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NOTE ON GROUP DISTANCE MAGICNESS OF PRODUCT

GRAPHS

APPATTU VALLAPIL PRAJEESH AND KRISHNAN PARAMASIVAM

Abstract. If l is a bijection from the vertex set V (G) of a graph G
to an additive abelian group Γ of |V (G)| elements such that for any
vertex u of G, the weight

∑
v∈NG(u) l(v) is µ, where µ ∈ Γ, then l is

a Γ-distance magic labeling of G. A graph G that admits such an l is
Γ-distance magic and if G is Γ-distance magic for every such Γ, then G is
a group distance magic graph. In this paper, we provide some results on
the group distance magicness of the lexicographic and direct product of
two graphs. By proving a few necessary conditions, we characterize the
group distance magicness of a tree. In addition, we find three techniques
to construct group distance magic graphs recursively from the existing
ones and with respect to any abelian group with one involution, we
determine infinitely many nongroup distance magic graphs.

1. Introduction

In this paper, we consider only simple and finite graphs. We use V (G) for
the vertex set, and E(G) for the edge set of a graph G. The neighborhood
NG(v), or shortly N(v) of a vertex v of G is the set of all vertices adjacent
to v, and the degree degG(v), or shortly deg(v) of v is the number of vertices
in NG(v). The distance dG(u, v) between two vertices u and v of G is the
length of the shortest path connecting u and v. For more standard graph-
theoretic notation and terminology, we refer the reader to Bondy and Murty
[4] and Hammack et al. [14].

Let G and H be two graphs. Then the lexicographic product G ◦H and
the direct product G×H are graphs with the vertex set V (G)×V (H). Two
vertices (g, h) and (g′, h′) are adjacent in:

(i) G ◦ H if and only if g is adjacent to g′ in G, or g = g′ and h is
adjacent to h′ in H.

(ii) G×H if and only if g is adjacent to g′ in G and h is adjacent to h′

in H.

Received by the editors February 19, 2019, and in revised form August 26, 2020.
2010 Mathematics Subject Classification. Primary 05C25, 05C78, 05C76.
Key words and phrases. Additive abelian group, group distance magic, lexicographic

product, direct product.

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

72

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


NOTE ON GROUP DISTANCE MAGICNESS OF PRODUCT GRAPHS 73

A distance magic labeling of a graph G is a bijection l : V (G)→ {1, . . . ,
|V (G)|} such that for any u of G, the weight of u, wG(u) =

∑
v∈NG(u) l(v)

is a constant µ. A graph G that admits such labeling, is called a distance
magic graph [18].

The concept of distance magic labeling was studied by Vilfred [23] as
sigma labeling. Later, Miller et al. [18] called it a 1-vertex magic vertex
labeling and Sugeng et al. [22] referred to the same concept as distance
magic labeling. The study of distance magic labeling has been motivated
by the construction of magic squares. It is worth mentioning the motivation
given by Froncek et al. [13] through an equalized incomplete tournament.
An equalized incomplete tournament of n teams with r rounds, EIT(n, r) is
a tournament which satisfies the following conditions:

(i) Every team plays against exactly r distinct opponents.
(ii) The total strength of the opponents, against which each team plays

is a constant.

Therefore, finding a solution to an EIT(n, r) is equivalent to obtaining a
distance magic labeling of an r-regular graph with n vertices.

The important results and problems, which are relevant and helpful in
proving our results, are listed below.

Theorem 1.1 ([16, 18, 19, 23]). No r-regular graph with r-odd can be a
distance magic graph.

Lemma 1.2 ([18]). If G contains two vertices u and v such that |N(u) ∩
N(v)| = deg(v)− 1 = deg(u)− 1, then G is not distance magic.

Theorem 1.3 ([21]). Let r ≥ 1 and n ≥ 3. If G is an r-regular graph and
Cn the cycle of length n, then G ◦Cn admits a labeling if and only if n = 4.

In 2009, Shafiq et al. [21] posted a problem of the existence of distance
magic labeling of the lexicographic product of a nonregular graph G with
C4.

Problem 1.4 ([21]). If G is a nonregular graph, determine if there is a
distance magic labeling of G ◦ C4.

In 2018, Cichacz and Görlich [10] raised a similar question in the case of
the direct product of G with C4.

Problem 1.5 ([10]). If G is a nonregular graph, determine if there is a
distance magic labeling of G× C4.

Anholcer et al. [1] defined a distance magic graph G with an even number
of vertices, balanced if there exists a bijection l : V (G) → {1, . . . , |V (G)|}
such that for any vertex u of G, the following holds: if v ∈ N(u) with
l(v) = i, then there exists v′ ∈ N(u), v′ 6= v, with l(v′) = |V (G)| + 1 − i.
Further, we call v′, the twin vertex of v and vice versa.

From [1], it is clear that G is a balanced distance magic graph or shortly,
balanced-dmg if and only if G is regular and the vertex set of G can be
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expressed as {vi, v′i : 1 ≤ i ≤ |V (G)|/2} such that for any i, N(vi) = N(v′i),
where vi is the twin vertex of v′i. Therefore, a balanced-dmg G on n vertices
is always a 2r-regular graph with magic constant r(n+ 1).

The kth power of a graph G is a graph Gk with the same set of vertices
as G, and any two vertices u and v are connected if and only if dG(u, v) ≤ k.
A graph nG is the disjoint union of n copies of the graph G.

Also, if Ω ⊆ V (G) of a graph G, then G[Ω] is the subgraph of G with the
vertex set Ω and the edge set {uv ∈ E(G) : u, v ∈ Ω}.

In 2016, Arumugam et al. [3] proved the following result as a characteri-
zation of distance magic graphs G with ∆(G) = |V (G)| − 1. Note that this
class of graphs is derived from the class of balanced-dmgs.

Theorem 1.6 ([3]). Let G be any graph of order n with ∆(G) = n−1. Then
G is a distance magic graph if and only if n is odd and G ∼= (Kn−1−M)+K1,
where M is a perfect matching in Kn−1.

In 2004, Rao et al. [20] proved the following result.

Theorem 1.7 ([20]). The graph Ck�Cm is distance magic if and only if
k = m and k,m ≡ 2 mod 4.

Now a natural question arises for all graphs which are not distance magic.
Can one introduce the concept by replacing the set of all labels {1, . . . ,
|V (G)|} by an abelian group with |V (G)| elements in such a way that these
graphs can admit such labeling? Motivated by this idea, in 2013, Froncek
[12] introduced the notion of group distance magic labeling of graphs. He
proved that Ck�Cm is Zkm-distance magic if and only if km is even, where
Zkm is the cyclic group of order km.

Throughout this paper, Γ = (Γ,+) denotes a finite additive abelian group
or shortly, an abelian group, where + is a binary operation on Γ. The order
and identity element of Γ are denoted by |Γ| and 0, respectively. An element
g 6= 0 is an involution of Γ if g = −g, where −g is the additive inverse of
g and Γ has an involution if and only if |Γ| is even. Further, the sum of
all elements of Γ, sum(Γ) =

∑
g∈Γ g is equal to the sum of all involutions

of Γ and Γ is an elementary abelian p-group if |Γ| = pn, and for every
element g 6= 0, g + · · · + g (p times) = 0. The exponent of an abelian
group Γ, exp(Γ) is the least positive integer m such that for every element
g 6= 0, g + · · · + g (m times) is 0. Recall that if Γ1 and Γ2 are two abelian
groups, then exp(Γ1 × Γ2) = lcm(exp(Γ1), exp(Γ2)).

The fundamental theorem on finite abelian groups states that any finite
abelian group is a direct product of cyclic groups of prime power order,
where the product is unique up to the order of subgroups.

The following lemma will be useful in our proofs.

Lemma 1.8 ([11]). Let Γ be an abelian group.

(i) If Γ has exactly one involution g′, then sum(Γ) = g′.
(ii) If Γ has no involutions or more than one involution, then sum(Γ) =

0.
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For more group theory related terminology and notation, refer to Lang
[17] and Herstein [15].

Definition 1.9 ([12]). If Γ is an abelian group and G is a graph such that
|V (G)| = |Γ|, then a bijection l : V (G)→ Γ is said to be a Γ-distance magic
labeling of G if for any u of G, the weight of u, wG(u) =

∑
v∈NG(u) l(v) is

equal to the same element µo of Γ. A graph G that admits such a labeling
is called a Γ-distance magic graph and µo is called the magic constant as-
sociated with l of G. Also, if l is the Γ-distance magic labeling G, then the
weight of G, w(G) =

∑
v∈V (G)wG(v) =

∑
v∈V (G) deg(v)l(v) = µ0|V (G)|.

If l is any distance magic labeling of a graph G on n vertices with the
magic constant µ, then l∗(v) = l(v) mod n, for all v of G, is a Zn-distance
magic labeling of G with magic constant µ mod n. However, the converse
is not true, see [12].

In 2014, Cichacz [5, 7] proved the following results.

Theorem 1.10 ([7]). Let G be a graph of order n and Γ be an arbitrary
abelian group of order 4n such that Γ ∼= Z2×Z2×B for some abelian group
B on n vertices. Then there exists a Γ-distance magic labeling for the graph
G ◦ C4.

Theorem 1.11 ([7]). Let G be a graph of order n and Γ be an abelian
group of order 4n. If n = 2p(2k + 1) for some natural numbers p, k, and
deg(v) ≡ c mod 2p+1 for some constant c for any v ∈ V (G), then there
exists a Γ-distance magic labeling for the graph G ◦ C4.

Theorem 1.12 ([5]). Let G be a graph of order n. If n = 2p(2k + 1) for
some natural numbers p, k, and deg(v) ≡ c mod 2p+2 for some constant c
for any v ∈ V (G), then there exists a Γ-distance magic labeling for the graph
G× C4.

Cichacz in [6] gave a characterization of group distance magicness of the
complete bipartite graphs.

Theorem 1.13 ([6]). The complete bipartite graph Km,n is a group distance
magic graph if and only if m+ n 6≡ 2 mod 4.

Recently, Anholcer et al. [2] discussed the group distance magicness of
the direct product of two graphs and obtained the following result.

Theorem 1.14 ([2]). If G is a balanced distance magic graph and H an
r-regular graph for r ≥ 1, then G×H is a group distance magic graph.

The results from [9, 8] characterize nongroup distance magic graphs.

Theorem 1.15 ([9]). Let G be an r-regular graph on n vertices, where r
is odd. There does not exist an abelian group Γ of order n with exactly one
involution g′ such that G is Γ-distance magic.
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Theorem 1.16 ([8]). Let G have order n ≡ 2 mod 4 with all vertices having
odd degree. There does not exist an abelian group Γ of order n such that G
is a Γ-distance magic graph.

Theorem 1.17 ([8]). Let G = Kn1,n2,...,nt be a complete t-partite graph and
n = n1 + n2 + · · · + nt. If n1 ≤ n2 ≤ · · · ≤ nt and n2 = 1, then there does
not exist an abelian group Γ of order n such that G is a Γ-distance magic
graph.

In Section 2, we provide some necessary conditions for a graph to be group
distance magic and characterize the group distance magic labeling of a tree
T . Further, we discuss the group distance magic labeling of (r1, r2)-regular
graphs G with r1 = |V (G)| − 1 and r2 = |V (G)| − 2 and also exhibit infinite
families of graphs, which are not group distance magic with respect to an
abelian group with one involution. In Section 3, we give three new recursive
techniques to construct new group distance magic graphs from existing ones.

Motivated by the results from [2, 5, 7], in the last section, we discuss the
group distance magic labeling of G ◦H and G×H, where G is a nonregular
graph and H is a balanced-dmg.

2. Group distance magicness of (Kn−1 −M) +K1 and trees

First, we prove the following lemma to show that there are infinitely many
graphs, which are not group distance magic.

Lemma 2.1. Let c be an odd integer less than 2k, and G be a graph on 2kt
vertices, where k, t ∈ N\{1} and t is odd. If for any vertex v of G, deg(v) ≡ c
mod 2k, then there exists no abelian group Γ with one involution for which
G is Γ-distance magic.

Proof. Let Γ be an abelian group with |Γ| = 2kt, where t is odd. If Γ has
exactly one involution g′, then Γ ∼= Z2k×A, whereA is an abelian group with
|A| = t. If g′ is an involution of Z2k ×A, then g′ = (2k−1, 0), where 0 is the
identity element in A. Therefore, Γ = {gi,−gi : 1 ≤ i ≤ 2k−1t− 1}∪ {0, g′},
where 0 is the identity of Γ. Let v1, . . . , v2kt be the vertices of G. For
the sake of contradiction, suppose that G is Γ-distance magic with magic
constant µ0.

Without loss of generality, consider the function l given by

l(vi) =


gi for i ∈ {1, . . . , 2k−1t− 1}
g′ for i = 2k−1t
−gj for i = 2k−1t+ j and j ∈ {1, . . . , 2k−1t− 1}
0 for i = 2kt.

If deg(v) ≡ c mod 2k for every v of G, then deg(vi)−deg(v2k−1t+i) = 2ksi,

for some integer si, where i ∈ {1, 2, . . . , 2k−1t − 1}. Since wG(vi) = µ0 for

any i, we have w(G) =
∑2kt

i=1wG(vi) = 2ktµ0 = |Γ|µ0 = 0. On the other
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hand,

w(G) =
2kt∑
i=1

deg(vi)l(vi)

=
2k−1t−1∑

i=1

deg(vi)gi + deg(v2k−1t)g
′ +

2kt−1∑
i=2k−1t+1

deg(vi)gi + 0

=

2k−1t−1∑
i=1

(
deg(vi)− deg(v2k−1t+i)

)
gi + g′ = 2k

2k−1t−1∑
i=1

sigi + g′

= 2kg + g′, where g =
2k−1t−1∑

i=1

sigi

= 2kg − g′.

But there exists no element g in Γ for which 2kg = g′, a contradiction. �

Now, let us take c = 3, k = 2, and t = 3 in Lemma 2.1 and consider all
(3, 7)-graphs of order 12. With the help of a brute-force search algorithm,

(3, 7)−regular (3, 11)−regular (7, 11)−regular (3, 7, 11)−regular

(3, 7)−regular (3, 11)−regular (7, 11)−regular (3, 7, 11)−regular

Figure 1. Graphs which are not Z4 ×A-distance magic.

one can obtain 21041 graphs (up to isomorphism), which are not group
distance magic with respect to any abelian group Γ, where Γ ∼= Z4 × A
and A an abelian group with |A| = 3. Figure 1 gives a few such nongroup
distance magic graphs on 12 vertices.

Observation 2.2. Let Γ be any abelian group and G be a graph with |Γ|
vertices. If G has at least two distinct vertices of degree |Γ| − 1, then G is
not Γ-distance magic.
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Proof. Suppose that l is a Γ-distance magic labeling of the graph G with
magic constant µ0. If u and v be two distinct vertices of G with degG(u) =
|Γ| − 1 = degG(v), then

sum(Γ) = µ0 + l(u) = µ0 + l(v).

Now, the labels of u and v are equal, a contradiction. �

Lemma 2.3. If Γ is any abelian group and if G is a graph with |Γ| ver-
tices such that G has two distinct vertices u and v with |NG(u) ∩NG(v)| =
degG(u)− 1 = degG(v)− 1, then G is not Γ-distance magic.

Proof. Suppose that l is a Γ-distance magic labeling of the graph G with
magic constant µ0. Choose two vertices u′ and v′ of G in such that u′ ∈
NG(u) and v′ ∈ NG(v) but u′ 6∈ NG(v) and v′ 6∈ NG(u).

By comparing the weights of u and v, we have

µ0 = wG(u) = g + l(u′) = g + l(v′) = wG(v),

for some g in Γ. Then the labels of u′ and v′ are equal, a contradiction. �

The following result characterizes the group distance magicness of a tree.

Theorem 2.4. A nontrivial tree T is Γ-distance magic for an abelian group
Γ if and only if T ∼= K1,n, with n 6≡ 1 mod 4.

Proof. If diam(T ) = 2, the result is straightforward by Theorem 1.13. On
the other hand if diam(T ) > 2, then T has two vertices u and v such that
dG(u, v) = diam(T ). Since u and v are leaves, the result follows from Lemma
2.3. �

Theorem 2.5. Let Γ be any abelian group having at least one element g†

such that g† is not an involution. If l is a Γ-distance magic labeling of G
with magic constant µ0, then there exists a Γ-distance magic labeling l−1 of
G with magic constant −µ0.

Proof. Let l be a Γ-distance magic labeling of G with magic constant µ0.
Then, define the labeling l−1(u) = −l(u). Clearly, l is not identically equal
to l−1 because if l(v) = l−1(v) for all v, in particular, if l(v†) = l−1(v†) = g†,
then l(v†) = −l(v†), which implies 2g† = 0, a contradiction.

Then the weight of u of G with respect to l−1 is∑
v∈N(u)

l−1(v) =
∑

v∈N(u)

−l(v) = −
∑

v∈N(u)

l(v) = −µ0.

�

Theorem 2.6. Let n > 1 be an odd integer. Let G be a graph isomorphic
to (Kn−1 −M) + K1, where M is any perfect matching in Kn−1 and v0 be
the vertex of G with degree n − 1. If Γ is any abelian group with |Γ| = n,
then G admits a Γ-distance magic labeling l if and only if l(v0) = 0.
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Proof. Let Γ be an abelian group with |Γ| = n. Define the vertex set of
G as {v0} ∪ {vi, v′i : 1 ≤ i ≤ (n− 1)/2}, where vi and v′i are twin vertices
of Kn−1 −M and v0 is the vertex, which induces K1 of G. Let l be a Γ-
distance magic labeling of G with magic constant µ0. We know that ng =
0 for any element g of Γ, in particular, nµ0 = 0. By using Lemma 1.8 and
by comparing the total weights, we get

nµ0 = (n− 1)l(v0) + (n− 2)
(
sum(Γ)− l(v0)

)
,

which implies that l(v0) is 0.
When n is odd, for every element g of Γ, there exists a unique −g different

from g in Γ such that g + (−g) = 0. Consider a function l from V (G) to Γ
as, l(v0) = 0 and if l(vi) = g, then l(v′i) = −g, for all i 6= 0. Now, one can
verify that the weight of each vertex of G is 0. Thus, l is a Γ-distance magic
labeling of G with magic constant µ0 = 0. �

Theorem 2.7. Let Γ1 and Γ2 be two abelian groups. If G is an exp(Γ2)-
regular Γ1-distance magic graph and H is an exp(Γ1)-regular Γ2-distance
magic graph, then G ◦H is a (Γ1 × Γ2)-distance magic graph.

Proof. Let l1, l2 be a Γ1-distance magic labeling ofG and a Γ2-distance magic
labeling of H respectively. Let µ1, µ2 be their respective magic constants.

For every (u, v) ∈ G ◦H, define lG◦H as,

lG◦H ((u, v)) =
(
l1(u), l2(v)

)
.

Clearly lG◦H is a bijection and for every (u, v) in G ◦H, the weight,

wG◦H ((u, v))

=
∑

(x,y)∈NG◦H((u,v))

lG◦H ((x, y))

=

(
l1(u) exp(Γ1) + |V (H)|

∑
x∈NG(u)

l1(x), sum(Γ2) exp(Γ2) +
∑

y∈NH(v)

l2(y)

)

=

(
l1(u) exp(Γ1) + |V (H)|µ1, sum(Γ2) exp(Γ2) + µ2

)
= (|V (H)|µ1, µ2).

a constant. �

3. Three techniques to construct a group distance magic
graph from the existing one.

The following theorems provide certain techniques for constructions of
larger group distance magic graphs recursively from smaller group distance
magic graphs using graph products.

Theorem 3.1. Let Γ1 be an abelian group. If G is Γ1-distance magic graph
with magic constant µ1 such that for any v of G, exp(Γ2) divides degG(v),
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then |Γ2|G is a (Γ1×Γ2)-distance magic graph with a magic constant (µ1,0),
where Γ2 is an abelian group with identity 0.

Proof. LetG be a graph with the vertices v0, . . . , vn−1 and l1 be a Γ1-distance
magic labeling of G with magic constant µ1. Let the vertex set of |Γ2|G be

{vji : 0 ≤ i ≤ n− 1, 1 ≤ j ≤ |Γ2|}. Consider a labeling l|Γ2|G on |Γ2|G as,

l|Γ2|G(vji ) = (l1(vi), aj),

where aj ∈ Γ2 for all j.

Since degG(vi) = deg|Γ2|G(vji ) for all i and j, we have deg|Γ2|G(vji ) =

ki exp(Γ2), where 1 ≤ ki ≤ (|V (G)| − 1)/exp(Γ2), for all i. Thus the weight,

w|Γ2|G(vji ) =
∑

v∗∈N|Γ2|G(vji )

l|Γ2|G(v∗)

=

( ∑
x∈NG(vi)

l1(x), ki exp(Γ2) sum(Γ2)aj

)
= (µ1,0),

for all i and j. �

From the above theorem, we can obtain the following corollary.

Corollary 3.2. Let Γ1 be an abelian group. If G is an Eulerian and Γ1-
distance magic graph with magic constant µ1, then |Γ2|G is a (Γ1 × Γ2)-
distance magic graph with a magic constant (µ1, e), where Γ2 is an elemen-
tary abelian 2-group with identity e. �

Theorem 3.3. Let Γ1 be an abelian group with exponent n. If G is a Γ1-
distance magic graph, then G ◦ K̄n is a (Γ1 × Γ2)-distance magic graph,
where Γ2 is any abelian group of order n with more than one involution or
no involution.

Proof. Let l be a Γ1-distance magic labeling of a graph G with magic con-
stant µ. Let the vertices of G be v0, . . . , vp−1 and for each i ∈ {0, . . . , p−1},
let v0

i , . . . , v
n−1
i be the vertices of G ◦ Kn that replace the vertex vi of G.

Also, let Γ2 = {gi : 0 ≤ i ≤ n − 1} be an abelian group with the identity
element g0.

For all i, label the vertices of G ◦Kn as,

lG◦Kn
(vji ) =

(
l(vi), gj

)
,

where gj ∈ Γ2, j ∈ {0, . . . , n− 1}.
Now, if for every vi of G, degG(vi) = ki, then the weight,

wG◦K̄n
(vji ) =

∑
v∗∈NG◦K̄n

(vji )

lG◦Kn
(v∗)

=

(
exp(Γ1)

∑
x∈NG(vi)

l(x), ki sum(Γ2)

)
= (0, g0),

where 0 is the identity element of Γ1. �
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Corollary 3.4. Let Γ1 be an abelian group with the exponent n. If G is an
Eulerian and Γ1-distance magic graph, then G ◦ K̄n is a (Γ1 × Γ2)-distance
magic graph, where Γ2 is any abelian group of order n having exactly one
involution.

Observation 3.5. Theorem 3.3 and Corollary 3.4 can be recursively used
to obtain an infinite number of group distance magic graphs, since exp(Γ1×
Γ2) = lcm(exp(Γ1), exp(Γ2)) for any two abelian groups Γ1 and Γ2.

Theorem 3.6. If Γ is an abelian group with identity 0 and G is a Γ-distance
magic graph such that for any v of G, exp(Γ) divides degG(v), then G ◦ G
is a (Γ× Γ)-distance magic graph.

Proof. Let l be a Γ-distance magic labeling of the graph G with magic con-
stant µ0. Let the vertices of G be v0, . . . , vp−1 and for i ∈ {0, . . . , p − 1},
denote v0

i , . . . , v
p−1
i to be the vertices of G ◦G that replace the vertex vi of

G.
Consider the function,

lG◦G(vji ) =
(
l(vi), l(vj)

)
,

for all i and j.
Since for any i, degG(vi) = ki exp(Γ), where 1 ≤ ki ≤ (|V (G)| − 1)/exp(Γ),

then the weights,

wG◦G(vji )

=
∑

v∗∈NG◦G(vji )

lG◦G(v∗)

=

((
|Γ|

∑
x∈NG(vi)

l(x) + ki exp(Γ)l(vi)
)
,
∑

x∈NG(vi)

l(x) + ki exp(Γ) sum(Γ)

)
= (0, µ0).

�

Observation 3.7. If G is a p-regular graph with prime p, in Theorem 3.6,
then Γ must be the elementary abelian p-group. Also, in Theorem 3.6, if G
is a biregular graph with regularities p1 and p2, where p1 and p2 are distinct
primes, then no abelian group Γ exists.

4. Group distance magicness of lexicographic product and
direct product of two graphs

When G is a regular graph and H is a balanced-dmg, the distance magicness
and the group distance magicness of G ◦H (only when H ∼= C4) and G×H
are characterized by Theorem 1.3 and 1.14, respectively. In the case of a
nonregular graph G, analogous to Problem 1.4 and 1.5, natural questions
arise on the existence of group distance magic labeling of G ◦H and G×H.
This section provides partial solutions to these problems.
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Throughout this section, we assume that H is a balanced-dmg on either
2k or 4k + 2 vertices and A = {a0, a1, . . . , a|A|−1} is a finite abelian group
with a0 as its identity element. Observe that C4

∼= K4−M is balanced-dmg
of order 4 and C2k

4k+2
∼= K4k+2−M ′ is a balanced-dmg of order 4k+2, where

M and M ′ are perfect matching in K4 and K4k+2, respectively.

Theorem 4.1. Let G be a graph on n vertices and Γ be an abelian group
with |Γ| = (4k+2)n such that Γ ∼= Z4k+2×A, where k ≥ 1 and A an abelian
group with |A| = n.

(i) If the degrees of the vertices of G are either all even or all odd, then
G ◦ C2k

4k+2 is Γ-distance magic.
(ii) If there exists a constant m ∈ N such that degG(u) ≡ m (mod 4k + 2),

for all u ∈ V (G), then G× C2k
4k+2 is Γ-distance magic.

Proof. Let G be a graph with the vertices u0, . . . , un−1 and H ∼= C2k
4k+2

be a balanced-dmg with the vertices x0, x0′ , . . . , x2k, x(2k)′ . For any i ∈
{0, . . . , n− 1}, let Hi = {x0

i , x
0′
i , . . . , x

2k
i , x

(2k)′

i } be the vertices of G ◦H and
G×H that replace ui of G.

Using the isomorphism φ : Γ → Z4k+2 × A, we identify g ∈ Γ with its
image φ(g) = (z, ai), where z ∈ Z4k+2 and ai ∈ A, i varies from 0 to n− 1.

For all i and for j ∈ {0, . . . , 2k}, define a function l as,

l(xji ) = (j, ai)

l(xj
′

i ) = (4k + 1, a0)− l(xji ).

Note that the label sum of all the vertices of Hi is (2k + 1, a0), which is
independent of i.

For all i, if the degree of vertex ui is 2ti for some ti ≥ 1, then for every
vertex v ∈ Hi,

wG◦H(v) =
∑

v∗∈NG◦H(v),
v∗ 6∈NG◦H[Hi]

(v)

l(v∗) +
∑

v∗∗∈NG◦H[Hi]
(v)

l(v∗∗)

= 2ti(2k + 1, a0) + 2k(4k + 1, a0) = (2k + 2, a0),

and, if the degree of vertex ui is 2ti + 1, for some ti ≥ 0, then for every
vertex v ∈ Hi,

wG◦H(v) =
∑

v∗∈NG◦H(v),
v∗ 6∈NG◦H[Hi]

(v)

l(v∗) +
∑

v∗∗∈NG◦H[Hi]
(v)

l(v∗∗)

= (2ti + 1)(2k + 1, a0) + 2k(4k + 1, a0) = (1, a0).
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Further, the degree of each vertex u of G is congruent to m modulo
(4k + 2). Then, for every vertex v of G×H,

wG×H(v) =
∑

v∗∈NG×H(v)

l(v∗)

= 2k((4k + 2)k′ +m)(4k + 1, a0) = (−2mk, a0).

�

In the following results, we assume G is a graph with vertices u0, . . . , un−1

and H is a balanced-dmg with the vertices x0, x0′ , . . . , x2k−1−1, x(2k−1−1)′ ,
in which xj and xj

′
are the twin vertices, for all j ∈ {0, . . . , 2k−1 − 1}.

Moreover, we fix
⋃n−1

i=0 Hi to be the vertex set of G ◦H and G ×H, where

for any i ∈ {0, . . . , n − 1}, Hi =
{
x0
i , x

0′
i , . . . , x

2k−1−1
i , x

(2k−1−1)′

i

}
is the set

of vertices that replaces the vertex ui of G. Note that xji and xj
′

i are the
twin vertices in G ◦H and G×H.

Lemma 4.2. Let G be a graph on n vertices and Γ be an abelian group with
|Γ| = 2kn, where k ≥ 2 such that Γ ∼= Z2s × A for 1 ≤ s ≤ k − 1, A an
abelian group with |A| = 2k−sn. Let H be a balanced-dmg on 2k vertices.
Then,

(i) G ◦H is Γ-distance magic.
(ii) If there exists a constant m ∈ N such that degG(u) ≡ m mod 2s for

all u ∈ V (G), then G×H is Γ-distance magic.

Proof. Using the isomorphism φ : Γ → Z2s × A, we identify g ∈ Γ with its
image φ(g) = (z, ai), where z ∈ Z2s and ai ∈ A, i varies from 0 to 2k−sn−1.

For i ∈ {0, . . . , n− 1} and α ∈ {0, . . . , 2s−1 − 1}, define a function l as

l(xji ) =
(
α, a(j mod 2k−s)+2k−si

)
, where α2k−s ≤ j ≤ (α+ 1)2k−s − 1,

l(xj
′

i ) = (2s − 1, a0)− l(xji ).
Now for each i = 0, . . . , n− 1, the label sum of all the vertices of Hi is,

2k−1
(
2s − 1, a0

)
=
(
−2k−1, a0

)
= (0, a0),

which is the identity element of Z2s ×A and label sum is independent of i.
Note that the degree of each vertex of H is 2r. For all i = 0, . . . , n − 1,

the vertex v ∈ Hi has weight,

wG◦H(v) =
∑

v∗∈NG◦H(v),
v∗ 6∈NG◦H[Hi]

(v)

l(v∗) +
∑

v∗∗∈NG◦H[Hi]
(v)

l(v∗∗)

= degG(ui)(0, a0) + r(2s − 1, a0) = (−r, a0).

Moreover, if the degree of each vertex u of G is congruent to m modulo
2s then, for every v of G×H,

wG×H(v) =
∑

v∗∈NG×H(v)

l(v∗) = r(2sk′ +m)(2s − 1, a0) = (−mr, a0).
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�

Lemma 4.3. Let G be a graph on n vertices and Γ be an abelian group with
|Γ| = 2kn, such that Γ ∼= Z2s × A, where 2 ≤ k ≤ s and A is an abelian
group with |A| = 2k−sn. Let H be a balanced-dmg on 2k vertices.

(i) If there exists a constant m ∈ N such that degG(u) ≡ m mod 2s−1

for all u ∈ V (G), then G ◦H is Γ-distance magic.
(ii) If there exists a constant m ∈ N such that degG(u) ≡ m mod 2s for

all u ∈ V (G), then G×H is Γ-distance magic.

Proof. Using the isomorphism φ : Γ → Z2s × A, we identify g ∈ Γ with its
image φ(g) = (z, ai), where z ∈ Z2s and ai ∈ A, i varies from 0 to 2k−sn−1.

Consider the function l,

l(xji ) =
(
(2k−1i+ j) mod 2s−1, ab2k−sic

)
,

l(xj
′

i ) =
(
2s − 1, a0

)
− l(xji ),

where i ∈ {0, . . . , n−1} and j ∈ {0, . . . , 2k−1−1}. For each i = 0, . . . , n−1,
the label sum of all the vertices of Hi is (−2k−1, a0), which is independent
of i. Recall that the degree of any vertex of H is 2r. Since the degree of
any vertex u of G is congruent to m modulo 2s−1, for all i = 0, . . . , n − 1,
the vertex v ∈ Hi has weight,

wG◦H(v) =
∑

v∗∈NG◦H(v),
v∗ 6∈NG◦H[Hi]

(v)

l(v∗) +
∑

v∗∗∈NG◦H[Hi]
(v)

l(v∗∗)

= (2s−1k′ +m)(−2k−1, a0) + r(2s − 1, a0) = (−r − 2k−1m, a0).

On the other hand, if the degree of any vertex u of G is congruent to m
modulo 2s then for every v of G×H,

wG×H(v) =
∑

v∗∈NG×H(v)

l(v∗) = r(2sk′ +m)(2s − 1, a0) = (−mr, a0).

�

Theorem 4.4. Let G be a graph on n vertices and Γ be an abelian group
with |Γ| = 2kn, where k ≥ 2, n = 2s(2t+ 1), for some nonnegative integers
s and t. Let H be a balanced-dmg on 2k vertices.

(i) If there exists a constant m ∈ N such that degG(u) ≡ m mod 2k+s−1

for all u ∈ V (G), then G ◦H is Γ-distance magic.
(ii) If there exists a constant m ∈ N such that degG(u) ≡ m mod 2k+s

for all u ∈ V (G), then G×H is Γ-distance magic.

Proof. By the fundamental theorem on finite abelian groups, Γ ∼= Z2n0 ×
Zp

n1
1
× · · · × Zpnr

r
where 2kn = 2n0

∏r
i=1 p

ni
i , pi’s not necessarily distinct

primes and n0 > 0.
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Note that if any vertex u of G is such that degG(u) ≡ m mod 2k+s, then
there exist unique integers mi such that degG(u) ≡ mi mod 2n0 , where
n0 ∈ {1, . . . , k + s− 1}.

For each Γ isomorphic to Z2n0 ×A with 1 ≤ n0 ≤ k− 1, the result follows
from Lemma 4.2 and for each Γ isomorphic to Z2n0 ×A with k ≤ n0 ≤ k+s,
the result follows from Lemma 4.3, where A is an abelian group with |A| =
n/2n0−k. �

Now one can verify that Theorem 1.11 and Theorem 1.12 can be obtained
by substituting k = 2 in Theorem 4.4.

Theorem 4.5. Let G be a graph on n-odd vertices and Γ be an abelian group
with |Γ| = 2kn, where k ≥ 2. If all the vertices of G are of even degree and
H is a balanced-dmg on 2k vertices, then G◦H is a Γ-distance magic graph.

Proof. If Γ is isomorphic to Z2p × A for p ∈ {1, . . . , k − 1}, then the result
follows from Lemma 4.2. Now suppose that Γ is isomorphic to Z2k × A,
where |A| = n.

Using the isomorphism φ : Γ→ Z2k ×A, we identify g ∈ Γ with its image
φ(g) = (z, ai), where z ∈ Z2k and ai ∈ A, i varies from 0 to n− 1.

For all i ∈ {0, . . . , n− 1} and j ∈ {0, . . . , 2k−1 − 1}, define l on G ◦H as,

l(xji ) = (2j, ai) and

l(xj
′

i ) = (2k − 1, a0)− l(xji ).
Note that the label sum of all the vertices of Hi is,

(2k−1(2k − 1) mod 2k, a0) = (−2k−1, a0),

which is independent of i.

Since for any ui of G, degG(ui) = 2ti with ti ≥ 1 and for any x of H,
degH(x) = 2r, the degree of v in G ◦H is 2(2kti + r). Then the weight of
any vertex v ∈ Hi is,

wG◦H(v) =
∑

v∗∈NG◦H(v)
v∗ 6∈NG◦H[Hi]

(v)

l(v∗) +
∑

v∗∗∈NG◦H[Hi]
(v)

l(v∗∗)

= 2ti(−2k−1, a0) + r(2k − 1, a0) = (−r, a0).

�

Corollary 4.6. Let t be an odd integer. Let G ∼= Km1,m2,...,mt be a complete

t-partite graph with, m =
∑t

i=1mi and all mi’s are odd. If Γ is an abelian

group with |Γ| = 2km, then G ◦H is a Γ-distance magic graph, where H is
a balanced-dmg on 2k vertices. �

For an abelian group Γ, the following result discusses the Γ-distance magic
labeling of Km,n ◦ H, where m and n are of different parity and H is a

balanced-dmg on 2k vertices.
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Theorem 4.7. Let Km,n be a complete bipartite graph with m is even and

n is odd. If Γ is an abelian group with 2k(m+n) elements, where k ≥ 2 and
H is a 2r-regular balanced-dmg on 2k vertices with r-odd, then Km,n ◦H is
Γ-distance magic.

Proof. If Γ is isomorphic to Z2p×A with p ∈ {1, . . . , k−1}, then the assertion
follows from Lemma 4.2. Suppose that Γ is isomorphic to Z2k × A, where
|A| = m+ n.

Let G ∼= Km,n have the partition sets X = {u0, . . . , um−1} and Y =

{v0, . . . , vn−1}. Then for each i ∈ {0, . . . ,m − 1}, let Xi = {x0
i , x

0′
i , . . . ,

x2k−1−1
i , x

(2k−1−1)′

i } be the vertex set ofG◦H, that replace the vertex ui ofG.

Similarly, for all j ∈ {0, . . . , n− 1}, let Yj = {y0
j , y

0′
j , . . . , y

2k−1−1
j , y

(2k−1−1)′

j }
be the vertex set of G ◦H, that replace the vertex vj of G.

Let the vertex set of G ◦H be X ′ ∪ Y ′, where X ′ =
⋃m−1

i=0 Xi and Y ′ =⋃n−1
j=0 Yj .
Using the isomorphism φ : Γ→ Z2k ×A, we identify g ∈ Γ with its image

φ(g) = (z, ai), where z ∈ Z2k and ai ∈ A, i varies from 0 to m+ n− 1.

For each q ∈ {0, . . . , 2k−1 − 1}, define l on X ′ as,

l(xqi ) = ((2k−1 + 1)q, ai), and

l(xq
′

i ) = (2k−1 − 1, a0)− l(xqi ), for all i = 0, . . . ,m− 1.

Again for each q ∈ {0, . . . , 2k−1 − 1}, define l on Y ′ as,

l(yqj ) = (2q, am+j), and

l(yq
′

j ) = (2k − 1, a0)− l(yqj ), for all j = 0, . . . , n− 1.

Then for all i ∈ {0, . . . ,m− 1}, the label sum of all vertices of Xi is,

(2k−1(2k−1 − 1), a0) = (2k−1, a0).

Similarly for all j ∈ {0, . . . , n− 1}, the label sum of all vertices of Yj is,

(2k−1(2k − 1), a0) = (2k−1, a0).

Since H is 2(2t+ 1)-regular graph, for every x of Xi,

wG◦H(x) =
∑

x∗∈NG◦H(x),
x∗ 6∈NG◦H[Xi]

(x)

l(x∗) +
∑

x∗∗∈NG◦H[Xi]
(x)

l(x∗∗)

= n(2k−1, a0) + (2t+ 1)(2k−1 − 1, a0) =
(
−(2t+ 1), a0

)
,

and for every y of Yj ,

wG◦H(y) =
∑

y∗∈NG◦H(y),
y∗ 6∈NG◦H[Yj ](y)

l(y∗) +
∑

y∗∗∈NG◦H[Yj ](y)

l(y∗∗)

= m(2k−1, a0) + (2t+ 1)(2k − 1, a0) =
(
−(2t+ 1), a0

)
,
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(0, a0)

(3, a0)

(6, a0)

(4, a0)

(7, a0)

(2, a0)(1, a0)

(5, a0)

(0, a1)

(3, a4)

(6, a4)

(4, a4)

(7, a1)

(2, a1)(1, a4)

(5, a1)

(0, a2)

(7, a3)

(5, a3)

(1, a3)

(6, a2)

(4, a2)(3, a3)

(2, a2)

(0, a3)

(7, a2)

(5, a2)

(1, a2)

(6, a3)

(4, a3)(3, a2)

(2, a3)

(0, a4)

(7, a1)

(5, a1)

(1, a1)

(6, a4)

(4, a4)(3, a1)

(2, a4)

Figure 2. K2,3 ◦ (K8 −M) and its (Z8 ×A)-distance magic labeling.

which completes the proof. �

Note that Figure 2 gives the Z8×A-distance magic labeling of K2,3◦(K8−
M), where A = {a0, a1, a2, a3, a4 : a0 is identity and a1 +a4 = a0 = a2 +a3}
and M is any perfect matching in K8.

5. Conclusion

In this paper, we obtain necessary conditions for a graph to be group
distance magic and characterize the group distance magic labeling of a tree,
a subclass of bi-regular graphs, and the lexicographic and direct product
of a nonregular graph with a balanced distance magic graph. In addition,
we present three techniques to build recursively larger group distance magic
graphs from the existing ones. Further, we identify infinitely many graphs,
which are not group distance magic with respect to any abelian group with
one involution.
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