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MINIMUM SIZE BLOCKING SETS OF CERTAIN LINE

SETS WITH RESPECT TO AN ELLIPTIC QUADRIC IN

PG(3, q)

BART DE BRUYN, PUSPENDU PRADHAN, AND BINOD KUMAR SAHOO

Abstract. For a given nonempty subset L of the line set of PG(3, q),
a set X of points of PG(3, q) is called an L-blocking set if each line in L
contains at least one point of X. Consider an elliptic quadric Q−(3, q) in
PG(3, q). Let E (respectively, T ,S) denote the set of all lines of PG(3, q)
which meet Q−(3, q) in 0 (respectively, 1, 2) points. In this paper, we
characterize the minimum size L-blocking sets in PG(3, q), where L is
one of the line sets S, E ∪ S, and T ∪ S.

1. Introduction

Throughout the paper, q is a prime power and PG(d, q) is the projective
space of dimension d defined over a finite field of order q. For two distinct
points x, y of PG(d, q), we denote by xy the unique line of PG(d, q) through
x and y.

1.1. On the elliptic quadric Q−(3, q) in PG(3, q). Let Q−(3, q) be an
elliptic quadric in PG(3, q), that is, a nondegenerate quadric in PG(3, q)
of Witt index one. We refer to [14] for the basic properties of the points,
lines and planes of PG(3, q) with respect to Q−(3, q). The quadric Q−(3, q)
contains q2 + 1 points and every line of PG(3, q) meets Q−(3, q) in at most
two points. We denote by E , T , and S the set of lines of PG(3, q) that
intersect Q−(3, q) in respectively 0, 1, and 2 points. The elements of E
are called external lines, elements of T tangent lines, and elements of S
secant lines. Every point of Q−(3, q) is contained in q + 1 tangent lines,
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this gives |T | = (q + 1)(q2 + 1). We also have |S| = q2(q2 + 1)/2 and
|E| = (q2 + 1)(q2 + q + 1)− q2(q2 + 1)/2− (q + 1)(q2 + 1) = q2(q2 + 1)/2.

With the quadric Q−(3, q), there is a naturally associated polarity τ which
is symplectic if q is even, and orthogonal if q is odd. Thus τ is an inclusion
reversing bijection of order two on the set of all subspaces of PG(3, q). It
fixes the line set of PG(3, q), and interchanges the point set and the set of all
planes of PG(3, q). For every point x of Q−(3, q), the plane xτ of PG(3, q)
intersects Q−(3, q) at the point x and the q + 1 tangent lines through x
are precisely the lines through x contained in xτ . In this case, we call xτ

a tangent plane (which is tangent to Q−(3, q) at the point x). For every
point x of PG(3, q) \ Q−(3, q), the plane xτ of PG(3, q) is called a secant
plane and it intersects Q−(3, q) in an irreducible conic Cxτ of xτ . The map
x 7→ Cxτ defines a bijection between PG(3, q)\Q−(3, q) and the set of conics
contained in Q−(3, q).

Suppose that q is even. For every point x of PG(3, q) \ Q−(3, q), the
secant plane xτ contains the point x and the tangent lines contained in xτ

are precisely the q+ 1 lines of xτ through x. Thus the point x is the nucleus
of the conic Cxτ of xτ .

Suppose that q is odd. For every point x of PG(3, q)\Q−(3, q), the secant
plane xτ does not contain the point x and the tangent lines through x are
precisely the q + 1 lines through x meeting the conic Cxτ .

There are q2 + 1 tangent planes and q3 + q secant planes. Every tangent
line is contained in one tangent plane and q secant planes. Every secant
line is contained in q + 1 secant planes. Every external line is contained
in two tangent planes and q − 1 secant planes. Every point of Q−(3, q) is
contained in one tangent plane and q2 + q secant planes. Every point of
PG(3, q)\Q−(3, q) is contained in q+1 tangent planes and q2 secant planes.

1.2. Blocking sets in PG(3, q). For a given nonempty set L of lines of
PG(d, q), a set X of points of PG(d, q) is called an L-blocking set if each
line of L meets X in at least one point. Blocking sets in PG(d, q) are
combinatorial objects in finite geometry with several applications and have
been the subject of investigation by many authors with respect to varying
sets of lines. The first step in the study of blocking sets has been to determine
the smallest cardinality of a blocking set and to characterize, if possible, all
blocking sets of that cardinality. The following classical result was proved
by Bose and Burton in [8, Theorem 1].

Proposition 1.1 ([8]). If L is the set of all lines of PG(d, q) and X is an
L-blocking set in PG(d, q), then |X| ≥ (qd − 1)/(q − 1) and equality holds if
and only if X is a hyperplane of PG(d, q).

Now we consider PG(3, q). When L = T ∪ E , the minimum size (T ∪ E)-
blocking sets in PG(3, q) are characterized in [10, Theorem 1.6]. It is proved
that if X is a (T ∪E)-blocking set in PG(3, q), then |X| ≥ q2+q, and equality
holds if and only if X = xτ \ {x} for some point x of Q−(3, q).
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When L = E , Biondi et al. proved in [6, Theorem 3.5] the following
result regarding E-blocking sets for q ≥ 9. However, their proof also works
for q ∈ {2, 4, 8}. A different proof is given in [10, Theorem 1.7] for the
characterization of minimum size E-blocking sets in PG(3, q) which works
for all q, in particular, for q = 3, 5, 7.

Proposition 1.2 ([6, 10]). Let X be an E-blocking set in PG(3, q). Then
|X| ≥ q2, and equality holds if and only if X = π \Q−(3, q) for some secant
plane π of PG(3, q).

Let π be a secant plane of PG(3, q). The lines of S and E that are
contained in π will respectively be denoted by Sπ and Eπ. Note that Sπ
(respectively, Eπ) is the set of secant (respectively, external) lines of π with
respect to the conic Cπ := π∩Q−(3, q). IfB is an S-blocking set (respectively,
E-blocking set) in PG(3, q), then the set Bπ := π ∩ B is an Sπ-blocking set
(respectively, Eπ-blocking set) in π. For a given Sπ-blocking set A in π, we
define

A(π) := A ∪ (Q−(3, q) \ Cπ),

which is a disjoint union. The proof of the following lemma is straightfor-
ward.

Lemma 1.3. Let π be a secant plane of PG(3, q). If A is an Sπ-blocking
set in π, then A(π) is an S-blocking set in PG(3, q) of size q2 − q + |A|.

In this paper, we characterize the minimum size L-blocking sets in PG(3, q),
where the line set L is one of S, E ∪ S, and T ∪ S. The following are the
main results of this paper.

Theorem 1.4. Let B be an S-blocking set in PG(3, q). Then |B| ≥ q2 and
equality holds if and only if B = A(π) for some secant plane π of PG(3, q)
and for some Sπ-blocking set A in π of size q.

As a consequence of Theorem 1.4 and Proposition 2.1 (1) in the next
section, we have the following.

Corollary 1.5. Let B be an S-blocking set in PG(3, q) of minimum size
q2. If q is odd, then |B \Q−(3, q)| ∈ {0, 1, 3} and one of the following three
cases occurs:

(i) B = Q−(3, q) \ {x}, where x is a point of Q−(3, q).
(ii) B = (Q−(3, q) \ {x, y}) ∪ {a}, where x, y are two distinct points of

Q−(3, q) and a is a point (different from x, y) on the secant line
through x and y.

(iii) A = (Q−(3, q) \ {w, x, y, z}) ∪ {a, b, c}, where {w, x, y, z} is a quad-
rangle contained in Cπ for some secant plane π of PG(3, q) and a, b, c
are the three diagonal points of this quadrangle.

Theorem 1.6. Let B be a (T ∪S)-blocking set in PG(3, q). Then |B| ≥ q2+1
and equality holds if and only if B = Q−(3, q).
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Theorem 1.7. Let B be an (E ∪ S)-blocking set in PG(3, q). Then the
following hold:

(i) If q = 2, then |B| ≥ 6 and equality holds if and only if B = L ∪ Lτ
for some line L secant to Q−(3, q).

(ii) If q ≥ 3, then |B| ≥ q2 + q + 1 and equality holds if and only if B is
a plane of PG(3, q).

When q ≥ 4 is even, Theorem 1.7 (ii) can be seen from [20, Theorem 1.3]
which was proved using properties of the symplectic generalized quadrangle
W (q) of order q. In this paper, we give a different proof which works for
both q odd and even.

We shall prove Theorems 1.4, 1.6, 1.7 in Sections 2, 3, 4, respectively.
We note that the minimum size blocking sets in PG(3, q) of similar line
sets with respect to a hyperbolic quadric were characterized in the papers
[5, 6, 11, 12, 18, 19].

Remark. One can wonder whether the results of the present paper extend
to ovoids of PG(3, q). An ovoid of PG(3, q) is a set of q2+1 points intersecting
each plane in either a singleton or an oval of that plane (that need not to
be an irreducible conic). If q is odd, then every ovoid is also an elliptic
quadric [4, 16], but for q even more examples exist. Theorem 1.6 easily
generalizes to ovoids using the same arguments. Also Theorem 1.7 is valid
for general ovoids. This follows again from [20, Theorem 1.3], taking into
account that with every ovoid of PG(3, q), q even, there is associated a
symplectic polarity and generalized quadrangle [21]. The proof of Theorem
1.4 cannot be extended to ovoids since it makes use of Proposition 2.1 (2) for
which no generalization to ovals is known. However, if all oval intersections
O still have the property mentioned in Proposition 2.1 (2), namely that
every blocking set A of minimal size q with respect to the secant lines to O
has the property that A \ O is contained in a tangent line to O, then the
conclusion of Theorem 1.4 would still be valid.

2. S-blocking sets

2.1. Blocking sets with respect to the secant lines of an irreducible
conic of PG(2, q). The minimum size blocking sets of secant lines in PG(2, q)
with respect to an irreducible conic were studied by Aguglia et al. in [3, The-
orem 1.1] for q even and in [1, Theorem 1.1] for q odd. We recall their results
which are needed in this paper.

A quadrangle in PG(2, q) is a set of four points, no three of which are
collinear. If a, b, c, d are the points of a quadrangle in PG(2, q), define the
three points x, y, z to be the intersections of the lines ab and cd, ac and bd,
ad and bc, respectively. The points x, y, z are called the diagonal points of
the quadrangle. Note that the three points x, y, z are contained in a line of
PG(2, q) if and only if q is even [15, 9.63, p. 501].
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Proposition 2.1 ([1, 3]). Let C be an irreducible conic in PG(2, q). If A is
a blocking set of the secant lines in PG(2, q) with respect to C, then |A| ≥ q.
Moreover, the following hold:

(1) If q is odd, then |A| = q if and only if |A \ C| ∈ {0, 1, 3} and one of
the following three cases occurs:
(i) A = C \ {x} for some point x ∈ C.
(ii) A = (C \ {x, y})∪ {a} for some distinct points x, y ∈ C, and for

some point a (different from x and y) on the secant line to C
through x and y.

(iii) A = (C\{w, x, y, z})∪{a, b, c} for some quadrangle {w, x, y, z} ⊆
C with diagonal points a, b, c.

(2) If q is even and |A| = q, then the points of A \ C are contained in a
line of PG(2, q) which is tangent to C.

We note that, when q is even, the description of the minimum size blocking
sets of the secant lines in PG(2, q) with respect to C is quite different. The
statement in Proposition 2.1 (2) above was obtained while proving the main
result of [3] in Section 2 (see after case (3) on page 654) of that paper.

2.2. Proof of Theorem 1.4. If π is a secant plane of PG(3, q) and A is an
Sπ-blocking set in π of size q, then Lemma 1.3 implies that A(π) is an S-
blocking set in PG(3, q) of size q2. We prove the other parts of Theorem 1.4
in the rest of this section. Suppose that B is an S-blocking set in PG(3, q)
of minimum possible size.

2.2.1. General properties. Observe that Q−(3, q) \ {x} is an S-blocking set
in PG(3, q) of size q2 for every point x of Q−(3, q). Then the minimality of
|B| implies that |B| ≤ q2 and hence Q−(3, q) \B is nonempty.

Lemma 2.2. The following hold:

(i) Every secant line through a point of Q−(3, q)\B meets B in a unique
point.

(ii) |B| = q2.

Proof. Let w be a point of Q−(3, q) \B. Each of the q2 secant lines through
w meets B and two distinct such lines meet B at different points. This gives
|B| ≥ q2. Since |B| ≤ q2, it follows that both (i) and (ii) hold. �

Suppose that B is contained in Q−(3, q). Then |B| = q2 implies that
B = Q−(3, q) \ {x} for some point x of Q−(3, q). Consider a secant plane π
containing the point x. Then x ∈ Cπ and A = Cπ \ {x} is an Sπ-blocking set
in π of size q. We also have B = A ∪ (Q−(3, q) \ Cπ) = A(π). This proves
Theorem 1.4 in this case.

From now on we assume that B is not contained in Q−(3, q). Then both
B \Q−(3, q) and Q−(3, q) \B are nonempty sets and

(2.1) |Q−(3, q) \B| = |B \Q−(3, q)|+ 1.
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Lemma 2.3. B ∩Q−(3, q) is nonempty.

Proof. Suppose that B ∩Q−(3, q) is empty. We count the cardinality of the
set

Z = {(x, L) : x ∈ B,L ∈ S, x ∈ L}
in two ways. There are q(q − 1)/2 secant lines through every point of B.
Since |B| = q2, |S| = q2(q2 +1)/2, and B is an S-blocking set, we must have

q2 · q(q − 1)/2 = |Z| ≥ |S| · 1 = q2(q2 + 1)/2,

which is not possible. Hence B ∩Q−(3, q) is nonempty. �

Corollary 2.4. Every secant line through a point of B \Q−(3, q) contains
two points of either B ∩Q−(3, q) or Q−(3, q) \B.

Proof. This follows from Lemma 2.2 (i). �

Lemma 2.5. The tangency point of every tangent line through a point of
B \Q−(3, q) is contained in B ∩Q−(3, q).

Proof. Let x be a point of B \ Q−(3, q) and y ∈ Q−(3, q) be the tangency
point of some tangent line through x. We show that y is a point of B ∩
Q−(3, q).

Suppose to the contrary that y is a point of Q−(3, q) \ B. Then there
would be at least q2 + 1 lines through y containing a point of B, namely
the q2 secant lines (see Lemma 2.2) and the line yx, in contradiction with
|B| = q2. �

Corollary 2.6. Every line through a point of B \ Q−(3, q) and a point of
Q−(3, q) \B is a secant line which meets Q−(3, q) \B in a second point.

Proof. This follows from Lemma 2.5 and Corollary 2.4. �

Corollary 2.7. |Q−(3, q) \B| is even and hence |B \Q−(3, q)| is odd.

Proof. Since B \ Q−(3, q) is nonempty by our assumption, the first part
follows from Corollary 2.6. The second part follows from (2.1) using the
first part. �

Lemma 2.8. Let L be a secant line containing two points of Q−(3, q) \ B
and π be a secant plane through L. Then Bπ is an Sπ-blocking set in π of
size q.

Proof. Let π = π0, π1, . . . , πq be the q + 1 secant planes through L. By
Proposition 2.1, |Bπi | ≥ q for every i ∈ {0, 1, . . . , q}. We show that |Bπi | = q
for each i and then the lemma will follow from this.

Let |Bπi | = q + si, 0 ≤ i ≤ q, for some nonnegative integer si. We have
|L∩B| = 1 by Lemma 2.2 (i) and πi∩πj = L for distinct i, j ∈ {0, 1, . . . , q}.

Since B =
q⋃
i=0
Bπi , we get

q2 = |B| = 1 +

q∑
i=0

(q + si − 1).
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This gives
∑q

i=0 si = 0. Since each si ≥ 0, we must have si = 0 for all i. �

2.2.2. Proof of Theorem 1.4 for q even.

Lemma 2.9. If q is even, then the line through two distinct points of B \
Q−(3, q) is tangent to Q−(3, q).

Proof. Let x, y be two distinct points of B \ Q−(3, q). We show that xy
is a tangent line. Consider a point a ∈ Q−(3, q) \ B. Lemma 2.5 implies
that the lines xa and ya are secant to Q−(3, q). Since x, y ∈ B with x 6= y,
Lemma 2.2 (i) implies that the secant lines xa and ya are distinct. Then,
by Corollary 2.4, there exist distinct points b and c of Q−(3, q)\B such that
xa ∩Q−(3, q) = {a, b} and ya ∩Q−(3, q) = {a, c}.

Let π = 〈a, b, c〉 be the secant plane generated by the points a, b, c. Then
x, y are points of π. Since a, b ∈ Q−(3, q) \ B, applying Lemma 2.8 to the
secant line xa = ab, we get that Bπ is an Sπ-blocking set in π of minimum
size q. So, by Proposition 2.1 (2), all the points of Bπ \ Cπ are contained
in a common line L which is tangent to Cπ and hence to Q−(3, q). Since
x, y ∈ Bπ \ Cπ, it follows that the tangent line L contains both x and y. �

As a consequence of Lemma 2.9, we have the following.

Corollary 2.10. If q is even, then any secant line contains at most one
point of B \Q−(3, q).

Lemma 2.11. If q is even, then all the points of B \Q−(3, q) are contained
in a common tangent line.

Proof. The statement is clear if |B \ Q−(3, q)| = 1. Since |B \ Q−(3, q)| is
odd by Corollary 2.7, we assume that |B \Q−(3, q)| ≥ 3. By Lemma 2.9, it
is enough to show that any three distinct points x, y, z of B \ Q−(3, q) are
contained in a line.

By Lemma 2.9, xy, xz, and yz are tangent lines. Suppose that the line xy
does not contain the point z. Then the plane π generated by the two tangent
lines xy and xz is a secant plane. Since q is even, x must be the nucleus of
the conic Cπ in π and so all tangent lines contained in π meet at x. But the
tangent line yz contained in π does not contain x, a contradiction. �

The following proposition proves Theorem 1.4 when q is even.

Proposition 2.12. If q is even, then B = A(π) for some secant plane π of
PG(3, q) and for some Sπ-blocking set A in π of size q.

Proof. By Lemma 2.11, there exists a tangent line T containing all the points
of B \Q−(3, q). Consider a point x of T which is in B \Q−(3, q). Let L be
a secant line through x meeting Q−(3, q) \ B at two points. Such a line L
exists by Corollary 2.6 as Q−(3, q) \B is nonempty. The plane π generated
by the two intersecting lines T and L is a secant plane of PG(3, q). Applying
Lemma 2.8 to the secant line L, the set Bπ is an Sπ-blocking set in π of size
q.
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As every point of B \ Q−(3, q) is contained in A := Bπ, we have B ⊆
A ∪ (Q−(3, q) \ Cπ) = A(π). Since |A(π)| = |A|+ q2 − q = q2 = |B|, we see
that B = A(π). �

2.2.3. Proof of Theorem 1.4 for q odd.

Lemma 2.13. If q is odd, then there is no line of PG(3, q) containing more
than two points of B \Q−(3, q).

Proof. Suppose that L1 is a line of PG(3, q) containing at least three points,
say a, b, c, of B \Q−(3, q). Let L2 be a secant line through a which contains
two points of Q−(3, q)\B. Such a line L2 exists by Corollary 2.6 as Q−(3, q)\
B is nonempty. By Lemma 2.2 (i), a is the only point of B \ Q−(3, q)
contained in L2. So L1 6= L2. The plane π generated by the two intersecting
lines L1 and L2 is a secant plane of PG(3, q). By Lemma 2.8, the set Bπ
is an Sπ-blocking set in π of size q. Then |Bπ \ Cπ| ≤ 3 by Proposition 2.1
(1). Since the points a, b, c of L1 are contained in Bπ \ Cπ, we must have
Bπ \ Cπ = {a, b, c}.

By Proposition 2.1 (1) (iii), a, b, c must be the three diagonal points of
some quadrangle contained in Cπ. Then a, b, c cannot be contained in any
line of π as q is odd, contradicting that the line L1 of π contains a, b, c. �

We recall the theorem of Desargues in a projective space. Let x, a1,
a2, a3, b1, b2, b3 be seven distinct points of PG(d, q) which is a Desargues
configuration, that is, they satisfy the following two conditions:

(i) the points a1, a2, a3 (respectively, b1, b2, b3) are not contained in any
line of PG(d, q),

(ii) the lines a1b1, a2b2 and a3b3 are mutually distinct and intersect at
the point x.

Let z12, z13, z23 be the intersection points a1a2∩b1b2, a1a3∩b1b3, a2a3∩b2b3,
respectively. Then the theorem of Desargues says that the three points
z12, z13, z23 are contained in a line of PG(d, q).

Lemma 2.14. If q is odd, then |Q−(3, q)\B| ≤ 4 and hence |B\Q−(3, q)| ≤
3.

Proof. Suppose that |Q−(3, q)\B| > 4. Then |Q−(3, q)\B| ≥ 6 as |Q−(3, q)\
B| is even by Corollary 2.7. Fix a point x of B \ Q−(3, q). Let L1, L2, L3

be three secant lines through x each of which meets Q−(3, q) \ B at two
points (use Corollary 2.6). Set Li∩ (Q−(3, q) \B) = {ai, bi} for i ∈ {1, 2, 3}.
Since a1, a2, a3 (respectively, b1, b2, b3) are points of Q−(3, q), they are not
contained in any line of PG(3, q). Thus the seven points x, a1, a2, a3, b1, b2, b3
is a Desarguesian configuration. Set a1a2∩b1b2 = {z12}, a1a3∩b1b3 = {z13},
and a2a3∩b2b3 = {z23}. By the theorem of Desargues, the points z12, z13, z23
are contained in a line of PG(3, q).

Let πij be the plane generated by the two intersecting lines Li and Lj ,
where 1 ≤ i < j ≤ 3. Then πij is a secant plane and by Lemma 2.8, the set
Bπij is an Sπij -blocking set in πij of size q. Since ai, bi, aj , bj are points of
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Cπij \Bπij , Proposition 2.1 (1) implies that Cπij \Bπij = {ai, bi, aj , bj} and the
set Bπij \Cπij consists of the diagonal points of the quadrangle {ai, bi, aj , bj}
contained in Cπij . In particular, the point zij is contained in Bπij \ Cπij
and hence in B \ Q−(3, q). It follows that the three points z12, z13, z23 of
B \Q−(3, q) are contained in a line of PG(3, q), contradicting Lemma 2.13.

Hence |Q−(3, q)\B| ≤ 4 and then (2.1) implies that |B\Q−(3, q)| ≤ 3. �

The following proposition proves Theorem 1.4 when q is odd.

Proposition 2.15. If q is odd, then B = A(π) for some secant plane π of
PG(3, q) and for some Sπ-blocking set A in π of size q.

Proof. We have |B \ Q−(3, q)| ∈ {1, 3} by Lemma 2.14 and Corollary 2.7.
First assume that |B \Q−(3, q)| = 1. Then |Q−(3, q) \B| = 2 by (2.1). Let
B \Q−(3, q) = {a} and Q−(3, q)\B = {x, y}. The secant line through x and
y meets B at the point a. Consider any secant plane π containing the line
through x and y. Then x, y ∈ Cπ and A = (Cπ\{x, y})∪{a} is an Sπ-blocking
set in π of size q. It can be seen that B = A ∪ (Q−(3, q) \ Cπ) = A(π).

Now assume that |B \ Q−(3, q)| = 3. Then |Q−(3, q) \ B| = 4 by (2.1).
Let B \Q−(3, q) = {a, b, c} and Q−(3, q) \B = {w, x, y, z}. Using Corollary
2.6, there are exactly two secant lines through a point of B\Q−(3, q) each of
which meets Q−(3, q) \B in at most two points. Conversely, any secant line
through two points of Q−(3, q) \ B contains a unique point of B \Q−(3, q)
by Lemma 2.2 (i). Thus the four points w, x, y, z generate a plane π of
PG(3, q) which contains the points a, b, c as well. In fact, a, b, c are the
three diagonal points of the quadrangle {w, x, y, z} contained in the conic
Cπ. Then A = (Cπ \ {w, x, y, z}) ∪ {a, b, c} is an Sπ-blocking set in π of size
q. We also have B = A ∪ (Q−(3, q) \ Cπ) = A(π) in this case. �

3. (T ∪ S)-blocking sets

If A is a minimum size blocking set in PG(2, q) of the tangent and secant
lines with respect to an irreducible conic C, then |A| = q + 1. Further, if A
is disjoint from C, then A is a line of PG(2, q) that is external to C. This
result was proved by Bruen and Thas in [9] for q even, and by Segre and
Korchmáros in [22] for all q. All such blocking sets A that are different from
C and the lines of PG(2, q) are described by Boros et al. in [7]. Our proof of
Theorem 1.6 given below does not need these results from the planar case.

Proof of Theorem 1.6. Let B be a (T ∪ S)-blocking set in PG(3, q) of
minimum possible size. Since the quadric Q−(3, q) contains q2 + 1 points
and it blocks every tangent and secant line, the minimality of |B| implies
that |B| ≤ |Q−(3, q)| = q2 + 1. We assert that B = Q−(3, q). It is enough
to show that Q−(3, q) ⊆ B.

Suppose that there exists a point x of Q−(3, q) which is not in B. Each
line through x in PG(3, q) is either tangent or secant to Q−(3, q). Since
x /∈ B and B is a (T ∪ S)-blocking set, the q2 + q + 1 lines of PG(3, q)
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through x would meet B at different points. This gives |B| ≥ q2 + q + 1, a
contradiction to |B| ≤ q2 + 1. Thus Q−(3, q) ⊆ B. �

4. (E ∪ S)-blocking sets

4.1. Some useful results on blocking sets of PG(2, q). We recall two
results related to blocking sets in PG(2, q). The first of these results was
proved in [6, Proposition 3.1] and [19, Lemma 2.4], while the second one
was proved in [17, Theorems 3.2, 3.3].

Proposition 4.1 ([6, 19]). Let α be a point of PG(2, q) and L be the set of
all lines of PG(2, q) not containing α. If A is an L-blocking set in PG(2, q),
then |A| ≥ q and equality holds if and only if A = L \ {α} for some line L
through α.

Proposition 4.2 ([17]). Let C be an irreducible conic in PG(2, q) and A be
a blocking set of the external and secant lines of PG(2, q) with respect to C.
Then the following hold:

(i) If q is even, then |A| ≥ q and equality holds if and only if A = L\{n}
for some line L of PG(2, q) tangent to C, where n is the nucleus of
C.

(ii) If q is odd, then |A| ≥ 3 if q = 3, and |A| ≥ q + 1 if q ≥ 5. Further,
if q = 3, then |A| = 3 if and only if A consists of the three interior
points of PG(2, q) with respect to C.

We also need the following result related to blocking sets of the external
lines of PG(2, q) with respect to a conic in it, see [2, Theorem 1.1] for q odd
and [13, Theorem 1.1] for q even.

Proposition 4.3 ([2, 13]). Let C be an irreducible conic in PG(2, q) and A
be a blocking set of the external lines of PG(2, q) with respect to C. Then
|A| ≥ q−1. Further, if q = 3, then |A| = 2 if and only if one of the following
two cases occurs:

(i) A = L \ C for some line L of PG(2, 3) which is secant to C.
(ii) A consists of any two interior points of PG(2, 3) with respect to C.

When q = 3, the possibility stated in Proposition 4.3 (ii) was not included
in the statement of [2, Theorem 1.1]. It was observed in [11, Theorem 2.1]
while giving a different proof for the characterization of the minimum size
blocking sets of the external lines with respect to a hyperbolic quadric in
PG(3, q), q odd.

4.2. Proof of Theorem 1.7. For every plane π of PG(3, q), we denote by
(E ∪S)π the set of external and secant lines of PG(3, q) which are contained
in π. Note that if π is a tangent plane, then there is no secant line in (E∪S)π.
If π is a secant plane, then (E ∪S)π is precisely the set of external and secant
lines with respect to the conic Cπ = π ∩Q−(3, q) of π.

Suppose now that B is an (E ∪ S)-blocking set in PG(3, q) of minimum
possible size. Then |B| ≤ q2 + q + 1, as every plane blocks every line of
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PG(3, q). For every plane π, the set Bπ = π ∩B is an (E ∪ S)π-blocking set
in π.

We prove two results for q even, which are needed to show that any secant
plane contains at least q + 1 points of B for q ≥ 4. Recall that, if q is even
and x is a point of PG(3, q) \Q−(3, q), then x is a point of the secant plane
xτ . In fact, x is the nucleus of the conic Cxτ in the plane xτ , in particular,
xτ is precisely the union of the q + 1 tangent lines through x.

Lemma 4.4. Suppose that q is even. Let L be a tangent line containing a
point y which is not in B. Then for every point x of L \ {y}, the set Bxτ
contains at least q points which are different from the points of L ∩B.

Proof. Let M be a line through y in xτ which is different from L. If x is a
point of Q−(3, q), then xτ is a tangent plane and so the line M is external
to Q−(3, q). If x 6∈ Q−(3, q), then x is the nucleus of the conic Cxτ of xτ ,
implying that L = yx is the unique tangent line of xτ through y and that M
is either a secant or an external line. In all cases, B must block each such
line M . Since y /∈ B and there are q possible choices for M , it follows that
Bxτ contains at least q points which are different from those of L ∩B. �

Lemma 4.5. Suppose that q is even and let x be a point of B ∩ Q−(3, q).
If there exists a tangent line L through x with |L ∩ B| = q, then every
tangent line through x contains at least q points of B. In particular, |Bxτ | ≥
1 + (q + 1)(q − 1) = q2.

Proof. Let M be a tangent line through x which is different from L. Since L
has a point not in B, Lemma 4.4 implies that the tangent plane xτ through
L contains at least 2q points of B. Note that xτ is also the tangent plane
through M .

Suppose that |M ∩B| ≤ q− 1. Then M has at least two points which are
not in B. Applying Lemma 4.4 carefully to the tangent line M , it follows
that each of the q secant planes zτ , z ∈ M \ {x}, through M contains at
least q points of B which are different from those of M ∩ B. Counting the
points of B contained in the q + 1 planes through M , we get

|B| ≥ 2q + q2 > q2 + q + 1,

which is a contradiction to the fact that |B| ≤ q2+q+1. So |M∩B| ≥ q. �

Lemma 4.6. Let π be any plane of PG(3, q). Then the following hold:

(i) Suppose that π is a tangent plane. Then |Bπ| ≥ q and equality holds
if and only if Bπ = L\{x} for some tangent line L through x, where
{x} = π ∩Q−(3, q).

(ii) Suppose that π is a secant plane. Then |Bπ| ≥ q. Further, if q ≥ 4,
then |Bπ| ≥ q + 1.

Proof. (i) Since π is a tangent plane, (E ∪S)π is precisely the set of all lines
of π not containing the point x. Then (i) follows from Proposition 4.1.

(ii) Here Bπ is an (E ∪ S)π-blocking set in π. The first part for all q and
the second part for odd q ≥ 5 follow from Proposition 4.2.
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Assume that q ≥ 4 is even. Let π = xτ for some point x of PG(3, q) \
Q−(3, q). We have |Bxτ | ≥ q by Proposition 4.2 (i). Suppose that |Bxτ | = q.
Note that (E ∪S)xτ is precisely the set of lines in xτ not containing x. Then,
by Proposition 4.2 (i) again, Bxτ = L \ {x} for some tangent line L through
x. Let L = {x0, x1, . . . , xq−1, xq = x} with tangency point x0 ∈ Q−(3, q).
By Lemma 4.4, each of the secant planes xτi , 1 ≤ i ≤ q − 1, through L
contains at least q points of B which are different from those of L∩B. Also
we have |Bxτ0 | ≥ q2 for the tangent plane xτ0 by Lemma 4.5. Counting the
points of B contained in the q planes xτi through L for i ∈ {0, 1, . . . , q − 1}
and using our assumption that q ≥ 4, we get

|B| ≥ q2 + (q − 1)q > q2 + q + 1,

which is a contradiction to the fact that |B| ≤ q2 + q + 1. Hence |Bxτ | ≥
q + 1. �

Corollary 4.7. |B| ≥ q2 + q.

Proof. If every tangent line meets B, then B would be blocking set with
respect to all lines of PG(3, q) and hence we must have |B| ≥ q2 + q + 1
by Proposition 1.1. Suppose that there is a tangent line L which is disjoint
from B. Count the points of B contained in the q + 1 planes through L.
Since L ∩B = ∅, we get |B| ≥ (q + 1)q = q2 + q using Lemma 4.6. �

The following proposition proves Theorem 1.7 when q ≥ 4.

Proposition 4.8. If q ≥ 4, then |B| = q2 + q + 1 and B is a plane of
PG(3, q).

Proof. By Proposition 1.1, it is enough to show that every tangent line
meets B. Suppose that there exists a tangent line L which is disjoint from
B. Count the points of B contained in the q+ 1 planes through L. There is
one tangent plane and q secant planes containing L. Using the assumption
that q ≥ 4, Lemma 4.6 implies that

|B| ≥ q + q(q + 1) = q2 + 2q > q2 + q + 1,

which is a contradiction to the fact that |B| ≤ q2 + q + 1. Hence every
tangent line meets B. �

The following proposition proves Theorem 1.7 for q = 2.

Proposition 4.9. If q = 2, then |B| = 6 and B = L ∪ Lτ for some line L
secant to Q−(3, q).

Proof. By Corollary 4.7, we have |B| ≥ 6. Let L be a secant line of PG(3, 2)
and L ∩Q−(3, 2) = {u, v}. Then Lτ is an external line which is common to
the two tangent planes uτ and vτ . If w is the third point of L, then Lτ is the
unique external line contained in the secant plane wτ . If M is a secant line
not containing u and v, then M contains two points of Cwτ = Q−(3, 2)\{u, v}
and so is a line of wτ . In the plane wτ , the lines M and Lτ meet. If M is an
external line, then M meets the plane wτ in at least one point of {w} ∪Lτ .
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It follows that L ∪ Lτ is an (E ∪ S)-blocking set in PG(3, 2) of size 6. Thus
|B| = 6 by the minimality of |B|.

Conversely, let B be an (E ∪ S)-blocking set in PG(3, 2) of size 6. Since
B \Q−(3, 2) is an E-blocking set in PG(3, 2), we have |B \Q−(3, 2)| ≥ 4 by
Proposition 1.2. There are 10 secant lines to Q−(3, 2), and every point of
PG(3, 2) \Q−(3, 2) is contained in a unique secant line. If |B \Q−(3, 2)| =
6 and B ∩ Q−(3, 2) = ∅, then B blocks precisely 6 secant lines. If |B \
Q−(3, 2)| = 5 and |B ∩ Q−(3, 2)| = 1, then B blocks at most 5 + 4 = 9
secant lines. So we must have |B \ Q−(3, 2)| = 4, |B ∩ Q−(3, 2)| = 2, and
hence B \ Q−(3, 2) = π \ Q−(3, 2) for some secant plane π of PG(3, 2) by
Proposition 1.2. Let B ∩ Q−(3, 2) = {x, y}. Since |B| = 6 and B blocks
all secant lines, it can be seen that Q−(3, 2) \ Cπ = {x, y}. The secant line
L = xy meets the plane π in the nucleus of Cπ and Lτ is precisely the unique
external line contained in π. It follows that B = L ∪ Lτ . �

In the rest of this section, we prove Theorem 1.7 for q = 3.

Lemma 4.10. If q = 3, then |B| = 13.

Proof. We have |B| ≤ 13 and by Corollary 4.7, |B| ≥ 12. Suppose that
|B| = 12. Then Proposition 1.1 implies that there exists a tangent line
L of PG(3, 3) which is disjoint from B. By Lemma 4.6, each of the four
planes through L contains at least three points of B. Since L ∩ B = ∅ and
|B| = 12, it follows that each plane through L contains exactly three points
of B. Clearly, the points of B contained in the tangent plane through L are
outside Q−(3, 3). Proposition 4.2 (ii) implies that the points of B contained
in a secant plane through L are also outside Q−(3, 3). Thus B is disjoint
from Q−(3, 3).

There are three secant lines through each point of B so that B blocks at
most 36 secant lines. But there are 45 lines which are secant to Q−(3, 3).
It follows that B does not block all the secant lines, a contradiction. Hence
|B| = 13. �

Lemma 4.11. Suppose that q = 3. If |B ∩ Q−(3, 3)| = 1, then B is a
tangent plane.

Proof. Since |B| = 13 by Lemma 4.10 and |B ∩Q−(3, 3)| = 1, we have |B \
Q−(3, 3)| = 12. There are three secant lines through a point of B \Q−(3, 3),
giving that the points of B \Q−(3, 3) block at most 36 secant lines. There
are nine secant lines through the point of B ∩ Q−(3, 3). Since B blocks
each of the 45 secant lines, it follows that each secant line contains exactly
one point of B. Thus, if B ∩Q−(3, 3) = {x}, then none of the secant lines
through x contains a point of B \Q−(3, 3). This is equivalent to saying that
the 12 points of B \Q−(3, 3) are contained in the tangent lines through x.
It follows that B coincides with the tangent plane xτ . �
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Lemma 4.12. Suppose that q = 3. If B ∩ Q−(3, 3) contains exactly two
points, say x1, x2, then every tangent line that is disjoint from B meets
x1x2 \ {x1, x2}.
Proof. Let K be a tangent line which is disjoint from B. Suppose that K
does not meet x1x2\{x1, x2}. Then the planes π1 = 〈K,x1〉 and π2 = 〈K,x2〉
are distinct secant planes through K. Now, for every i ∈ {1, 2}, Bπi is an
(E ∪ S)πi-blocking set of πi containing the point xi ∈ Cπi . By Proposition
4.2 (ii), we then know that |Bπi | ≥ 4. Each of the two remaining planes
π3, π4 through K distinct from π1, π2 contains at least three points of B by
Lemma 4.6. As B ∩K = ∅, we have |B| =

∑4
i=1 |Bπi | ≥ 4 + 4 + 3 + 3 = 14,

in contradiction with |B| = 13. �

Proposition 4.13. If q = 3, then B is a plane.

Proof. We have |B| = 13 by Lemma 4.10. There are three secant lines
through a point of PG(3, 3) \Q−(3, 3). If B is disjoint from Q−(3, 3), then
|B| = 13 implies that B blocks at most 39 secant lines. Since there are 45
lines which are secant to Q−(3, 3), it would follow that B does not block all
the secant lines. So, |B \Q−(3, 3)| ≤ 12.

We show that every tangent line meets B. Then |B| = 13 and Proposition
1.1 would imply that B is a plane.

On the contrary, suppose that there exists a tangent line L of PG(3, 3)
which is disjoint from B. Let π0, π1, π2, π3 be the four planes of PG(3, 3)
through L, where π0 is the tangent plane and the other three are secant
planes. By Lemma 4.6, |Bπi | ≥ 3 for each i ∈ {0, 1, 2, 3}. Since L∩B = ∅ and
|B| = 13, it follows that exactly one of planes πi contains 4 points of B and
each of the remaining three planes contains 3 points of B. By Proposition
4.2 (ii), if πi contains exactly three points of B for some i ∈ {1, 2, 3}, then
Bπi is disjoint from Q−(3, 3). Since |B \ Q−(3, 3)| ≤ 12 and the points of
Bπ0 are outside Q−(3, 3), it follows that we must have |Bπ0 | = 3.

Without loss of generality, we may assume that |Bπ1 | = 4, |Bπ2 | = 3, and
|Bπ3 | = 3. Since Bπ1 \Cπ1 is an Eπ1-blocking set in π1, we have |Bπ1 \Cπ1 | ≥ 2
by Proposition 4.3. Since |B \ Q−(3, 3)| ≤ 12, B ∩ Q−(3, 3) = B ∩ Cπ1 =
Bπ1 ∩ Cπ1 is nonempty. So |Bπ1 \ Cπ1 | ≤ 3. Thus |Bπ1 \ Cπ1 | ∈ {2, 3}.

If |Bπ1 \ Cπ1 | = 3, then |B \ Q−(3, 3)| = 12 and |B ∩ Q−(3, 3)| = 1.
In this case, Lemma 4.11 implies that B is a tangent plane which is not
possible as L ∩ B = ∅. So, |Bπ1 \ Cπ1 | = 2. Then |B \ Q−(3, 3)| = 11 and
|B ∩Q−(3, 3)| = 2. Put B ∩Q−(3, 3) = {x1, x2}.

Since L is disjoint fromB, Lemma 4.12 implies that Lmeets x1x2\{x1, x2}
in a singleton. Denote by α the tangency point of L in Q−(3, 3). Note that
Bπ0 is an Eπ0-blocking set of size 3 in π0. By Proposition 4.1, we then know
that Bπ0 = U \ {α} for some line U of π0 through α distinct from L. If we
denote by K a line of π0 through α distinct from L and U , then K is another
tangent line disjoint from B. By Lemma 4.12 again, we then know that K
meets x1x2 \ {x1, x2}. But that is impossible: as π0 ∩ x1x2 = L∩ x1x2, L is
the unique line through α in π0 that meets x1x2. �
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