1,1,4,2,5,4 has three such
columns at the start of the word. These are the columns on the left that are
already in sorted order. We have the following symbolic decomposition:

OR
Non

dec.
word

Non
dec. word,

largest part j

j <
j

Any word

Figure 5. Decomposition of a word with maximum part of
size k.

The generating function where v marks the number of initially sorted
columns is

G4(v, x) =
1

(1− vx)k
+

k∑
j=2

1

(1− vx)j
vx(j − 1)x

1

1− kx

=
1

(1− vx)k
+

vx2

1− kx

k∑
j=2

j − 1

(1− vx)j
.

For this we used the generating function for nondecreasing words, where the
number of sequences 1 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ k is well known to be(

n+ k − 1

n

)
= [xn]

1

(1− x)k
.

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 63

Now
∂

∂v
G4(v, x)

∣∣∣∣
v=1

=
(1− x)−k

1− kx
− 1

1− kx
.

Extracting [xn] gives
n∑

j=0

kj(−1)n−j

(
−k

n− j

)
− kn =

n∑
j=0

kj
(
n+ k − j − 1

n− j

)
− kn

∼

((
k

k − 1

)k

− 1

)
kn, as n → ∞

by singularity analysis, see [5].
Hence, the average number of already sorted columns is asymptotic to(

k

k − 1

)k

− 1, as n → ∞.

Thus

Theorem 4.1. The number of already sorted columns in words of length n
is equal to

n∑
j=0

kj
(
n+ k − j − 1

n− j

)
− kn.

Moreover the average number of already sorted columns is asymptotic to(
k

k − 1

)k

− 1, as n → ∞.

Note that as k → ∞, we have(
k

k − 1

)k

− 1 → e− 1 = 1.71828

5. Fixed cells in a word

Consider a word over the alphabet [k] with its corresponding graphical
representation where the columns of height r represent the parts of size r.
We say that the column of size r consists of r unit squares called cells. We
now perform the push sequence from left-to-right and obtain a nondecreasing
word. Any cell in the grid that is filled in both the original word and the final
pushed word is called a fixed cell. We illustrate this in the following example:
The word 2,1,7,4,3,5,1,6,2,2 is pushed, and the new pushed nondecreasing
word is 1,1,2,2,2,3,4,5,6,7. The 21 fixed cells are shaded.

Let C(n) be the total number of fixed cells in words of size n over the
alphabet [k]. We shall consider words of size n + 1 over the same fixed
alphabet that start with a part of size j and shall denote by C(n + 1|j)
the total number of fixed cells in such words. We compare a word starting
with j with a word which differs only in that it starts with j + 1. The
diagram represents the situation after it has been pushed to sorted order.

64 M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER ET AL.

Original word Pushed word

Figure 6. The fixed cells of the word 2,1,7,4,3,5,1,6,2,2.

In Figure 7 below, we show the two words after they have been pushed to
sorted order. The subwords A1 and A2 are both weakly increasing subwords
and the shaded block is in position s.

j
A1

A2

Subword A1 with s− 1
parts ∈ [1, j]

Subword A2 with n+ 1− s
parts ∈ [j + 1, k]

Word that started with a
j, and has been pushed

Word that started with a
j + 1, and has been pushed

j
+
1A1

A2

Figure 7. Comparison of two words that differed originally
only in the first column, after they have been pushed.

Because we are aiming at the number of such words before they are pushed
which contribute an extra fixed cell, we exclude the case where A2 is empty.
In such a case the j or j + 1 is the largest letter in the word and changing
this letter does not add an extra fixed cell. So the number of letters in A1

(counted by s − 1) has a maximum value of n − 1. This accounts for the

fact that the binomial coefficient in the sum below is
(
n−1
s−1

)
. The case s = 1

(i.e., when A1 = ∅) will be handled in the next paragraph. We do a direct
count of the number of words with the attributes described in Figure 7. For
s = 2, . . . , n we have

n∑
s=2

(
n− 1

s− 1

)
js−1(k − j)n−(s−1) =

n−1∑
r=1

(
n− 1

r

)
jr(k − j)n−r

= (k − j)kn−1 − (k − j)n(5.1)

where the term
(
n−1
s−1

)
js−1 is for the subword A1 where the parts are ≤ j

before pushing, and the remaining term (k − j)n−r is for the subword A2

where the parts are ≥ j + 1.

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 65

For s = 1 there are

(5.2) (k − j)n

such words. This is also the number of words which had l ≥ j+1 in the s-th
position in the original words (before pushing). Each of these contributes
one extra fixed cell caused by the change in the shaded column. Thus the
extra number of fixed cells obtained when adding 1 to the first part j, i.e.,
the difference between C(n+1|j+1) and C(n+1|j) is the sum of equations
(5.1) and (5.2) which equals (k − j)kn−1. Thus we have the recursion

(5.3) C(n+ 1|j + 1) = C(n+ 1|j) + (k − j)kn−1,

with the following initial condition

(5.4) C(n+ 1|1) = C(n) + kn.

We use equation (5.3) with j = 1 and substitute equation (5.4) to obtain

(5.5) C(n+ 1|2) = C(n) + kn + (k − 1)kn−1.

We repeat the process, and use the expression for C(n+ 1|2) to obtain

(5.6) C(n+ 1|3) = C(n) + kn + (k − 1)kn−1 + (k − 2)kn−2.

Continuing the process until j = k − 1, we get an expression for C(n+ 1|k)

(5.7) C(n+ 1|k) = C(n) + kn + kn−1
k−1∑
i=1

i = C(n) + kn
k + 1

2
.

Thus summing all k cases (5.4), (5.5), (5.6), . . . ,(5.7) gives

k∑
j=1

C(n+1|j) = kC(n) + kn+1 + kn−1
k−1∑
i=1

i2 = kC(n) +
kn(2k + 1)(k + 1))

6
.

Since C(n+ 1) =
∑k

j=1C(n+ 1|j), we have the recursion

(5.8) C(n+ 1) = kC(n) +
kn(2k + 1)(k + 1))

6

with

C(1) =

(
k + 1

2

)
=

k(k + 1)

2
.

Solving the recursion (5.8) yields the result

Theorem 5.1. The total number of fixed cells in words of size n is

C(n) =
kn−1(k + 1)(2nk + n+ k − 1)

6
,

and the average number of fixed cells is

(k + 1)(2k + 1)n

6k
+

k2 − 1

6k
.

66 M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER ET AL.

6. Frictionless pushes

A frictionless push differs from an ordinary push in that if two or more
pushes occur in adjacent positions on the same level, they are thought of as
constituting one frictionless push.

With this definition, weak left-to-right maxima in the word collectively
contribute no frictionless pushes, and each maximal set of adjacent equal
letters which are not left-to-right maxima contributes one frictionless push.

In order to track these, we decompose a word of length n over an alphabet
[k] to the first occurrence of each left-to-right maximum, mi. Let 1 ≤ m1 <
m2 < m3 < · · · < ms ≤ k with s ≤ k.

m1 m2 m3 ms

. . .

B1 B2 Bs

Figure 8. Decomposition for frictionless pushes

Then the subword Bi (possibly empty) has all parts less than or equal to
mi. The number of frictionless pushes (starting from the left and proceeding
right) is the sum of the frictionless pushes in each subword (miBi). This
is the product of the generating functions for each miBi. Let mr = i be
fixed. If Br contains a nonempty sequence (indicated by +), (< i)+, this
has generating function

(6.1) B(<i)+(u, x) :=
(i− 1)ux

1− x

1

1− (i−2)ux
1−x

:=
(i− 1)ux

1− x− (i− 2)ux
,

where umarks the frictionless pushes from the left. From now on, to simplify
the notation, we will write B(<i)+ instead of B(<i)+(u, x). The first term
is for the first repeated part and the second term is for a possibly empty
sequence whose components are themselves maximal sequences of parts of
a fixed size. If Br contains a nonempty sequence

(6.2)
(
(< i)+(i)+

)+
,

one such part (< i)+(i)+ has generating function

(6.3) C(<i)+ := B(<i)+
x

1− x
.

And so the sequence in (6.2) has generating function

D :=
C(<i)+

1− C(<i)+
.

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 67

This sequence can be preceded by a possible empty sequence (i)∗ and fol-
lowed by a possibly empty sequence ϵ+(< i)+. Altogether these possibilities
have generating function

(6.4)
1

1− x
D(1 +B(<i)+)

and this represents all possibilities that contain at least one term of the form
((< i)+(i)+)

+
.

Unaccounted for sequences that do not contain one term of the form
((< i)+(i)+)

+
have generating function either

1

1− x
or B(<i)+

or
x

1− x
B(<i)+ .

On the other hand, when there is no left-to-right maximum i, this is
represented by 1.

So all possibilities have generating function

F (x, u)

=
k∏

i=1

[
1 + x

(
1

1− x
D(1 +B(<i)+) +

1

1− x
+B(<i)+ +

x

1− x
B(<i)+

)]

=
k∏

i=1

1− x+ (2− i)ux

1− 2x+ (2− i)ux+ (1− u)x2
,

(6.5)

which is our required generating function, stated in the theorem below.

Theorem 6.1. The generating function for the number of frictionless pushes
in words over alphabet [k] where x marks the size of the word and u the
number of frictionless pushes is

F (x, u) =

k∏
i=1

1− x+ (2− i)ux

1− 2x+ (2− i)ux+ (1− u)x2
.

We now differentiate with respect to u and then set u = 1 to obtain

∂F (x, u)

∂u

∣∣∣∣
u=1

=
k∏

i=1

1 + (1− i)x

1− ix︸ ︷︷ ︸
k∑

j=1

x2(1− x)(j − 1)

(1− jx)(1 + x− jx)︸ ︷︷ ︸ .
1 2

The product labeled 1 simplifies to 1/(1 − kx). The sum labeled 2 is
expressed in terms of partial fractions as

k∑
j=1

x2(1− x)(j − 1)

(1− jx)(1 + x− jx)
= (1− x)2

k∑
j=1

1

1− jx
− (1− x)

k∑
j=1

1

1− (j − 1)x
.

68 M. ARCHIBALD, A. BLECHER, C. BRENNAN, A. KNOPFMACHER ET AL.

Thus

∂F (x, u)

∂u

∣∣∣∣
u=1

=
1

1− kx

(1− x)2
k∑

j=1

1

1− jx
− (1− x)

k∑
j=1

1

1− (j − 1)x

=

1

1− kx

(1

1− kx
− 1

)
(1− x) + (x2 − x)

k∑
j=1

1

1− jx

=

kx(1− x)

(1− kx)2
− x(1− x)

1− kx

k∑
j=1

1

1− jx
.

Now

[xn]
∂F (x, u)

∂u

∣∣∣∣
u=1

= nkn − (n− 1)kn−1 −
k−1∑
j=1

jn − kn

j − k
− nkn−1 +

k−1∑
j=1

jn−1 − kn−1

j − k

+ kn−2(n− 1)

= nkn−1(k − 1)− kn−2(n− 1)(k − 1) +
k−1∑
j=1

jn−1 − kn−1

j − k
−

k−1∑
j=1

jn − kn

j − k

= nkn−1(k − 1)− kn−2(n− 1)(k − 1)− (kn − kn−1)Hk−1 +
k−1∑
j=1

jn − jn−1

k − j
.

This leads to our final result:

Theorem 6.2. The total number of frictionless pushes in words of size n
over an alphabet [k] is

nkn−1(k − 1)− kn−2(n− 1)(k − 1)− (kn − kn−1)Hk−1 +

k−1∑
j=1

jn − jn−1

k − j
.

Hence, as n → ∞, the asymptotic average number of frictionless pushes is

(k − 1)2n

k2
− (1− k)(1− kHk−1)

k2
+O

((
k − 1

k

)n)
.

References

[1] G. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge
Mathematical Library, 1998.

[2] M. Archibald, A. Blecher, C. Brennan, A. Knopfmacher, and T. Mansour, Shedding
light on words, Appl. Anal. Discrete Math. 11 (2017), 216–231.

[3] A. Blecher, C. Brennan, A. Knopfmacher, and T. Mansour, The perimeter of words,
Discrete Math. 340 (2017), 2456–2465.

[4] A. Burstein, and T. Mansour, Words restricted by patterns with at most 2 distinct
letters, Electron. J. Combin. 9:2, (2002-3), ♯ R3.

PUSHES IN WORDS—A PRIMITIVE SORTING ALGORITHM 69

[5] P. Flajolet, and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
2009.

[6] S. Heubach, and T. Mansour, Combinatorics of Compositions and Words Discrete
Mathematics and its applications, CRC press, Taylor and Francis group, 2010.

[7] A. Knopfmacher, T. Mansour, and A. Munagi, Smooth compositions and smooth
words, Pure Math. Appl. 22 (2011), 209–226.

[8] A. Knopfmacher, A. Munagi, and S. Wagner, Successions in words and compositions,
Ann. Comb. 16 (2012), 277–287.

[9] S.-M. Ma, and T. Mansour, Pattern restricted Stirling k-array words, plateau statistic,
and kernel method, Discrete Appl. Math. (2016), 100–108.

[10] T. Mansour, and M. Shattuck, A statistic related to trees and words on a finite
alphabet, Discrete Mathematics, Algorithms and Applications 8:2 (2016), 1650031.

[11] A. Myers, and H. Wilf, Left-to right maxima in words and multiset permutations,
Israel J. Math. 166 (2008), 167–183.

[12] H. Prodinger, Combinatorics of geometrically distributed random variables: Left-to-
right maxima, Discrete Math. 153 (1996), 253–270.

[13] R. Stanley, Enumerative combinatorics, Wadsworth and Brooks/Cole, ISBN: 0-534-
06546-5, Advanced books and software, Monterey, California. 1986.

[14] H. Wilf, Generatingfunctionology, ISB: 0-12-751956-4, 1994, Academia Press, INC.
United Kingdom.

The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3,

Wits 2050, Johannesburg, South Africa
E-mail address: Margaret.Archibald@wits.ac.za

The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3,

Wits 2050, Johannesburg, South Africa
E-mail address: Aubrey.Blecher@wits.ac.za

The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3,

Wits 2050, Johannesburg, South Africa
E-mail address: Charlotte.Brennan@wits.ac.za

The John Knopfmacher Centre for Applicable Analysis and Number Theory,
School of Mathematics, University of the Witwatersrand, Private Bag 3,

Wits 2050, Johannesburg, South Africa
E-mail address: Arnold.Knopfmacher@wits.ac.za

Department of Mathematics, University of Haifa, 3498838 Haifa, Israel
E-mail address: tmansour@univ.haifa.ac.il

	1. Introduction
	2. The number of pushes
	3. Number of cells that do not move
	4. The number of already sorted columns
	5. Fixed cells in a word
	6. Frictionless pushes
	References

